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ABSTRACT The prediction of the remaining time for business processes is a major task in predictive
process monitoring (PPM). In the last years, various machine learning methods were introduced which
reduced error levels steadily. However, the commonly applied metric for optimization and evaluation, the
Mean Absolute Error (MAE), has limitations regarding its interpretability. In this work we introduce and
evaluate the normalized Mean Absolute Error (nMAE) as an interpretable metric for model evaluation. It
accounts for different kinds of label shifts, which are a special type of concept drift that can distort remaining
time results. We investigate these concepts in a thorough benchmark study and use them to assess the current
state of remaining time prediction for business processes. This includes the evaluation of four different
baseline models, identifying the most accurate one. Furthermore, our study compares three different state-
of-the-art methods, namely XGBoost, DA-LSTM, and PGT-Net. In contrary to prior studies we find that
there is no significant difference in the performance between these models. Additionally, using the nMAE
as evaluation metric we find that these models do not perform reasonably well on a range of event logs.
Initial ideas for this behaviour are discussed and consolidated along with other findings from the case study
into a comprehensive list motivating future research directions.

INDEX TERMS Business Process, Graph Neural Network, LSTM, Machine Learning, Predictive Process
Monitoring, Process Mining, Remaining Time, XGBoost

I. INTRODUCTION

PREDICTIVE process monitoring (PPM) methods utilize
historical business process data in the form of event

logs to train machine learning models (offline phase). The
obtained models are applied in an online phase to make
predictions about new incoming cases during daily opera-
tions. Typical tasks in PPM include next activity predictions,
outcome predictions, and remaining time predictions [1].

Predicting the remaining time of business process in-
stances is a service offering which has practical advantages
for company internal as well as external user groups. It allows
internal user groups to intervene in cases that are expected
to run too long and it supports the optimization of resources
in order to reduce costs [1]–[3]. Furthermore, an efficient
communication of expected remaining times can help to
increase satisfaction levels of external stakeholders, for ex-
ample customers. To support these goals reliably, machine

learning models providing predictions need to be thoroughly
evaluated and constantly monitored to ensure consistent,
high-quality predictions. For such evaluations it is crucial to
choose suitable evaluation metrics.

In the literature, mostly the Mean Absolute Error (MAE)
is used to optimize models as well as to evaluate their
performance. The MAE has a minimum value of zero for a
perfect model, but its maximum is not bounded and can be
any arbitrary positive value. Therefore, evaluating a model
based on the achieved MAE is only possible with supporting
knowledge about the underlying process like the average
case duration. This is in contrast to classification problems
like next activity or outcome predictions, where metrics like
Accuracy and F1-Score allow a precise first assessment of a
model since these metrics are normalized in a range between
0 and 1. A main contribution of this work is the proposal
of a normalized version of the Mean Absolute Error, called
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normalized Mean Absolute Error (nMAE). It is interpretable
with regard to its fit to a given test set and accounts for label
shifts.

In order to derive the nMAE we introduce and discuss
different types of label shifts which can occur between a
training and a test set. We show that such shifts can have
positive, negative, as well as neutral effects with respect
to the MAE. We will perform this analysis with baseline
models. Since there is no unique definition of a baseline
model for remaining time prediction of business processes
in the literature, we derive a simplistic baseline model based
on theoretical properties in machine learning.

All of the aforementioned concepts are evaluated in an
empirical case study comprising 16 publicly available event
logs, four different baseline models and three different ma-
chine learning methods.

The case study evaluates state-of-the-art methods for re-
maining time prediction of business processes and summa-
rizes the current state of research in that domain. We addi-
tionally address weaknesses of prior studies. This results in a
summary of unaddressed research questions that can serve as
a research agenda for future research.

Our work is summarized in the visual abstract in Fig. 1.
The remainder of this work is structured as follows: First,

we discuss related literature, followed by in an introduction
of important concepts needed throughout the rest of this
work. Next, we introduce our novel concepts by defining a
suitable baseline model, discussing different kinds of label
shifts, and introducing the nMAE metric. This is followed
by an empirical case study. The case study is guided and
discussed based on five research questions. Next, we sum-
marize our work and discuss open research questions. This
is followed by an overview about the limitations of the
conducted study and a final conclusion.

II. BACKGROUND AND RELATED WORK
A. REMAINING TIME PREDICTION METHODS
A large body of work is dedicated to improve methods for
remaining time prediction of business processes. To structure
the range of proposed methods, benchmark studies have
compared previously introduced methods on a variety of
datasets [4], [5]. Verenich et al. [4] compared several process-
aware methods with classical machine learning methods, rep-
resented by XGBoost, and neural networks, represented by
the DA-LSTM architecture which was originally introduced
by Navarin et al. [3]. Rama-Maneiro et al. [5] focused on the
comparison of neural network-based methods. Both studies
found that DA-LSTM outperforms all other methods. More
recently, graph-based neural networks have been proposed
and the corresponding case studies suggest that they can
outperform DA-LSTM’s [6], [7]. Most recently, Elyasi et al.
[6] introduced PGT-Net, a graph-based neural network, and
showed that it outperforms not only DA-LSTM but also other
graph-based neural networks. Historically, the development
of remaining time prediction methods started with process-
aware methods, which were outperformed by classical ma-

chine learning methods. These, in turn, were replaced by
neural network architectures, specifically by the DA-LSTM
model [8], and most recently by graph-based neural networks
[6].

Despite the strong evidence of superior performance by
neural networks, the relevance of classical machine learning
methods was recently highlighted again due to advantages
in interpretability and computational demand [9]. Recent
work has focused on improving the predictive quality of such
methods. One direction is focused on engineering dedicated
input features, for example time-related features by Oyamada
et al. [9] or inter-case features by Pourbafrani et al. [10].
Another direction is the evaluation of alternative optimization
approaches, for example by suggesting a discretization of
target labels followed by applying classification-based opti-
mizations as proposed by Aalikhani et al. [11].

B. EVALUATION METRICS
The MAE has emerged as a prevalent evaluation metric
used to derive a final judgment about models’ performance.
The choice for the MAE has been justified in a few works.
Verenich et al. [4] discuss it in closer detail and note that
the range of values for the remaining time is "highly varying
across cases of the same process, sometimes with values on
different orders of magnitude." The commonly used met-
rics Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE) are highly sensitive to large errors resulting
from such outliers. For these metrics individual prediction
errors are squared before they are averaged, which has the
effect that large errors due to outliers are weighted heavily
and therefore distort the result. In order to be more robust,
Verenich et al. [4] favour the MAE instead. This metric takes
the absolute value of prediction errors before averaging them.
The effect of large errors due to outliers is reduced with
this metric, compared to the MSE and RMSE. Furthermore,
Verenich et al. [4] consider the Mean Absolute Percentage
Error (MAPE) in their discussion, which they note to be
skewed in situations where the ground truth label is close to
zero. For the MAPE, individual absolute errors are divided
by the underlying ground truth labels to retrieve an error as a
percentage of the ground truth labels, and these percentages
are then averaged. If a ground truth label is close to zero the
percentage error for a sample might become very large due
to the division by a very small number, which produces large
outlier values that skew the MAPE metric. Most recent work
[2]–[7] mainly follows this reasoning and regards the MAE
as the most suitable evaluation metric to compare different
models. Recent results and discussions in the domain are
therefore largely based on the MAE.

While the MAE gives a good indication whether business
targets can be met on average, it has no further explanatory
power. For example, it does not indicate directly whether the
result achieved is a good fit to the data, close to random
guessing, or even overfitting. An evaluation metric that aims
at such interpretability is the coefficient of determination
[12]. However, the coefficient of determination explains re-
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FIGURE 1. Visual Abstract. We introduce the normalized-MAE, define different types of label shifts and propose a baseline model. These are investigated in a case
study including 16 datasets, 4 baseline models, and 3 machine learning models. Our contributions allow valuable insights for model evaluation and to assess the
state of remaining time predicition in PPM. All insights are consolidated to motivate future research.

sults with regards to squared errors, whereas in remaining
time prediction for business processes absolute errors are
computed. While the coefficient of determination has been
widely adopted, there is no established metric that allows an
interpretation of results for datasets with outliers where the
error is computed as an absolute deviation. Still, there are
several attempts that present specific solutions. Chicco et al.
[12] provide an overview about related work that proposes
adapted versions of the coefficient of determination for ab-
solute errors. Further work focuses specifically to variations
representing robust solutions. McKean et al. [13], for exam-
ple, introduce two versions to normalize the MAE. Renaud
and Victoria-Feser [14] discuss different generic solutions
and point out that these might be biased. They introduce
an own metric which, however, requires the definition of
additional weights. The drawback of such metrics is that
they either incorporate specific assumptions regarding data
distributions, they assume ordinary least squares or linear
absolute deviation regression moels, or they introduce addi-
tional weights for their computation which are not trivial to
determine. This makes the choice of the right metric chal-
lenging. In this work we revert to a rather simple formulation
presented initially by McKean et al. [13]. We will show that
is has desirable characteristics specifically for remaining time
prediction of business processes which brings new insights.

