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Abstract
The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health 
alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between 
multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the 
long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with 
a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering 
humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality 
measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into 
specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
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Significance Statement

Climate change has intensified the frequency, duration, and severity of lethal heat stress in recent years, a trend expected to exacer
bate further. Despite the increasing focus on humid heat, there remains a gap in understanding how to effectively integrate humid 
heat into heat-health alert systems across regions with diverse climatic conditions. Addressing this gap, our study utilizes extensive 
epidemiological and climatological datasets to discern locations where incorporating humidity largely improves the predictive cap
acity for heat-related mortality compared to relying solely on air temperature. These findings offer crucial insights for enhancing 
heat-health alert systems in the face of ongoing climate change.

Introduction
In recent decades, global warming has led to an increase in the in
tensity, duration, and frequency of heat waves (1, 2), an effect that 
is projected to worsen in the future (3, 4). With record-breaking 
heatwaves observed worldwide, the 2022 and 2023 heatwaves pro
vided a glimpse into what the future is expected to bring. In 2022, 
Tokyo recorded nine consecutive days of temperatures above 
35 °C, marking the most severe heatwave since official tempera
ture records began in the 1870s. In the United Kingdom, for the 
first time, the temperature reached 40 °C (5). More recently, parts 
of Spain broke high-temperature records for April in the spring 
heatwave of 2023. These events highlight a major concern for hu
man health because exposure to high outdoor temperatures can 
significantly increase the risk of mortality and morbidity (6–8). 
For example, in Europe only, heatwaves were responsible for 
over 120,000 reported deaths between 1970 and 2012, accounting 
for 85% of all climate disaster-related deaths (9), and in 2022 
alone, heatwaves are estimated to have resulted in over 70,000 ex
cess deaths across Europe (10).

The human body responds to heat stress in two primary ways 
to release the heat: vasodilation and perspiration. Vasodilation 
enhances heat transfer from muscles to skin via blood flow, while 
perspiration removes heat from the skin to the environment 
through sweating and evaporative cooling (11). Although perspir
ation plays a crucial role in heat dissipation, its efficacy is affected 
by ambient humidity, wind speed, and ventilation (12, 13). As a re
sult, human-perceived heat stress depends not only on the air 
temperature (dry bulb, Tair) but also humidity, wind speed, and in
cident radiation. To measure the combined impact of multiple cli
mate variables on human-perceived heat stress, many heat stress 
indicators (HSIs) have been proposed, which all consider Tair and 
relative humidity (RH), some also wind speed and solar radiation 
(14). These HSIs are increasingly utilized in climate change impact 
studies and are viewed as a better metric for quantifying the heat 
stress burden on human health (i.e. morbidity and mortality) than 
Tair (3, 4, 15–20). Some widely used HSIs include wet bulb tempera
ture (Tw) (21), wet bulb globe temperature (TWBG) (22), heat index 
(HI) (23), and apparent temperature (APT) (24).

Despite being widely used, several key questions about HSIs re
main unclear. First, while many scholars expect HSIs to perform 
better than Tair in predicting human mortality based on physio
logical evidence (25), existing population-scale epidemiological 
studies have not provided consistent evidence to support this 
(26–32). Therefore, epidemiologists continue to rely on Tair to 
quantify excess deaths related to heat stress (6, 7, 33). Secondly, 
there are over 100 proposed HSIs in the literature, each based on 
different principles and assumptions, but there is no consensus 
on their proper usage or the strengths and limitations of each 
(14). Recent research indicates that the HSI that best reflects 

health consequences may vary by country, and the estimated 
heat-related mortality using the optimal HSI could be similar to 
that of Tair, although apparent cross-country variations are ob
served (32). Additionally, HSIs exhibit different sensitivities to 
changes in Tair and RH (Fig. S1 in the supplementary material) 
(12), and in some cases, may even suggest opposite effects under 
specific conditions. For example, regional climate simulations 
show that irrigation in northern India results in a higher Tw but 
a lower HI (16), making it challenging to measure and interpret 
changes in regional heat stress. To date, the role of humidity in 
heat-related health outcomes has become a heated discussion 
(34). However, to the best of our knowledge, no study has yet ex
amined how to appropriately use HSIs for population-scale 
heat-health alerts and health impact assessments related to cli
mate change, particularly in regions characterized by diverse cli
mate conditions.

