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Abstract

Background Artificial intelligence (AI) models are increasingly used in the medical domain.
However, asmedical data is highly sensitive, special precautions to ensure its protection are
required. The gold standard for privacy preservation is the introduction of differential privacy
(DP) to model training. Prior work indicates that DP has negative implications on model
accuracy and fairness, which are unacceptable in medicine and represent a main barrier to
thewidespreaduseof privacy-preserving techniques. In thiswork,weevaluated theeffect of
privacy-preserving training of AI models regarding accuracy and fairness compared to non-
private training.
Methods We used two datasets: (1) A large dataset (N = 193,311) of high quality clinical
chest radiographs, and (2) a dataset (N = 1625) of 3D abdominal computed tomography (CT)
images, with the task of classifying the presence of pancreatic ductal adenocarcinoma
(PDAC). Both were retrospectively collected and manually labeled by experienced
radiologists. We then compared non-private deep convolutional neural networks (CNNs)
and privacy-preserving (DP) models with respect to privacy-utility trade-offs measured as
area under the receiver operating characteristic curve (AUROC), and privacy-fairness trade-
offs, measured as Pearson’s r or Statistical Parity Difference.
Results We find that, while the privacy-preserving training yields lower accuracy, it largely
does not amplify discrimination against age, sex or co-morbidity. However, we find an
indication that difficult diagnoses and subgroups suffer stronger performance hits in private
training.
ConclusionsOur study shows that – under the challenging realistic circumstances of a real-
life clinical dataset – the privacy-preserving training of diagnostic deep learning models is
possible with excellent diagnostic accuracy and fairness.

The development of artificial intelligence (AI) systems for medical appli-
cations represents a delicate trade-off: On the one hand, diagnostic models
must offer high accuracy and certainty, as well as treat different patient
groups equitably and fairly. On the other hand, clinicians and researchers

are subject to ethical and legal responsibilities towards the patients whose
data is used for model training. In particular, when diagnostic models are
published to third parties whose intentions are impossible to verify, care
must be undertaken to ascertain that patient privacy is not compromised.
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Plain Language Summary

Artificial intelligence (AI), in which computers
can learn to do tasks that normally require
human intelligence, is particularly useful in
medical imaging.However, AI shouldbeused
in a way that preserves patient privacy. We
explored the balance between maintaining
patient data privacy and AI performance in
medical imaging. We use an approach called
differential privacy to protect the privacy of
patients’ images. We show that, although
training AI with differential privacy leads to a
slight decrease in accuracy, it does not
substantially increase bias against different
agegroups, genders, or patientswithmultiple
health conditions. However, we notice that AI
faces more challenges in accurately
diagnosing complex cases and specific
subgroups when trained under these privacy
constraints. These findings highlight the
importance of designing AI systems that are
both privacy-conscious and capable of reli-
able diagnoses across patient groups.
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Privacy breaches can occur, e.g., through data reconstruction, attribute
inference or membership inference attacks against the shared model1.
Federated learning2–4 has been proposed as a tool to address some of these
problems. However, it has become evident that training data can be reverse-
engineered from federated systems, rendering them just as vulnerable to the
aforementioned attacks as centralized learning5. Thus, it is apparent that
formal privacy preservation methods are required to protect the patients
whose data is used to train diagnostic AI models. The gold standard in this
regard is differential privacy (DP)6.

Most, if not all, currently deployed machine learning models are
trained without any formal privacy-preservation technique. It is especially
crucial to employ such techniques in federated scenarios, wheremuchmore
granular information about the training process can be extracted, or even
the training process itself can be manipulated by a malicious participant7,8.
Moreover, trained models can be attacked to extract training data through
so-called model inversion attacks9–11. We also note that such attacks work
better if the models have been trained on less data, which is especially
concerning since even most FDA-approved AI algorithms have been
trained on fewer than 1000 cases12. Creating a one-to-one correspondence
between a successful attack and the resulting “privacy risk” requires a case-
by-case consideration. The legal opinion (e.g., the GDPR) seems to have
converged on the notion of singling out/ re-identification. Even from the
aspect ofnewer legal frameworks, suchas theEUAIact,whichdemand “risk
moderation” rather than directly specifying “privacy requirements,”, DP
can be seen as the optimal tool as it can quantitatively bound both the risk of
membership inference (MI)13,14 and data reconstruction15. Moreover, this
was also shown empirically for both aforementioned attack classes16–19. It is
also known that DP, contrary to de-identification procedures such as k-
anonymity, provably protects against the notion of singling out20,21.