C. FEATURE REPRESENTATION

In machine learning, the type of machine learning method
used determines the possible formats for data representation.
Classical machine learning methods require the input to be
of a fixed size vector. This is achieved by a tabular repre-
sentation of the data. The best performing type of models
for tabular data are tree-based methods like XGBoost [15].
Verenich et al. [4] summarize the different possibilities to
represent event logs in a tabular form. These include aggrega-
tion encoding, last state encoding, and index-based encoding.
In aggregation encoding, all events of a trace alongside
with their features are encoded with statistical measures.
For categorical features, which includes the activities, the
occurrence of each value is counted. For numerical features
different measures like the mean or standard deviation are
calculated. The temporal order of information is therefore
lost in aggregation encoding. For last state encoding, the last
m features of a prefix are considered and directly encoded,
where m is typically set to a value of one. In this case,
only data obtained from the last event is used. For index-
based encoding, each feature of a prefix with length n is di-
rectly encoded, therefore the representation is lossless. While
Verenich et al. [4] explicitly differentiate between last state
and index-based encoding, we can regard them as the same
method if m = n. The representations are not exclusive, that
means the different encodings can be combined and used for
a machine learning model.
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For deep learning the data is encoded sequential-based.
In the literature this is also denoted as tensor encoding [4].
Architectures like LSTM’s [2], [3] or Convolutional Neural
Networks (CNN’s) [16] are typically used in combination
with such a representation. While a tabular representation is
two-dimensional, the tensor representation adds an additional
temporal dimension. That means, each timestep is encoded
explicitly, where the representation for one timestep is tabu-
lar. In other words, sequential-based encoding is a sequence
of tabular data, where one table represents one timestep of
a prefix. The information content for index-based encoding
and tensor encoding is the same and both representations are
lossless.

A recently applied type of encoding are graph representa-
tions. These allow to explicitly encode the control-flow per-
spective of an event log as a directed and attributed graph [6].
In this work, we will focus on PGT-Net, introduced by Elyasi
et al. [6]. It is a neural network-based graph transformer. Each
activity is represented as a node, and each directly follows
relation of a prefix is represented as a directed edge. The
number of occurrences for these transitions is added as edge
weight. Additionally, categorical and numerical features of
the target node of an edge are encoded as edge features for
the last transition of a directly follows relation in the prefix.
This representation is therefore not lossless.

In all of these approaches categorical features are repre-
sented as one hot encoded feature vectors. The only exception
is the representation of activities for graph-based methods
since they are encoded directly in a graph format. For neural
networks, numerical input features are typically normalized.
This is optional for tree-based methods.

D. CONCEPT DRIFTS
Concept drifts are a well-known issue in the process mining
literature [17]. In the context of predictive process moni-
toring most approaches are dedicated to next activity [18]
and outcome prediction problems [19], [20]. Firouzian et
al. [21] proposed an approach for concept drift adaptation
in remaining time prediction with support vector regressors.
All of these approaches actively tackle concept drifts by
retraining or refining models in order to improve predictions.
However, different types of concept drifts are not regarded in
these studies.

Quionero-Candela et al. [22] provide an overview about
possible types of concepts drifts from a generic machine
learning perspective. Simple covariate shifts occur if there is
a change in the probability distribution for the input features
P (X) between a training and a test set. This might occur
for example when the relative frequency of process variants
changes between a training and a test set. A prior probability
shift changes the distribution in the target labels P (Y ). This
might be a direct consequence of a change in P (X) since
the shift from a simpler to a more complex process variant
might also lead to longer remaining times and therefore a
shift in P (Y ). However, it could also arise from a change in
the joint distribution P (X;Y ), for example by introducing

a more efficient information system that allows to perform
the same tasks in shorter times. Many possible reasons for
changes in the label distribution P (Y ) are therefore possible.
In this work we will focus on changes in P (Y ) per se, leaving
possible reasons for that change aside. We will show that
considering changes just in P (Y ) brings already valuable
insights to the analysis of remaining time prediction methods.

III. PRELIMINARIES
Process Data. The data used in PPM applications is rep-
resented by event logs. An event log is a collection of
sequences. Each sequence, also called case or trace, consists
of several events over time. Associated to these is always an
activity (what has been done) and a completion timestamp
(when has it been done). Additional context features are
often provided. Examples include resources (who performed
a task), costs or any other complementary information that
might be useful to build a predictive model. The features
(excluding the case identifier) are used as input for a pre-
dictive model to generate a prediction. Formally, we define
these concepts as follows:
Definition 1 (Event, Trace, Event Log): An event e is a tuple
(a, c, t, l, (d1, v1), ...(dm, vm)), where a defines an activity
name, c is a case identifier, t the completion timestamp of
event e and l denotes the lifecycle status of an event. di
denote the names of additional attributes. vi is the corre-
sponding value for attribute di. m is the number of additional
features given.

A trace is a sequence of events σ = ⟨e1, ..., en⟩ such that
∀ei, ej ∈ σ; i, j ∈ [1, n] : j > i ∧ c(ei) = c(ej) ∧ t(ej) ≥
t(ei).

An event log is a set of traces L = {σi : σi ∈ S, 1 ≤
i ≤ K}, where S is the set of all possible traces and K is the
number of traces in the event log.

Table 1 shows an example of a trace from the publicly
available credit requirements process dataset [23]. First, a
credit application is registered. Next, different checks are
performed in order to verify that the debitor is worthy of a
credit. Lastly, the credit committee decides and the process
is concluded with a final requirements review. Each of the
activities is performed by different organizational resource
groups. For most logs, as in this case, the Lifecycle column
only contains the value complete. Some logs also differen-
tiate the lifecycle status, for example by indicating when
an activity is scheduled, when it has started, and when it
was completed. In remaining time prediction, mostly the
complete lifecycle is used and all events containing different
values than complete are discarded. We follow this approach
in our work.

The overall goal in remaining time prediction is to predict
after every event the time it takes until the corresponding
case is completed. The time of completion is denoted by
the timestamp of the last event of a case. It is typically not
included for evaluation since predicting that a case is already
over is out of scope for such models [2]. To each label a prefix
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TABLE 1. Example trace from credit dataset.

Activity
a

Case ID
c

Completion
Timestamp t

Lifecycle
l

Resource

Register 1 2014-04-02
08:00:48 complete System

Acceptance
of requests 1 2014-04-02

08:18:43 complete group1

Collection of
documents 1 2014-04-02

09:47:48 complete group1

Completeness
check 1 2014-04-02

11:05:04 complete group2

Credit
worth check 1 2014-04-02

12:40:06 complete group3

Collateral
check 1 2014-04-02

13:35:35 complete group4

Credit
committee 1 2014-04-02

14:17:41 complete group5

Requirements
review 1 2014-04-02

14:29:46 complete group6

is associated which contains information of all events from
the start of the case up to the current event:
Definition 2 (Prefix, Remaining Time): The k-prefix hdk(σ)
of trace σ = ⟨e1, ..., en⟩ is a partial sequence from the first to
the k-th event of a trace, e. g. hdk(σ) = ⟨e1, ..., en⟩, where
k ≤ n and n denotes the total number of events in a trace.

The Remaining Time RT attributed to an event ej of trace
σ is the difference between the completion time of the last
event of a case ten,σ and the completion time of the last event
of a prefix tej ,σ , i.e. RT (σ, ej) = ten,σ − tej ,σ , where j ≤ n
and n denotes the last event of a trace σ.

Evaluation Split. An event log is represented in a way
such that it can be used by a machine learning algorithm
to predict the remaining time. Examples include aggregation
encoding, tensor encoding, and graph encodings as outlined
in Sec. II. Formally, a dataset D consists of a set of samples
X = {x1, x2, ..., xN} and target labels Y = {y1, y2, ..., yN},
where N denotes the number of samples, yi is a scalar value
and xi is the representation of a prefix in an arbitrary data
format to be fed to a machine learning model.

The dataset is split into a training, validation, and test
set for evaluation purposes, which results into the sets
Dtrain = {Xtrain, Ytrain}, Dvalidation = {Xvalidation, Yvalidation},
and Dtest = {Xtest, Ytest}, where Dtrain ∩ Dvalidation = ∅,
Dtrain ∩Dtest = ∅, and Dvalidation ∩Dtest = ∅. Furthermore, the
split is performed such that prefixes of the same case always
occur in the same set.

Evaluation Metric. To optimize and evaluate models, the
Mean Absolute Error (MAE) is used as a metric. Formally,
the MAE is defined as

MAE =
1

N

N∑
i=1

|ŷi − yi| (1)

where N is the number of samples, ŷi is a model prediction,
yi is the corresponding ground truth label, and the |.| operator

returns the absolute value of a scalar value.
Probability Distributions. The operator P (.) defines the

probability distribution of a one- or multi-dimensional input.
P (Xset) defines the joint distribution of all input features
for a specific set, where set ∈ {train, validation, test}. The
univariate label distribution of a set is given as P (Yset). The
joint distribution of a set between the input features X and
the corresponding target labels Y is given as P (Xset;Yset).
In predictive process monitoring, event logs are assumed to
be created from an underlying unknown distribution function
P (D).

Distribution Shift. A distribution shift denotes a change in
P (.) between two probability distributions. In this work we
focus on shifts in the label domain between a training and
a test set. We use the terms prior probability shift and label
shift interchangeably to denote this type of shift. Formally, it
is denoted as: P (Ytrain) ̸= P (Ytest).

IV. CONCEPTS TO ASSESS MODEL PERFORMANCE
A. BASELINE MODEL
A baseline model is a simplistic approach that a machine
learning method can be compared to. If the machine learning
approach is better than the baseline, it shows that it’s able
to make meaningful predictions based on the input data and
that it should be preferred over a simplistic approach. In the
simplest case, the baseline method predicts a constant value.

