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Abstract

Effective management of biodiversity requires regular surveillance of multiple spe-
cies. Analysis of environmental DNA (eDNA) by metabarcoding holds promise to
achieve this relatively easily. However, taxonomy-focused eDNA surveys need suit-
able molecular reference data, which are often lacking, particularly at the species
level and for remote locations. To evaluate the comparability of environmental DNA
surveys and traditional surveys in a real-life case study in a marine area of high con-
servation value, we conducted a biodiversity survey of the fish in remote and pristine
Te Wahipounamu/Fiordland (Aotearoa/New Zealand), incorporating multiple data
sources. We compared eDNA-derived species identifications against Baited Remote
Underwater Video (BRUV) data collected at the same time and locations as eDNA.
We also cross-referenced both eDNA and BRUV data against literature and the Ocean
Biodiversity Information System (OBIS), with literature and OBIS data representing a
summary of multiple traditional surveying approaches. In total, we found 116 fish spe-
cies in our study area. Environmental DNA detected 43 species; however, only three
of those species overlap with species known from the literature, OBIS, or our BRUV
analyses. A total of 61 fish species were known from the region from the literature,
while OBIS listed 28 species, and our BRUV analyses picked up 26 species. BRUV
data coincided more strongly than eDNA data with literature and OBIS data. Twenty
of the 26 species detected by BRUV were known from literature and OBIS. We argue
that limitated DNA reference databases are the main cause of this discrepancy, and
our results indicate that eDNA of rare and endangered species can be detected if
matching reference data were available. Environmental DNA analyses can only iden-
tify species present among reference data and with relaxed taxonomic assignment
parameters may converge on relatives of detected species if the actually existing spe-
cies themselves are missing among reference data. However, the high number of spe-
cies detected by our eDNA analyses confirms that eDNA could be a powerful tool for

biodiversity surveys if suitable investments in local reference databases were made.
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1 | INTRODUCTION

Marine reserve (MR) networks like the ones established in the wa-
ters of UNESCO world heritage site Te Wahipounamu, New Zealand
(“Fiordland”) conserve biodiversity by stabilizing communities and
maintaining food web structure (Wing & Jack, 2013). Effective man-
agement of such MR networks requires biodiversity description and
surveillance, for example, to avoid overexploitation by fishing (Jack
& Wing, 2013), or to avoid damage through influx of non-indigenous
species (Cunningham, 2019). Assessment of fish biodiversity is of
particular interest due to their sensitivity to most forms of human
disturbance, their usefulness at all levels of biological organization,
and the favorable benefit-to-cost ratio of fish assessment programs
(Harris, 1995).

Analysis of environmental DNA metabarcoding data (eDNA) is
a well-established molecular technique for multispecies surveys
(Cristescu & Hebert, 2018). Environmental DNA metabarcoding is
often advertised across the literature as a method of choice for bio-
diversity surveys - associated techniques are frequently praised as
more cost-efficient than traditional methods (such as baited remote
underwater video surveys - BRUV), praised as less dependent on
expert taxonomic knowledge, able to be standardized, and able to
inform on a broad range of taxa (e.g., Gold et al., 2022; Sigsgaard
etal., 2020).

At the same time, reliable low-level taxonomic annotation, par-
ticularly at the species level, is a prerequisite for useful biodiversity
exploration and natural resource surveillance (Currey et al., 2009;
Jack & Wing, 2013). For example, in a southern New Zealand con-
text, Parapercis colias (blue cod) is of high commercial interest, but
three other of 79 cod species are known from New Zealand (Roberts
etal., 2019), so that genus information alone is already ambiguous for
determining blue cod presence or absence. Higher level taxonomic
classifications (e.g., family and order levels) are even less informative
for conservation management, hence yielding species-level data is a
very important use case for eDNA surveys.

In the context of eDNA analysis, the desire for reliable low-level
taxonomic information translates into the desire for obtaining high-
quality 100bp to 200bp alignments (Huson et al., 2007) between
an unknown, eDNA-derived query sequence, and a taxonomically
well-described reference sequence derived from a valid species.
However, as taxonomy is constantly revised and species are dynamic
entities, even reliable low-level taxonomic reference information can
be quickly outdated (Hleap et al., 2021). In our view, the absence of
sufficient or reliable reference data can be addressed by relaxation
of taxonomy-assigning algorithm parameters to retain sufficient
eDNA data for analysis, when the resulting partial drop of the eDNA
data's informative quality is sufficiently considered (Czechowski
et al., 2021). This means obtaining and carefully inspecting many