DP is a formal framework encompassing a collection of techniques to
allow analysts to obtain insights from sensitive datasets while guaranteeing
theprotectionof individual datapointswithin them.DP thus is aproperty of
adataprocessing systemwhich states that the results of a computationover a
sensitive dataset must be approximately identical whether or not any single
individual was included or excluded from the dataset. Formally, a rando-
mizedalgorithm(mechanism)M : X ! Y is said to satisfy (ε, δ)-DP if, for
all pairs of databases D;D0 2 X which differ in one row and all S � Y, the
following holds:

Pr MðDÞ 2 Sð Þ≤ eε Pr MðD0Þ 2 Sð Þ þ δ; ð1Þ

where the guarantee is given over the randomness ofM and holds equally
when D and D0 are swapped. In more intuitive terms, DP is a guarantee
given from a data processor to a data owner that the risks of adverse events
which can occur due to the inclusion of their data in a database are bounded
compared to the risks of such events when their data is not included. The
parameters ε and δ together form what is typically called a privacy budget.
Higher values of ε and δ correspond to a looser privacy guarantee and vice
versa.With some terminological laxity, ε can be considered ameasure of the
privacy loss incurred, whereas δ represents a (small) probability that this
privacy loss is exceeded. For deep learning workflows, δ is set to around the
inverse of the database size.Wenote that, althoughmechanisms exist where
δ denotes a catastrophic privacy degradation probability, the sampled
Gaussian mechanism used to train neural networks does not exhibit this
behavior. The fact that quantitative privacy guarantees can be computed
over many iterations (compositions) of complex algorithms like the ones
used to train neural networks is unique to DP. This process is typically
referred to as privacy accounting. Applied to neural network training, the
randomization required byDP is ensured through the addition of calibrated
Gaussian noise to the gradients of the loss function computed for each
individual data point after they have been clipped in ℓ2-norm to ensure that
their magnitude is bounded22, where the clipping threshold is an additional
hyperparameter in the training process.

DP does not only offer formal protection, but several works have also
empirically shown the connection between the privacy budget and the

success ofmembership inference16 anddata reconstruction attacks17,19,23.We
note that absolute privacy (i.e., zero risk) is only possible if no information is
present24. This is, for example, the case in encryption methods, which are
perfectly private as long as data is not decrypted. Note that training models
e.g., via homomorphic encryption does, however, not offer such perfect
privacy guarantees, as the information learned by the model is actually
revealed at inference time through the model’s predictions. Thus, without
the protection of differential privacy, no formal barrier stands between the
sensitive data and an attacker (beyond potential imperfections of the attack
algorithm, which are usually not controllable a priori). DP offers the ability
to upper-bound the risk of successful privacy attacks while still being able to
draw conclusions from the data. Determining the exact privacy budget is
challenging, as it is amatter of policy. The technical perspective can provide
insight into the appropriate budget level, as it is possible to quantify the risk
of a successful attack at a given privacy budget compared to themodel utility
that can be achieved. The trade-offs between model utility and privacy
preservation are also a matter of ethical, societal and political debate. The
utilization of DP also creates two fundamental trade-offs: The first is a
“privacy-utility trade-off,” i.e., a reduction in diagnostic accuracy when
stronger privacy guarantees are required25,26. The other trade-off is between
privacy and fairness. Intuitively, the fact thatAImodels learn proportionally
less about under-represented patient groups27 in the training data is
amplified by DP, leading to demographic disparity in the model’s predic-
tions or diagnoses28. Both of these trade-offs are delicate in sensitive appli-
cations, such asmedical ones, as it is not acceptable to havewrongdiagnoses
or to discriminate against a certain patient group.

The need for the use of differential privacy (DP) has been illustrated by
Packhäuser et al.29, who showed that it is trivial to match chest x-rays of the
same patient, which directly enables re-identification attacks; this was
similarly shown in tabular databases by Narayanan et al.30. The training of
deep neural networks on medical data with DP has so far not been widely
investigated. Li et al.31 investigated privacy-utility trade-offs in the combi-
nation of advanced federated learning schemes and DPmethods on a brain
tumor segmentation dataset. They find that DP introduces a considerable
reduction in model accuracy in the given setting. Hatamizadeh et al.23