1) Existing Approaches
There is currently no consensus in the literature of remaining
time prediction for business processes on the definition of a
baseline. Early work defined baselines based on the average
case duration in an event log. For example, Van der Aalst
et al. [24] define the half of the average case duration of
the cases in the training set as a baseline prediction. Ceci
et al. [25] predict the difference of already passed time to
the average case duration. In later work, approaches are
compared to earlier methods without comparing the results
to a simplistic baseline model [3], [8]. Elyasi et al. [6] group
all training samples by prefix length and predict as a baseline
the mean of the labels of a group.

2) Theoretical Considerations
The training of machine learning models follows under the
assumption that each training sample is sampled indepen-
dently [26]. In predictive process monitoring one prefix along
with its associated label represents one sample. Therefore,
all samples of a training set should be utilized to determine
the baseline model. The approaches by Van der Aalst et
al. [24] and Ceci et al. [25] restrict their baselines to use
only the maximum label of each trace, which corresponds
to the individual case durations. However, they do not in-
corporate information how remaining times are distributed
within cases. For example, events might occur in one event
log predominantly directly after a case starts, which results
in overall larger remaining time labels. For another event
log, events might occur frequently directly before the case
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ends, which results in many small remaining time labels.
A machine learning model adjusts to such distributions to
minimize the optimization metric. A baseline model should
also follow such an approach.

Furthermore, a baseline should be chosen that is optimal
with regard to the optimization metric used. It has been
shown analytically that the optimal constant to predict is the
mean of all labels in the training set when the optimization
metric is the mean squared error (MSE). For the MAE, the
median is the optimal constant to predict [27].

3) Baseline Model
We define the median of all labels in the training set as
a constant to be predicted by the baseline method since it
takes all available labels into consideration, not only case
durations, and since it is optimal with regard to the MAE
metric.

Formally, it is defined as:

ŷbaseline = median(Ytrain) (2)

where median(.) is an algorithm to determine the median
on a univariate input. In case the number of observations is
even, we take the mean between the two values which are
candidates for the median.

Next to following the theoretical guidelines, this baseline
has further advantages over previously used baselines. The
baselines used by Ceci at al. [25] and Elyasi et al. [6] require
the usage of additional input features. The method by Van
der Aalst et al. [24] requires knowledge about the mapping
of prefixes and labels to the case id they belong to in order
to filter out overall case durations. In that regard, our metric
is simplistic since it requires only the labels of the training
set and no further data. Furthermore, the method by Elyasi et
al. [6] has practical limitations if prefix lengths occur in the
test set which are longer than any prefix in the training set.
In that case, the value to be predicted cannot be defined in a
straightforward way. Our method does not encounter such a
limitation.

Given the aforementioned reasons, we showed that using
the median of the training labels as a baseline predictor has a
strong theoretical foundation as well as practical advantages.
Therefore, it should be regarded as a reasonable baseline
model.

B. EXPECTED WORST CASE PERFORMANCE
We define the MAE achieved by the baseline method as intro-
duced in Sec. IV-A on the training set as the expected worst
case performance. This concept allows a first assessment of
practical problems at hand and we will use it later in Sec.
IV-C for analyzing label shifts.

In practice, engineers are faced with the challenge that
specific expectations on the performance of a model are
given from business stakeholders. For example, statements
in the form of “a model should on average not be off by
X time units” might be given. Practitioners are additionally

challenged with providing an estimation how feasible it is to
achieve this goal. If requirements from a business perspective
are close to the expected worst case performance, achieving
the business goal is realistic. If the business requirement is
further away from the baseline performance, more require-
ments regarding good data quality of training features as
well as more sophisticated models to find a good mapping
between the training features and the labels are required.

In case there are no concept drifts, the expected worst case
performance will be the same as the achieved MAE of the
baseline model on the test set. In practice, this is unrealistic
to occur. The MAE on the test set might be higher or lower,
depending on the distribution of the labels in the test set.
Therefore, the expected worst case performance is a rough
estimation under the assumption that no concept drifts occur.

While distribution shifts are a limiting factor about the
expressivity of the expected worst case performance, we still
think it can be beneficial to practitioners as a starting point
to analyze the baseline performance and to compare it to
the business requirements. This gives first insights about the
complexity of the problem at hand.

To address the limiting factor of label shifts between a
training and a test set, we introduce and discuss different
types of label shifts in the next section.

C. LABEL SHIFTS
As outlined in Sec. IV-B, differences in the label distributions
between the training and test set might lead to deviations of
the baseline from the expected worst case performance. This
can lead to larger or lower errors on the test set. We present in
this section first a definition of different label shifts, followed
by a detailed explanation using artificial examples.

1) Different Types of Label Shifts
If a label shift leads to a larger error on the test set than on
the training set, we denote it as an unfavourable label shift.
If a label shift leads to a lower error on the test set than on
the training set, we call it a favourable label shift. If a shift is
present which does not lead to differences between the MAE
on the training and the test set, we denote it as a neutral shift.

Favourable label shifts lead to overly optimistic assess-
ments about the performance of models. Good performance
might be attributed to an efficient mapping of input features
to target labels, whereas in reality an improved performance
is caused by a shift in the label distribution.

Knowing about unfavourable label shifts could be advan-
tageous when investigating bad model behaviour. If a model
does not uphold its performance, unfavourable label shifts
can be identified as one possible reason. Knowing the reasons
for bad model performance can then help to define mitigation
strategies.

2) An Intuitive Example
In order to explain the concept of label shifts more intuitively
we discuss them based on a fictional example, visualized in
Fig. 2. The concept of favourable label shifts is emphasised in
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FIGURE 2. Histograms of label distributions (synthetic example). (a)
Favourable label shift. (b) Unfavourable label shift.

Fig. 2 (a). The figure shows a histogram with the distribution
of all labels in a training (blue) and a test (red) set. Using
the median of the training set to make a prediction gives
an error of 386.914 time units on the training set and an
error of 185.6481 time units on the test set. The lower error
on the test set indicates the favourable label shift. This is
because the distribution of the test set centers closer around
the median of the training set than the distribution of the
training set. The MAE on the test set is therefore smaller
than the expected performance, even though the value used
for the prediction is not optimal with regard to the test set.
The optimal constant determined on the test set would result
in an MAE of 174.4034 time units.

Fig. 2 (b) shows a scenario of an unfavourable label shift.
The MAE is higher on the test set than on the training set
since the test distribution is more spread out around the
median than the training distribution. Please note that the
distributions of the training set in Fig. 2 (a) and Fig. 2 (b)
are the same, but the scale for the relative frequency changes
for visualization purposes.

In the next section we will introduce a metric that accounts
for label shifts to give a more realistic picture about the
performance of a machine learning method for predicting the

remaining time of business processes.

D. NORMALIZED MEAN ABSOLUTE ERROR
A weakness of the MAE is that it’s not normalized. In-
terpreting the MAE depends highly on knowledge about
the business context and underlying process behavior like
average case durations. Additionally, comparisons of several
models or at least to a baseline model are necessary to
detect exceptionally good or bad performance. Building on
the previous concepts, we discuss in this section a scale-
independent metric that allows a first assessment of a model’s
performance without needing specific domain knowledge or
a baseline model.

1) Definition
Formally, we define the metric, denoted as normalized MAE
(nMAE), as:

nMAE =
1
N

∑N
i=1 |ŷi − yi|

1
N

∑N
i=1 |ȳ − yi|

(3)

where N is the number of samples in a dataset to be
evaluated, typically a given test set, ŷi is the prediction of
a machine learning model for the i-th sample of the dataset,
yi is the corresponding ground truth label, ȳ is the median of
the dataset, and the |.| operator returns the absolute value of
a scalar value.

Normalizing the MAE is not a new concept in the literature
as outlined in Sec. II. A version of the nMAE was first
presented and discussed by McKean and Sievers [13]. In their
evaluation the nMAE has shown to be susceptible to outliers
when small samples sizes are used (less than 10). This is
typically not a concern in predictive process monitoring,
where at least hundreds of samples are available for most
datasets.

2) An Intuitive Example
In order to explain the choice for normalization, consider the
following example. In the example we discuss two reasonable
alternatives for normalizing the MAE and we will show that
they fail in adjusting to label shifts.

The first alternative is to normalize the MAE of a model
on the test set by the MAE that the baseline model achieves
on the training set. The second alternative is to normalize the
MAE of a model on the test set by the MAE that the baseline
model achieves on the test set. These are straightforward
choices since they set the performance of a machine learning
model in relation to a simplistic baseline model.

Consider Fig. 3. A baseline model is fitted to the training
set and then applied in two scenarios with unfavourable label
shifts. In both scenarios the MAE on the test set is around 427
time units. This is larger than the expected MAE of 386.914
time units. However, in the first scenario the distribution is
squashed, but the medians of the training and test sets are
similar. In the second scenario, the test set distribution is
shifted to the right and the median between the training and
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the test set varies more considerably. If the true median of
the test set would be known already at training time, the error
achieved on the test set would be 386.9918 time units in
scenario 2. However, due to the shift and the usage of the
median of the training set the error on the test set is 426.9662
time units. This is different to the first scenario. If the median
of the test set would be known at training time, the MAE on
the test set would still be 426.818 time units in scenario 1.
Knowledge about the test distribution does in scenario 1 not
lead to considerably better results than knowing the training
median.
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FIGURE 3. Different label shift scenarios (synthetic example).