partially less accurate assignments including false negatives, rather
than obtaining fewer accurate assignments, while automating data
inspection, and possibly discarding falsely negative information.
Availability of sufficient and reliable reference data for metabar-
coding is highly variable depending on taxonomic groups and geo-
graphic locations, with fish considered relatively well covered for
some regions, such as Europe, in Barcode of Life Data Systems (BOLD)
and NCBIs GenBank (Benson et al., 2011; reviewed in Weigand
et al., 2019). Substantially fewer reference data are available for fish
of southern New Zealand. For example, for six commonly used 12S
primer pairs, recognized as well suited for multispecies fish surveys
(Weigand et al., 2019; Zhu & lwasaki, 2023), an average of 36% of
northern European fish species are available as reference data, but
only 26% of southern New Zealand species (GAPeDNA v1.0.1 web
interface, 11-Sep-2021; Marques et al., 2021; also see Table S1; and
reviewed by Marques et al., 2021). Where purposefully generated
reference data are unavailable, selected publicly available reference
data (such as derived from GenBank) are the only option for taxo-
nomic assignments, and useful if taxonomic assignments are verified
in the study context (Balvociaté & Huson, 2017; Claver et al., 2023).
In this study, we combine data from several sources (literature,
online, video, and molecular) to collate a current assessment of the
species-level fish biodiversity of Te Wahipounamu. We evaluate the
ability of eDNA data to augment what is known of the local biodi-
versity whilst comprehensive local reference data are not available.
Finally, we show that local reference data are needed to address eco-
logical questions in Te Wahipounamu. We demonstrate that—while
useful—future eDNA surveys of the region would substantially ben-
efit from efforts yielding comprehensive molecular reference data
for the taxonomic assignment of eDNA. Besides providing a high-
resolution survey of the fish biodiversity of the Te Wahipounamu
region, we hope our study will be a helpful reference for readers
interested in propelling efforts to generate molecular reference data
for eDNA biodiversity surveys. Often funding for such purely de-
scriptive efforts, including sample collection, accurate taxonomic
identification of samples, and sequencing of suitable markers, is
challenging to obtain. We hope this study can contribute to high-
lighting to potential funders the necessity of such efforts for fully

utilizing the potential of eDNA as a tool for biodiversity surveys.

2 | METHODS

In our study, we aimed to observe Actinopterygii (ray-finned fishes)
and Chondrichthyes (cartilaginous fishes) species in one MR, two
commercial exclusion zones (all “MR”), and corresponding control
areas in southern Te Wahipounamu, New Zealand (west coast, ap-
proximately from -44.3 to -46.25 Southern latitude; Figure 1a). We
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FIGURE 1 Field work area, description, sites, and data coverage for eDNA, BRUV, and OBIS data. Precise sampling locations are
obfuscated to aid conservation. (a) We obtained biodiversity information from baited remote underwater video (BRUV) footage and
environmental DNA (eDNA) data from 21 field work sites across three sampling regions (highlighted by rectangles)—Five Fingers (FF), Long
Sound (LS), and Wet Jacket (WJ). In each region we collected samples inside marine reserves/commercial exclusion zones (MR) and outside
in control areas (CTRL). To obtain additional biodiversity information, we queried the Ocean Biodiversity Information System (OBIS - https://
obis.org/) for records within a 2.5 km radius of each field work site (small red circles) for the purpose of community structure analysis.
Furthermore, we obtained OBIS records for the entire sampling region (large circle) to extend our species list alongside species mentioned
across various literature sources (Table 1; Table S5). (b) Environmental DNA (eDNA), and (c) BRUV data in a spatial context, lighter color
indicates a higher density of distinct species observations (corresponding to numerical values in Figure 2). (d) Species data for all field work
sites could not be obtained from OBIS, necessitating the exclusion of this data in the statistical analyses of regional biodiversity data. Graph

created using R package ggplot2 (3.3.5).

obtained and analyzed eDNA and BRUYV data, as well as electronic
records proximate to the field work area, from the Ocean Biodiversity
Information System (OBIS) (Ausubel, 1999). Furthermore, we as-
sembled a list of ray-finned and cartilaginous fishes observed in Te
Wahipounamu from literature. For ouranalyses, all observations were
formalized using NCBI taxonomy (Federhen, 2012), including trivial
names, and limited to classes Actinopterygii and Chondrichthyes,
while assighments to other taxa were also inspected.

Species observations, obtained using various methods, were
extracted from six literature sources, including one meta-analysis
(Table S2). Species observations deposited in OBIS were down-
loaded for a 38-km radius around all field work sites (center point W
166.89°, S -45.80°), as well as for smaller areas surrounding individ-
ual field work sites (2.5 km radius; Figure 1a, d).