Here, we conduct a detailed investigation on the association be
tween multiple HSIs and human mortality at the city level, using 
state-of-the-art climatological (ERA5 reanalysis (35)) and epi
demiological data [Multi-Country Multi-City (MCC) database, 
https://mccstudy.lshtm.ac.uk/, see Materials and methods] for 
1980–2019. The analysis incorporates multiple widely used and 
contrasting HSIs calculated at hourly timescales, and covers 739 
citiesa from 43 countries and territories (Fig. S2, Tables S1 and 
S2) spanning different climate regimes. Specifically, we examined 
the long-term trend and timing of heat stress events for multiple 
HSIs, and assessed their advantages in modeling/predicting 
city-level human mortality in lieu of Tair, as well as the spatial het
erogeneity in their performances. Importantly, we identify the 
specific regions where humidity has a discernible impact on 
heat-related mortality and describe their common climatological 
features using machine learning, a crucial research question not 
known to have been addressed in studies to date. The findings of 
this study provide essential information for facilitating high- 
accuracy heat-health alert systems, which can provide enhanced 
protection from heat under future climate change.

Results
Discrepancy among heat stress indicators
We investigated trends in extreme temperatures and six different 
HSIs (Tw (21), simplified wet bulb globe temperature (TsWBG) (36), 
Humidex (Hx) (37), APT (24), Universal Thermal Climate Index 
(UTCI) (38), and HI (23), see Materials and methods, and Table S3) 
from 1980 to 2019 (Fig. 1). Specifically, we calculated the 99th percent
ile of daily near-surface air temperature Tair (X99) for each year and 
estimated its average decadal change (Fig. 1a). We then similarly 
examined the trends in near-surface specific humidity (Q) and RH 
for high-temperature days (Tair > X99) of each year (Fig. 1b, c).
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To quantify the discrepancy in trends over time among the six 
HSIs, we introduced the HSI vote. This measures the agreement of 
the trend direction among the X99 of HSIs, with a vote of 1 assigned 
for a positive trend and −1 for a negative trend. We then summed 
the HSI votes (possible values: −6, −4, −2, 0, 2, 4, 6) for each region 
to show the overall trend agreement (Fig. 1d, e). Our analysis shows 
that Tair X99 exhibits positive trends over most regions due to global 
warming, while a limited number of regions show no increase or a 
slight decrease (e.g. Midwest United States, Canada, Central Asia, 
and northern Australia, Fig. 1a) potentially due to factors such as 
irrigation (39). Both positive and negative trends are observed for 
Q of high-temperature days, while a larger proportion of the land 
surface shows negative trends for RH (Fig. 1b, c). The reduction in 
near-surface RH can be attributed to several factors. It may result 
from the constrained addition of water vapor to the air as the sat
uration vapor pressure increases (40, 41). Additionally, variations 
in warming rates between land and ocean surfaces can also con
tribute to the observed decrease in near-surface RH over land. 
These diverging trends of Tair extremes and their RH result in dis
crepancies in the long-term trends of the HSIs as they have differ
ent sensitivities to changes in Tair and RH (Fig. S1).

Our analysis reveals severe contrasting trends among HSIs in 
Midwest United States, Canada, South Africa, Central Asia, and 
Australia (HSI vote sum = 0, yellow color in Fig. 1d, e). These con
tradictions are more significant for results based on the daily 
maximum value of HSI (Fig. 1e). This finding reveals the potential 

of providing misleading or contradictory information when 
quantifying regional heat stress changes based on a single HSI 
(3, 4, 15, 18, 19).

We also examined the discrepancy in the intra-annual peak 
time (PT, the day of the year when a given indicator reaches its 
highest annual value) for HSIs and Tair (Fig. 2a–g). Tair typically 
peaks in February–April in tropical regions, and in June–August 
and December–March for northern and southern extratropical re
gions, respectively (Fig. 2a). We found appreciable differences be
tween the PTs of HSIs and Tair, particularly in northern tropical 
regions where the PT of HSIs (Fig. 2b–g) occurs much later than 
that of Tair, and in the southern tropical regions, where the PT of 
HSIs occurs much earlier. HSI peak times are clearly modulated 
by the position of tropical rainfall belts and the seasonal move
ment of summer monsoons. However, for the extratropical re
gions, only slight differences are observed. The PT discrepancy 
with Tair also varies among HSIs, with those more sensitive to 
RH (i.e. Tw and TsWBG, Fig. 2b, c, Fig. S1) showing larger PT discrep
ancies than those less sensitive to RH (i.e. UTCI and HI, Fig. 2f, g).

