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SUMMARY
Cancer cells and pathogens can evade T cell receptors (TCRs) via mutations in immunogenic epitopes. TCR
cross-reactivity (i.e., recognition of multiple epitopes with sequence similarities) can counteract such escape
but may cause severe side effects in cell-based immunotherapies through targeting self-antigens. To predict
the effect of epitope point mutations on T cell functionality, we here present the random forest-based model
Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM). P-TEAM was trained and
tested on three datasets with TCR responses to single-amino-acid mutations of the model epitope
SIINFEKL, the tumor neo-epitope VPSVWRSSL, and the human cytomegalovirus antigen NLVPMVATV,
totaling 9,690 unique TCR-epitope interactions. P-TEAM was able to accurately classify T cell reactivities
and quantitatively predict T cell functionalities for unobserved single-point mutations and unseen TCRs.
Overall, P-TEAM provides an effective computational tool to study T cell responses against mutated
epitopes.
INTRODUCTION

The T cell receptor (TCR)-mediated recognition of pathogen- or

tumor-derived epitopes by T cells plays an essential role in the

adaptive immune response. These epitopes are bound to the

major histocompatibility complex (MHC) and interact with

the complementarity-determining regions (CDRs) of the TCR.

T cells whose TCR recognizes the epitope with sufficient affinity

are activated and undergo clonal expansion and differentiation

to form an immune response. The exchange of a single amino

acid in the epitope may severely alter TCR binding behavior1

and can lead to a 10-fold higher antigen sensitivity in immunoas-

says.2 Furthermore, undetected cross-reactivity toward healthy

cells may cause severe damage when developing T cell-based

immunotherapies against neo-epitopes from tumor cells and

must therefore be avoided.3

Computationally predicting binding between TCR and epitope

remains challenging due to the immense sequence diversity. It

has been estimated that there exist more than 1020 possible
Cell Genomics 4, 100634, Septem
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TCRs in nature and that every human harbors at least 107

different TCRs at any given time.4 Publicly available, curated da-

tasets with paired information on TCRs and their recognized epi-

topes allowed the creation of a variety of machine learning

methods to predict TCR-epitope binding.5–10 However, these

data are not collected in a standardized manner in the context

of deep mutational epitope scans. As of April 2023, for example,

only 17 of the 152 single-amino acid mutated peptides for the

model epitope SIINFEKL are provided in the Immune Epitope

Database11 and none in the VDJdb.12 Therefore, current

methods trained on such data are likely to fail when predicting

the change in T cell activation introduced by most point muta-

tions. Additionally, these databases, and thereby the predictors

as well, typically simplify the TCR-epitope interaction to a binary

event of binding or non-binding, even though epitopes activate

T cells to various degrees, resulting in continuous changes in

the phenotype and abundance of T cell populations during an im-

mune response.13 The dataset from a deep mutational scan

introduced by Straub et al.14 tackles both of these shortcomings
ber 11, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Overview of P-TEAM for predicting T cell activation by mutational epitopes

(A) Data acquisition: SIINFEKL-reactive TCRs were isolated based on H-2Kb-SIINFEKL multimers from mice previously exposed or unexposed to a murine CMV

strain expressing SIINFEKL (mCMV-Ova). Two additional datasets consist of 6 previously identified human TCRs reactive to the tumor epitope VPSVWRSSL and

20 TCRs reactive to the CMV antigen NLVPMVATV. JTPR cells expressing a single TCR each were stimulated with APLs derived from single-amino acid mu-

tations of the cognate epitopes. An activation score of each TCR toward each APL, a negative (NC) and positive control (PC), and the WT epitope is determined

based on nuclear factor of activated T cells expression measured by flow cytometry after stimulation.

(B) Random forests predict the continuous activation score as a regression task, or the binary TCR recognition related to in vivo recruitment as a classification

task, for all APLs within a TCR, as well as for an unseen TCR. The amount of training data can be reduced by efficient sampling using active learning techniques.
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by measuring the effect of all single-point mutations of the well-

characterized murine epitope SIINFEKL on TCR functional reac-

tivity, and simultaneously determining T cell reactivity levels that

correspond to actual recruitment and clonal expansion in vivo af-

ter pathogen infection (Figure 1A). In this work, we leverage this

dataset to introduce Predicting T Cell Epitope-Specific Activa-

tion against Mutant Versions (P-TEAM), a random forest model

trained to predict how T cell reactivity is affected by single-amino

acid altered peptide ligands (APLs; Figure 1B).

