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scTab: Scaling cross-tissue single-cell
annotation models

Felix Fischer1,2, David S. Fischer1,3, Roman Mukhin 4, Andrey Isaev 4,
Evan Biederstedt5,6,7,8, Alexandra-Chloé Villani6,7,8,9 & Fabian J. Theis 1,2,10

Identifying cellular identities is a key use case in single-cell transcriptomics.
While machine learning has been leveraged to automate cell annotation pre-
dictions for some time, there has been little progress in scaling neural net-
works to large data sets and in constructingmodels that generalize well across
diverse tissues. Here, we propose scTab, an automated cell type prediction
model specific to tabular data, and train it using a novel data augmentation
scheme across a large corpus of single-cell RNA-seq observations (22.2 million
cells). In this context, we show that cross-tissue annotation requires nonlinear
models and that the performance of scTab scales both in terms of training
dataset size and model size. Additionally, we show that the proposed data
augmentation schema improves model generalization. In summary, we intro-
duce a de novo cell type predictionmodel for single-cell RNA-seq data that can
be trained across a large-scale collection of curated datasets and demonstrate
the benefits of using deep learning methods in this paradigm.

Cell type annotation is a core step in the analysis of single-cell RNA-seq
(scRNA-seq) data. Researchers typically examine prominent gene
expressionmarkers denoting a cell’s identity and function, and assign a
label based on a nomenclature that summarizes previously described
cell types and states. While this task has been addressed in numerous
analyses1–4 and automated cell type prediction models5–8, rigorously
annotating new datasets remains a manual and time-consuming pro-
cess. Moreover, given the confounding presence of technical batch
effects and the inherent differences in quality across cells within
datasets, the process of generating cell annotations remains unstan-
dardized. These problems became especially pronounced in building
comprehensive cell atlases in the Human Cell Atlas (HCA)9, wherein
unannotated datasets remain a bottleneck. Indeed, recent atlas-
building efforts acutely highlight the challenges posed by both the
lack of consensus in cell type annotations across datasets and how
time-intensive it remains to standardize them10,11. A general model for

cell type annotation predictions — that is, a model trained on a large
and diverse data corpus consisting of all human tissues in diverse —

would assist with the atlas-building efforts of theHCA in several crucial
ways: To begin with, such amodel would lower the barrier of manually
annotating datasets for researchers, offering suggestions with a stan-
dardized set of nomenclature. Predictions with a uniform set of
vocabulary will naturally push the community to adopt consistent
terms when referring to cell types. Moreover, suchmodel suggestions
will serve ashints, a baseline for researchers tomodify and refinebased
on their own knowledge and expertise. Finally, such a process would
allow scientists to annotate datasets at the scale required by the HCA
and related initiatives.

Providing cell labels for unannotated datasets can be posed as a
machine-learning classification task. However, cross-tissue classifiers
trained on large-scale data collections that annotate cells from het-
erogeneous sources, irrespective of tissue of origin and assay type, are
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slow to emerge. In this context, by cross-tissue annotation task we
mean training and evaluating a single classifier model on a diverse
selection of tissues. This is in contrast to organ-specific classifiers
which are trained and evaluatedonly on a single tissueoronly a narrow
selection of closely related tissues. Current models often address only
specific scenarios and do not focus on strong generalization cap-
abilities beyond the datasets they are trained on12, partly due to frag-
mented data collection efforts. Recent large data curation efforts
streamline the training of generalist models because they expose cell
type labels and other metadata in structured vocabularies of ontolo-
gies and consistent feature spaces13,14. In particular, CELLxGENE hosts a
draft of a curated data collection that allows for models to be trained
across a significantly larger range of datasets than what was possible
before15. Nevertheless, a dominant paradigm of the cell type annota-
tion task has been annotation transfer16, specifically the approach of
projecting entire samples of cells on an annotated reference atlas to
transfer cell type labels1,17,18. Annotation transfer is often used in organ-
or lineage-specific scenarios, yet it is critically limited by the quality
and similarity of the annotated reference. In contrast to this paradigm
of query-to-reference mapping, we focus on the problem of general
cell type annotation which entails training models across a large-scale
data corpus to predict cell type labels solely based on gene expression.
Here, wewould like to add a clarification note regarding the distinction
between cross-tissue and general cell type classification: with both
terms,weessentially refer to the same task; namely, directly predicting
cell type labels solely based on the gene expression of a cell with a
single unified model that works across a wide range of tissues. How-
ever, this task is not fully solved yet as the data and the quality of cell
type annotations are just not there yet. To highlight this we used two
different terms: Cross-tissue annotation refers to the general task;
General cell type annotation refers to the overall goal we want to
achieve - onemight call it the holy grail of cell type annotation. It’s also
worth noting that the predictions of such a general cell type annota-
tion model would be community-driven; researchers would not be
required to rely upon annotation transfer-based methods. Such
approaches inevitably suffer from model overtraining upon a single
reference (often with lab-specific cell labels) and strongly encourage
researchers to choose a context-specific reference close enough to
their study of interest as a basis for trustworthy cell annotations.

Several aspects of the general cell type annotation problem
remain ambiguous: Firstly, initial attempts to increase model com-
plexity in cell type annotation to improve classification performance
have failed to improve over linear baselinemodels7,19,20. Consequently,
the question pertains to whether large-scale, non-linear models learn
cell state representations that are more useful for this classification
task than linear, well-tuned baseline models that are trained on large-
scale datasets as well. Furthermore, recent efforts have started to use
large-scale data corpora with tens of millions of scRNA-seq profiles to
train deep learning models21–23. However, those efforts on foundation
modelsmainly focus on learning cell representations or embeddings in
an unsupervised manner, without a specific focus on cell type anno-
tation (and especially withoutmaking use of author-provided cell type
labels). Indeed, the cell annotation tasks considered in these efforts are
either only fine-tuned to specific cell type classification problems with
only a few cell types21,23 or do not directly predict cell type labels but
rely on finding similar cells in an annotated reference22. Moreover,
these initial attempts at building foundation models that cover a large
data corpus largely treat the cell type labels as mutually exclusive and
ignore label relations that were previously exploited in organ-centric
classification tasks14,24, thus questioning if the resulting benchmarking
metrics are faithful evaluations of the performance on these hetero-
geneous datasets. Furthermore, according to recent benchmarks25,26,
recent foundation models often only show comparable performance
to simpler and often linear reference models in the zero or few-shot
setting. Zero-shot settingmeans training a linear classifier basedon the

embedding obtained from a pre-trained foundation model, and few-
shot setting means fine-tuning a pre-trained foundation model to a
specific task based on a small example dataset. Lastly, it remains
unclear how cross-tissue cell type classifiers compare their respective
organ-specific counterparts. Here, we address these challenges by
assembling a benchmarkdataset for cross-tissue cell type classification
and carefully analyzing a cross-tissue cell type classifier optimized for
cell type annotation on tabular scRNA-seq data: scTab. scTab uses
observation-wise feature attention to reduce the number of input
features for each observation. This helps the model to bemore robust
to overfitting to poorly generalizable features in the training data,
which is often an issue for tabular data as there is no prior knowledge
about the underlying structure of the data - unlike e.g. for images or
text27.

Modern deep learning builds upon the idea of learning a decision
function purely based on data. This idea brought stunning break-
throughs in the fields of computer vision and natural language pro-
cessing, where the approach of using big models and large-scale
training datasets to regularize those models drastically outperforms
other traditional (usually feature-engineering-based)machine learning
approaches. Hence, we leverage well-defined benchmark metrics5,6 for
cell type classification to understand the performanceof deep learning
models trained on large scRNA-seq data corpora, focusing on the
scaling behavior of such models with respect to the training data size
as well as the model size28. We find that analogous to the work in
computer vision, cell type classification from scRNA-seq data sub-
stantially benefits from large-scale training of deep-learning-based
models29, and model generalizability can be improved by artificially
increasing the training data size through data augmentation30. In
addition, we find that by scaling cell type classification to large-scale
datasets, deep-learning models outperform their linear counterparts,
in contrast to what was reported before7. Yet, well-defined baseline
models are still relatively powerful, thus suggesting caution in the
design of benchmarking experiments in foundation models. In sum-
mary, our detailed analysis demonstrates the strengths of deep
learning-based approaches over their linear counterparts in large-
scale, cross-tissue cell type classification and shows that classification
performance scales both with respect to training data and model size.