illustrated that the use of federated learning alone can be unsafe in certain
settings. Ziegler et al.32 reported similar findings when evaluating privacy-
utility trade-offs for a chest x-ray classification on a public dataset. These
results also align with our previous work17, where we demonstrated the
utilization of a suite of privacy-preserving techniques for pneumonia clas-
sification in pediatric chest X-rays. However, the focus of this study was not
to elucidate privacy-utility or privacy-fairness trade-offs, but to showcase
that federated learningworkflows can be used to train diagnostic AImodels
with good accuracy on decentralized data while minimizing data privacy
and governance concerns. Moreover, we demonstrated that empirical data
reconstruction attacks are thwarted by the utilization of differential privacy.
In addition, thework did not consider differential diagnosis but only coarse-
label classification into normal vs. bacterial or viral pneumonia.

In this work, we aim to elucidate the connection between using formal
privacy techniques and the fairness towards underrepresented groups in the
sensitive setting of medical use-cases. This is an important prerequisite for
the deployment of ethical AI algorithms in such sensitive areas.However, so
far, prior work is limited to benchmark computer vision datasets33,34. We
thus contend that the widespread use of privacy-preserving machine
learning requires testing under real-life circumstances. In the current study,
we perform the first in-depth investigation into this topic. Concretely, we
utilize a large clinical database of radiologist-labeled radiographic images,
which has previously been used to train an expert-level diagnosticAImodel,
but otherwise not been curated or pre-processed for private training in any
way. Furthermore, we analyze a dataset of abdominal 3D computed
tomography (CT) images, where we classify the presence of a pancreatic
ductal adenocarcinoma (PDAC). This mirrors the type of datasets available
at clinical institutions. In this setting, we then study the extent of privacy-
utility and privacy-fairness trade-offs in training advanced computer vision
architectures.
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To the best of our knowledge, our study is the first work to investigate
the use of differential privacy in the training of complex diagnostic AI
models on a real-world dataset of this magnitude (nearly 200,000 samples)
and a 3D classification task, and to include an extensive evaluation of
privacy-utility and privacy-fairness trade-offs.

Our results are of interest to medical practitioners, deep learning
experts in the medical field and regulatory bodies such as legislative insti-
tutions, institutional review boards and data protection officers and we
undertook specific care to formulate our main lines of investigation across
the important axes delineated above, namely the provision of objective
metrics of diagnostic accuracy, privacy protection anddemographic fairness
towards diverse patient subgroups.

Our main contributions can be summarized as follows: (1) We study
the diagnostic accuracy ramifications of differentially private deep learning
on two curated databases of medically relevant use-cases. We reach 97% of
the non-private AUROC on the UKA-CXR dataset through the utilization
of transfer learning on public datasets and careful choice of architecture. On
the PDAC dataset, our private model at ε = 8.0 is not statistically sig-
nificantly inferior compared to the non-private baseline. (2)We investigate
the fairness implications of differentially private learning with respect to
key demographic characteristics such as sex, age and co-morbidity.We find
that –while differentially private learning has amild fairness effect – it does
not introduce significant discrimination concerns based on the subgroup
representation compared to non-private training, especially at the inter-
mediate privacy budgets typically used in large-scale applications.

Methods
Patient cohorts
We employed UKA-CXR35,36, a large cohort of chest radiographs. The
dataset consists of N = 193,311 frontal CXR images of 45,016 patients, all
manually labeled by radiologists. The available labels include: pleural effu-
sion, pneumonic infiltrates, and atelectasis, each separately for right and left
lung, congestion, and cardiomegaly. The labeling system for cardiomegaly
included five classes “normal,” “uncertain,” “borderline,” “enlarged,” and
“massively enlarged.” For the rest of the labels, five classes of “negative,”
“uncertain,” “mild,” “moderate,” and “severe” were used. Data were split
into N = 153,502 training and N = 39,809 test images using patient-wise
stratification, but otherwise completely randomallocation35,36. Therewas no

overlap between the training and test sets. SupplementaryTable 1 shows the
statistics of the dataset, which are further visualized in Supplementary
Figs. 1 and 2.

In addition, we used an in-house dataset at KlinikumRechts der Isar of
1625 abdominal CT scans from unique, consecutive patients, of which
867 suffered from pancreatic ductal adenocarcinoma (PDAC) (positive)
and 758 were a control group without a tumor (negative). We split the
dataset into 975 train and 325 validation and test images respectively.
During splitting wemaintained the ratio of positive and negative samples in
all subsets.