The model can either learn from a TCR’s reactivities toward a

subset of APLs to predict the effect of the remainingmutations or

generalize across a fully characterized TCR repertoire to novel

TCRs. P-TEAM does not only classify TCR-epitope pairs as

binding or non-binding but is also able to estimate a continuous

activation score reflective of TCR reactivity. Additionally, we

embedded P-TEAM into an active learning framework for exper-

imental design to reduce the amount of training data required to

obtain reliable predictions for novel epitopes. Finally, we applied

P-TEAM on two datasets derived from human TCRs, revealing

high performance in predicting potential cross-reactive epitopes

for T cell-based immunotherapies.

RESULTS

Comprehensive quantification of T cell reactivity toward
single-point mutations
To develop a model for predicting T cell functionality for muta-

tional epitopes, we utilized the dataset described in Straub
2 Cell Genomics 4, 100634, September 11, 2024
et al.,14 which contains the functional reactivity information of

36 murine TCR sequences toward all single-mutation-based

APLs of the model epitope SIINFEKL (murine dataset). The

TCRs were either isolated from the naive repertoire of

SIINFEKL-binding T cells (naive repertoire, n = 20) of an unex-

posed mouse14 or the memory repertoire (educated repertoire,

n = 15) of murine cytomegalovirus (mCMV)-SIINFEKL-exposed

mice.15 The dataset also included the well-studied SIINFEKL-

reactive TCR OT-I as a reference control (n=1).

For each TCR, an activation score representing the fraction of

activated T cells (Figure S1A) was experimentally determined for

the wild-type (WT) epitope as well as all of its 152 APLs (8 posi-

tions3 19 amino acids = 152 APLs; STARMethods, method de-

tails, data collection). In total, we studied 5,472 (36 TCRs 3 152

APLs) unique murine TCR-peptide MHC (pMHC) interactions.

The scores were normalized to allow comparisons across the

different TCRs (Figure 2A). A TCR was marked as reactive to a

peptide when the activation score exceeded 46.9%, which

was identified as a threshold for effective recruitment and clonal

expansion in vivo.14

Based on these experiments, the TCRs showed a broad

range of functional reactivity levels (Figures 2B and S1B).

Even though the TCRs were identified through binding toward

H-2Kb/SIINFEKL multimers, 11 TCRs from the naive repertoire

did not show any relevant reactivity toward the WT epitope or

any APL upon transgenic re-expression in Jurkat triple param-

eter reporter (JTPR) cells, which were removed from all further

experiments. Overall, the change in activation score is highly
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Figure 2. Predicting APL mutations within the reactivity landscape of a given TCR

(A) The normalized activation scores show a large variety of murine T cell activation in the deep mutational scan, in which each of the eight epitope positions

(P1–P8) was exchanged by the other 19 amino acids in turn.

(B) The activation scores averaged for all APLs and the WT epitope (n = 153) of one TCR indicate high- and low-affinity TCRs.

(C) The epitope position on which the mutation occurs strongly influences the activation per APL (n = 19) averaged over all TCRs (n = 36). The threshold value

represents the boundary between binding and non-binding, and WT indicates the activation scores of the base epitope SIINFEKL.

(D) MHC restrictiveness indicated by information content in bits for H-2Kb obtained from the MHC Motif Atlas16 per position determined from n = 992 peptides.

Reported anchor positions are highlighted in yellow and the WT epitope is indicated above.

(E) The receiver operating characteristic (ROC) curves for the different TCR repertoires indicate the TPR against the FPR at all prediction values as thresholds.

(F) Different evaluation metrics for regression (Spearman) and classification models.

(G) Spearman correlation when a smaller amount of training data is used (average over 10 repetitions with random subsets for each TCR).

(H) Spearman correlation obtained when trained on different subsets of the data.

The performance in (E)–(G) is shown for OT-I (n = 1 TCR), the educated repertoire (n = 15 TCRs), and the naive repertoire (n = 9 TCRs).

See also Figures S1–S6, Table S1, and STAR Methods, quantification and statistical analysis.
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dependent on the position of the mutation (Figures 2C and

S1C). Contrary to expectations, the TCR activation was not

decreased by mutations at the H-2Kb anchor positions P3,

P5, and P8, indicating that sufficient MHC binding might be

retained by the remaining positions (Figures 2C and 2D).