Results
A dataset and evaluationmetric to study the scaling behavior of
cross-tissue cell type classification models
We set out to build a dataset on which a cross-tissue cell type classi-
fication model could be trained and evaluated. In the existing litera-
ture, we identified three approaches to creating such a dataset. The
first approach involves assembling study- or organ-specific datasets
and homogenizing cell type labels to obtain amutually exclusive set of
labels or a tree with levels of mutually exclusive labels5–7. The second
approach centers around assembling organ-specific datasets and
mitigating annotation granularity differences by using the Cell
Ontology31,32 to establish a directed acyclic graph between the
observed labels14. The third approach entails the collection of an
organism-wide data corpus with ontology-constrained labels treated
asmutually exclusive, thus ignoring the hierarchical structure of labels
in the ontology21,23. This is problematic since the hierarchical depen-
dency between labels is a key structure of these datasets, e.g. a CD4-
positive, alpha-beta T cell is also a T cell and a lymphocyte, and
penalizing a model that predicts CD4-positive, alpha-beta T cell for a
cell that is labeled as a T cell results in an evaluation that is biased
towards the model being able to mimic the annotation granularity of
the data instead of its ability to distinguish cell types. Here, we lever-
aged the cell type relations given by the Cell Ontology31 across a data
corpus of all human tissues, using a release of the cell census by
CELLxGENE as a root dataset (Methods). This data corpus reflects a
large number (164) of cell types in the humanbody, therefore, we refer
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to the resulting label prediction problem as general cell type
classification.

To benchmark a cell type prediction task that represents the
recent literature closely6,19, we considered models with a softmax-
constrained output across all observed cell type labels. To account for
differences in annotation granularity across datasets, we adjusted
predictions based on the Cell Ontology to not incur penalties if a
model predicts a more fine-grained label than the original author
annotation (Methods). We modified the original release of the cell
census in preparation for this task (Methods). First, it is important to
realize that public data corpora are not necessarily deduplicated.
Often, cells are present in a primary dataset that originates from an
original study and are also contained in secondary datasets (metas-
tudies), such as atlas datasets. We only considered instances of cells in
primary datasets to avoid data leakage through duplicate cells. Sec-
ond, we removed cellswith broad cell type labels, using a heuristic that
removes each cell type with less than seven parent nodes in the Cell
Ontology. (Note: we would like to emphasize that the previously
described filtering step is merely a heuristic, i.e. there are still coarse
cell type labels present in the scTabdata corpus even after our filtering
heuristic, given the respective detail or sparsity of termswithin theCell
Ontology for certain tissues.). For the remaining cell types,weused the
most fine-grained labels given by the author associated with the CL
term as specified by the CELLxGENE schema and did not map the
author-provided cell types to more coarse Cell Ontology terms. Third,
we restricted to cells measured with the most common group of 10X
Genomics technology-related assays, to reduce the strength of con-
founding sources of variation in the dataset. Fourth, we removed cells
from rare cell types with less than 5000 instances or those present in
less than 30 donors to accurately assess how the trained classifiers
generalize to unseen donors (Methods) (Note: these thresholds are
dataset dependent and should be adjusted accordingly for smaller
datasets). The resulting dataset contains 22.2 million cells, with 5052
donors and 164 cell type labels (Fig. 1a). We defined test holdouts
based on donor annotation, which we see as a sensible compromise
between an entirely random split and a split based on holdout studies.
The donor-wise split improves the coverage of labels in both training
and test sets compared to a split basedon studies, and reduces leakage
of similar observations between training and test data compared to a
random split of cells, thus creating an evaluation set that is better
suitable to assess the generalization capabilities of a classifier. As a
benchmarking metric, we chose the macro-averaged F1-score (macro
F1-score) (Methods) to account for class imbalances and to give each
cell type an equal weight in the overall score.

A feature-attention-based, scalable, deep-learning model for
cross-tissue cell type classification
Studying the scaling behavior of deep-learning-based models neces-
sitates a scalablemodel implementation that can be trained on bigger-
than-memory datasets. In addition, we ask if recent extensions beyond
classical multi-layer perceptrons (MLP) improve prediction as they
have in other fields. Since gene expression profiles are not ordered, we
decided against sequence-based models such as transformers21,23 and
instead selected a recent architecture specifically proposed for tabular
data33. Here, we introduce scTab (Fig. 1b), which is a scalable imple-
mentation of the TabNet architecture33, which we adapted to the
single-cell use case: scTab is specifically designed for the tabular
structure of scRNA-seq data through the use of feature attention,
whichenables the network to focus itsmodel capacity onmore reliable
input features. After normalization, it encodes data via a feature
transformer and selects relevant input features through feature
attention via an attention transformer block (Methods). We modified
theoriginal TabNet implementation in a fewcrucialways: scTab’s input
data assumption is adapted to the single-cell setting, in particular, the
input gene expression is size factor normalized to 10,000 counts per

cell and log1p transformed. This commonnormalization for scRNA-seq
data6,22 cannot be replicated by the simple batch normalization layer
used in the original TabNet architecture. We additionally modified the
original TabNet architecture to improve computational efficiency,
namely by reducing the number of feature and attention blocks (which
we found unnecessary after profiling), and training dynamics for faster
convergence (Methods). For better model generalizability, we further
added a data augmentation step as described later below. Finally,
scTab quantifies prediction uncertainty using empiric uncertainty
probabilities based on deep ensembles34 (Methods).

Cross-tissue cell type classification requires nonlinear models
To showcase the performance of state-of-the-art models according to
recent benchmarks5,19, wefirst retrained aCellTypistmodel6 (Methods)
to a random subsample of our training corpus. The current CellTypist
implementation necessitated the full training data to be subsampled
formodel training as on the one hand it requires all the training data to
be loaded into memory and on the other hand it lacks GPU accelera-
tion. Here, we subsampled to 1.5million cells. This re-trained reference
model achieved a macro F1-score of 0.7304 ± 0.0015 (± is indicating
the standard deviation across several model fits with a different ran-
dom initialization each) (Fig. 1c). Given this performance of the refer-
ence CellTypist model, we investigated if performance could be
increased by scaling logistic regression-based models to take advan-
tage of the full training data size. We implemented a logistic
regression-basedmodel not subject to these limitations (Methods) and
trained thismodel with a cross-entropy loss. Thismodel outperformed
the CellTypist reference model and achieved a macro F1-score of
0.7848 ±0.0001 (Fig. 1c), showing the potential of scaling existing
linear models to take advantage of larger datasets. Having optimized
the linear reference model, we benchmarked three nonlinear models
against this baseline: our scTab model, an MLP previously proposed
for this task7,14 - but found to not outperform linear models within
single tissues - and an XGBoost model that reported robust perfor-
mances on classification tasks for tabular data27: The nonlinear models
outperformed the linear model (0.8295 ±0.0007 macro F1-score for
scTab (fitted with data augmentation), 0.8127 ± 0.0005 for XGBoost,
0.7971 ± 0.0012 for MLP (fitted with data augmentation)) (Fig. 1c,
Supplementary Table 1), demonstrating that cross-tissue cell type
classification is complex enough to benefit from nonlinear models.
Moreover, scTab outperformed the linear model on all organ systems
when these were considered separately (Fig. 1d). Similarly, we com-
pared scTabwith the single-cell transformermodel scGPTwithoutfine-
tuning (zero-shot setting)23 i.e. training a logistic regression model on
the scGPT embeddings (Methods, Supp. Fig. 1), which achieved a sig-
nificantly lower macro F1-score of 0.7301 ± 0.0035 (Supplementary
Table 1), comparable to PCA embeddings. Moreover, we fine-tuned a
scGPT model to our training data; the fine-tuned model achieved a
macro F1-score of 0.749 (Supp. Fig. 1, Supplementary Table 1). Lastly,
we benchmarked against CIForm35 - another transformer-basedmodel
for cell type annotation. The CIFormmodel achieved amacro F1-score
of 0.766 (due to the large memory requirements of CIForm we had to
subsample the training data to 750,000 cells). Lastly, we show a
comparison of the training and inference times in Supplementary
Table 2.