Revisiting normalization alternative one, normalizing by
the expected baseline performance of 386.914 time units
would in both scenarios lead to a value of 1.19. For alter-
native two the performance of the baseline model would be
indicated in both scenarios by a value of 1.0. The information
of different distribution shifts in both scenarios is therefore
lost. The nMAE as defined in Eq. 3 accounts for different
types of shifts. In scenario 1 the nMAE gives a value of
1.00 and therefore indicates that the baseline model is still
a good fit to the data. In scenario 2 we get an nMAE of 1.19.
It shows that the baseline model is a bad fit to the test data
since knowing the true median of the test set would lead to a
considerably lower error. The bad fit is reflected by a higher
value than 1.0 for the nMAE.

Table 2 summarizes these insights and shows that the
nMAE as proposed in Eq. 3 is able to differentiate between
label shifts while the two discussed alternatives for normal-
izing the MAE are not.

TABLE 2. Comparison of alternatives for nMAE

Normalization
Alternative 1

Normalization
Alternative 2 nMAE

Shift Scenario 1 1.19 1.00 1.00
Shift Scenario 2 1.19 1.00 1.19

Another advantage of the nMAE over the two discussed
alternatives is that it can be directly calculated just by using
the test set labels. There is no need to utilize any information
from the training set as in the two alternatives. This can be
an advantage in practical settings where access is only given

to a trained model and a specific dataset at hand without any
access to the original training data.

3) Discussion
By design, the best possible nMAE that a baseline model as
defined in Eq. 2 can achieve is a value of 1.0. If the labels
in the test set and the labels in the training set follow the
same distribution, i.e. P (Ytraining) = P (Ytest), the median in
both sets has the same value. Since the baseline predicts a
constant, we can state that ŷ1 = ŷ2 = ... = ŷN = ȳ (see Eq.
3). In that case the numerator and denominator have the same
value and the nMAE becomes 1.0.

For any model that uses informative input features to
make a prediction, the nMAE should be lower than 1.0. This
is a desirable characteristic of our metric since it directly
provides information about the information content of the
training features and how well a machine learning model
utilizes these.

Furthermore, the nMAE is directly proportional to the
MAE. That means, if model A has a two times larger MAE
than model B, the nMAE will also be two times larger.
Therefore, the information provided by the MAE is also
reflected in the nMAE.

In summary, the nMAE is constructed such that the follow-
ing considerations are possible:

• If the value is 0.0, we have a perfect model
• If the value is 1.0, we have a random model. That means

the model can approximate the median value of the test
set for its predictions.

• If the value is between 0.0 and 1.0 the model is able to
meaningfully utilize the input features.

• If the value is larger than 1.0, the model is not a good fit
to the test data.

Test data in this context can either be an extra test split
from available historical data, but also new incoming data
collected in a productive system.

Please note that the nMAE allows a quick judgment
whether a model performs good or bad, but it does not
identify the specific reasons for bad model performance.
Possible reasons for bad model performance are noisy or
irrelevant input features, but also concept drifts where the
model was trained on outdated data. The specific reasons
need to be investigated with dedicated techniques. Still, the
nMAE is a suitable indicator to assess the performance of a
model in the first place.

V. CASE STUDY
In Sec. IV we have introduced and discussed several concepts
based on theoretically motivated considerations. In this sec-
tion we aim to answer the question whether these contribu-
tions can also be confirmed empirically with real-world event
logs. To do so, we perform a case study applying different
baselines and state-of-the-art machine learning methods for
remaining time prediction of business processes to publicly
available event logs.
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To guide the case study, we first formulate specific research
questions to be answered. Next, we describe the datasets
used and how we preprocessed them. This is followed by
a description of the data split, and how input features are
preprocessed for different machine learning methods. These
are then described in the next steps. Lastly, we discuss our
evaluation approach.

A. RESEARCH QUESTIONS
The research questions to guide the case study are as follows:
RQ 1: Can we confirm empirically the theoretically moti-
vated improvements of our baseline over other baselines?
RQ 2: Can we confirm the presence of favourable and un-
favourable label shifts in real-world event logs?
RQ 3: Which additional insights can be generated on real-
world event logs with the nMAE compared to the MAE?
RQ 4: How do commonly applied machine learning methods
perform based on the insights generated by the nMAE?
RQ 5: How do commonly applied machine learning methods
perform relative to each other?

Research questions 1 to 3 directly aim at the contributions
presented in Sec. IV. Since the case study also represents a
general investigation of machine learning methods and their
application to a wide range of different event logs, we have
defined research questions 4 and 5 in order to derive general
insights about the current state of remaining time prediction
for business processes.

B. DATASETS
We use a collection of event logs which have been used
previously in benchmarking studies. These are available in
a public repository1. In this section, we give a short introduc-
tion to the datasets used in our case study.

bpic2012 [28]: It is a collection of data about the approval
processes for personal loans and overdrafts from a financial
institution in the Netherlands. It contains three different
subprocesses which are handled separately in our study. The
corresponding logs are denoted as bpic2012a, bpic2012o,
and bpic2012w. This is in agreement with prior studies [4].

bpic2015 [29]: This set of event logs contains data about
a building permit approval process from five different Dutch
municipalities. For each municipality one event log is pro-
vided, denoted by bpic2015_1, bpic2015_2, bpic2015_3,
bpic2015_4, and bpic2015_5.

bpic2020 [30]: This dataset contains logs from a reim-
bursement process at a Dutch university. We consider four
different event logs for domestic travel declarations, interna-
tional travel declarations, the reimbursement process for pre-
paid travel costs and requests for payment. We denote them
respectively as bpic2020_dd, bpic2020_id, bpic2020_ptc,
and bpic2020_rp.

credit [23]: This dataset contains information about a
process to check credit requirements at a bank in Bosnia-
Herzegovina. It is a sequential control-flow representing the
simplest event log in our case study.

1https://data.4tu.nl/

helpdesk [31]: This event log contains data about the
helpdesk ticketing process in an Italian software company.
It covers the the whole lifetime of a ticket from opening to
closure.

hospital [32]: This dataset covers the billing process for
medical services of a hospital.

sepsis [33]: This event log represents the journey of pa-
tients through a hospital for which sepsis was diagnosed. It
starts with initial registering of a patient and ends with a final
discharge.

The described datasets result in a final set of 16 event logs
which we evaluate in our case study.

C. EVENT LOG PREPROCESSING
We include only traces which are completed since the target
label is represented by the time difference from the last event
in a prefix to the last event of the whole trace. This requires
that the last event of a trace is part of the log. We highlight
that we could not find suitable information for the datasets
of the BPI 2015 challenge and bpic2012w how completed
cases can be defined. We have checked submissions to the
corresponding BPI challenges (see for example [34]–[36])
which agree that defining a definite start and/or end of cases is
difficult to determine with the dataset descriptions provided.
However, since these datasets were used previously to report
remaining time prediction results, we included them based
on datasets provided by Verenich et al. [4] who indicate in
their work that they preprocessed the logs such that they
only contain completed cases. In other words, for the BPI
2015 datasets and bpic2012w we used the same cases as used
by Verenich et al. [5]. However, a documentation of what
constitutes completed cases for these logs is not provided by
them. In order to enable reproducibility of our research we
provide the definition of what constitutes completed cases
where we preprocessed the logs on our own at a publicly
available repository2.

For each trace, we only keep prefixes which have an
associated remaining time larger than zero. This approach is
also applied by previous work [2], [4]. If several events at
the end of a case have the same timestamp and therefore a
remaining time of zero, we remove all of them. Furthermore,
the PGT-Net architecture used in our experiments cannot
make predictions for the first event of a trace since it requires
at least two events to build a graph [6]. Therefore, we only
consider prefixes with two or more events for training and
evaluation. This is in line with the study conducted by Elyasi
et al. [6].

D. DATA SPLIT
We apply a temporal Training-Validation-Test split with a
ratio of 60%-20%-20%. The temporal ordering of cases is
defined by the timestamp of the first event of a case. Weytjens
and De Weerdt [37] discuss more elaborate unbiased splits in
such a setting. However, this requires to remove cases where

2https://github.com/RoiderJ/assessing_remaining_time_methods
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events overlap between the training and test set. This results
in a large number of cases to be removed for some datasets
which is impractical in our setting. To be consistent across
all datasets, we allow such overlaps for all datasets. To avoid
any data leakage, we do not use any inter-case features.

We do not follow a k-fold cross validation approach since
we regard the evolvement of process executions over time
as a natural characteristic which needs to be tackled in
practical settings. Models are always trained on historical
data and then applied to future data. A temporal split into
training, validation, and test sets resembles such a scenario
best, whereas a cross validation evaluation would cancel out
effects due to concept drifts and other relevant challenges
faced in practice. This view is also supported and discussed
in more detail by Weytjens and De Weerdt [37].

E. FEATURE PREPROCESSING
As training features we use the activity (control-flow per-
spective) as well as different timestamp related features like
day of the week (categorical), time since process start, time
since midnight, and time since Sunday (numerical). Using
timestamp related features is common practice in the liter-
ature and is applied by Tax et al. [2] and Navarin et al.
[3] amongst others. If additional categorical or numerical
features are available for a log we use them. Furthermore,
we set categorical values which occur in less than 2% of the
cases in the training set to a combined category denoted as
“others”.