The experiments were performed in accordance with relevant
national and international guidelines and regulations. Approval for the
UKA-CXR dataset by the Ethical Committee of the Medical Faculty of
RWTH Aachen University has been granted for this retrospective study
(Reference No. EK 028/19). Analogously, for the PDAC dataset, the
protocol was approved by the Ethics Committee of Klinikum Rechts der
Isar (Protocol Number 180/17S). Both institutional review boards did
not require informed consent from subjects and/or their legal guar-
dian(s) as this was a retrospective study. The study was conducted in
accordance with the Declaration of Helsinki.

Data pre-processing
We resized all images of the UKA-CXR dataset to (512 × 512) pixels.
Afterward, a normalization scheme as described previously by Johnson
et al.37 was utilized by subtracting the lowest value in the image, dividing by
the highest value in the shifted image, truncating values, and converting the
result to an unsigned integer, i.e., in the range of [0,255]. Finally, we per-
formedhistogram equalization by shifting pixel values towards 0 or towards
255 such that all pixel values 0 through 255 have approximately equal
frequencies37.

We selected a binary classification paradigm for each label. The
“negative” and “uncertain” classes ("normal” and “uncertain” for cardio-
megaly)were treated as negative, while the “mild,” “moderate,” and “severe”
classes ("borderline,” “enlarged,” and “massively enlarged” for cardiome-
galy) were treated as positive.

For the PDAC dataset, we clipped the voxel density values of all CT
scans to an abdominal window from −150 to 250 Hounsfield units and
resized to a shape of 224 × 224 × 128 voxels.

Fig. 1 | Differences between the private and non-private training process of a
neural network. a Images from a dataset are fed to a neural network and predictions
are made. b From the predictions and the ground truth labels, the gradient is cal-
culated via backpropagation. ((c), upper panel) In normal training all gradients are

averaged and an update step is performed. ((c), lower panel) In private training, each
per-sample gradient is clipped to a predetermined ℓ2-norm, averaged and noise
proportional to the norm is added. This ensures that the information about each
sample is upper-bounded and perturbed with sufficient noise.
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Deep learning process
Network architecture. For both datasets, we employed the ResNet9
architecture introduced in ref. 38 as our classification architecture. For
the UKA-CXR dataset, images were expanded to (512 × 512 × 3) for
compatibility with the neural network architecture. The final linear
layer reduces the (512 × 1) output feature vectors to the desired number
of diseases to be predicted, i.e., 8. The sigmoid function was utilized to
convert the output predictions to individual class probabilities. The full
network contained a total of 4.9 million trainable parameters. For the
PDAC dataset, we used the conversion proposed by Yang et al.39 to
convert themodel to be applicable to 3Ddata, which in brief applies 2D-
convolutional filters along axial, coronal, and sagittal axes separately.
Our utilized ResNet9 network employs the modifications proposed by
Klause et al.38 and by He et al.40. Batch Normalization41 is incompatible
with DP-SGD, as per-sample gradients are required, and batch nor-
malization inherently intermixes information of all images in one
batch. Hence, we used group normalization42 layers instead with 32
groups to be compatible with DP processing. For the CXR dataset we
pretrained the network on the MIMIC Chest X-ray JPG dataset v2.0.0
(MIMIC-CXR),43 consisting ofN = 210,652 frontal images. All training
hyperparameters were selected empirically based on their validation
accuracy, while no systematic/automated hyperparameter tuning was
conducted.

Non-DP training. For the UKA-CXR dataset, the Rectified Linear Unit
(ReLU)44,45 was chosen as the activation function in all layers. We per-
formed data augmentation during training by applying random rotation
in the range of [− 10, 10] degrees and medio-lateral flipping with a
probability of 0.50. The model was optimized using the NAdam46 opti-
mizer with a learning rate of 5 ⋅ 10−5. The binary weighted cross-entropy
with inverted class frequencies of the training data was selected as the loss
function. The training batch size was chosen to be 128. In the PDAC
dataset, we used an unweighted binary cross-entropy loss as well as the
NAdam optimizer with a learning rate of 2 ⋅ 10−4.