We further examined the PT discrepancy in four MCC cities 
(Austin, Brasilia, London, and Bangkok) located in different re
gions using Tair and eight HSIs (see Materials and methods), focus
ing on the occurrence frequency of the hottest 10 days (Fig. 2h–k). 
In Austin and Brasilia, there were apparent timing differences for 
HSIs, particularly Tw, compared to Tair. In contrast, London and 
Bangkok had relatively small discrepancies. These variations 

Fig. 1. Long-term trends of the extremes of six HSIs. a–c) The linear trends (per decade) of the Tair X99 (99th percentile of the annual values of each year) 
(a), and specific humidity (Q) (b) and RH (c) of the high-temperature days (daily Tair > Tair X99) between 1980 and 2019. The results of a-c are based on the 
daily mean value. Stippling denotes the linear trend reaches the significant level (P < 0.05). d, e) The sum of the HSI vote of Tw, TsWBG, Hx, APT, UTCI, and 
HI. The HSI vote is set as 1 when HSI X99 shows a positive trend between 1980 and 2019 and is set as −1 when negative. Results based both on the daily 
mean (d) and daily maximum (e) values of HSIs are presented. Stippling denotes the linear trend of at least one HSI reaching the significant level (P < 0.05).
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can be attributed to the cities’ distinct climatic characteristics 
(Fig. S3). RH was less influenced by changes in Tair in London 
and Bangkok and maintained consistently high values throughout 
the year (Fig. S3c, d). Conversely, Austin and Brasilia experienced 
significant reductions in RH during the summer when Tair in
creased (Fig. S3a, b), leading to a limitation in the increase of Tw 
and resulting in discrepancies in PT with Tair. The low overlap 
rate in some regions between the annual hottest 10 and 30 days 
of HSIs and Tair further emphasizes the challenge of early warning 
for heat stress when using different HSIs and Tair (Fig. S4). This 
analysis highlights the need for improved understanding and ap
plying appropriate HSIs (as well as Tair) in heat stress forecasting.

Spatial diversity of the best-fit indicators to 
city-level mortality
To investigate which indicator, either Tair or multiple HSIs, pro

vides better predictive power for modeling city-level mortality 

across 739 MCC cities, we evaluated the association between the 

daily mean value of these indicators and daily mortality during 

the warm season (defined as the six warmest consecutive months 

in each city, provided in Table S2). We then used the quasi-Akaike 

information criterion (qAIC) (42) to evaluate the goodness of fit of 

the models (see Materials and Methods). The best-fit indicator 

(BFI) was defined as the indicator with the lowest qAIC.

Fig. 2. Intra-annual PT difference among air temperature (Tair) and HSIs. a) Averaged intra-annual PT of Tair (day of year when Tair reaches annual peak) 
for 1980–2019. b–g) Difference between averaged intra-annual PT of corresponding HSI and Tair (the former minus the latter) for 1980–2019. h–k) 
Occurrence frequency of the hottest 10 days measured by Tair and 8 HSIs for 4 cities: Austin (h), Brasilia (i), London (j), and Bangkok (k) for 1980–2019. The 
occurrence frequency is obtained by Gaussian kernel density estimation.
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Our analysis reveals that the BFI varies for cities in different re
gions (Fig. 3). Figure 3a presents the BFIs with a focus on their sen
sitivity to RH. The result suggests that humid heat may play a 
more important role in influencing human mortality in coastal 
and large lake areas of the United States, Peru, Thailand, Korea, 
and Japan, where the BFI tends to have a high sensitivity to RH. 
However, for other regions, such as Argentina, Portugal, southern 
Spain, and South Africa, dry heat (without or with slight consider
ation of RH) is more closely associated with human mortality. 
Overall, Tair demonstrates the highest performance among all in
dicators for approximately 30% (222 out of 739) of MCC cities 
(Fig. 3b). However, HSIs also exhibit strong performance in the 
other 517 cities. The qAIC differences between Tair and the BFI 
for the 517 cities (Fig. S5) are large enough to make chance an un
likely explanation for their better fit (averaged qAIC differences >  
2) (43).

As our objective is to examine the performance of these HSIs 
compared to Tair, we investigate the number of HSIs that surpass 
Tair’s performance for each city (Fig. S6). The result indicates that 
for the cities whose BFI has high humidity sensitivity, the use of 
other indicators considering humidity even marginally in their 
formulation also exhibits superior performance to Tair in general 
(compare Fig. 3a and Fig. S6a).

In addition, using the daily maximum indicator values and 
quasi-Bayesian information criterion (qBIC) (42), we obtained 
similar spatial patterns of BFIs (Figs. S7 and S8), strengthening 
the robustness of our findings. In most cities, the daily mean value 
of the indicators slightly outperformed the daily maximum value 
in modeling city-level mortality, except for Central America 
(Fig. S9). Detailed information on the qAIC of each indicator and 
the BFI of 739 cities can be found in Table S4.