We do not use any inter case features. On one hand it would
lead to a bias in the test set as discussed by Weytjens and De
Weerdt [37]. On the other hand, we do not know whether
the logs really contain all relevant cases or just a subset from
a database. In the latter case, such features do not reflect a
realistic picture for example of the current workload for that
process since the dataset is biased by a sample selection bias
from a database.

We consider only activities which are completed according
to the lifecycle attribute in the logs. This is in line with prior
studies [4], [5]. The original implementation for the PGT-
Net considers all transitions. However, many of the datasets
contain only the complete transition anyway, including the
BPIC 2015 datasets on which PGT-Net reported the largest
improvements [6]. Since the graph representation does not
change for these logs by allowing only completed transitions,
we do not expect a disadvantage to this method.

We devote special attention to categorical data, represented
by the activity (control-flow) and categorical features. A
practical challenge is the handling of new activities or other
categorical features in the validation or test set, or later
in a productive environment. Categorical features might be
encountered which were not present in the training set. This
problem is underrepresented in the literature. We are aware
of only one study that investigates this issue for next activity
prediction. Mangat and Rinderle-Ma [38] define two possible
solutions of which they evaluate an approach they call void
encoding. This requires a one hot encoding of categorical

features. If a previously unseen categorical value occurs, all
values in the one-hot encoded vector are simply set to zero in
void encoding. Prior studies for remaining time prediction do
not explicitly denote how such situations are handled. There
is the danger of data leakage issues when determining the
number of categorical values on the complete dataset before
applying a split into training, validation, and test sets.

For the methods applied in our study, categorical features
are encoded as one hot encoded vectors. There is only one
exception for PGT-Net, which represents activities as nodes
in a graph structure. All other categorical features are also
one hot encoded for PGT-Net. Therefore, we apply void
encoding for all categorical features except the activity. Han-
dling previously unseen activities for PGT-Net represents a
challenge since there is no clear way on how to represent
previously unknown events for graph structures. From a prac-
tical perspective, we regard it as reasonable to exclude new
activities from making a prediction. Since these activities
were not used for training, making predictions using them
has a high risk of unexpected behavior. Therefore, we remove
all events from the validation and test set which contain an
activity that is not part of the training set.

All numerical features and the labels are normalized by
dividing them by the absolute maximum value present in the
training set.

F. MACHINE LEARNING MODELS

Due to the large variety of presented methods in the past,
a reasonable subset of models needs to be chosen for our
case study to keep the computational effort manageable. We
have chosen three methods as representative state-of-the-art
methods. The choice is based on insights of prior work,
where possible based on benchmark studies containing a
larger number of methods and datasets. As outlined in Sec. II,
deep learning methods and graph neural networks represent
the latest developments providing most accurate predictions
and should therefore be considered. Since these are computa-
tional demanding and limited in interpretability, we decided
to include additionally a classical machine learning method.

The DA-LSTM model, introduced by Navarin et al. [3],
has been evaluated in many works. The benchmark studies
by Verenich et al. [8] and Rama-Maneiro et al. [5] both
found DA-LSTM to outperform classical machine learning
models as well as other deep learning methods, respectively.
While other deep learning methods were introduced since
then, for example by Bukhsh et al. [39], the DA-LSTM
model has been evaluated in several works independently [5],
[8]. Additionally, it is still commonly used and a generally
accepted method in benchmark studies also in most recent
work, for example by Elyasi et al. [6]. Therefore, due to
the strong evidence of high performance of the DA-LSTM
model in prior benchmark studies, as well as the widespread
adoption including most recent work, we chose DA-LSTM
as a representative for a state-of-the-art deep learning method
for our case study.
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Recently, graph-neural networks have emerged for remain-
ing time prediction of business processes. Elyasi et al. [6] rep-
resents the most recent peer-reviewed work. They compare
their proposed method, PGT-Net, not only to deep learning
methods but also to another graph-based neural network,
which they outperform. Therefore, we regard PGT-Net as the
most relevant graph-neural network to be included in our case
study.

Recent work by Oyamada et al. [9] motivates the advan-
tages of classical machine learning methods due to their
computational and interpretational advantages compared to
neural networks. In real world scenarios, having an inter-
pretable model might be valued more than having the most
accurate one. Also, computational resources might be lim-
ited which makes deep learning and graph neural networks
not feasible to use. In such scenarios, classical machine
learning is a viable alternative. Verenich et al. [8] present
a review about classical machine learning-based predictive
process monitoring methods. They found that decision tree-
based methods have an advantage in terms of interpretability
and computational performance compared to other classical
methods. The computational advantages are supported in the
study by Oyamada et al. [9]. XGBoost, a decision tree-based
method, has additionally shown to consistently outperform
other classical machine learning methods according to the
review by Verenich et al. [8]. This is also supported by recent
research in machine learning outside of the predictive process
monitoring domain. Data is represented in a tabular form in
classical machine learning. It has been shown that tree-based
methods can outperform even neural networks on tabular data
[15]. Due to these reasons we chose XGBoost instead of other
classical machine learning approaches as an interpretable and
computationally efficient alternative to neural networks.

Additionally, to investigate research question 1, we apply
different baseline estimators. These are the prediction of the
training label mean, the training label median, which is our
approach recommended as presented in Eq. 2, the average
case runtime of cases in the training set as introduced by Van
der Aalst et al. [24], as well as the difference between already
passed process time to the average case runtime as used by
Ceci et al. [25].

Applying XGBoost, we build on work by Verenich et al.
[4] and made our implementation based on their publicly
available repository3. Upon inspection we realized that their
models were optimized using the standard predefined opti-
mization metric by the XGBoost package [40] which is the
squared error. This is not the optimal optimization metric
for the MAE [27]. Therefore, we trained two versions for
XGBoost, one in the original implementation by Verenich
at al. [4] using the squared error as loss function, and one
version using the absolute error as objective since this should,
theoretically, lead to a better minimization of the MAE. To
encode the data, we used combined encoding as introduced
by Verenich et al. [4]. It encodes case features directly,

3https://github.com/verenich/time-prediction-benchmark

applies aggregation encoding to represent the trace history
of dynamic features, and it additionally provides the feature
values from the most recent event (basically a combination
of aggregation and last state encoding). We only train with
one bucket. That means all samples are fitted with the same
model. For hyperparameter tuning we use the same param-
eters as tuned by Verenich et al. [4], but a smaller range of
values. An overview about the exact setting is shown it Table
3.

For the DA-LSTM model [3] we built on the Pytorch [41]
implementation by Elyasi et al. [6]. However, we adjusted
the implementation to reflect the original implementation in
Tensorflow [42] by Navarin et al. [3] more closely. This
includes the initialization of weights as well as the usage
of recurrent dropout which is by default different between
Pytorch and Tensorflow. We tune the number of layers as well
as the number of neurons per LSTM layer (see Table 3). The
hyperparameters are based on values reported by Navarin et
al. [3]. For the learning rate we chose the standard setting
used by Navarin et al. [3] as well as Elyasi et al. [6] with
Nadam optimizer and a learning rate of 0.001. We apply early
stopping if the performance on the validation set does not
improve for 20 consecutive epochs.

For PGT-Net we used the implementation provided by
Elyasi et al. [6]. It is based on the generic graph-based
neural network architecture GraphGPS introduced by Ram-
pášek et al. [43] which was extended such that event log
data is represented in the correct format. GraphGPS offers
various choices for different positional and structural en-
codings. Elyasi et al. [6] used different encodings, but the
exact hyperparameter settings and their influence on expected
model performance are not provided by them. We observed
that using the GPS Graph Transformer in combination with
Laplacian positional encoding (LapPE) and random walk
structural encoding (RWSE) was the predominant architec-
ture choice across the event logs investigated in their study.
Therefore, we restrict our setting to this architecture and tune
the corresponding hyperparameters. The tuned hyperparam-
eters are listed in Table 3. All other settings for optimization
like optimizer and learning rate were taken from the given
implementation. Since we observed upon first tests that the
best performance on the validation set was reached within
the first few epochs, we also apply early stopping if the
performance on the validation set does not improve for 20
consecutive epochs.

The maximum number of epochs for the neural network-
based methods is set to 200 and we trained them with a batch
size of 128.

G. EVALUATION APPROACH
We first apply hyperparameter tuning and search the best
parameters in a grid search approach. We tune on the training
set and choose the best configuration based on the minimum
MAE achieved on the validation set. All of the methods
evaluated in our study do not have a deterministic training
behavior. Instead, the convergence of the models depends
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TABLE 3. Hyperparameters for Grid Search Procedure

Method Hyperparameters Values

XGBoost

n_estimators
learning_rate
subsample
colsample_bytree
max_depth

100, 500
0.1, 0.01
0.3, 0.7
0.3, 0.7
2, 6

DA-LSTM number_neurons
number_layers

50, 100, 150
1, 2, 4

PGT-Net Positional Encoding Dim
Positional Encoding Times

2, 4, 8
4, 8, 16

on random influences. For XGBoost, features that determine
a split are chosen randomly, as well as the values for the
specific splits. Weights for neural networks, which includes
DA-LSTM and PGT-Net, are initialized by sampling values
randomly from a predefined probability distribution. Further-
more, samples are shuffled randomly for the composition of
mini-batches. All of these factors determine the convergence
of a model which results therefore in slightly different model
performance with a different random seed. To investigate the
stability of methods with respect to random influences we
train 10 models based on the best hyperparameter configura-
tion found. For a given best configuration, we train 10 models
with different seed, each time on the training set and using the
validation set for early stopping of the neural network-based
methods. With each of the 10 models we predict then the test
set once. Finally, we report the average of the 10 MAE and
nMAE metrics obtained from the 10 models. We are aware
that 10 runs are a small sample size for statistical evaluations.
However, it allows more insights compared to a commonly
applied approach of only one run. Due to the computational
requirements on the whole case study, we regard 10 runs as a
reasonable tradeoff between accounting for random training
factors and computational effort.