Now, looking inmore detail where the performance improvement
of scTab stems from, one canobserve that scTab performsparticularly
well in distinguishing between closely related classes of refined cell
subtypes. This is most prominent when looking at T cell subtypes
(Supplementary Fig. 2) for which the Cell Ontology is especially
detailed, thus making it possible to resolve such fine-grained differ-
ences between subtypes. Notably, this trend is in fact not only limited
to T cells but can also be observed in other cell lineages of the immune
system, namely, B cells, monocytes, macrophages, and granulocytes.
(Indeed, for many immune cell lineages, the Cell Ontolgy is quite
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detailed, and therefore these subtypes existed in the training data.) To
assess the above trend quantitatively, for both scTab and the opti-
mized linear model we compared the classification performance of
identifying cells associated with a specific cell lineage against the
classification performance of distinguishing fine-grained subtypes

associated with the respective cell lineage. Comparing the difference
in classification performance of the twomodels for those two settings,
one can see that both models achieve similar performance when
identifying cells of a particular cell lineage but that the performance
difference becomes more pronounced when distinguishing fine-

Fig. 1 | scTab enables organism-wide, scalable, and robust cell type classifica-
tion on single-cell RNA-seq data. a Treemap plot showing the dataset composi-
tion across cell types and tissues. The outer rectangles correspond to the number
of donors per tissue, the inner boxes correspond to the number of donors for each
cell type and the color scale highlights the number of unique cell types per tissue
(Supp. Fig. 5b shows the number of unique cell types grouped by Human Cell Atlas
bionetworks). The dataset spans 22.2 million cells, 5,052 donors, 249 datasets, 164
cell types, and 56 different tissues. See Supp. Fig. 5 for more detailed summary
statistics of the scTab data corpus. b scTab architecture (Methods): after input
feature normalization, scTab encodes data via a feature transformer and selects
relevant input features through feature attention. (FC: fully connected layer, BN:
batch-norm layer, GLU: gated-linear-unit, ReLU: rectified-linear-unit). cComparison
of classification performance (macro F1-score) of linear reference models

(CellTypist (subsampled to 1.5 million cells), optimized linear) and nonlinear
models (scTab, XGBoost, MLP (multi-layer perceptron)). Data are presented as
mean values ± SD. Source data are provided as a Source Data file. d Classification
performance (macro F1-score) grouped by organ system of scTab and the opti-
mized linear model. Data are presented as mean values ± SD. Source data are pro-
vided as a Source Data file. e Cross-entropy loss and macro F1-score on the
validation set plotted after each epoch for scTab and the optimized linear model.
Data are presented as mean values ± 95% CI. f tSNE plots of raw features and the
learned features of scTab with the top 70 most frequent cell types superimposed
on the holdout test set. g F1-score per cell type plotted against the number of
unique cells observedper cell type for scTab. Thehistogramon the y-axis shows the
distribution of F1-scores and the histogram on the x-axis shows the distribution of
unique cells per cell type.
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grained subtypes for scTab (Supplementary Fig. 3a). This example
highlights the potential of our scTab model to distinguish between
closely related cell types and hints that the improvement of non-linear
models such as scTabwill further increase oncemore finely annotated
training data becomes available, and the Cell Ontology incorporates

more finely-grained subtypes of cells in other tissues. It is perhaps
unsurprising how relatively detailed immune cells are in the Cell
Ontology with respect to other systems. Moreover, this trend does
not seem tobe limited to only the immune systembut canbeobserved
in other cell lineages outside of the immune system as well

Fig. 2 | Non-trivial scaling behavior of scTab in cross-tissue cell type prediction.
aDistributionof donorswith respect to the numberof unique cell types (x-axis) and
with respect to the number of cells (y-axis). The y-axis histogram shows the dis-
tribution of donors with respect to the number of cells (log scale). The x-axis
histogram indicates the distribution of donors with respect to the number of
unique cell types.b Scalingbehavior of scTabwith respect to the size of the training
data for two simulated scenarios in terms ofmacro F1-score and cross-entropy loss:
i) cell-based subsampling which corresponds to increasing the number of
sequenced cells while keeping the observed biological diversity constant ii) donor-
based subsampling which corresponds to increasing the observed biological
diversity. All cell types from the test set were observed duringmodel training for all
subsampled datasets. Data are presented as mean values ± 95% CI. Source data are
provided as a Source Data file. c Scaling of the cross-organmodel from Fig. 2b with

respect to training data size grouped by organ system (subsampling is done based
on donor-based subsampling). Data are presented asmean values ± 95% CI. Source
data are provided as a SourceDatafile.d Scaling behavior of scTabversus our linear
reference model with respect to the training data size. Data are presented asmean
values ± 95% CI. Source data are provided as a Source Data file. e Effect of training
only on organ-specific data versus training on cross-organ data on organ-specific
classificationperformance (evaluatedon test data subsetonly to the corresponding
organ) for scTab and the optimized linear model. Data are presented as mean
values ± 95% CI. Source data are provided as a Source Data file. f Scaling behavior
with respect tomodel size. The numberof hidden units refers to the size of the fully
connected layers (FC) in the architecture (Fig. 1b, Methods). Data are presented as
mean values ± 95% CI. Source data are provided as a Source Data file.
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(Supplementary Fig. 3b). Nonetheless, we would like to emphasize
here that this trend does not hold in general for all tissues. Cell types
related to the brain are the most notable exception here, which we
hypothesize is probably influenced by the relative lack of resolution of
the Cell Ontology for brain-related cell types. Related to the previous
point, we asked how our scTab model would perform on more coarse
cell type labels (Supp. Fig. 7a). To do so, we mapped the 164 original
cell type labels to 31 coarse cell type labels (Methods). Evaluatedon the

31 coarse cell type labels, scTab achieves a macro F1-Score of 0.897
compared to 0.830 on the fine-grained annotations. This trend is not
surprising, asweexpect classificationbetween coarse categories of cell
types (with distinct transcriptional signatures) should be easier than
classification between refined subtypes of cell types (which share
similar molecular signatures).

Further to this, when looking at uncertainty scores calculated
based on deep ensembles34 (Methods), one can see that incorrect

Fig. 3 | Data augmentation for scRNA-seq cell type classification improves
model generalizability. a Illustration of the data augmentation procedure. The
difference vector in raw gene space between the same cell type observed across
two donors can be used to simulate how the gene expression of a cell type might
look for a different donor and, thus, artificially increase the training data size. b For
each input vector to the neural network, an augmentation vector is randomly
sampled and added to the original input vector. The augmented vector is then fed
into the neural network (due to simplicity the batch dimension is omitted in the
sketch). c tSNE visualization of original and augmented data. One can see that the

augmentation blurs out the boundaries of the cell types but that themain source of
variation (cell type) is still preserved. d Effect of augmentation on training and
validation loss and macro F1-score (training data was subset to 4.3 million cells
(Methods)). One can observe the desired effect of data augmentation, an increase
in training loss (regularizing effect), and a decrease in validation loss. The dashed
vertical lines indicate how long themodels with andwithout data augmentation are
fitted on average (early stopping is done based on the macro F1-score), respec-
tively. Data are presented as mean values ± 95% CI.
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predictions on the holdout test data and novel cell types, which
are not present in the training data, are also associated with a
higher model uncertainty (Methods, Supp. Fig. 4). Besides the per-
formance advantage over linear models, scTab also showcases differ-
ent training dynamics: On the one hand, the difference to the linear
model is more pronounced when looking at the loss, and on the other
hand, scTab is trained for more epochs (Fig. 1e). When qualitatively
inspecting the representations learned by scTab in a tSNE plot, we
found that cell types show consistent separation and that the latent
spacewasmore structured compared to the raw feature space (Fig. 1f).
Moreover, similar cell types group together in the latent space
(Supp. Fig. 5a).