Under what conditions does humid heat matter 
more for mortality
To gain insights into why humid heat stress has a higher associ
ation with human mortality in certain regions and cities, we 
compared two groups of cities: dry heat cities with a BFI of Tair 

(222 cities) and humid heat cities with a BFI of one of the humid
ity sensitive HSIs: Tw, TS, TWBG, or TsWBG (231 cities). The qAIC dif
ference between HSIs and Tair for these groups is shown in 
Fig. S10. We also compared the performance of each HSI and 
Tair for all 739 cities and 231 humid heat cities in Fig. S11. The re
sults reveal that, across all 739 cities, Tair generally outperforms 
individual HSIs, except for HI. However, in humid heat-dominant 
cities, most HSIs (except for UTCI) show better performance than 
Tair (Fig. S11).

We collected 13 features for each city, covering climatological, 
geographical, and socio-economic factors, and used them as in
puts to train a random forest model to classify the cities into the 
two groups (see Materials and methods, and Tables S5 and S6). 
Our supervised machine learning model was able to distinguish 
between the two groups of cities, with accuracy, precision, and re
call of 65.6%, 66.3%, and 65.5%, respectively (see the confusion 
matrix in Table S7). We identified the top two factors that influ
enced the classification to be the correlation between daily Tair 

and RH during the warm season (CT-RH) and latitude (Fig. 4a).
The CT-RH emerges as the most important factor in determining 

the influence of humidity on heat-related mortality at the city lev
el. CT-RH is negative in many cities (Fig. 4b), indicating that as Tair 

rises, the air can hold more water, but the local environment fails 
to provide sufficient water vapor, resulting in decreased RH (41). 
This phenomenon can be observed in the time series of Tair and 

RH of Austin and Brasilia (Fig. S3a, b). However, we also found 
that some cities (many of them coastal) have positive CT-RH 

(Fig. 4b), although this correlation is usually weak. In Fig. 4c, we 
plot the BFI against CT-RH for the 739 MCC cities. Dry heat cities 
with RH-insensitive BFIs (e.g. Tair) exhibit clear negative CT-RH, 
while cities with RH-sensitive BFIs (e.g. Tw, TS, TWBG) predomin
antly display near-zero or weak positive CT-RH associations 
(Fig. 4c). The spatial distribution also suggests that there is a sig
nificant overlap between the locations of cities with moderate 
positive CT-RH and where humidity is influential to heat-related 
mortality (compare Fig. 4b and Fig. 3a). Substituting RH with spe
cific humidity (Q) as input features (Fig. S12), we obtained compar
able results for the feature importance. These findings underscore 
the importance of the temperature–humidity correlation in deter
mining the health impacts of humid heat.

Furthermore, another result also suggests that the relative per
formance of HSIs tends to increase as CT-RH transitions from 
strongly negative to moderately positive. We analysed the qAIC 
difference between each HSI and Tair in relation to the CT-RH of cit
ies (Fig. S13). With a higher positive CT-RH, Tair’s performance de
clines, whereas HSIs (except for UTCI) show clear improvement, 
although CT-RH alone cannot perfectly separate the data points 
by ΔqAIC = 0 as it is influenced by factors such as latitude. 
Notably, for cities with CT-RH > 0, HSIs such as HI, TWBG, and TS ex
hibit better performance than Tair (Fig. S13a, f, g). The same ana
lysis using the daily maximum value of indicators, which is 
more frequently used in issuing a heat alert, shows a more appar
ent trend, which further demonstrates the robustness of the find
ings (Fig. S14).

Our general interpretations of the results are as follows: Firstly, 
in cities with a strong negative CT-RH, the daily variation in RH is 
already captured by Tair change due to their strong negative cor
relation. Therefore, using HSIs that place excessive emphasis on 
humidity (e.g. Tw, which assumes the human body is naked and 
fully wet) does not yield improved predictive performance. In 
these cities, Tair emerges as the superior predictor. However, in 
cities with a relatively weak CT-RH, explicitly considering the vari
ation in RH becomes necessary, and HSIs that account for humid
ity provide improved predictive power compared to Tair alone. 
Secondly, in cities with a strong negative CT-RH, the occurrence 
of simultaneously high Tair and high RH is unlikely due to their 
mutual constraint. However, in cities with a near-zero or positive 
CT-RH, the likelihood of such co-occurrence increases, resulting in 
a higher risk of severe humid heat stress that significantly impacts 
human mortality.