Rather, TCR activation is sensitive to mutations at the epitope

positions P1, P4, P6, and P7, where H-2Kb allows a wide va-

riety of amino acids. This was indicated by a strong Pearson
correlation of 0.712 (p = 0.047) between the average activa-

tion score per position and the information content of the

MHC motif positions,16 which serves as a measure of how

restrictive a position is (Figure S2A). Notably, these epitope

positions were estimated to be in close proximity to the

CDR3 of the TCR (Figure S2B) and probably contribute

strongly to the TCR-epitope interaction. Therefore, mutations

at the epitope center positions with low restrictiveness in their
Cell Genomics 4, 100634, September 11, 2024 3
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MHC motif had, on average, a strong negative effect on T cell

activation.

In summary, our dataset contains murine TCRs derived from

the educated and the naive repertoires, with experimentally

determined reactivities against all possible APLs. The TCRs

from the educated repertoire showed reactivity against

SIINFEKL and large numbers of its APLs, whereas TCRs from

the naive repertoire showed overall fewer and more variable re-

activities against the WT and mutant epitope versions.

P-TEAM predicts the effect of epitope point mutations
on individual TCRs
We applied P-TEAM to this dataset to predict the effect of the

various mutations of the epitope SIINFEKL for each TCR individ-

ually. Our approach is based on a random forest estimator,

which receives physiochemical representations of amino acids17

describing the WT epitope sequence and the APL sequences.

We first investigated whether it is possible to predict recogni-

tion of APLs by TCRs using a binary classification model. The

random forest was trained separately for each TCR on 151 out

of 152 APLs and predicted the probability of activation of the

left-out mutation repeating this process for each APL. To eval-

uate the classification models, we reported the area under the

receiver operating characteristic curve (AUC), which summa-

rizes the true positive rate (TPR; recall, fraction of correct positive

predictions over positive samples) and the false positive rate

(FPR; incorrect positive predictions over negative samples) at

all possible classification thresholds. We further provide the

average precision score (APS), which indicates the AUC be-

tween precision (fraction of positive samples among those pre-

dicted as positive) and recall (see TPR). The performance

(Table S1) on the educated repertoire was consistently high,

with a mean AUC of 0.892 and APS of 0.883 among all TCRs

(Figures 2E, 2F and S3). Only two receptors in the educated

repertoire had an APS below 0.80—TCR ED28 (0.668) and

TCR ED39 (0.662)—which showed the weakest cross-reactivity

profile. The model for the reference TCR OT-I showed a similarly

high performance as the educated repertoire (AUC: 0.930, APS:

0.949). The predictive performance decreased for the naive

repertoire with a median AUC of 0.829 and APS of 0.581. This

was expected given the more variable and overall lower reactiv-

ities against the WT epitope and APLs in this repertoire

compared to the educated repertoire (Figures 2A and 2B).

Consistent with this, the naive repertoire showed higher predic-

tion variability between the different TCRs, reaching an AUC of

0.959 for TCR B11. The worst-performing TCRs achieved an

APS of only 0.062 for TCR G6, which expressed reactivity to

only five APLs, indicating difficulties in selecting recognized

APLs when they occur rarely for a given TCR. However, the sec-

ond-worst TCR, E8, followed after a great leap in performance of

0.447 in APS (Figures 2E, 2F, and S3), indicating that the TCRs of

the naive repertoire were in fact predictable when they were

reactive to a greater number of APLs. To evaluate the model

by the position of mutation, we calculated the accuracy (fraction

of correct predictions) as the AUC is ill-defined if all APLs at a po-

sition are assigned either nonreactive or reactive. On average,

the model achieved a high accuracy of 0.866, showing a clear in-

crease of 0.173 compared to classifying all APLs as either acti-
4 Cell Genomics 4, 100634, September 11, 2024
vating or not activating depending on which label occurred

more frequently for a given TCR. While still outperforming

this majority class prediction, the position-wise accuracy of

P-TEAM decreased by 0.104 at epitope position P3 and by

0.054 at P7 (Figure S4), which were particularly difficult to predict

as the average activation scores were close to the binarization

threshold (Figure 2C).

Moving beyond binary classification, we also predicted the

continuous reactivity of T cells in a regression setting for an

APL in the same leave-mutation-out (LMO) validation scheme

separated by TCR (Figure 2F) and evaluated the performance

through Spearman’s rank correlation (Table S1). The regression

models showed similar variability as the classification models.

However, the gap in median performance between the educated

and naive repertoires was considerably greater: 13.8 percentage

points for Spearman compared to 6.3 percentage points for AUC

(Figure 2F). Furthermore, we evaluated whether models trained

on binary data inherently learn continuous binding properties

(Figure S5A)—in other words, whether the probability of reac-

tivity predicted by the classification model also correlates with

the actually measured reactivities. Intriguingly, the binding prob-

ability predicted by the classification model correlated to a large

degree with the activation score for highly activated TCRs lead-

ing to a drop in the Spearman coefficient of only 0.050 for OT-I

(Figure S5B) and 0.044 in the educated repertoire (Figure S5C).