For a more detailed description of field and laboratory work
please refer to the Supporting Information. In summary, for collect-
ing eDNA and filming BRUV we visited three locations in southern
Te Wahipounamu (Moana Uta/Wet Jacket Arm, Taumoana/Five
Fingers, and Te Tapuwae a Hua/Long Sound; henceforth WJ MR,
FF MR, and LS MR), and accompanying control areas outside those
MRs (henceforth WJ CTRL, FF CTRL, and LS CTRL), from 12.-22.

December 2019 (Figure 1a). Within each sampling location, at ran-
domized sites, we collected eDNA (mean depth 14.05m, med.: 15,
sd.: 1.4m), and subsequently deployed BRUV assemblies (mean
depth 15.6 m, med.: 16, sd.: 2.6 m). We considered data from 21 sites
(FF: 2 FF MR and 3 FF CTRL, WJ: 4 WJ MR and 4 WJ CTRL, and LS:
4 LS MR and 4 LS CTRL). We collected two 900-mL water samples
with eDNA at each site, filtered them alongside negative controls,
then sealed and stored them until further processing. BRUV footage
was obtained for 1h and analyzed by eye with local taxonomic keys.

Environmental DNA was isolated in a PCR-free facility along-
side extraction and cross-contamination controls (Supporting
Information: four species of tropical freshwater fish). After in sil-
ico PCR to test the suitability of our primer pairs (Figure S2), we
amplified our extracts with two well-established and widely used
12S primer pairs. Primer pair “MiFish-U” (Miya et al., 2015) (see
Table S1 for primer comparison), was used to target Actinopterygii.
Chondrichthyes were targeted with slightly altered primer pair de-
rivatives (“Elas02”; Taberlet et al., 2018a, 2018b). Our single-step
PCRs were cycled 45 times, with low annealing temperatures of
45°C (“MiFish-U") or 40°C (“Elas02") necessitated by the long se-
quencing adapters attached to the amplicons. Amplified eDNA was

85UB017 SUOLIWOD BAERID 3|qed!jdde aup Aq pausenob @8 Sajo1e O (8N JO S3INI J0} ARl 8U1JUO 48] UO (SUORIPUOD-pUR-SLLLRYWOY /B IMARe.q1[Bu1|U0//SANY) SUORIPUOD PUe SWS L U3 88S *[202/50/80] U0 A%iq178UIIUO AB]IM ‘WNAUBZSBUNUISI0- SAURSINeQ UBLRUSN N WUNALSZ Z} oYW RH AQ $TS EUPS/Z00T OT/I0P/LI0D" A3 AReiq 1 U 1|UO// SRy WO} PopeojuMoq ‘T ‘7202 ‘Ever.LE9T


https://obis.org/
https://obis.org/

CZECHOWSKI ET AL.

4 of 15 ;
Environmental DNA
————LNVILEY — e G

then pooled, visualized, purified, combined equimolarly, diluted to
4.5pmol, and sequenced on an Illumina MiSeq (lllumina, San Diego,
US-CA; kit v2, 300cycles, single-ended).

We defined Amplicon Sequence Variants (ASVs; Callahan
et al., 2017) from eDNA after demultiplexing with Cutadapt v3.0
(Martin, 2011), using Qiime2 2020-08 (Bolyen et al., 2019) and
DADAZ2 1.10.0 (Callahan et al., 2016). To yield high-quality sequence
data, we did not allow any mismatches, nor Expected Errors (Edgar
& Flyvbjerg, 2015) during demultiplexing. Taxonomic annota-
tion of denoised data was obtained using Blast 2.10.0+ (Camacho
et al.,, 2009), recently established as state-of the art for species-
level taxonomic assignments when compared to other contempo-
rary algorithms (Hleap et al., 2021). Lacking local reference data, we
used a self-curated copy of the NCBI nucleotide collection (Benson
et al.,, 2011; version September 2022), as an overall aggregate of
many 12S sequences, for example, including sequences submit-
ted as part of the Meta-Fish-Lib software (Collins et al., 2021), and
safeguarding us from misassignments due to a limited search space
(Gold et al., 2022). To curate our NCBI-derived reference data, we
excluded 20,008,447 environmental samples, thus minimizing tax-
onomic misassignments to low-quality data (Claver et al., 2023). To
yield a maximum of taxonomically annotated ASVs, we chose relaxed
taxonomic assignment parameters in combination with an e-value to
retain only the most significant alignments. We required a minimum
identity of 75% among all alignments and kept five high-scoring pairs
for each eDNA query, each of which needed a minimum coverage of
95% to be retained. We set the acceptable e-value to 1071%, We then
removed data contained in negative controls, alongside ASVs cov-
ered by fewer than 15 reads, by subtraction from the sample data
(see Figures S3, S4). As species-level assignments we retained the
best high-scoring alignment of each query-reference pair based on
the bit score (also see Hleap et al., 2021, and Figure S2 for relation-
ship between bit score and query length).