DP training. For UKA-CXR, we chose Mish47 as the activation function
in all layers. No data augmentation was performed duringDP training as
we found further data augmentation during training to be harmful to
accuracy. All models were optimized using the NAdam46 optimizer with
a learning rate of 5 ⋅ 10−4. The binary weighted cross-entropy with
inverted class frequencies of the training data was selected as the loss
function. The maximum allowed gradient norm (see Fig. 1) was chosen
to be 1.5 and the network was trained for 150 epochs for each chosen
privacy budget. Each point in the batchwas sampledwith a probability of
8 ⋅ 10−4 (128 divided by N = 153,502). For the PDAC dataset, we chose a
clipping norm of 1.0, δ = 0.001 and a sampling rate of 0.31 (512/1 625).
In both cases, the noise multiplier was calculated such that for a given
number of training steps, sampling rate, and maximum gradient norm
the privacy budget was reached on the last training step. For the UKA-
CXR dataset, the indicated privacy guarantees are “per record” since
some patients have more than one image, while for the PDAC datasets,
they are “per individual.”

Quantitative evaluation and statistical analysis
The area under the receiver operating characteristic curve (AUROC) was
utilized as the primary evaluation metric. We report the average AUROC
over all the labels for each experiment. The individual AUROCas well as all
other evaluation metrics of individual labels are reported in the supple-
mentary information (Supplementary Tables 2–8). For the UKA-CXR test
set,we usedbootstrappingwith1000 redraws for eachmeasure to determine
the statistical spread48. For calculating sensitivity, specificity, and accuracy, a
threshold was chosen according to Youden’s criterion49, i.e., the threshold
that maximized (true positive rate – false positive rate).

To evaluate the correlation between results of data subsets and their
sample size, Pearson’s r coefficient was used. To analyze fairness betweenT
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subgroups, the statistical parity difference50 was used which is defined as

PðŶ ¼ 1jC ¼ Minority Þ � PðŶ ¼ 1jC ¼ Majority Þ ð2Þ

where Ŷ ¼ 1 represents correct model predictions and C is the group in
question. Intuitively, it is the difference in classification accuracy between
the minority and majority class and thus is optimally zero. Values larger
than zero mean that there is a benefit for the minority class, while values
smaller than zero mean that the minority class is discriminated against.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
High classification accuracy is attainable despite stringent priv-
acy guarantees
Table 1 shows an overview of our results for all subgroups. Supplementary
Tables 2–8 show the per-diagnosis evaluation results for non-DP and DP
training for different ε values. On the UKA-CXR dataset our non-private
model achieves anAUROCof 89.71% over all diagnoses. It performs best on
pneumonic infiltration on the right (AUROC=94%) while struggling the
most to accurately classify cardiomegaly (AUROC=84%). Training with DP
decreases all results slightly yet significantly (Hanley &McNeil-test p-value <
0.001, 1 000 bootstrapping redraws) and achieves an overall AUROC of
87.36%. The per-diagnosis performance ranges from 92% (pleural effusion
right) to 81% AUROC (congestion). We next consider classification per-
formance at a very strong level of privacy protection (i.e., at ε < 1).Here, at an
ε-budget of only 0.29, ourmodel achieves an averageAUROCof 83.13%over

all diagnoses.Avisual overview is displayed inFig. 2,which shows the average
AUROC, accuracy, sensitivity, and specificity values over all labels.

On the PDAC dataset, we found that, while non-private training
achieved almost perfect results on the test set the loss in utility for private
training at ε = 8 is statistically non-significant (Hanley&McNeil-test p-value:
0.34, 3 independent experiments) compared to non-private training. Again,
with lower privacy budgets, model utility decreases, but even at a very low
privacy budget of ε= 1.06, we observe an average AUROC score of 95.58%.

Moreover, for UKA-CXR, the use of pre-training helps to boostmodel
performance and reduce the amount of additional information the model
needs to learn “from scratch” and consequently reduces the privacy budgets
required (refer to Supplementary Fig. 3). This appears to primarily benefit
the under-represented groups in the dataset. Conversely, non-private
training, whether initialized with pre-training weights or trained from
scratch, tends to yield comparable diagnostic results, as the latter network
can leverage a greater amount of information.Thesefindings are in linewith
the observations on the PDAC dataset (where no pretrained weights were
available), namely that, at low privacy budgets, specific patient groups suffer
a higher discrimination.

For the purpose of further generalization, we replicated the experi-
ments using three other network architectures. All threemodels displayed a
trend consistent with the utility penalties we observed for ResNet9 in both
DP and non-DP training (see Supplementary Fig. 4). For further details, we
refer to the supplementary information.