Heat-related mortality estimation using air 
temperature and the best-fit heat stress indicator
To estimate heat-related deaths, we applied location-specific 
exposure-response functions to the warm-season Tair and the 
BFI time series (see Materials and Methods). We calculated the 
attributable fraction (AF, %) of heat-related mortality as the num
ber of deaths attributed to heat divided by the total number of 
deaths during the warm season, for the 517 cities whose BFI is 
one of HSIs (see Materials and methods). We also analysed the 
exposure-response curves and the intra-annual variation of the 
mortality relative risk (RR) averaged between 1980 and 2019 for 
four big cities (Miami, Bristol, Ho Chi Minh City, and Taipei) lo
cated in different regions (Fig. 5).

The RR increases significantly when Tair and the BFI exceed 
the optimum values for all four cities (Fig. 5a, c, e, g). Bristol 
and Ho Chi Minh City had shorter heat stress exposure periods 
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when estimated using BFI compared to Tair (Fig. 5d, f), and 
smaller BFI-estimated heat-related AFs of 0.39% (95% confi
dence interval [CI]: −0.21–0.93) and 2.50% (95% CI: 0.91–3.97), re
spectively, compared to Tair-estimated AFs of 0.42% (95% CI: 
−0.94–1.68) and 2.67% (95% CI: 0.01–5.11). In particular, the tim
ing of the highest RR notably differs between Tair and the BFI 
(specifically TWBG) at Ho Chi Minh City, providing distinct in
formation relevant to an effective heat stress early warning 
system. On the other hand, BFI-estimated mortalities were 

higher than Tair-estimated for Miami and Taipei, with a similar 
heat stress exposure period between Tair and the BFI (Fig. 5b, 
h). These findings demonstrate that the choice of HSI can be 
critical for the estimation of both the total number and timing 
of heat stress-related deaths.

The warm-season heat-related AF estimated by Tair averaged 
2.25% (95% CI: −1.61–5.11) across these 517 cities, with higher 
mortality in cities in Europe, Peru, Southeast Asia, and some re
gions in the United States (Fig. S15a, b). The BFI estimated a 

a

b

Fig. 3. The BFI [including air temperature (Tair) and HSIs] in modeling/predicting daily human mortality for 739 MCC cities. a) The indicator with the 
minimum qAIC when fitting to the human mortality (defined as BFI). The color of the BFI is presented based on their sensitivity to the humidity (Fig. S1, 
e.g. Tair (zero sensitivity to humidity), Tw (maximum sensitivity to humidity)). The number in the bracket represents the rank in the sensitivity to humidity 
of the HSI. b) The number of cities and their locations under each BFI group. The results are based on the daily mean value of the indicators.
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slightly higher AF of 2.39% (95% CI: −1.55–5.14) during the warm 
season compared to Tair. The AF difference varied across cities, 
with relatively small variations in the Midwest United States 
and Japan, but larger deviations among cities in Peru, Europe, 
and Southeast Asia, indicating a large divergence from Tair esti
mates (Fig. S15c, d). However, it is important to interpret these spe
cific mortality numbers and differences with caution, as AFs do not 
measure predictive performance, and they may be influenced by 
data length, quality, and other factors, introducing potential uncer
tainties (Fig. S16).

Discussion
In this study, we analysed state-of-the-art epidemiological and 
climatological data to examine the influence of humidity on 
heat-related mortality at the city level. Our findings indicate 
that for the majority of the cities examined that feature a robust 
negative Tair-RH correlation, the commonly used temperature in
dicator Tair could be a reasonable predictor, and properly 

incorporating the low-weight humidity term (i.e. HI) only moder
ately improves the predictive power. However, Tair’s performance 
in predicting mortality tends to decline when CT-RH is near-zero or 
weakly positive (i.e. coastal and large lake areas of the United 
States, Peru, Korea, and Japan), while HSIs with a higher emphasis 
on humidity often demonstrate improved performance and can 
outperform Tair. We also quantify heat-related deaths using the 
BFI, which reveals differences in both the number and timing of 
deaths compared to estimates based on Tair. These findings pro
vide important information for the development of city-level 
heat-action plans and adaptive strategies through localized 
heat-health warning systems based on the BFI.