To assemble a fish species list of southern Te Wahipounamu, we
combined species observations from literature, OBIS, BRUV, and
eDNA in one list, and checked all eDNA-derived taxonomic assign-
ments using a comprehensive list of all New Zealand fish (Roberts
et al., 2020).

To evaluate eDNA taxonomic assignments obtained without
local reference data, while keeping in mind potential misassign-
ments after using relaxed taxonomic assignment parameters, we ini-
tially compared our taxonomic assignments to those obtained with
MEGAN's (6.24.21) Least Common Ancestor (LCA) algorithm (Huson
etal., 2007, 2016) and the same BLAST output files, expecting more,

but partially less reliable assignments of our assignment method,
minding that also MEGAN can vyield false annotations if limited
reference data are available (Garrido-Sanz et al., 2022; Somervuo
et al.,, 2017). Unlike many other studies, we also inspected alignment
qualities, expecting them to be highly variable. As part of this in-
spection, we analyzed gap count and query coverage of eDNA ref-
erence alignment in relation to observed native or non-native status
of the resulting eDNA species observations. Specifically, we fitted
a logistic regression model with the response variable of observing
a species known from New Zealand or not (True vs. False). We used
query coverage (in percent) and gap counts (integers) of alignments
as predictors, and individual observation as trials. Assuming missing
local reference data, we expected a low gap count and high query
coverages to result in higher propensity to observe species not
known from New Zealand. Furthermore, we compared species accu-
mulation curves of eDNA and BRUV data, expecting them to be both
plateauing and exhaustive, indicating eDNA sampling to be suffi-
cient. Furthermore, we analyzed divergence of species assignments
by data source using Euler diagrams, expecting a high divergence for
eDNA data from all other data sources along lowering taxonomic

hierarchy levels.

3 | RESULTS

Twenty-one field work sites, each with several samples, (Figure 1a)
yielded eDNA and BRUV data (Figure 1b, c). Matching local OBIS
data could only be obtained for nine field work sites (Figure 1a,
small circles, namely LS CNTRL, FF, WJ shown in Figure 1d). Prior
to filtering, and including PCR and extraction controls we obtained
3,877,007 sequences across 125 samples and 2139 ASV's (436
Eukaryota, and 1703 Bacteria, Viruses or undefined sequences).
The cleaned eDNA data contained 167,203 unique sequences
across 43 samples and 98 fish ASV's, which subsequently resolved
to 43 species. Within our works' spatial constraints (Figure 1),
we obtained a total of 116 fish species (105 Actinopteri, 10
Chondrichthyes, and 1 Myxini), with 61 records from literature,
28 from OBIS, and 26 from BRUV (Figure 2 and Table 1). Among
eDNA we recovered 43 species assignments using our taxonomic
assignment approach, and ten of those also using MEGAN's LCA
algorithm (see Table S4). Out of 26 species detected with BRUV,
twenty (see Figure 2) were contained in the literature or in OBIS
(77%). Of 43 species assignments detected with eDNA, two (5%)

were contained in Fiordland-specific literature or OBIS (Thyrsites

FIGURE 2 Distinct species observations across data sources and field work locations. Observation types: BRUV—Observations

from baited remote underwater surveys; eDNA—environmental DNA observations; OBIS—data retrieved from the Ocean Biodiversity
Information System (https://obis.org/) for the area surrounding field work sites (large circle in Figure 1); PUBL—Fiordland fish species
collated from multiple literature records as summarized by Inglis et al. (2008). Sampling Locations: FF—Five Fingers area; LS—Long Sound
area; WJ—Wet Jacket area; MR—marine reserve or commercial exclusion zone; CTRL—neither marine reserve nor commercial exclusion zone.
Species list: Order follows Table 1, species not listed as New Zealand Species in Roberts et al. (2020) are marked with an asterisk (*) Species
detected by our chosen assignment method also detected by MEGAN's LCA (Huson et al., 2007) are highlighted with triple asterisks (***).