Diagnostic accuracy is correlated with patient age and sample
size for both private and non-private models
Fig. 3 shows the difference in classification performance on the UKA-CXR
dataset for each diagnosis between the non-privatemodel evaluation and its

Fig. 2 | Average results of training with differential privacy (DP) with different ϵ
values for δ= 6 ⋅ 10−6. The curves show the average (a) area under the receiver
operating characteristic curve (AUROC), (b) accuracy, (c) specificity, and (d) sen-
sitivity values over all labels, including cardiomegaly, congestion, pleural effusion
right, pleural effusion left, pneumonic infiltration right, pneumonic infiltration left,
atelectasis right, and atelectasis left tested on N = 39,809 test images. The training

dataset includes N = 153,502 images. Note, that the AUROC is monotonically
increasing, while sensitivity, specificity and accuracy exhibit more variation. This is
due to the fact that all training processes were optimized for the AUROC. Dashed
lines correspond to the non-private training results. Source data are provided as a
Source Data file.
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Fig. 3 | Evaluation results of training with differential privacy (DP) and without
DP with different ϵ values for δ= 6 ⋅ 10−6. The results show the individual area
under the receiver operating characteristic curve (AUROC) values for (a) cardio-
megaly, (b) congestion, (c) pleural effusion right, (d) pleural effusion left, (e)

pneumonic infiltration right, (f) pneumonic infiltration left, (g) atelectasis right, and
(h) atelectasis left tested onN = 39,809 test images. The training dataset includesN =
153,502 images. Dashed lines correspond to the non-private training results. Source
data are provided as a Source Data file.
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private counterpart compared to the sample size (that is, the number of
available samples with a given label) within our dataset. At an ε = 7.89, the
largest difference of AUROC between the non-private and privacy-
preserving model was observed for congestion (3.82%) and the smallest
differencewas observed for pleural effusion right (1.55%, see Fig. 3).Ofnote,
there is a visible trend (Pearson’s r: 0.44)whereby classes inwhich themodel
exhibits good diagnostic performance in the non-private setting also suffer
the smallest drop in the private setting. On the other hand, classes that are
already difficult to predict in the non-private case deteriorate the most in
terms of classification performance with DP (see Supplementary Fig. 9).
Both non-private (Pearson’s r: 0.57) and private (Pearson’s r: 0.52) diag-
nostic AUROC exhibit a weak correlation with the number of samples
available for each class (see Supplementary Fig. 9). However, the drop in
AUROCbetween private and non-private training is not correlatedwith the
sample size (Pearson’s r: 0.06). On the PDAC dataset, patients with a tumor
are overrepresented and in the non-private case diagnosedmore accurately.
Not surprisingly, the classification performance is thus also higher for pri-
vate trainings except for the most restrictive privacy budget (see Supple-
mentary Figs. 5–8).

Furthermore, we evaluated ourmodels based on age range and patient
sex (Table 1 and Figs. 4 and 5). Additionally, we calculated statistical parity
difference for those groups to obtain ameasure of fairness (Table 1). On the
UKA-CXR dataset all models performed the best on patients younger than
30years of age. It appears that, theolderpatients are, the greater thedifficulty
for the models to predict the labels accurately. Statistical parity difference

scores are slightly negative for the age groups between 70 and 80 years and
older than 80 years for all models, indicating that the models discriminate
slightly against these groups. In addition, while for the aforementioned age
groups the discrimination does not change with privacy levels, younger
patients becomemore privileged as privacy increases. This finding indicates
that – formodels which aremost protective of data privacy – young patients
benefit themost, despite the groupof younger patients being smaller overall.
For patient sex,models show slightly better performance for female patients
and slightly discriminate against male patients (Table 1). Statistical parity
does not appear to correlate (Pearson’s r: 0.13) with privacy levels.

On the PDAC dataset, we observed that, for all levels of privacy
including non-private training, classification performance was worse for
female patients compared tomale patients, who are over-represented in the
dataset. However, there is no trend observable between the privacy level and
the parity difference. When analysing results of subgroups separated by
patient age,we observed similarly toUKA-CXR that in all settings, statistical
parity differences are on average better for younger patients compared to
older ones. Just as in the UKA-CXR dataset, we found that the more
restrictive the privacy budget is set, the stronger the privilege enjoyed by
younger patients. We furthermore observed that the control group (i.e., no
tumor)has anover-representationof bothmalepatients andyoungpatients,
which consequently both exhibit betterperformance compared to the rest of
the cohort. Conversely, female patients as well as older patients, have a
higher chance of misclassification and are more abundant in the
tumor group.