Our study encompasses 739 cities across 43 countries/territor
ies, with a time series spanning part or all of 1980–2019. 
Additionally, to capture the simultaneity of multiple climate var
iables, we calculated HSIs on an hourly scale. Collecting continu
ous time series of hourly Tair, RH, wind speed, and solar radiation 
data with such temporal and spatial coverage is challenging. 
Thus, climate reanalysis data such as ERA5, combining 

a

c

b

Fig. 4. The factors that influence the lethal heat stress type (dry or humid) for city-level human mortality. a) The feature importance of 13 input features 
(Table S5) for the random forest algorithm classifying lethal heat stress type. The thick black line indicates the uncertainty in 500 times implementations. 
b) The Spearman correlation coefficient between daily mean air temperature and RH (CT-RH) for 739 MCC cities. c) The distribution of the CT-RH for cities 
versus their BFIs for predicting mortality. The distribution density is obtained by Gaussian kernel density estimation.
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multisource observations and model simulations, provides a vi
able alternative. To verify the reliability of ERA5 in accurately rep
resenting the association between Tair and RH, we compared the 
CT-RH during the warm season from ERA5 to climate observations. 
The CT-RH of ERA5 is verified with climate observations for 476 out 
of 739 MCC cities, for which the observed daily Tair and RH are 
available in the MCC dataset (Fig. S17). These observations were 
collected from representative weather stations in the respective 
cities, covering part of the periods between 1980 and 2019, totaling 
more than five years for each city. For the same periods, we found 
that the spatial pattern of CT-RH from ERA5 matches well with the 
observational data. Specifically, both datasets reveal weak posi
tive CT-RH in cities in the western United States, Ireland, Korea, 
and Japan, and strong negative CT-RH in the eastern United 

States, Brazil, southern Europe, and Southeast Asia. Given the 
high consistency between CT-RH from ERA5 and in-situ data, we 
believe ERA5 reliably represents CT-RH for the cities studied.

Compared to urban climate studies, which focus more on in
vestigating the spatial diversity of the urban heat (44, 45), environ
mental health studies emphasize temporal fluctuations of the 
exposure and their short-term associations with city-level health 
outcomes. Environmental health studies typically use one repre
sentative climate station per city to represent the general climate 
conditions and build associations with population-scale health 
outcomes. This approach is standard in the environmental health 
research community and has been well demonstrated by previous 
studies (6, 7, 42). Additionally, studies such as Mistry et al. (46) 
have shown that ERA5 data compare well with in-situ data from 

a b

c d

e f

g h

Fig. 5. The seasonality of RR of heat stress for four cities (Miami, Bristol, Ho Chi Minh City, and Taipei). a, c, e, g) Exposure-response associations 
estimated by air temperature (Tair, black) and BFI (red) (with 95% confidence interval [CI], shaded area). The numbers indicate the optimum of Tair and BFI 
with the lowest RR = 1, and the vertical dotted lines indicate the 95th percentile of local-specific warm-season indicator value. b, d, f, h) The averaged 
intra-annual variation of RR estimated by Tair (black) and BFI (red) during the warm season. The line represents the RR time series, and the shaded area 
represents the days under heat stress (indicator value > optimum). The numbers indicate the AF of death related to heat and the corresponding 95% CI. 
The intra-annual time series is the averaged results of 1980–2019.
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representative stations in environmental health analyses, with 
similar model fitness and temperature-related risk estimates. 
Guo et al. (47) also validated ERA5’s daily mean Tair and RH against 
observations from representative climate stations for 47 prefec
tures in Japan, finding good consistency. Given ERA5’s reliable 
performance, high temporal and spatial resolution, and global 
coverage, it has become widely demonstrated and used in envir
onmental health studies (32, 48, 49).

Nonetheless, some limitations to our study should be dis
cussed. Although we analysed data from over 700 cities world
wide, the majority of these cities are located in developed 
countries, constraining us from conducting analysis for other re
gions facing severe humid heat stress, such as the Persian Gulf, 
northern India, and North China Plain (50), due to data scarcity. 
Additionally, our machine learning model utilized thirteen city 
features as inputs, achieving a modest accuracy of 65.6%. 
However, possibly important factors, including race, air condi
tioning availability, and medical infrastructure were not included 
due to data unavailability, which in turn could have limited the 
accuracy of the random forest model. We did not evaluate the sep
arate impact of wind speed and solar radiation, included in some 
HSIs (UTCI, APT, and TWBG), from that of RH, due to the fact that 
these were not particularly high-performing indicators.

Although previous studies have demonstrated a strong agreement 
between HSIs calculated from multiple reanalysis datasets and those 
derived from station-based data (44, 46, 47), discrepancies remain 
when compared to observations, and also among different reanalysis 
datasets. These discrepancies can vary by climate region and me
teorological variable (44). Therefore, further research and improved 
data gathering by enhancing local weather station networks are cru
cial to reduce measurement errors and deepen our understanding of 
heat stress measures and their health impacts. Additionally, we ac
knowledge that while the feature importance analysis identified 
CT-RH as a significant factor influencing the relative performance of 
different HSIs, this method does not provide insights into causality. 
Investigating the sensitivity of population-scale residents to humid 
heat stress involves numerous multidisciplinary factors, including 
climatic, socio-economic, demographic, and human behavioral ele
ments. Our study represents an initial attempt to understand the 
spatial heterogeneity in the performance of different HSIs and the 
role of humidity in health impacts. Further research encompassing 
physiological, demographic, and epidemiological areas is needed to 
enhance our understanding of the causality involved.