Graph created using R package ggplot2 (3.3.5).
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Anguilla australis ***
Conger verreauxi
Atherinomorus lacunosus™
Gobiesox maeandricus™
Bellapiscis lesleyae
Bellapiscis medius
Cryptichthys jojettae
Forsterygion capito
Forsterygion flavonigrum
Forsterygion lapillum
Forsterygion malcolmi
Forsterygion maryannae
Forsterygion varium
Helcogramma striata*
Karalepis stewarti
Notoclinops caerulepunctus
Notoclinops segmentatus
Notoclinus compressus
Notoclinus fenestratus
Ruanoho decemdigitatus
Ruanoho whero
Trachurus japonicus* ***
Aplodactylus arctidens
Cheilodactylus variegatus*
Goniistius zonatus*
Nemadactylus macropterus
Scorpis lineolata
Latridopsis ciliaris
Latridopsis forsteri

Latris lineata

Mendosoma lineatum
Chaetodon zanzibarensis*
Coptodon zillii

Engraulis japonicus* ***
Iburnus alburnus*
Aplocheilus lineatus*
Gaidropsarus argentatus*
Gaidropsarus novaezelandi
Macruronus novaezelandiae ***
Lotella phycis

Lotella rhacina
Pseudophycis barbata*
Galaxias argenteus
Galaxias eldoni

Modicus minimus
Modicus tangaroa
Bostrychus zonatus™
Asterropteryx semipunctata* ***
Gobiopsis atrata
Thalasseleotris iota
Bodianus unimaculatus
Notolabrus celidotus
Notolabrus cinctus
Notolabrus fucicola
Pseudolabrus miles

Odax pullus ***

Lophiodes mutilus
Conodon nobilis*
Aldrichetta forsteri
Gymnoscopelus nicholsi*
Hygophum hygomii
Fiordichthys slartibartfasti
Retropinna retropinna
Acanthoclinus fuscus
Acanthoclinus littoreus
Acanthoclinus marilynae
Acanthoclinus matti
Acanthoclinus rua
Hemerocoetes monopterygius
Polyprion oxygeneios
Bovichtus angustifrons*
Bovichtus variegatus
Callanthias allporti
Callanthias japonicus* ***
Notothenia angustata
Scorpaena cardinalis
Scorpaena papillosa
Helicolenus hilgendorfii*
Helicolenus percoides*
Caesioperca lepidoptera
Caprodon schlegelii* ***
Hypoplectrodes huntii
Lepidoperca tasmanica
helidonichthys kumu
Chelidonichthys spinosus*
Peltorhamphus latus
Rhombosolea plebeia
Oncorhynchus mykiss ***
Thyrsites atun
Katsuwonus pelamis ***
Scomber japonicus*
Maurolicus muelleri
Lissocampus filum
Meuschenia scaber
Scobinichthys granulatus*
Monocentris japonica
Paratrachichthys trailli
Parapercis colias
Parapercis decemfasciata*
Parapercis gilliesii
Erythrocles schlegelii*
Opistognathus iyonis*
Opistognathus liturus*
Opistognathus punctatus*
Opistognathus sp.*
Prionace glauca
Cephaloscyllium isabella
Galeorhinus galeus
Mustelus asterias™
Mustelus lenticulatus
Notorynchus cepedianus ***
Carcharodon carcharias
Isurus oxyrinchus

Squalus acanthias
Squalus suckleyi*
Eptatretus cirrhatus
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atun, snoek, barracouta, and Aldrichetta forsteri, yellow-eye mul-
let; see Figure 2, Table 1, Table S5). Of the 43 species, seven
had perfect alignments (see Table 1), namely Anguilla australis
(Australian shortfin eel), Alburnus alburnus (bleak, not in Roberts
et al., 2020), Macruronus novaezelandiae (hoki), Aldrichetta forsteri
(yellow-eye mullet), Oncorhynchus mykiss (rainbow trout), Scomber
japonicus (chub mackerel, not in Roberts et al., 2020), Mustelus
asterias (starry smooth-hound, not in Roberts et al., 2020), and
Squalus suckleyi (Puget Sound dogfish, not in Roberts et al., 2020).
Of those, two were also discovered with LCA (O. mykiss and A.
australis, Table 1).

Notable fish species detected only using eDNA included A. aus-
tralis (short-finned eel), and Macruronus novaezelandiae (hoki) both
with perfect alignments, also detected with LCA, and known from
New Zealand, but not from Te Wahipounamu. Noteworthy was an
assignment to non-native species (and genus) Asterropteryx semi-
punctata (Starry goby), using both eDNA taxonomic assignment
approaches, with 81.9%-82.5% query coverage, and six gaps. The
five species only seen on BRUV were Bodianus unimaculatus (red
pigfish), Chelidonichthys kumu (bluefin gurnard), Galeorhinus galeus
(tope shark), Mustelus lenticulatus (spotted estuary smooth-hound),
Scorpaena cardinalis (red rock cod), species which at present do not
appear to have 12S data available on Genbank. Noteworthy was also
Notorynchus cepedianus (broadnose sevengill shark) seen on BRUV
and by both eDNA taxonomic assignment approaches, but not listed
in Te Wahipounamu literature. Interestingly, using eDNA, we ob-
tained perfect assignments (including LCA) for Arctocephalus forsteri
(New Zealand fur seal), Balaenoptera (rorqual whales; highest bit
score for Balaenoptera musculus, blue whale), and Tursiops truncatus
(bottlenose dolphin) (see Figure S6). Notable species seen on BRUYV,
not being Actinopterygii nor Chondrichthyes, included Jasus edward-
sii (southern rock lobster), Macroctopus maorum (Mdori Octopus), and
Eptatretus cirrhatus (broadgilled hagfish, tuere), the latter also de-
tected among eDNA.