Fig. 4 | Average results of training with differential privacy (DP) with different ϵ
values for δ= 6 ⋅ 10−6, separately for samples of different age groups including [0,
30), [30, 60), [60, 70), [70, 80), and [80, 100) years.The curves show the average (a)
area under the receiver operating characteristic curve (AUROC), (b) accuracy, (c)
specificity, and (d) sensitivity values over all labels, including cardiomegaly,

congestion, pleural effusion right, pleural effusion left, pneumonic infiltration right,
pneumonic infiltration left, atelectasis right, and atelectasis left tested onN = 39,809
test images. The training dataset includes N = 153,502 images. Dashed lines in
corresponding colors correspond to the non-private training results. Source data are
provided as a Source Data file.
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Discussion
The main contribution of our paper is to analyse the impact of strong
objective guarantees of privacy on the fairness enjoyed by specific patient
subgroups in the context of AI model training on real-world medical
datasets.

Across all levels of privacy protection, training with DP still yielded
models exhibiting AUROC scores of 83% at the highest privacy level and
87% at an ε = 7.89 on the UKA-CXR dataset. The fact that the model
maintained a relatively high AUROC even at ε = 0.29 is remarkable, and we
are unaware of any prior work to report such a strong level of privacy
protection at this level of model accuracy on clinical data. Our results thus
exemplify that, through careful choice of architectures and best practices for
the training of DP models, the use of model pretraining on a related public
dataset, and the availability of sufficient data samples, privately trained
models require only very small additional amounts of private information
from the training dataset to achieve high diagnostic accuracy on the tasks
at hand.

For the PDAC dataset, even though private models at ε = 8.0 are not
significantly inferior compared to non-private counterparts, the effect of the
lower amount of training samples is observable at more restrictive privacy
budgets. Especially at ε ≤ 1.06, the negative effect of private training on the
discrimination of patients in certain age groups becomes noticeable. This
underscores the requirement for larger training datasets, which the objective
privacy guarantees of DP can enable through incentivizing data sharing.

Our analysis of the per-diagnosis performance of models that are
trained with and without privacy guarantees shows that models dis-
criminate against diagnoses that are underrepresented in the training
set in both private and non-private training. This finding is not unusual

and several examples can be found in51. However, the drop in perfor-
mance between private and non-private training is uncorrelated to the
sample size. Instead, the difficulty of the diagnosis seems to drive the
difference in AUROC between the two settings. Concretely, diagnostic
performance under privacy constraints suffers the most for those
classes, which already have the lowest AUROC in the non-private
setting. Conversely, diagnoses that are predicted with the highest
AUROC suffer the least when DP is introduced.

Previous works investigating the effect of DP on fairness show that
privacy preservation amplifies discrimination33. This effect is limited to very
low privacy budgets in our study. Our models remain fair despite at the
levels of privacy protection typically used for training state-of-the-art
models in current literature25, likely due to our real-life datasets’ large size
and/or high quality.

The effects we observed are not limited to within-domain models.
Indeed, in a concurrent work, we investigated the effects of DP training
on the domain generalizability of diagnostic medical AI models52. Our
findings revealed that even under extreme privacy conditions, DP-
trained models show comparable performance to non-DP models in
external domains.

Our analysis of fairness related to patient age showed that older
patients are discriminated against both in the non-private and private
settings. On UKA-CXR, age-related discrimination remains approxi-
mately constant with stronger privacy guarantees. On the other hand,
young patients enjoy overall lower model discrimination in the non-
private and the private setting. Interestingly, young patients seem to
profit more from stronger privacy guarantees, as they enjoy progres-
sively more fairness privilege with increasing privacy protection level.

Fig. 5 | Average results of training with differential privacy (DP) with different ϵ
values for δ= 6 ⋅ 10−6, separately for female and male samples. The curves show
the average (a) area under the receiver operating characteristic curve (AUROC), (b)
accuracy, (c) specificity, and (d) sensitivity values over all labels, including cardio-
megaly, congestion, pleural effusion right, pleural effusion left, pneumonic infil-
tration right, pneumonic infiltration left, atelectasis right, and atelectasis left tested