VI. RESULTS
In this section we discuss the results of the case study. The
discussion is guided by the research questions introduced in
Sec. V-A.

RQ1: Can we confirm empirically the theoretically moti-
vated improvements of our baseline over other baselines?

In Sec. IV-A we motivate that a baseline model should con-
sider the independency assumption in machine learning as
well as the underlying optimization metric. This is reflected
in our baseline method as defined in Eq. 2. Theoretically,
it should therefore outperform other baselines in terms of
MAE.

Table 4 shows the MAE of different baselines on the
training and the test sets used. To compare the baselines
we perform a Nemenyi test [44]. The corresponding critical
differences plots are shown in Fig. 4. Our proposed baseline
significantly outperforms all other baselines on the training
set (Fig. 4(a)). On the test set we significantly outperform
the method by Ceci at al. [25] and the baseline using the

label mean as a prediction (Fig. 4(b)). The difference to the
baseline by Van der Aalst [24] is not significant on the test
set. Still, our method has the highest average rank.

We regard our method therefore better suited as a baseline
predictor than the other baselines due to the following rea-
sons: 1) It significantly outperforms all other baselines on the
training set and has the highest average rank on the test set,
2) It is simplistic in the sense that it just predicts a constant
instead of calculating a dedicated prediction value for each
sample, and 3) It does not require any additional information
from the input features but can be calculated just from the
training labels.

Based on these findings we conclude that the theoretically
motivated improvements of our baseline hold true in an
empirical setting.

TABLE 4. MAE in days of different baseline methods. The first number is the
MAE on the training set, the second number is the MAE on the test set.

Dataset Baseline
by [24]

Baseline
by [25]

Label
Median

Label
Mean

bpic2012a 11.613
7.913

10.371
7.319

10.379
7.771

10.619
8.641

bpic2012o 11.613
6.464

10.371
7.080

10.379
6.750

10.619
7.927

bpic2012w 9.767
6.596

9.783
6.476

9.763
6.650

10.181
7.922

bpic2015_1 51.300
40.702

57.675
43.771

47.671
44.768

54.781
41.236

bpic2015_2 80.525
63.083

94.776
82.099

79.585
59.494

87.495
76.439

bpic2015_3 36.090
27.631

39.705
28.466

26.455
15.716

34.214
25.340

bpic2015_4 54.493
45.245

58.724
51.903

53.727
44.723

56.848
46.576

bpic2015_5 37.911
45.145

48.676
56.178

37.217
43.840

43.300
50.685

bpic2020_dd 4.023
4.431

5.611
5.3851

4.007
4.428

4.371
4.670

bpic2020_id 34.448
26.549

31.440
33.969

25.450
16.952

30.177
21.638

bpic2020_ptc 18.859
13.222

22.073
19.345

15.168
9.009

18.849
13.211

bpic2020_rp 4.654
5.546

5.961
6.228

4.653
5.536

5.156
5.809

credit 0.470
0.481

0.351
0.349

0.355
0.374

0.447
0.459

helpdesk 15.382
9.847

7.201
7.0225

9.119
12.090

9.157
12.803

hospital 72.532
60.902

66.925
75.586

53.906
43.450

60.515
48.960

sepsis 43.612
22.425

51.545
35.291

42.151
17.663

52.787
37.420

RQ2: Can we confirm the presence of favourable and
unfavourable label shifts in real-world event logs?

In Sec. IV-C we have introduced the concepts of
favourable and unfavourable label shifts. Favourable shifts
are present if the baseline shows a lower MAE on the test
set than on the training set. Unfavourable label shifts are
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FIGURE 4. Critical differences plots of baselines. (a) Comparing average rank
of baselines on training set. (b) Comparing average rank of baselines on test
set.

characterized by a higher error of the baseline on the test set
than on the training set. Since these are new concepts in the
related literature, we aim to show that they can be identified
in real-world datasets.

For better comprehensibility, we have plotted the results
of our baseline based on the median from Table 4 in Fig.
5. It plots the MAE on the training set against the MAE on
the test. Datasets which lie on the diagonal in that graph
represent a neutral label shift. Points above the diagonal
are examples of unfavourable label shifts. Points below the
diagonal show a favourable label shift between the training
and test set. We observe unfavourable label shifts for the
datasets bpic2020_dd, bpic2020_rp, credit, and helpdesk. For
all other datasets we observe favourable label shifts.
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FIGURE 5. MAE of baseline on training and test set for different event logs.

To further illustrate this with the same visualizations as

in Sec. IV-C, we plot the specific label distributions in the
training and test sets for three event logs in Fig. 6. The
helpdesk dataset is an example for an unfavourable label
shift. The median of the labels in the training set is different
to the median of the labels in the test set such that the
MAE of our baseline is also higher on the test set than on
the training set. For the credit dataset we observe an almost
perfect overlap between the training and test distribution and
the MAE of the baseline between the training and test set is
close together. This represents a situation close to a neutral
label shift. In the sepsis dataset many outliers are present in
the training set at the right side of the chart. In the test set less
outliers are present such that the distribution centers more
around the label median. The median between the training
and the test set shifts slightly to the left. Still the median of
the training set produces a lower MAE on the test set than on
the training set. This represents a favourable label shift.
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FIGURE 6. Examples of label drifts on real event logs.

These examples show that favourable, unfavourable, and
neutral label shifts are present in real world datasets. Know-
ing about these shifts has the following advantages: First,
the nMAE as introduced in Eq. 3 accounts for label shifts.
Understanding label shifts helps understanding the nMAE.
Second, knowing about label shifts can help in practical
settings for model monitoring. They can be a factor to explain
the performance of models. If a model performs very good,
practitioners could tend to attribute the good performance to
the generalization capabilities of a model, whereas a simpler
and more straightforward explanation might be favourable
label shifts. If a model performs badly, unfavourable label
shifts can help to explain the performance drop.

RQ3: Which additional insights can be generated on real-
world event logs with the nMAE compared to the MAE?

Table 5 shows the MAE and nMAE achieved by different
methods on 16 event logs. We report the average and standard
deviation over 10 runs as described in Sec. V-G. To show
that the nMAE provides important information, we discuss
specific datasets in more detail. The examples are chosen
such that we discuss one dataset without label shift, one
dataset with an unfavourable label shift, and one dataset with
a favourable label shift.

The credit dataset has shown no label shift. All methods
besides PGT-Net show an nMAE considerably smaller than
1.0. The event log provides no other data than the control-
flow and timestamp-based features. These are less features
than in other datasets. Based on the results of XGBoost
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TABLE 5. MAE (in days, first number) and nMAE (second number) on the test
set. Average of 10 runs.