Another important observation is that classes on which errors
were made tended to be those that were represented by few obser-
vations (Fig. 1g). This furthermotivates that classification performance
can indeed be improved by addingmore training examples specifically
for cell types that are hard to classify.When looking at the plot inmore
detail, one can see that some cell types achieve quite remarkable
classification performancedespite very little available training data. To
investigate this further, we looked at the cell types that have an F1-
score of 0.9 or higher and that have less than 10,000 cells in our data
corpus (Supplementary Table 3). Looking at the table, one can see that
this phenomenon appears to be enriched among cell types associated
with the central nervous system. However, it’s not limited to those.
Thus, we hypothesize that there is a more general explanation for this.
Namely, those cell types have a specific gene signature that on the one
handmakes the cell types easy to distinguish fromother cell types and
on theother handgeneralizeswell from the training to the testdata. To
investigate this hypothesis in more detail, we look at the feature
attention masks of the scTab model to determine which features are
important when generating predictions. The feature attention masks
are sparse (they are non-zero foronly around 1%of the gene space) and
indicate which genes the model prioritizes when classifying a specific
cell or cell type. We selected the top 200 genes (~1% of the total gene
space) ranked by the feature attention scores of the scTab model and
looked at howwell a linearmodel can separate a cell type fromall other
cell types purely based on those top 200genes.We then compared the
separation scores (measured by the area under the precision-recall-
curve) to a reference group that included all cell types with an F1-score
of less than 0.4 and again less than 10,000 cells of available training
data (Supp. Fig. 6). One can see that the easy-to-predict cell types are
easier to distinguish based on the selected top 200 genes and that,
more importantly, the gene signature generalizes well from the train-
ing to the test data (for the easy-to-predict cell types the F1-scores only
drop around 0.03 versus 0.32 for the reference group). Moreover, we
checked whether the genes in the feature attention masks do indeed
correspond to the biology of the predicted cell type. We found that
these gene signatures appear not to be random. The top 25 genes as
ranked by feature attention scores were often found to be biologically
relevant: as a brief example, the top genes for predicted brain cells
include genes encoding neurexin and synaptotagmin proteins (e.g.
NRXN1, SYT1), the top genes in the feature attention masks for all
predictedmacrophages included genes related to the immune system
(e.g. FCGR3A, HLA-DRA), and so forth.

Lastly, it is interesting to investigate how scTab, which is only
trained on 10X-based training data, would perform on data from non-
10X-based sequencing protocols. Hence, we looked at the classifica-
tion performance (measured by macro F1-score) grouped by sequen-
cing protocol (Supp. Fig. 7b). One can see that scTab achieves decent
classification performance on about half of the non-10X-based
sequencing protocols with a macro F1-Score of ~0.4. In comparison,
the macro F1-Score on the holdout 10X-data is ~0.8. This is quite
impressive, given that the model has to generalize to unseen datasets
that are measured with a different sequencing protocol - meaning
there is a much stronger shift in data distribution compared to the

donor-based holdout evaluation setting. However, there are also
sequencing protocols to which our model generalizes quite poorly
(namely STRT-seq, Smart-seq2, and BD Rhapsody Targeted mRNA),
indicating an even stronger shift in data distribution for those
sequencing protocols. The above observations further justify our
decision to limit the training data only to 10X-based sequencing pro-
tocols. Given the strong shift in data distributionbetween the different
sequencing protocols and that the data from CELLxGENE is clearly
dominated by 10X-based sequencing protocols (Supp. Fig. 7c), it
wouldmake it challenging to train and evaluate ourmodel on non-10X-
based data reliably.

Cross-tissue cell type classification scales with dataset and
model size
A key driver behind the success of deep-learning-based models in
computer vision or natural language processing is their ability to take
advantage of larger datasets. This scaling behavior was a driving factor
of recent advances in computer vision and natural language proces-
sing and led to the study of howmodel performances scale withmodel
size and training examples28,29. Having established that the cross-tissue
cell type classificationproblemsatisfies this premise,wenext set out to
study its scaling behavior. In contrast to images, the heterogeneity of a
scRNA-seq corpus is not trivially measured by the number of obser-
vations (cells). Some datasets contain densely sampled cell states, in
which new samples would simply replicate what is already captured,
whereas other samples are relatively sparsely sampled (Fig. 2a). To
account for this complexity in the study of data scaling behavior, we
compared the test performance of models trained on subsets of the
full corpus, either subsampled randomly by cells as a control, or sub-
sampled by donors to tie the subset size closer to the relative com-
plexity captured by this dataset (Methods). Indeed, we observed a
strong scaling of the loss and macro F1-score with respect to the
dataset size for donor sub-sampling, but a much weaker scaling for
cell-subsampling (Fig. 2b) indicating that scaling with respect to the
training dataset size is mostly driven by batch diversity rather than the
number of cells. This scaling also held for all organ systems when
inspected individually, with aminimumdifference inmacro F1-score of
0.0454 ± 0.0083 between a dataset of 2.1 million cells and the full
training dataset of 15.2 million cells, and a median difference of
0.1219 ± 0.0212 (Fig. 2c). A potential reason for the difference in clas-
sification performance between different organ systems lies in the
number of observed cell types per organ system - the F1-scores have a
correlation of −0.55 (p-value: 0.035) with the number of observed cell
types per organ system. The observed scaling with data size was also
specific to scTab and was not exhibited by the linear model (Fig. 2d),
whose learning curve flattens out earlier, resulting in an improvement
of the macro F1-score by scTab over our linear reference model of
0.0447 ± 0.0008 when using the full training data. Moreover, we
compared the organ-specific cell type classification performance of
models trained only on organ-specific data against their cross-organ
counterparts. We did this evaluation for the organs that showed the
biggest difference in classification performance between scTab and
the optimized linear model (see Fig. 1d), namely: the lung, kidney,
heart, gut, breast, and blood+immune. The deep-learning-based scTab
model shows more robust performances compared to its linear
counterpart (Fig. 2e) across all investigated organs, meaning the clas-
sification performance is a lot less affected when scaling to the cross-
organ setting, suggesting that cross-organ cell type classification can
benefit from using non-linear models. Naturally, we must emphasize
that inconsistencies between author-provided cell annotations across
tissue systems (and individual researchers) remain a major con-
founding factor for performance tests above. These are to be cor-
rected as the community resolves existing disagreements behind how
certain cell types are defined, along with the arrival of high-quality
reference atlases.
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Focussing on assessing model capacity at increased data size, we
performed a second scaling experiment in which we kept the full
dataset but compared scTab implementations with different numbers
of parameters (Methods). We found a significant improvement in
performance between the smallest model with 1.7 million parameters
(0.7864 ±0.0010 macro F1-score) and the largest model with 16.2
million parameters (0.8323 ± 0.0010 macro F1-score) (Fig. 2f). Overall,
the above-mentioned differences in scaling behavior to a baseline
linear model show that a nonlinear model is better able to take
advantage of larger and more diverse data sets and that it is able to
model complex non-linear relationships.

Data augmentation improves classifier generalizability
Due to their high model capacity, deep learning models are known to
easily overfit the training data and can even fit random labels36. One
well-established technique to reduce overfitting and thus improve
model generalizability is to artificially increase training data size by
applying semantically preserving transformations. For images, these
transformations include rotating or cropping input images during
training30. Data augmentation serves as a regularization technique that
yieldsmodels with better generalization capabilities and less impacted
by dataset-shift phenomena. So far, data augmentation has not been
consistently applied in single-cell genomics, due to the limited capa-
city of most scRNA-seq models, and due to the lack of sensible aug-
mentation strategies. Here, we propose a augmentation strategy for
scRNA-seq data and evaluate it for cell type prediction with our scTab
model. Notably, our data augmentation strategy is not only limited to
scTab but can be used in combination with other models as well. The
motivation for theproposeddata augmentation is to simulate the gene
expression vector of a target cell if it were observed in a different
donor. To do so, we precompute augmentation vectors based on the
training data that can be added to the original gene expression vectors
duringmodel training (Fig. 3b). The data augmentation vectors are the
average difference computed in the full gene space between cells of
the same cell type observed in two different donors. Thus, by adding
those augmentation vectors to the gene expression vector of the ori-
ginal cell, one can simulate the gene expression vector of a target cell
in a different donor, extending the training data domain in these
incompletely observed donors (Fig. 3a). Before evaluating the effect of
this augmentation onmodel fits, we established that it did not severely
disrupt the training data structure. Boundaries between cell types are
blurred in a tSNE of the augmented data. Still, cell type identity as a
main source of variation in the data is preserved (Fig. 3c) as quantified
by a similar variance decomposition in terms of cell type and donor
labels (R2 = 0.189 for the raw data, R2 = 0.164 for the augmented data,
Supplementary Table 4, Methods). We found this augmentation
strategy to regularize models, training loss increased upon using
augmentation, and themacro F1-score on the training data decreased.
Model generalization was improved on the validation set as measured
by reduced loss and increased macro F1-score (Fig. 3d). When looking
at the holdout test set, the proposed data augmentation significantly
reduces the loss from 0.797 ±0.05 to 0.659±0.04 (p-value: 0.0039)
and significantly increases themacro F1-score from0.7755 ± 0.0020 to
0.7841 ± 0.0030 (p-value: 0.0016) (Supplementary Table 5). These
results show that sensible data augmentation techniques for scRNA-
seq data can significantly improve the generalization performance of
cross-tissue cell type classifiers.