on N = 39,809 test images. The training dataset includes N = 153,502 images. Note,
that the AUROC is monotonically increasing, while sensitivity, specificity and
accuracy exhibit more variation. This is due to the fact that all training processes
were optimized for the AUROC. Dashed lines correspond to the non-private
training results depicted as upper bounds. Source data are provided as a Source
Data file.
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This holds despite the fact that patients under 30 represent the smallest
fraction of the UKA-CXR dataset. The privilege of young patients is
most likely due to a confounding variable, namely the lower complexity
of imaging findings in younger patients due to their improved ability to
cooperate during radiograph acquisition, resulting in better dis-
crimination of the pathological finding on a more homogeneous
background (i.e., “cleaner”) radiographs which are easier to diagnose
overall35,53 (see Fig. 6). This hypothesis should be validated in cohorts
with a larger proportion of young patients, and we intend to expand on
this finding in future work. On the PDAC dataset, classification accu-
racy remains approximately on par between age subgroups except at
very restrictive privacy budgets, where older patients begin to suffer
discrimination, likely due to the aforementioned imbalance between
control and tumor cases and the overall smaller dataset coupled with a
lack of pre-training. The analysis of model fairness related to patient sex
for UKA-CXR shows that female patients (which – similar to young
patients – are an underrepresented group) enjoy a slightly higher
diagnostic accuracy than male patients for almost all privacy levels
and vice versa on the PDAC dataset. However, effect size differences
were found to be small, so that this finding can also be explained by
variability between models or by the randomness in the training pro-
cess. Further investigation is thus required to elucidate the aforemen-
tioned effects.

Furthermore, there is no final conclusion for which fairnessmeasure is
preferable. In our study we focused on the statistical parity difference,
however, there are other works proposing other measures. One, which
recently received attention, is the underdiagnosis rate of subgroups54. We
evaluated this for the PDACdataset and found that in principle it shows the
same trends as the statistical parity difference (see Supplementary
Tables 9 and 10).

In conclusion, we analyzed the usage of privacy-preserving neural
network training and its implications on utility and fairness for a relevant
diagnostic task on a large real-world dataset.We showed that the utilization
of specialized architectures and targeted model pre-training allows for high
model accuracydespite stringent privacy guarantees. This enables us to train
expert-level diagnostic AImodels even with privacy budgets as low as ε < 1,
which – to our knowledge – has not been shown before, and represents an
important step towards the widespread utilization of differentially private
models in radiological diagnostic AI applications. Moreover, our findings
that the introduction of differential privacy mechanisms to model training
does – in most cases – not amplify unfair model bias regarding patient age,
sex or comorbidity signifies that – at least in our use case – the resulting
models abide by important non-discrimination principles of ethical AI.We
are hopeful that our findings will encourage practitioners and clinicians to
introduce advanced privacy-preserving techniques such as differential
privacy when training diagnostic AI models.

Fig. 6 | Illustrative radiographs from the UKA-CXR dataset. All examinations
share the diagnosis of pneumonic infiltrates on the right patient side (=left
image side). Diagnosis in older patients is often more challenging due to the more
frequent presence of comorbidities and less cooperation during image acquisition
which results in lower image quality (a) 76-year-old male patient, note the presence
of a cardiac pacemaker that projects over part of the left lung. b 74-year-old male

patient with challenging image acquisition: part of the lower right lung is not
properly depicted. c 39-year-old male patient, the lungs are well inflated and
pneumonic infiltrates can be discerned even though they are less severe. d 33-year-
old male patient with challenging image acquisition, yet both lungs can be assessed
(almost) completely.
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Data availability
TheUKA-CXRdataset is not publicly accessible, in adherence to thepolicies
for patient privacy protection at the University Hospital RWTHAachen in
Aachen, Germany. Similarly, the PDAC dataset cannot be publicly shared
due topatientprivacy considerations, as it is an in-housedataset atKlinikum
Rechts der Isar, Munich, Germany. Data access for both datasets can be
granted upon reasonable request to the corresponding author. Source data
presented in Figures are available as Supplementary Data 1.

Code availability
All source codes used for UKA-CXR for training and evaluation of the deep
neural networks, differential privacy, data augmentation, image analysis,
and preprocessing are publicly available at https://github.com/
tayebiarasteh/DP_CXR. All code for the experiments was developed in
Python 3.9 using the PyTorch 2.0 framework. The DP code was developed
using Opacus 1.4.055. Considering the utilization of equivalent computa-
tional resources, the time taken for the DP training to converge was
approximately 10 times longer, in terms of total training time, than that
required for the non-DP training with a similar network architecture. All
code for the analyses on the PDAC dataset are available at https://github.
com/TUM-AIMED/2.5DAttention. All source codes for both datasets are
permanently archived on Zenodo and are accessible via56 and57.
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