model XGBoost
squared loss

XGBoost
absolute loss DA-LSTM PGT-Net

bpic2012a 7.971 ± 0.004
1.076 ± 0.001

6.348 ± 0.005
0.857 ± 0.001

6.338 ± 0.090
0.856 ± 0.012

14.710 ± 6.912
1.986 ± 0.933

bpic2012o 6.782 ± 0.009
1.055 ± 0.001

5.482 ± 0.004
0.853 ± 0.001

5.602 ± 0.141
0.872 ± 0.022

5.452 ± 0.069
0.848 ± 0.011

bpic2012w 6.825 ± 0.029
1.058 ± 0.004

5.991 ± 0.015
0.929 ± 0.002

6.388 ± 0.299
0.991± 0.046

6.305 ± 0.293
0.978 ± 0.045

bpic2015_1 37.757 ± 0.827
0.929 ± 0.020

32.669 ± 1.602
0.804 ± 0.039

30.610 ± 1.631
0.753 ± 0.040

32.408 ± 1.303
0.797 ± 0.032

bpic2015_2 93.373 ± 4.573
1.668 ± 0.082

65.900 ± 3.906
1.177 ± 0.070

55.453 ± 2.272
0.991± 0.041

54.812 ± 2.203
0.979 ± 0.039

bpic2015_3 30.620 ± 3.524
2.029 ± 0.234

13.985 ± 1.256
0.927 ± 0.083

14.410 ± 1.087
0.955 ± 0.072

12.255 ± 1.025
0.812 ± 0.068

bpic2015_4 47.898 ± 0.575
1.071 ± 0.013

43.582 ± 5.605
0.975 ± 0.125

47.059 ± 1.078
1.052 ± 0.024

51.370 ± 2.732
1.149 ± 0.061

bpic2015_5 61.074 ± 14.024
1.409 ± 0.324

42.635 ± 0.547
0.984 ± 0.013

43.283 ± 2.423
0.999 ± 0.056

42.375 ± 1.453
0.979 ± 0.034

bpic2020_dd 3.762 ± 0.004
0.850 ± 0.001

3.453 ± 0.006
0.780 ± 0.001

3.607 ± 0.220
0.815 ± 0.050

3.464 ± 0.030
0.782 ± 0.007

bpic2020_id 13.486 ± 0.013
0.797 ± 0.001

10.950 ± 0.013
0.647 ± 0.001

12.635 ± 0.728
0.746 ± 0.043

11.934 ± 0.665
0.7050 ± 0.039

bpic2020_ptc 8.886 ± 0.023
0.987 ± 0.003

7.020 ± 0.099
0.780 ± 0.011

7.565 ± 0.414
0.840 ± 0.046

7.407 ± 0.259
0.823 ± 0.029

bpic2020_rp 4.595 ± 0.012
0.830 ± 0.002

4.341 ± 0.009
0.785 ± 0.002

4.389 ± 0.298
0.793 ± 0.054

4.323 ± 0.095
0.781 ± 0.017

credit 0.069 ± 0.001
0.184 ± 0.002

0.063 ± 0.001
0.167 ± 0.002

0.062 ± 0.003
0.164 ± 0.009

0.623 ± 0.225
1.664 ± 0.602

helpdesk 6.013 ± 0.022
0.612 ± 0.002

5.136 ± 0.067
0.522 ± 0.007

5.041 ± 0.347
0.513 ± 0.035

5.271 ± 0.451
0.536 ± 0.046

hospital 43.769 ± 0.130
1.008 ± 0.003

35.930 ± 0.057
0.827 ± 0.001

36.450 ± 0.214
0.839 ± 0.005

35.871 ± 0.664
0.826 ± 0.015

sepsis 37.545 ± 0.224
2.217 ± 0.013

18.135 ± 0.076
1.071 ± 0.005

17.349 ± 0.197
1.024 ± 0.012

18.569 ± 0.325
1.096 ± 0.019

and DA-LSTM we conclude that the information present in
the training features is still highly informative in order to
predict the remaining time on the test set. PGT-Net has a very
high MAE compared to the other methods. Since XGBoost
and DA-LSTM would be also affected by concept drifts
or uninformative features, we assume the low performance
of PGT-Net is due to overfitting. Overfitting describes the
problem that a model is fitted exactly on the training data
and therefore loses its generalization capabilities.

The sepsis dataset shows a favourable concept drift. The
nMAE achieved is larger than 1.0 for all models. This in-
dicates that the input features for the sepsis dataset are not
informative, regardless whether they are represented in a
tabular format, an event sequence, or a graph-based format.
This is further supported by comparing the performance of
the models with the baseline model. Our baseline model does
not utilize any input features for making a prediction, still it
achieves an MAE of 17.663 days on the test set. The best per-
formance of the models, achieved by DA-LSTM, is 17.349
days. This is very close to the baseline. The other models
are worse than the baseline. The nMAE directly indicates
this problem without having to compare the performance of
a model additionally with other models or the baseline.

For the helpdesk dataset we observe an unfavourable la-

bel shift. However, the nMAE for all models shows values
substantially smaller than 1.0. This shows that the training
features are actually informative and using them allows to
mitigate the negative effects of the label shift, which is
represented by the nMAE smaller than 1.0.

These examples show that the nMAE has desirable charac-
teristics. It allows an assessment whether the features present
in a dataset are useful to predict the remaining time and
whether machine learning models train efficiently. The MAE
is still an important metric to look at, especially in practical
settings, since it provides knowledge whether business goals
can be met. However, for model assessment the nMAE is a
useful tool. For the sepsis dataset, we have shown that the in-
put features used are not informative to predict the remaining
time, whereas for credit and helpdesk we saw that informed
predictions are made. We believe that this is a promising
starting point for future research to assess models and to
develop and investigate strategies for improving models more
target oriented.

RQ4: How do commonly applied machine learning meth-
ods perform based on the insights generated by the nMAE?

Table 5 shows that the nMAE is on some datasets still
close to a value of 1.0. We observe this for the datasets
sepsis, bpic2015_2, bpic2015_4, and bpic2015_5. This is
unexpected since the introduction and comparison of various
methods in the past suggested that the data was used more
and more efficiently. One possible explanation for this dis-
crepancy could be concept drifts between the training and
test set, such that the process behavior from the training
set is outdated and the learned mappings are not useful
for prediciting the test set. Other explanations are that the
event logs are either not used efficiently, despite different
approaches like tabular encoding, sequential encoding, and
graph representations, or the data, including the control-
flow, might not be informative at all. The low performance
could also arise due to a combination of all these factors.
Therefore, an explanation is not trivial and we restrict our
conclusion to the finding that commonly applied state-of-
the-art methods perform poorly on a range of datasets. We
generated this insight using the nMAE. Finding the exact
reasons for poor performance goes beyond the scope of the
nMAE and requires dedicated methods which we motivate as
open research question.

For all other datasets the methods perform reasonably well.
However, a value close to zero is only achieved for the credit
dataset. The nMAE on the helpdesk dataset is already 0.522
for the best performing model, and even higher on all other
datasets. Therefore, we assume that the data commonly used
for remaining time prediction could be improved.

To answer RQ4, we state that the performance of machine
learning models based on the nMAE should be judged less
optimistic than indicated in previous work. Despite continu-
ous improvements, there are challenges in handling specific
datasets. Identifying useful features and handling the causes
of bad performance is an open research question.
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RQ5: How do commonly applied machine learning meth-
ods perform relative to each other?

Table 5 shows that XGBoost using a squared loss is
outperformed by all other approaches. XGBoost with an
absolute loss criterion, DA-LSTM, and PGT-Net show sim-
ilar results without any method being clearly the best one.
These findings contradict the conclusions of prior studies in
two regards. In order to draw reliable conclusions from the
results of our study, we therefore first analyze and explain
the contradictions to prior studies. Then we revert back to
discussing the research question.

1) Explaining Differences to Prior Studies
As a first contradiction, Verenich et al. [4] found that DA-
LSTM significantly outperforms classical machine learning
methods, represented by XGBoost. This discrepancy can be
easily explained since Verenich et al. [4] used the squared er-
ror criterion for their experiments, but compared the models
based on the MAE. Changing the loss function for XGBoost
to an absolute loss leads to XGBoost outperforming DA-
LSTM on 10 out of 16 datasets in our study.

The second contradiction is the performance of PGT-Net.
Our study couldn’t replicate the results of the study by Elyasi
et al. [6] where PGT-Net achieves remarkable low errors on
a wide range of datasets, including the bpic 2015 datasets.
For example, we retrieve an MAE for bpic2015_1 of 32.408
days and an MAE of 54.812 days for bpic2015_2. Elyasi
et al. [6] retrieve with PGT-Net MAE values of 1.76 and
3.02 days, respectively. These differences can’t be explained
based on concepts discussed so far. Rather, we assume that
the discrepancies arise due to a different setup between our
case study and the study by Elyasi et al. [6].

The study by Elyasi et al. [6] mainly differs in three points:
First, they do not preprocess the event logs such that they
contain only completed cases. As a second point, Elyasi
et al. [6] consider also the column lifecycle as previously
discussed. As a third point, they perform a 5-fold cross
validation procedure and report the average MAE across the
five folds.

In order to investigate these points, we performed follow-
up experiments in order to identify the reasons behind the
discrepancies in the studies. For these experiments we used
the original implementation by Elyasi et al.4. In the first
experiment, we used two of our preprocessed event logs,
namely bpic2015_1 and bpic2015_2, and trained them with
the implementation by Elyasi et al. [6]. As a second experi-
ment, we trained and evaluated with the original logs used by
Elyasi et al. [6], but we changed the original implementation
such that the lifecycle column was not used anymore. Both
these experiments achieved similar low error rates that were
reported in the study by Elyasi et al. [6]. Based on this
finding, we investigated the implementation by Elyasi et al.
[6] and found that during their cross-validation procedure
prefixes from the same case are present in the training, valida-

4https://github.com/keyvan-amiri/PGT-Net/tree/main

tion and test set. We regarded this as a potential source of data
leakage. Therefore, we changed the original code of PGT-
Net such that prefixes of one case are either in the training,
validation, or the test set during the cross-validation proce-
dure. For training, we took the unpreprocesed bpic2015_1
and bpic2015_2 event logs originally used in their study and
there were no other changes applied to the code than the
sampling for the folds. In this experiment, the MAE across
the five folds for bpic2015_1 rose to 32.8542 days and to
59.7325 days for bpic2015_2. We can therefore attribute the
results obtained by Elyasi et al. [6] to a data leakage issue
in which PGT-Net overfitted to prefixes of one case during
training and inferred the right prediction for other prefixes
of the same case in the test set of a fold. This explains
the good performance on the bpic2015 datasets. There are
many unique traces in these datasets which makes it easy to
recognize the same cases between a training and a test set.

We also observe that PGT-Net seems to overfit easier
than XGBoost and DA-LSTM, for example at the credit and
bpic2012a datasets. This overfitting property led to believe
that PGT-Net generalizes well on event logs with many
unique traces, while in reality the good performance during
the study of Elyasi et al. [6] can be attributed to a data leakage
issue during model validation combined with the the strong
overfitting capabilities of PGT-Net.

Based on these results we conclude that we removed
drawbacks present in prior studies and we revert back to
answering research question 4.