Robust benchmarks for cross-tissue cell type classification
It is common practice in machine learning to have standardized large-
scale benchmark data sets such as the ImageNet37 subset for the Ima-
geNet Large Scale Visual Recognition Challenge38 and the Microsoft
COCO dataset39 in computer vision, the GLUE/SuperGLUE dataset40,41

and the WMT2014 English-German datase42 in natural language pro-
cessing. These benchmark datasets enable models to be trained on

bigger data corpora and allow for structured model benchmarks that
usually do not require re-training of reference models. Such ready-to-
use and large-scale benchmark datasets for cell type classification on
single-cell transcriptomics data are not yet easily accessible. Creating
such datasets for scRNA-seq data comes with two key challenges: On
the one hand, such datasets need to comewith a performant and easy-
to-use data-loading infrastructure, that can scale to bigger-than-
memory datasets. Otherwise, it becomes challenging for users with-
out the proper technical background to use such datasets in their
workflow. On the other hand, such datasets should be predefined,
easily accessible, and come with fixed training, validation, and test
splits to make results easily comparable. Now, to encourage similar
practices, our processed benchmark dataset with predefined train,
validation, and test splits and the accompanying data loading infra-
structure is available to download (Methods). The downloadable
dataset is ready to use out-of-the-box with an efficient data loader
(Supp. Fig. 8, Methods). Furthermore, the dataset comes with a set of
well-tuned reference models (Methods) that can be directly used for
further benchmarking efforts. The need for well-tuned reference
models is demonstrated by the comparison of the performance of the
XGBoost and CellTypist models given default parameters and their
respective performance given tuned parameters. On the benchmark
data, the performance, measured by macro F1-score, could be
increased from 0.5855 ± 0.0112 to 0.8127 ±0.0005 for the XGBoost
model and from0.6258 ±0.0036 to 0.7304 ±0.0015 for the CellTypist
model respectively (Supplementary Table 6). We expect this combi-
nation of a well-defined benchmark dataset with well-tuned baseline
models to facilitate the systematic study of model scaling laws, which
are of importance for the establishment and evaluation of foundation
models21–23,43,44.

Discussion
We introduced cross-tissue cell type classification on a whole-body
human data corpus of scRNA-seq data as a machine learning task that
facilitates cell type annotation and that can benefit from large-scale
data collections and the usage of larger, non-linear models similar to
examples in computer vision29. Most notably, we showed the potential
of our non-linear scTabmodel over linearmodels when distinguishing
between fine-grained subtypes of cell types. Moreover, we demon-
strated scaling of model performance with training dataset size and
model size on this task, noting that batch diversity dominates the raw
number of cells in this data scaling. We also found that model over-
fitting can be mitigated through data augmentation. Additionally, the
analysis and models introduced here provide a reproducible context
for future work on cross-tissue cell type classification which is a cor-
nerstone in the context of foundation models for scRNA-seq data, for
example, by providing a standardized large-scale benchmark dataset
and a set of well-tuned reference models.

General cell type classification reflects the ability of models to
learn cell types based on transcriptomic profiles, a key abstraction of
scRNA-seq data. But, like many supervisedmachine learning tasks, it is
limited by the annotation granularity of the training data. The CELLx-
GENE data corpus used here is based on the cell ontology. As the Cell
Ontology is still a work in progress, not all cell types can be correctly
matched to a corresponding ontology term, this is especially a pro-
blem for rare cell types. Moreover, relationships between cell types
given by the Cell Ontology are still a topic of active discussion, which
can affect the classification metrics discussed here. However, the
strength of these current models for automated cell type annotation
does not lie in correctly classifying novel cell types, but rather in
context-specific suggestions which biologists can further refine.
Besides, themodels fromourpaper canbe readily retrainedoncemore
and better-annotated data becomes available. Related to the previous
issue, is the difference in annotation granularity across datasets on
CELLxGENE, some authors might annotate a cell as a B cell in their
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respective dataset whereas another authormight annotate the cell as a
naive B cell. This issue is an inherent issuewith theCELLxGENE training
data, as there is simply information missing in that case. Such an issue
cannot be solved by a change in model architecture as this would
always mean filling/predicting missing information but needs further
data curation efforts to collect themissing information. This, however,
would be far beyond the scope of this paper. Nevertheless, despite the
potential issues with the training data, our model achieves consider-
able classification performance (macro F1-Score of 0.83 on our hold-
out test set). This highlights the point that the issue of missing
information is not as pressing as onemight think as one can still train a
working/useful classifier. We would also like to highlight once more
that the current pre-trained scTab models still contain some fairly
coarsely annotated cell types despite our efforts to filter out too
coarsely annotated cell type labels.

Future work may extend the concept of general cell type classi-
fication to less stringent filters of the public data corpus, for example
including cells from assay technologies that are not as common as the
technologies considered here, and includingmore refined subtypes of
cell types once better-refined training data becomes available at scale.
In this context, it becomes particularly interesting to see whether the
trend that non-linear models outperform their linear counterparts in
distinguishing between fine-grained cell subtypes holds up or even
improves.We expect performance for certain tissues to improve along
with more terms being added to the Cell Ontology, especially for the
study of the brain where the current ontologies lack resolution. Next,
wewould like to highlight that those efforts will need to take particular
care in defining more detailed evaluation metrics, as plain macro F1-
scoresmay not properly reflect the complexity of unbalanced datasets
which are not just imbalanced concerning the distribution of cell types
but also concerning the distribution of those cell types across e.g.
tissues and sequencing protocols. In addition, the performance of
machine learningmodels canbe heavily influencedby the composition
and quality of the training data. For example, by specifically collecting
more training data for cell types or tissues amodel struggleswith or by
being more rigorous with the training data selection through only
selecting datasets with high-confidence annotations. Here, we would
like to stress that predictions will become more refined, once more
refined training data becomes available; and note that the growing
magnitude of single-cell data is not limited to transcriptomics; single-
cell researchers have increasingly utilized spatial transcriptomics,
proteomics, and other multimodal assays to investigate how other
features (e.g. chromatin accessibility, DNA methylation, etc.) could be
used to distinguish between cell types and cell states. Building on this
point a future direction of work would be to extend scTab to take
advantage of different input modalities as well once data for those
modalities becomes available at an equally large scale, exploiting this
feature space to achieve more precise cell type predictions for cell
identities. Furthermore, recent efforts to establish foundation models
for scRNA-seq data used further tasks to characterize their ability to
learn nontrivial representations of cells. We envision further bench-
marks to individually address these specific tasks, again focussing on
data and strong baseline models. In the context of cellular repre-
sentation learning, further and more refined choices for data aug-
mentation may be explored. Additionally, these augmentation
schemes can then be evaluated in the context of unsupervised repre-
sentation learning like for example Bootstrap Your Own Latent45.

Finally, it is critical to make general cell type classificationmodels
like scTab easily accessible to the broader community of biological
researchers. The Cell Annotation Platform (CAP; https://celltype.info/)
has been specifically designed for HCA researchers of all backgrounds
to effectively work with the predictions of scTab (as well as other
prediction algorithms) directly via their browsers.With the promise of
high-confidence predictions of cell types and cell states using a
structured vocabulary, as well as the ability to refine and edit these

predictions or reannotate cells entirely, researchers will be empow-
ered to annotate their datasets at the current scale required to con-
struct large-scale human cell atlases.