The ten species assigned both by our eDNA BLAST top hit assign-
ment and LCA were Caprodon schlegelii (sunrise perch, not recorded
in New Zealand, 0-2 gaps, up to 98.2% coverage), Katsuwonus pe-
lamis (skipjack tuna, O gaps, 95.9% coverage), M. novaezelandiae, A.
australis, O. mykiss (all three as above with perfect alignments), A.
semipunctata (as above, imperfect alignment), N. cepedianus (as seen
on BRUV, 0 gaps, 98.4% coverage), Callanthias japonicus (yellowsail
red bass, not recorded in New Zealand, 1 gap, 95.2% coverage),
Trachurus japonicus (Japanese jack mackerel, not recorded in New
Zealand, O gaps, 99.4% coverage), and Engraulis japonicus (Japanese
anchovy, 0 gaps, 98.8% query coverage; see Table 1). Of the 40 spe-
cies observed with eDNA, including those with questionable align-
ments, and neither seen in BRUV nor Fiordland literature, nor OBIS,
10 (25%) appear known from somewhere in New Zealand (Roberts
et al., 2020). Among MEGAN's LCA-assigned taxa there were five
neither seen in BRUV nor Fiordland literature, and none of those had
been observed in New Zealand.

Alignment qualities among eDNA BLAST top-hit taxonomic as-
signments varied across taxa (see Supporting Information). Logistic

regression of alignment qualities across our 156 non-unique eDNA
observations estimated the odds ratio for query coverage to 0.75
(95% CU 0.67-0.82) and the odds ratio for gap count to 0.55 (95% ClI
0.41-0.70) for observing non-New Zealand species, indicating that
indeed alignment qualities were improved in cases where reference
data was available from outside New Zealand. Plateauing species
accumulation curves suggested exhaustive sampling for BRUV and
eDNA (Figures S5,57). Concordance of taxonomic information be-
tween the four data sources diverged with lowering taxonomic lev-

els, most pronounced for eDNA (Figure 3).

4 | DISCUSSION

To date the fish diversity of Te Wahipounamu has been described
based on a diverse range of mostly visual methods (Grange, 1985;
Inglis et al., 2008; Mladenov, 2001; Roberts, 2005; Roberts
et al., 2020), possibly owed to the fact that eDNA-based surveys
are picking up pace at differ speeds around the globe (Capurso
et al.,, 2023; Kelly et al., 2023), and the rather slow recognition
that existing specimen and taxonomic expertise needs to be inte-
grated to realize purposeful eDNA biodiversity surveys (de Santana
et al., 2021). Furthermore, in New Zealand and elsewhere indige-
nous interests may not necessarily align with open access publica-
tion of genomic data. Here, agreements that reconcile scientific and
community interests have to be found before local eDNA databases
can be established.

We unite visual observations with the results of concurrenteDNA
and BRUV surveys and information from OBIS (Ausubel, 1999).
Without purposefully generated reference data for eDNA at hand
for the surveyed region, we used a comprehensive public source of
reference information, receiving data from many other initiatives,
including 12S sequences (Collins et al., 2021; Pruesse et al., 2007),
a currently frequently used fish primer set (e.g., see a recent eval-
uation in Zhu & lwasaki, 2023), and relaxed taxonomic assignment
parameters, to obtain the highest possible yield in identified eDNA
species while minimizing missing assignments due to a limited search
space (Gold et al., 2022). We did so at the cost of obtaining many less
accurate eDNA assignments, which we inspected carefully, also due
to shortcomings of taxonomic assignment algorithms (Garrido-Sanz
et al., 2022; Somervuo et al., 2017). Our taxonomic assignments de-
rived from eDNA are likely also influenced by transport and diffu-
sion phenomena of suspended genetic material in the water column,
when compared to other observation methods—marine eDNA can
be transported over distances ranging to tens of kilometers and can
persist for up to 2weeks at low temperatures, with transport and
diffusion playing a role in detectability (Andruszkiewicz et al., 2019;
McCartin et al., 2022).