Despite these limitations, the results presented here provide 
important new aspects for understanding the role of humidity in 
the epidemiological analysis of heat-related mortality. The find
ings may bridge the recognition gap among physiological, climato
logical, and epidemiological communities on the association 
between humid heat and health outcomes, a heated debate across 
communities. As for further research, integrating this city-level 
mortality analysis with individual-level heat stress adaptability 
experiments (25) could enhance our understanding of the health 
effects of humid heat stress. Given the risk of heat waves globally, 
our results demonstrate the importance of considering humidity 
in heat stress prediction and heat-action plans for regions with 
a non-negative temperature-humidity correlation.

Materials and methods
Mortality data
We obtained daily mortality data for our study from the 
Multi-Country Multi-City (MCC) Collaborative Research Network 

database (https://mccstudy.lshtm.ac.uk/). A summary of the data 
for each country is provided in Table S1 in the supplementary 
material, and the full list of cities included in our analysis is pro
vided in Table S2. We used all-cause or nonexternal cause deaths 
(ICD-9: 0–799; ICD-10: A00-R99) for each city, with the data covering 
part of the period from 1980 January 1 to 2019 December 31, and 
with varying lengths by location, totaling more than three years. 
To focus on the impact of heat stress, we used only the warm sea
son data for each city, defined as the location-specific warmest six 
consecutive months, as listed in Table S2.

Global climate reanalysis data
We utilize the ERA5 reanalysis data from the European Centre for 
Medium-Range Weather Forecasts—(ECMWF) (35), which integra
tes multisource observations and model forecasts, to calculate 
the HSIs. The hourly 2-m air temperature, 2-m dewpoint tempera
ture, 10-m wind speed, surface pressure, surface downward solar 
radiation, and precipitation are used, covering 1980–2019. The cli
mate conditions for each city are represented by the reanalysis 
grid cell (∼31 km) that contains the city’s geographic coordinates. 
Prior research has demonstrated the reliability of reanalysis data 
as a substitute for in-situ data in health impact assessments (46). 
Moreover, since meteorological variables other than Tair, such as 
RH, wind speed, and solar radiation are required for the computa
tion of the HSIs, reanalysis data offers a suitable alternative to in- 
situ measurements in providing consistent historical spatio
temporal coverage required for our analyses.

Heat stress indicators
This study examines eight commonly used HSIs: wet bulb tem
perature (Tw) (21), wet bulb globe temperature (TWBG) (22), simpli
fied wet bulb globe temperature (TsWBG) (36), HI (23), Humidex (Hx) 
(37), APT (24), lethal heat stress temperature (TS) (18), and UTCI 
(38). The hourly values of each HSI are calculated using ERA5 re
analysis data, and the daily mean and maximum values are as
sembled by averaging or taking the maximum of the hourly 
values, taking care to convert to the location-specific time zone. 
The study analyses all eight indicators for the 739 MCC cities, 
while TWBG and TS are excluded from the global land surface 
grid calculation and the HSIs discrepancy analysis due to compu
tational costs. For further information and the input variables of 
each HSI, see Table S3. A recent systematic review article provides 
comprehensive information about these HSIs (14).

The heat-mortality analysis
We employed distributed lag nonlinear models (DLNMs), a well- 
established method to examine the heat-mortality relationship 
during the warm season in each city (51). DLNMs are capable of 
handling complex nonlinear and lagged dependencies often 
found in heat-mortality studies. We analysed the association be
tween daily mortality and daily max/mean values of each of the 
eight HSIs (as well as Tair) separately using quasi-Poisson regres
sion, for which a quasi-likelihood was used to scale the standard 
error of the coefficients proportionally to the possible overdisper
sion (51). The daily mortality and HSIs/Tair series are synchronized 
based on the local time of each city.