Methods
Dataset preparation
The dataset used in this paper is based on the CELLxGENE15 census
version 2023-05-15 (https://chanzuckerberg.github.io/cellxgene-census/
index.html). The census version 2023-05-15 is selected as it is a long-
term supported (LTS) release and will be hosted by CELLxGENE for at
least 5 years. This makes the dataset creation easily reproducible for the
foreseeable future. We subsetted to human datasets and used the
human protein-coding genes (19,331) as a feature space.

The following criteria are used to filter the human CELLxGENE
census data:
1. The census data is subset to primary data only (is_primary_data ==

True) to prevent label leakage between the train, validation, and
test set.

2. Only sequencing data from 10x-based sequencing protocols is
used. In terms of the CELLxGENE census, this means subsetting
the assaymetadata column to the following terms: 10×5’ v2, 10×3’
v3, 10×3’ v2, 10×5’ v1, 10×3’ v1, 10×3’ transcription profiling, 10×5’
transcription profiling.

3. The annotated cell type has to be a subtype of the native cell label
based on the underlying cell type ontology.

4. For each cell type, there have to be at least 5000 unique cells.
Otherwise, the whole cell type is dropped from the dataset.

5. Each cell type has to be observed across at least 30 donors to
reliably quantify whether the trained classifier can generalize to
newunseendonors for each cell type.With the used 70-15-15 train,
validation, and test split this means that each cell type is
represented with at least 4-5 donors in the validation and test
set, respectively.

6. Each cell type needs to have at least seven parent nodes in the cell
type ontology. This criterion is used as a heuristic to filter out
general cell type labels that do not contain much information.

To be able to better assess how well the trained classifiers gen-
eralize to unseen donors or in general to better assess the general-
ization capabilities of the trained classifiers, the data is split into train,
validation, and test sets based on donors and not based on random
subsampling. Meaning, each donor is exclusively found either in
the training, validation, or test set. Unlike splitting based on e.g.
holdout datasets, donor-based splitting mostly preserves the propor-
tion of cells in the training, validation, and test set compared to ran-
dom subsampling. This is not the case when subsetting the available
data based on e.g. datasets, which often results in a very uneven dis-
tribution of cells across the training, validation, and test sets as the
datasets in the census usually range anywherebetween a few thousand
cells to a few million cells. Furthermore, dataset-based splitting
often makes it hard to ensure that each cell type is observed across
both the training data as well as the test data. In the end, the data is
split such that 70% of the donors are assigned to the training set and
15% of the donors are assigned to the validation and test set
respectively.

The data is size factor normalized to 10,000 counts per cell and
log1p-transformed.

The selection described above results in 22,189,056 cells being
selected which span 164 unique cell types, 5052 unique donors, and 56
different tissues. Of the 22.2 million cells 15,240,192 cells are assigned
to the training set, 3,500,032 are assigned to the validation set and
3,448,832 cells are assigned to the test set.

More detailed explanations and references to the code that can be
used to reproduce the abovedata selection and splitting exactly can be
found in the associated GitHub repository under docs/data.md.

Article https://doi.org/10.1038/s41467-024-51059-5

Nature Communications |         (2024) 15:6611 9

https://celltype.info/
https://chanzuckerberg.github.io/cellxgene-census/index.html
https://chanzuckerberg.github.io/cellxgene-census/index.html


Subsampled datasets
We used a subsampled training dataset in the following settings:

Dataset size scaling:
• Random subsampling: 15% subsampling (2.3 million cells), 30%
subsampling (4.6 million cells), 50% subsampling (7.6 million
cells), 70% subsampling (10.7 million cells), 100% subsampling
(15.2 million cells)

• Donor-based subsampling: Subsample to 15% of donors (531
donors / 2.1 million cells), Subsample to 30% of donors (1061
donors / 4.3 million cells), Subsample to 50% of donors (1768
donors / 7.4 million cells), Subsample to 70% of donors (2476
donors / 10.4 million cells), Subsample to 100% of donors (3536
donors / 15.2 million cells)

Data augmentation:
• Subsample to 30% of donors (1061 donors / 4.3 million cells)

In all other cases, the full training dataset is used.
All subsampling is done incrementally, e.g. the 30% subsampled

dataset includes all cells/donors that are present in the 15% sub-
sampled dataset and so forth.

Data loading infrastructure
Training machine learning models on large-scale tabular datasets
(which is the case for the scRNA-seq data used in this paper) comes
with a set of unique challenges. The first challenge is that the entire
dataset does not fit into the memory of a usual server commonly used
for training deep learning models. Additionally, the unique nature of
tabular data means that you cannot load individual observations from
disk efficiently, as individual observations are rather small, and thus
loading data points individually creates a lot of random reads which
evenmodernSSDs cannot handle efficiently. Thus, a consecutive block
of samples must be loaded at once and then shuffled. Fortunately,
there already exist Python libraries that do exactly what is described
above. The data loading infrastructure used in this paper is based on
the Nvidia Merlin dataloader (https://github.com/NVIDIA-Merlin/
dataloader) which gives an easy-to-use API, uses the widely adopted
ApacheParquet format to storedata ondisk andgives performant data
loading with GPU-optimized data loaders that directly load the data
from disk into GPUmemory and then do a 0-copy transfer to PyTorch,
TensorFlow or JAX (see Supp. Fig. 8 for details about data loading
speed). The above-described data loading infrastructure was fast
enough to fully utilize a Nvidia A100GPU for themodels trained in this
paper. Moreover, Merlin comes with a wide range of supporting
infrastructure like Docker containers (https://catalog.ngc.nvidia.com/
orgs/nvidia/teams/merlin/containers/merlin-pytorch) from the NGC
container hub which makes it easy for people to start using Merlin
without the need to set up Python environments first.

Data augmentation
The idea behind the data augmentation strategy developed in this
paper is that the difference in raw gene space between the same cell
type observed across two donors can be used as a data augmentation
vector that can simulate how the gene expression of a cell might look
like for a different donor. The general idea behind data augmentation
is to have easy-to-compute transformations that can be applied during
model training. Thus, in this case, we pre-compute augmentation
vectors that can be added to the observed gene expression of a cell to
artificially increase the training data size during model training:

xaugmented = xoriginal cell ± xaugmentation vector ð1Þ

Calculation of augmentation vectors. The augmentation vectors are
calculated as follows:

1. Subsample 500,000 cells from the training data to have an even
distribution across cell types.

2. Calculate the mean centroids grouped by cell type and donor
3. Calculate the difference vectors between the mean centroids

from step 2 by cell type.
4. Set all values in the range [−0.25, 0.25] to zero to enforce more

sparse augmentation vectors.
5. Clamp the resulting augmentation vectors to the interval of [−1.5,

1.5] to remove outlier values.
6. Filter the resulting augmentation vectors for outliers by only

sampling the used augmentation vectors from the most promi-
nent k-means clusters (clustering is done with 50 clusters) →
sample e.g. 5000 augmentation vectors from the biggest k-means
clusters (clusters with more than 2000 difference vectors).

Note that Step 6 is used to enforce the selection of cell type
independent augmentation vectors. As can be seen in Supp. Fig. 9a,
some of the calculated augmentation vectors are influenced by the cell
type based onwhich they are calculated. This can be problematic if the
augmentation vectors are applied in a cell type-independent fashion
e.g. by randomly sampling augmentation vectors. To ensure that the
augmentation vectors can be applied in cell type independent fashion,
we filtered the augmentation vectors in Step 6 to only select aug-
mentation vectors that are mostly cell type independent. This filtering
based on K-means clustering indeed results in mostly cell type inde-
pendent augmentation vectors (Supp. Fig. 9b).

The associated parameters of our data augmentation strategy
should be tuned in a similar fashion as one would tune the hyper-
parameter of a neural network. This means calculating the augmen-
tation vectors based on the training split, then selecting the best
parameter set based on the validation split, and finally, reporting the
performance on the holdout test set.