We present a current picture of the fish biodiversity in Te
Wahipounamu and add to a range of recent studies combining
eDNA and video footage to survey the biodiversity of coastal ma-
rine environments, some of which, like us, solely relying on NCBI
reference data (e.g., Cheng et al., 2023; Cole et al., 2021; Jeunen
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FIGURE 3 Concordance of taxonomic Order
information across four evaluated data
sources of Fiordland fish biodiversity
expressed through Euler diagrams.
Biodiversity data (Table 1; Table S2) is
summarized at four different taxonomic
levels, shown are unique observation
counts at each level, as well as the
corresponding percentage of those I;%’ZA%)
counts in comparison to all data. Circle

sizes are proportional to observation
count. Observation types: BRUV
(gray)—Observations from baited remote
underwater surveys; eDNA (white)—
environmental DNA observations; OBIS
(red)—data retrieved from the Ocean
Biodiversity Information System (https://
obis.org/) for the area surrounding field
work sites (large circle in Figure 1); PUBL
(blue)—Summarized (Inglis et al., 2008)
Fiordland fish species collated from
multiple literature records. Graph created
using R package eulerr (6.1.0).

Genus

4(5%)

eDNA
27(33%)

3(4%)
2@

et al., 2020), others readily using purposefully generated reference
data (e.g., Gold et al., 2023; Stoeckle et al., 2020). Unsurprisingly,
we show that eDNA is most useful in detecting species if reference
data are available (Gold et al., 2023; Stoeckle et al., 2020; reviewed
by Taberlet et al., 2018b), and that the detrimental effect of miss-
ing reference data is pronounced in remote locations, and when
attempting surveys at the species level. Without those matching
reference data to assign ASVs, we show (comparable to Andrés
et al., 2023; Czechowski et al., 2021), that eDNA can still help de-
scribe the extent of “hidden” biodiversity, here of local water sam-
ples from Fiordland, even with incomplete reference data.
Arguably, any detected effect of lacking reference data may have
been less pronounced by using another, or multiple primer pairs. For
example, some studies suggest that the MiFish primer set provides
poor taxonomic resolution and a low success rate in species recov-
ery (Jackman et al., 2021), especially for endemic species (Duhamet
et al., 2023) while other studies highlight its usefulness in ecosys-
tem conservation strategies, enhanced taxonomic resolution, and
efficient fish biodiversity monitoring (Miya et al., 2015; Schroeter
et al., 2020; Zhu & Iwasaki, 2023). Furthermore, our primer evalua-
tions with the more recently released software GAPeDNA (Marques
et al., 2021) (released after our experiments were completed) show
that, for example, the “Fish 16S” primer set (Mclnnes et al., 2017)
would have covered 249 instead of the 119 New Zealand marine fish
species covered by our MiFish 12S data (Table S1). However, the
overall conclusion remains. Of the over 1294 known New Zealand
marine fish species, molecular reference data of any kind are avail-
able only for 489 species in southern New Zealand, no available

uv
(<1%)

Family

0(<1%)

18 (32 %)

BRUV
3(5 %)

PUBL
8 (14 %)

0(<1%)

Species

PUBL
16 (19 %)

PUBL
33 (28 %)

1(<1%
10 (12 %) (<1%)

2(2%)
0(<1%)

eDNA  1(<1%)
40 (34 %)

1(<1%)

5(4%) 0(<1%)

primer pairs have sufficient reference data, and the employed 12S
marker is among the most popular for fish species assignment
(Claver et al., 2023).

How credible are eDNA-derived species assignments with cur-
rently available reference data in combination with the currently
used primer set? Overall, they do not seem very credible. For in-
stance, Alburnus alburnus is a freshwater species, so a perfect
alighment to data from Te Wahipounamu is puzzling, as there are
no known native carp species in New Zealand (Brumley, 1991).
Yet, based on sequence similarity this observation can be easily
related to Scomber (mackerel). But the observed perfect alignment
to Scomber japonicus is also awkward, with this species not having
been observed in New Zealand. Consequently, we believe both ob-
servations of Alburnus and Scomber belonging to either Katsuwonus
pelamis (skipjack tuna; known from New Zealand) or Thyrsites atun
(snoek, barracouta; known from the region), despite the former not
receiving a perfect alignment in our reference data. The perfect
alignment for O. mykiss (rainbow trout) is puzzling, as this species is
known only from freshwater. For this reason, after inspecting related
assignments, we also do not believe a somewhat more plausible as-
signment to endangered Galaxias eldoni to be credible (Eldon's gal-
axias, freshwater only). Yet, juveniles of threatened species Galaxias
argenteus (Giant kokopu; IUCN, 2014) spend time at sea before mi-
grating to fresh water, hence we believe to have found DNA traces
of this species. Lastly, some of our shark identifications remain ques-
tionable, assignments to Mustelus asterias (starry smooth hound) and
Squalus suckleyi (Puget Sound dogfish) are likely misclassifications
of local Mustelus and Squalus species. We hence believe only the
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assignments of M. novaezelandiae (hoki) and A. forsteri (yellow-eye
mullet) to be credible, as these species are known from New Zealand
waters. Clearly, species-level identification using eDNA is difficult,
even with perfect alignments. We suggest that future marine eDNA
surveys in the area should be conducted using more than one marker
to be dependable, but with comprehensive reference data for all
markers.