2) Discussing Research Question 5
To compare the models we performed a Nemenyi test. The
corresponding critical differences plot is shown in Fig. 7.
XGBoost with an absolute error criterion, DA-LSTM, and
PGT-Net do not perform significantly different, but they all
outperform the XGBoost model with a squared loss signifi-
cantly. XGBoost with an absolute error criterion has the over-
all best performance on 5 datasets, PGT-Net is the best model
on 6 datasets, and DA-LSTM performs best on 5 datasets.
In order to investigate if the difference in performance can
be attributed to specific dataset characteristics, we calculated
a range of event log metrics based on an implementation
by Zandkarimi et al. [45]. There was no metric that clearly
explains the difference in performance based on dataset char-
acteristics.

1 2 3 4

XGBoost absolute
PGT-Net DA-LSTM

XGBoost squared

CD

FIGURE 7. Critical differences plot for machine learning methods.

To further investigate the results, we compared the models
based on the standard deviation of the nMAE over the 10
training runs with different random seeds. Fig. 8 shows a
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graphical representation for the models XGBoost (absolute
error), DA-LSTM, and PGT-Net with boxplots depicting the
performance on the test set over the 10 runs. We first checked
whether the reported mean value reported in Table 5 could be
distorted such that a specific model produces actually very
good models, but the good performance is averaged out by
worse variants. For this analysis, we check how often each
of the approaches produced the overall lowest nMAE for a
dataset over all 10 runs, i. e. we compare the minimum value
of the boxplots in Fig. 8 with each other. We found that PGT-
Net has the overall lowest nMAE on 7 datasets, DA-LSTM
on 6 datasets, and XGBoost is best on 3 event logs. This
shows that the neural networks have a slight advantage over
XGBoost to reach an overall minimum nMAE.

However, PGT-Net and DA-LSTM have a larger variation
in the nMAE than XGBoost on most datasets. This mitigates
the good performance of the neural networks. In other words,
the training procedure of the neural networks does not guar-
antee to reach the best possible performance. We therefore
see advantages for XGBoost since it shows a more stable
training behavior when training with different random seeds.
Neural networks, on the other hand, have slight advantages
in reaching the overall best performance.

FIGURE 8. Variation of nMAE on test set across 10 runs.

Based on the results we conclude that XGBoost using an
absolute error criterion, PGT-Net, and DA-LSTM perform
equally well. We could not confirm findings of prior studies
that one method is clearly the best one. Each of the methods
utilizes the data in the event logs equally well, despite the
different data representations and algorithmic learning ap-
proaches.

VII. SUMMARY AND OPEN RESEARCH QUESTIONS
In this section we shortly summarize the results obtained
from answering the research questions in Sec. VI and discuss
research questions that directly result from our findings.

Discussing RQ1 we have shown that previously used
baseline methods are not optimal with regard to the MAE.
Comparisons of methods for remaining time prediction with
these baselines might provide an overly optimistic picture
about the capability of these methods. We have introduced
a simplistic baseline which is optimal with regard to the
MAE and showed that it is more accurate than other baseline
methods. Using our baseline method for comparisons with
machine learning methods allows a more realistic judgment
about the capability of these methods.

With research questions RQ2 and RQ3 we have shown
that favourable and unfavourable label shifts are present in
real world datasets and that the newly introduced nMAE
provides useful insights into the performance of methods by
considering label shifts and hinting at the effectiveness of
input feature utilization of a method. This can help to moti-
vate future research questions and to communicate scientific
insights.

Building on these insights we have shown by discussing
RQ4 that state-of-the-art methods for remaining time pre-
dictions of business processes lack in predictive power
for a range of commonly used datasets, namely sepsis,
bpic2015_2, bpic2015_4, and bpic2015_5. For other datasets
the input features are used efficiently such that an nMAE
considerably smaller than 1.0 is achieved.

Discussing RQ6 we have shown that the three consid-
ered state-of-the-art methods, namely XGBoost, DA-LSTM
and PGT-Net, perform similarly. There is not one single
best method which significantly outperforms others. Another
major finding is the high variance of the nMAE on the
test set for neural network-based methods in comparison
with XGBoost. The influence of random factors for model
training has not been discussed so far in the literature about
remaining time prediction for business processes, according
to our best knowledge. However, it raises relevant questions
for practitioners. Training a model once might not necessarily
lead to the best possible performance due to random factors
during training. As a consequence, training a model several
times might be considered. This, however, induces additional
computational overhead. Methods which are robust to ini-
tial starting conditions and other random influences might
therefore be preferred. How this can be achieved is an open
research question.

Based on these insights we have identified several starting
points for future research opportunities in order to generate
scientific insights that benefit the practical application of
machine learning methods for remaining time prediction of
business process. A summary of these points is given below:

• There is no consensus for specific datasets how they can
be filtered for complete cases. This requires knowledge
about the definite start and end of cases. This is a threat
to the validity of all prior studies for remaining time
prediction. We have made our definition of complete
cases publicly available, but future work might improve
and complete this collection.
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• The range of values for activities and other categorical
features might differ between the training and test sets.
Especially in practical settings this has to be tackled
since practitioners face the problem that new categorical
values might occur in a productive environment. To our
best knowledge, this has not been explicitly handled in
the literature so far for the prediction of the remaining
time. Previous work [3], [6] determines the range of
values for encoding based on the whole dataset and then
conducts a split into training and validation sets. We
regard this as a form of data leakage. We have found
one study that investigates this problem for next activity
prediction [38]. In our case study we handled this prob-
lem by simply ignoring events with previously unseen
activities and using void encoding for other categorical
features. Future work should investigate whether there
are more suitable ways to handle this.

• We have shown that optimizing XGBoost with an ab-
solute error criterion leads to improved results. Future
work might re-evaluate other classical machine learning
methods which were fitted using the squared error crite-
rion but not the absolute error criterion.

• Neural network-based methods show a high variance
in MAE and nMAE for a fixed hyperparameter setting.
Future work might investigate mitigation strategies that
lead to lower variance, for example by investigating
different kernel initialization strategies or finding archi-
tectures that lead to more stable results.

• For some datasets the nMAE is close to 1.0 or larger,
which indicates strong concept drifts and/or uninfor-
mative input features. We were able to identify these
issues based on our introduced concepts, however, dif-
ferentiating between the possible reasons for bad model
performance is not possible. Future work might follow
this direction in order to enable a more differentiated
analysis of bad model performance.

• PGT-Net is a relatively new architecture which shows
promising results on a range of datasets, even though
we could not confirm the exceptionally good results
from a prior study. For datasets with a small number
of control-flow variants we found strong signs of over-
fitting. Future work should investigate the search for
optimal architectures for PGT-Net based on different
dataset characteristics.

VIII. LIMITATIONS
Regarding our experiments, we have identified a few threats
to validity. For our evaluation, we first retrieved the best hy-
perparameter setting by comparing different configurations
based on the achieved MAE on the validation set. Next, we
trained 10 models with the best configuration to account
for random factors. A more thorough approach would be to
evaluate each possible configuration several times already
to account for random factors also during hyperparameter
tuning. However, this would result in a high computational
effort.

Training 10 times gives already first insights on the vari-
ation of different results, but for statistical tests it is still
a low number of observations. We therefore refrained from
performing statistical tests on the difference in variations and
limited the discussions to general observations.

Another simplification in our study was the removal of
events in the validation and test sets for which new activities
occur which are not part of the training set. This was required
to enable a fair comparison of the different methods because
there is no straightforward solution for PGT-Net on how to
handle new activities without having a high risk of skewing
results, except than excluding events with previously unseen
activities.

With the nMAE we have used a specific metric to judge the
performance of models. There is a large variety of metrics in
the literature and the choice of the right metric is not straight-
forward. Typically, such metrics have several advantages and
disadvantages [14]. While we have discussed the desired
properties of the nMAE thoroughly and showed that valuable
conclusions can be derived specifically for remaining time
prediction of business processes, future work might discover
weaknesses which need to be accounted for.

IX. CONCLUSION
In this work we have assessed the current state of remaining
time prediction for business processes. We started by evaluat-
ing what constitutes a good baseline model from a theoretical
perspective and proposed to choose the label median of the
test set as a constant predictor. As a next step, we intro-
duced the notion of different types of label shifts. Then, we
proposed the nMAE to overcome weaknesses of the MAE.
It accounts for the aforementioned label shifts and enables
considerations regarding the utilization of input features and
therefore the usefulness of machine learning methods with
respect to a given test set. This supports model evaluation and
monitoring to ensure reliable predictive services to internal
and external stakeholders. All of our introduced concepts
were evaluated with theoretical considerations as well as an
empirical study, considering four baseline methods and three
state-of-the-art machine learning models.

Furthermore, we have tackled weaknesses of prior studies.
Specifically, we have trained XGBoost with an absolute loss
criterion and removed data leakage issues which were present
in a previous study for PGT-Net. The results showed that
there is no significant difference in the performance between
these models. Additionally, we have demonstrated that these
state-of-the-art methods do not perform well on a range of
datasets.

Our implementation for the case study as well as the def-
inition of complete cases are available in a public repository
for reproducibility and future research. As a last contribution,
we have motivated several weaknesses and open questions in
current research for remaining time prediction for business
processes.

We have, therefore, reassessed the current state of remain-
ing time prediction research, motivated open challenges and
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weaknesses, and provided initial concepts and solutions to
tackle these and to motivate further research in the future in
that direction.
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