Calculation of augmented gene expression vectors during model
training. The augmented gene expression vectors are calculated as
follows:
1. Sample an augmentation vector xaugmentation vector from the set of

augmentation vectors
2. Sample whether the augmentation vector is added to or sub-

tracted from the original gene expression vector xoriginal cell

3. Add/subtract the sampled augmentation vector to the original
gene expression vector and clamp all values of the newly created
vector to be within the interval of [0., 9.]

Explained variance by cell type before and after data augmenta-
tion. To estimate how our data augmentation influences the propor-
tion of the overall variance that can be attributed to cell type variation,
we fitted a linear regression (sci-kit learn LinearRegression) model
which predicts the normalized gene expression based on the cell type
and donor of each cell. This corresponds to the following design
matrix:

ŷ= 1 + onehotðcelltypeÞ+ onehotðdonorÞ ð2Þ

In the next step, the R2 score of the model fitted on the original/
non-augmented data is compared to the one from the model fitted on
the augmented data to show how the amount of total variation in gene
expression, which can be attributed to the cell type, changes.

Ontology-corrected cell type classification
The classification performance of the trained models in this paper is
evaluated based on the macro average of the F1-scores for each indi-
vidual cell type. The macro average is used to give each cell type the
same weight in the overall classification performance. The F1-score is
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calculated as follows:

F1� score= 2
precision � recall
precision+ recall

=
2 � tp

2 � tp+ f p+ f n
ðtp : true positives, fp : false positives, fn : false negativesÞ

ð3Þ

In order to deal with the often different granularity of annotations
(e.g. label T-cell vs label CD4-positive, alpha-beta T cell) the following
rules are applied to evaluate whether a prediction is considered right or
wrong. A prediction is considered as right, either if the classifier predicts
the same label as supplied by the original dataset, or if the classifier
predicts a subtype of the label provided by the original dataset - we
consider this as a right prediction as the prediction agrees with the true
label up to the annotation granularity the author provided. The subtype
relations are evaluated based on theCell Ontology31. An example is if the
model predicts the label CD4-positive, alpha-beta T cell when the author
annotated cell type is T cell. Moreover, a prediction is consideredwrong
if the classifier predicts a parent cell type of the true label - we consider
this as a wrong prediction as the author supplied a more fine-grained
label that the classifier should replicate. An example is if the classifier
predicts the label T cell while the cell is labeled as a CD4-positive, alpha-
beta T cell in the original dataset. In all other cases, the prediction is
considered wrong. Furthermore, the lookup of child nodes in the cell
ontology is based on the Ontology Lookup Service (OLS): https://www.
ebi.ac.uk/ols/ontologies/cl 31.

Performance evaluation on coarse cell type labels
To give an impression of how scTab performs onmore coarse cell type
labels, we evaluated the performance of our scTab model on a set of
more coarsely annotated cell type labels. We selected coarse cell type
labels based on the information content score provided by the cell
ontology (https://github.com/INCATools/ubergraph?tab=readme-ov-
file#graph-organization). The information content score is calculated
basedon the count of terms related to a given cell ontology termand is
in the interval [0, 100], where 100 corresponds to a very specific term
with no subclasses. Based on the information content score we used
the following rules to define a set of coarse cell type labels:
1. Get all cell type labels present in the CELLxGENE census which are

a subset of the native cell cell type label.
2. Keep all cell type labels with an information content score of less

or equal to 60.
3. Assign each cell type label to one of the coarse cell type labels

from step 2. If basedon the cell type ontology, a cell type label can
be assigned to more than one of the coarse labels, we only assign
it to the coarse label with the highest information content score.
Example: the label alpha-beta T cell would be assigned to T cell as
the coarse label and not lymphocyte.

4. Use the grouping from Step 3 to assign each of the fine-grained
cell type labels to a coarse cell type label.

Moreover, wewould like to note that we did not retrain themodel
from scratch for the evaluation on the coarse cell type labels. Instead,
we aggregated the predictions of the model that was trained on the
fine-grained cell type labels. For instance, all predictions of mature T
cell subtypes count as predicting the label mature T cell (based on the
underlying hierarchy of the Cell Ontology).

Model details
scTab model. Our implementation of scTab is based on the TabNet
architecture33 and is mostly taken from the dreamquark-ai/tabnet
GitHub repository with some adaptation towards the single-cell use
case. The input to the model is all 19,331 protein-coding genes (GEN-
CODE v38/Ensembl 104) selected from the CELLxGENE census data.
Moreover, unlike in the original TabNet model, we normalized the

input data before feeding it into the neural network. scRNA-seq data is
often normalized to have 10,000 counts per cell and is then log1p
transformed afterward6,12,22, we applied the samenormalization for our
scTab model on top of the simple batch normalization layer, which is
used in the original TabNet model to normalize the input features, as
such a non-linear normalization cannot be achieved by a simple batch
normalization layer.

The adapted TabNet architecture for scTab (Fig. 1b) consists of
two key building blocks: The first building block is the feature trans-
former, which is a multi-layer perceptron with batch normalization
(BN), skip connections, and a gated linear unit nonlinearity (GLU). The
feature transformer maps from the input gene expression space to an
n_d + n_a dimensional latent space. In the next step, the n_d + n_a
dimensional embedding is split into two parts: one with dimension n_d
and one with dimension n_a. The part with dimension n_d is used to
classify the different cell types and the second part with dimension n_a
is used to calculate the attention masks. The feature attention mask is
obtained by using a single linear layer followed by a batch normal-
ization layer that maps from the feature attention embedding to the
input feature space. The feature attention mask is then obtained by
applying the 1.5-entmax46 function to the output of the linear projec-
tion layer. Using the 1.5-entmax function instead of the sparsemax
function, which is used in the original TabNet model, improved train-
ing dynamics and yielded slightly higher model performance. The 1.5-
entmax function is defined as follows:

HT
1:5ðpÞ=

1
1:5 � ð1:5� 1Þ

X
j

ðpj � p1:5
j Þ for anyp 2 Δd ð4Þ

1:5entmaxðzÞ =argmaxp2Δd pT � z +HT
1:5ðpÞ ð5Þ

After obtaining the feature attention mask, the masked
input features are fed into the feature transformer to obtain the fea-
ture embedding used to classify cell types. Thus, by giving the neural
network the ability to mask individual input features, it can focus its
network capacity only on more reliable input features. In contrast
to the original TabNet model, we only used a single decision step as
using more than one decision step only yieldedmarginal performance
improvements and did not justify the increased computational costs.

The objective function used to train scTab is a cross-entropy
loss where each cell type label is weighted in correspondence to
its relative frequency in the training data to account for the strong
class imbalance in the training data:

weightcelltype =
nsamples

nclasses � Σcell in cells labelcell = = celltype
ð6Þ

Themodels for Fig. 1 and Fig. 3 werefittedwith our proposed data
augmentation strategy. The models for Fig. 2 were fitted without data
augmentation to better show the scaling with respect to the training
data size.

List of used hyperparameters:

Parameter Value

batch_size 2048

learning_rate 0.005

learning rate scheduler torch.optim.lr_scheduler.StepLR
gamma = 0.9
step_size = 1 epoch

optimizer torch.optim.AdamW

weight_decay 0.05

n_d 128
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n_a 64

n_shared 3

n_independent 5

n_steps 1

lambda_sparse 1e-5

mask_type entmax

virtual_batch_size 256

augment_training_data True

XGBoostmodel. The input to theXGBoostmodel is a 256-dimensional
PCA embedding due to the high memory usage and runtime of the
XGBoost model. The PCA is only fitted on the training data to have a
clear separation between the training and test set. Furthermore, the
data is normalized to 10,000 counts per cell and is then log1p-
transformed before calculating the PCA embeddings. The XGBoost
model is fitted with the multi:softprob objective function and like for
the scTab model classes are weighted in accordance to their relative
frequency in the training data.

List of non-default hyperparameters:

Parameter Value

n_estimators 800

eta 0.05

subsample 0.75

max_depth 10

early_stopping_rounds 10

For the benchmarks in this paper, we used XGBoost version 1.6.2

Multi-layer perceptron model (MLP). The input to the model is all
19,331 protein-coding human genes selected from the CELLxGENE
census data. Themodel is trained to predict the corresponding cell type
label for each cell with a cross-entropy loss where each cell type is
weighted in correspondence to its relative frequency (see scTabmodel).