In DLNMs, the bidimensional exposure-lag-response associ
ation is modeled through a combination of two functions defined 
within a cross-basis term. Specifically, the exposure-response 
curve is modeled by a natural cubic spline function with two in
ternal knots at the 50th and 90th percentile of the warm season in
dicator distribution, and the lag-response curve is modeled by a 
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natural spline function with two internal knots at equally spaced 
values in the log scale over a 10-day lag. As the daily mortality 
time series is likely to have seasonality and long-term trends inde
pendent of temperature, it is necessary to control these patterns 
in the model so that the short-term association between heat 
stress and mortality can be detected. We use a natural spline 
function with 4 degrees of freedom of day of the year to model 
the seasonality, and a natural spline function of time with one 
knot/10 years to model the long-term trends of the mortality. 
This has the same effect as detrending a priori (52) since the asso
ciation with temperature (and other HSIs) that is captured is con
ditional on this trend. The model also includes an indicator to 
model the intra-week variation of the mortality. The model pa
rameters were based on relevant studies from the MCC 
Collaborative Research Network (7, 53). The obtained bidimen
sional set of coefficients at each city was then reduced across 
the lag dimension into the overall cumulative exposure-response 
association curve, which represents the heat-mortality associ
ation for all 10 days.

We used the qAIC (42) and qBIC (42) to assess the performance 
of each indicator in predicting mortality at each city, with a lower 
qAIC or qBIC value indicating a better fit. The indicator with the 
smallest qAIC or qBIC value was deemed the BFI for each city. 
We obtained two groups of BFIs based on the daily mean and max
imum value of the indicators, respectively.

Finally, we quantified the heat-related mortality in each city 
during the warm season, based on the Tair-fitted model and 
BFI-fitted model, separately. For each city, the number of 
heat-related deaths is estimated according to the indicator time 
series, daily baseline mortality, and the heat-mortality association 
represented in DLNMs. Then, the total number of heat-related 
deaths in each city is obtained by summing the daily excess deaths 
when the indicator is higher than the location-specific optimum 
value, which is obtained in the fitted DLNMs and represents the in
dicator value with the lowest mortality risk. Lastly, similar to previ
ous studies (7, 46), the AF of mortality related to heat stress is 
calculated by dividing the heat-related mortality by the total num
ber of warm season deaths for the same period in each city. We as
sessed the uncertainty of our estimates by conducting Monte Carlo 
simulations to generate 1,000 samples of the coefficients, which re
present the association. We assumed a multivariate normal distri
bution for the estimated spline model coefficient. From these 
simulations, we derived empirical CIs corresponding to the 2.5th 

and 97.5th percentiles of the empirical distribution of heat-related 
mortality.

The supervised machine learning analysis
To investigate under what conditions city-level mortality shows a 
stronger association with humid heat, than dry heat (Tair), we 
used a random forest algorithm (54) to analyse multiple features 
of selected cities and their BFIs. We chose two groups of cities 
based on the sensitivity of their BFI to RH (Fig. S1). The first group, 
humid heat-dominant cities, includes cities whose BFI is one of 
Tw, TS, TWBG, and TsWBG. The second group, dry heat-dominant cit
ies, includes cities with Tair as their BFI. The numbers of humid 
heat and dry heat-dominant cities are 231 and 222, respectively.

We used 13 features related to climatologic, geographic, and 
socio-economic factors of the selected cities as input (Table S5). 
The specific values of these features are provided in Table S6. 
The elevation and distance to the nearest coastline of the city are 
obtained by matching the city’s coordinates to the available open- 
source data (55, 56). We used the dominant heat type (dry or humid) 

of the city as the output of the classification model. The random 
forest algorithm has been fine-tuned to optimize its performance. 
The resulting optimized parameters are as follows: the number of 
trees is set to 500, the number of predictors sampled for splitting 
at each node is set to 4, and the minimum size of terminal nodes 
is set to 7. To account for model uncertainty, we ran the random 
forest algorithm 500 times, using 70% of the data for training and 
30% of the data for testing in each run. We report the classification 
results in a confusion matrix format in Table S7 in the supplemen
tary, which is the summary of all 500 implementations for the test
ing datasets. On average, the model has an accuracy of 65.6%, 
precision of 66.3%, and recall of 65.5%, demonstrating its ability 
to classify the dominant heat type of a city. Substituting RH with 
specific humidity (Q) in the input features, we obtained comparable 
classification results with accuracy, precision, and recall of 65.9%, 
66.7%, and 65.2%, respectively.

Furthermore, the random forest algorithm provides feature im
portance, which ranks the input features based on their import
ance in predicting the output. We analysed the importance of 
the 13 input features in influencing the dominant heat type of a 
city. The feature importance is calculated based on the decrease 
in Gini impurity.

Notes
a In the MCC dataset, the daily mortality is collected on a region/pre

fecture basis for some countries (i.e. Ireland, Japan, and Czech 
Republic).
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