Concerning our most reliable taxonomic assignments, we
could find no mention of A. australis (short-finned eel), and M. no-
vaezelandiae (Hoki) in the Te Wahipounamu-specific literature; con-
sequently, available reference data of these taxa ought to be added to
local sequence data repositories. On the contrary, we found literature
mentions of Gobiopsis atrata (Ayling & Cox, 1982), and recently de-
scribed Thalasseleotris iota (New Zealand pygmy sleeper; Hoese &
Roberts, 2005) for Te Wahipounamu, and we suspect that our im-
perfect assignment of Asterropteryx semipunctata (Starry goby)—it-
self known from the northern coasts of Australia (Allen et al., 1997)
and elsewhere—stems from one of these two species (for a recent
multi-locus phylogeny see Gierl et al., 2022). Taxa only detected
by BRUV should be added to eDNA sequences collections as well
(B. unimaculatus, C. kumu, G. galeus, M. lenticulatus, S. cardinalis).
Notorynchus cepedianus (broadnose sevengill shark) and Eptatretus
cirrhatus (broadgilled hagfish) seen on BRUV and by eDNA, both
ought to be added to the list of local species, with reference data
available.

Our primers detected marine mammals, which are gnatho-
stomes (jawed vertebrates) just as well as cartilaginous and ray-
finned fishes (Meyer & Zardoya, 2003). Detection of those taxa
and a slime eel indicate that MiFish primers (Miya et al., 2015)
amplify a region conserved across many gnathostomes. We
show that prominent species, of high interest to conservation
efforts (including whales and bottlenose dolphins; e.g., Currey
et al., 2009; Zhang et al., 2023) can be detected with eDNA in Te
Wahipounamu (Figure Sé), and reassuringly we observed bottle-
nose dolphins during field work.

As outlined by Hleap et al. (2021), achieving “exact” taxonomic
assignments on the species level is challenging due to the dynamic
conceptual and genetic nature of the species concept. Not only will
species always have an undiscovered genetic diversity, but refer-
ence data annotations must be frequently updated. Accordingly,
we demonstrate that even perfect alignments, obtained using two
different taxonomic assignment approaches, do not always yield
correct assignments (e.g., A. albunus, O. mykiss), and that imperfect
alignments in some instances yield more conceivable taxonomic as-
signments (e.g., K. pelamis). Hence, we here only consider taxonomic
assignments to M. novaezelandiae, A. australis, N. cepedianus, and E.
cirrhatus reliable, as they were observed by two taxonomic assign-
ment approaches, and are known from the region.

Logistic regression indicates taxonomic assignments and align-
ment qualities to be mostimpeded by missing reference data for New
Zealand and Te Wahipounamu, and less so by DNA decay (Sassoubre
et al., 2016) or other observation biases. This may explain why lack-
ing query coverage was so clearly associated with observing species

not from New Zealand. Likewise, increasing gap count at constant
query coverage supports a lack of local reference data availability.

Compared to eDNA data, species identification from BRUV data
appeared more precise but less exhaustive, with a significantly lower
number of species detected data (26). This lower species count is
likely a result of not all fish species being attracted to the bait used,
and transport and diffusion phenomena of eDNA in the water col-
umn (Andruszkiewicz et al., 2019; McCartin et al., 2022).

5 | SUMMARY AND CONCLUSIONS

Our study provides a comparison of environmental DNA and more
traditional marine biodiversity survey tools. We show that eDNA
analysis is a highly sensitive tool with strong potential for biodi-
versity surveys, which is, however, still limited by the availability
of local reference data, particularly in more remote regions of
the world. We hope that by demonstrating the extend of diver-
gence between eDNA and more traditional tools in a real-life case
study of a remote region of high conservation interest, we further
strengthen the case to fund the establishment of local reference
databases, also to benefit the UNESCO Word Heritage Site Te
Wahipounamu.
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