The input count data is normalized to 10,000 counts per cell and
is then log1p-transformed before feeding it into the model.

List of used hyperparameters:

Parameter Value

batch_size 2048

learning_rate 0.002

learning rate scheduler torch.optim.lr_scheduler.StepLR
gamma = 0.9
step_size = 1 epoch

optimizer torch.optim.AdamW

weight_decay 0.05

n_hidden 8

hidden_size 128

dropout 0.1

augment_training_data True

Optimized linear model. The input to the model is all 19,331 protein-
coding human genes selected from the CELLxGENE census data. The
model consists of a single weight matrix and bias vector and is trained
to predict the corresponding cell type label for each cell with a cross-

entropy loss where each cell type is weighted in correspondence to its
relative frequency (see scTab model).

The input count data is normalized to 10,000 counts per cell and
is then log1p transformed before feeding them into the model.

List of used hyperparameters:

Parameter Value

batch_size 2048

learning_rate 0.0005

learning rate scheduler torch.optim.lr_scheduler.StepLR
gamma = 0.9
step_size = 1 epoch

optimizer torch.optim.AdamW

weight_decay 0.01

CellTypistmodel. TheCellTypist6model wasfitted in accordancewith
the best practice tutorial supplied on the CellTypist website with the
difference that the mean centering step was disabled (with_-
mean=False) as this negatively impacted model performance and
increased memory usage. Furthermore, the training data was sub-
sampled to 1.5 million cells to keep both the memory usage (350GB of
max memory) and runtime in check.

List of non-default hyperparameters:

Parameter Value

feature_selection True

use_SGD True

mini_batch True

batch_number 1500

epochs 10

with_mean False

For the benchmarks in this paper, we used CellTypist version 1.5.3

scGPT (zero-shot setting). We evaluated the performance of scGPT in
the zero-shot setting, meaning we used the pre-trained whole-human
scGPT model to get cell embeddings and used those embeddings as
input to a logistic regression classifier. The logistic regression classifier
was trained on a random subsample of 1,500,000 cells from the
training data.

List of non-default hyperparameters for cuml LogisticRegression:

Parameter Value

class_weight balanced

max_iter 5000

C 1000

For the benchmarks in this paper, we used cuml version 23.10 and
scgpt version 0.1.7.

Whole-human scGPT model: https://drive.google.com/drive/
folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y?usp=sharing.

scGPT (fine-tuned). We fine-tuned the scGPT in accordance with the
following example notebook provided by the authors of the scGPT
paper: https://scgpt.readthedocs.io/en/latest/tutorial_annotation.html

Due to thehighmemoryusage of scGPT,wewere only able tofine-
tune the scGPTmodel on a random subsample of 150,000 cells of our
training data. For our benchmark, we fine-tuned the whole-human
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scGPT model: https://drive.google.com/drive/folders/1oWh_-
ZRdhtoGQ2Fw24HP41FgLoomVo-y?usp=sharing.

Universal Cell Embedding (UCE) (zero-shot). As the UCE model47 is
very resource intensive - even when just using it for inference, we used
the pre-computed UCE embeddings which are hosted by CELLxGENE
(https://cellxgene.cziscience.com/census-models) and evaluated them
in the linear probing setting. This means fitting a logistic regression
model based on the embeddings obtained by UCE. Unfortunately,
these pre-computed embeddings only exist for census version 2023-
12-15 which is missing some datasets that were included in census
version 2023-05-15 (the census versionused in this paper). In numbers,
this means, we could only evaluate the UCE model on 736 of the 758
donors from our test data.

We fitted the logistic regression classifier on a random subsample
of 1,500,000 cells of the training data and then evaluated this classifier
on the reduced test data (only 736 of the original 758 donors from our
test data).

Uncertainty quantification for scTab model
The uncertainty quantification for scTab is based on deep ensembles34

using 1�maximum predicted probability as an estimate for the
model uncertainty. Deep ensembles are commonly used to assess the
uncertainty in predictions of neural networks. They are simple, yet
achieve state-of-the-art results: one just averages the predicted prob-
abilities across several networks thatwere independently trained (each
with a different random initialization of the weights). In our case, we
averaged the predictions across 5 models.

To assess howwell one can identify cell types that are not present
in the training data or cells with wrong predictions we split the
CELLxGENE data into three parts:

• Group 1: Correct Predictions Cell types that are present in the
training data andwhich are predicted correctly by themodel (this
serves as a reference group). This group is referenced as in-
distribution (right prediction) or simply as Group 1 below.

• Group 2: Incorrect Predictions Cell types that are present in the
training data but which the model predicted wrongly to assess
how well wrong predictions can be distinguished from right pre-
dictions based on the uncertainty scores. This group is referenced
as in-distribution (wrong prediction) or simply as Group 2 below.

• Group3:Absent inTrainingDataCell types that are not present in
the training data to assess how well unknown cell types can be
identifiedbasedon theuncertainty scoresprovidedbyscTab.These
are the cell types that we excluded from the CELLxGENE training
data because therewere too fewobservationspresent. This group is
referenced as out-of-distribution or simply as Group 3 below.

Now, to understand the quality of uncertainty estimates, we want
to assess how well Group 2 and Group 3 (incorrect and absent) can be
separated from reference Group 1 (correct). Note that the separation
betweenGroup 1 andGroup 2 (correct vs incorrect)measures howwell
the uncertainty scores can be used to assess whether a model pre-
diction can be trusted or not, and the separation between Group 1 and
Group 3 (correct vs absent) gives an estimate of how well the uncer-
tainty scores can be used to detect new/unseen cell types. The model
uncertainty is defined as follows (logits are the outputs of the last layer
of the neural network):

uncertainty= 1:�maxðpÞ ð7Þ

p= sof tmaxðlogitsÞ ð8Þ

To get a first impression, one can look at the distribution of
uncertainty scores conditioned onwhich one of the three groups a cell

belongs to (see Supp. Fig. 4c). As expected, one can see that the
uncertainty scores for Group 2 and Group 3 are usually a lot higher
than for Group 1.

Now, to provide a more mathematically rigorous benchmark,
one can measure how well one can distinguish Group 2 and Group
3 from the referenceGroup 1 based on the uncertainty scores provided
by the scTab model by looking at the area under the curve of the
receiver operating characteristic (ROC-AUC). A ROC-AUC score of
1.0 means that the groups can be perfectly separated and a score of
0.5 means that there is no separation between the groups based on
the uncertainty scores (see Supp. Fig. 4d). The above approach can
also be used to assess how the quality of uncertainty estimates
improves with the number of models in the deep ensemble. Looking
at the results, one can see that for both cases our uncertainty estimates
provide a useful way to distinguish between the groups. Group 1
and Group 3 can be separated with an ROC-AUC score of 0.782 and
Group 1 and Group 2 can even be separated with an ROC-AUC score
of 0.891.

In practice, biologists and computational biologists can overlay
the uncertainty estimates from scTab alongside the predicted cell type
labels and their defined clustering on a UMAP or tSNE visualization of
their data to hint at which predictions are associated with higher
uncertainty and, hence, should be investigated in more detail (see
Supp. Fig. 4a).

Statistics and reproducibility
No statistical method was used to predetermine sample size. We
simply used all the available data from the CELLxGENE data corpus
(version 2023-05-15) subject to the our filtering criterion described in
the Dataset preparation section (Methods).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Informationfiles. All data used
in this manuscript can be downloaded from CELLxGENE15 (census
version “2023-05-15”). Moreover, for ease of use, the processed data
and checkpoints of the trained models can be download here:
Data: https://pklab.med.harvard.edu/felix/data/merlin_cxg_2023_05_
15_sf-log1p.tar.gz (164GB) Checkpoints: https://pklab.med.harvard.
edu/felix/data/scTab-checkpoints.tar.gz (8.1GB) Source data are pro-
vided with this paper.

Code availability
GitHub - All code: https://github.com/theislab/scTab/tree/devel48

GitHub - Tutorials: Data loading tutorial: https://github.com/theislab/
scTab/blob/devel/notebooks-tutorials/data_loading.ipynb. Loading
pre-trained models: https://github.com/theislab/scTab/blob/devel/
notebooks-tutorials/model_inference.ipynb.
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