Based on these results, we conclude that the TCR-epitope

interaction can be predicted as a fine-grained continuous reac-

tivity landscape beyond a binary recognition event.

Only 25% of random mutations are needed to learn a
general model
We showed that P-TEAM can predict the T cell reactivity levels of

a single mutation when trained on the remaining APLs. However,

experimentally determining the activation of TCRs for the major-

ity of, if not all, possible APLs comes with extensive labor, time,

and cost expenses. Therefore, we analyzed the minimum num-

ber of APLs needed for training to obtain good generalization

performance by comparing the performance of models trained

on various subsets of APLs (Figures 2G, 2H, S6A, and S6B).

A given percentage of all APLs was randomly selected as

training data, while the remaining samples were used for testing

(Figures 2G and S6A). In the educated repertoire, the average

performance decreased only slightly by 0.041 in the Spearman

correlation and 0.026 in AUC when the model was trained on

25%of the available samples (n= 38APLs) as compared to using

all 151 APLs. When further reducing the training samples to 10%

(n = 15 APLs), a noticeable drop in performance was observed,

resulting in a decrease in the Spearman correlation of 0.147

and of 0.087 in AUC. The naive repertoire followed a similar

pattern, albeit with decreased initial performance. The perfor-

mance of the model remained stable until trained on only 25%

of APLs (n= 38), however, with a generally larger decrease in per-

formance (Spearman correlation: 0.078, AUC: 0.051) compared

to the educated repertoire. This was followed by an even stron-

ger decrease in performance (Spearman correlation: 0.186,

AUC: 0.137) when trained on fewer data (n = 15 APLs).

To gain insights into the interaction between epitope fea-

tures and predictions, we further evaluated the model in two
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cross-validation settings by splitting the data either by amino

acid or by position. In the first setting (leave-amino-acid-out

[LAO]), all APLs containing a given amino acid, in turn, were

reserved for validation, while in the second setting (leave-posi-

tion-out [LPO]) the process was repeated based on epitope po-

sition instead of amino acids (Figures 2H and S6B). In the LAO

setting, the regression performance changed only negligibly

for both educated (Spearman: 0.015) and naive repertoires

(Spearman: �0.017), suggesting that the model could success-

fully leverage the physiochemical features used to encode amino

acids. However, when mutations at specific positions were left

out in the training set, the model was barely able to predict

T cell activation scores, resulting in a Spearman coefficient of

0.057 and an AUC of 0.495 across both repertoires, indicating

random predictions. This highlights the importance of sampling

across all epitope positions when predicting the mutational ef-

fects, and can be explained by the functional role of the different

epitope positions.18 While anchor positions fix the epitope within

the MHC binding groove, and are therefore not accessible to the

TCR, other positions are presented to the TCR to varying de-

grees and form the majority of interactions.

Accurate prediction of the reactivity landscape for
unseen TCRs
In the previous experiments, the model predicted the effect of

mutations on an individual TCR for which several APLs were

observed during training. As a next step, we further evaluated

the capability of our model to generalize to new TCRs by predict-

ing the effect of all APLs on an unseen TCR that was held out dur-

ing training (leave-TCR-out). In addition to the WT epitope and

APL sequence, here, we provided the model with the sequence

representation of the TCR CDR3a and CDR3b encoded by the

Atchley factors, as described above.17 Overall, this provided

the model with a residue-level representation of the CDR3 re-

gions from which common sequence features can be learned

to generalize to related TCRs.

During classification for unseen TCRs, the AUC for the

educated repertoire was 0.905 ± 0.041, and varied between

0.965 (TCR ED8) and 0.811 (TCR ED5) (Figures 3A, 3B, and S7;

Table S1). The performance for the naive repertoire was consid-

erably more variable than for the educated repertoire, with an

average AUC of 0.620 ± 0.286 during classification. The three re-

ceptors with the smallest number of activated APLs had AUC

values below 0.5, while the AUC for TCR OT-I was 0.959. This

discrepancy between the predictive performance of different

TCRs is not surprising. While receptors with high reactivity

from the educated and naive repertoire interact with the APLs

derived from SIINFEKL in a similar manner and are thereby pre-

dictable, low-reactive TCRs are likely to recognize different

cognate epitopes, and hence follow widely different interaction

patterns.19 Overall, the classification of the model indicated by

the AUC shows a strong statistically significant Pearson correla-

tion of 0.911 to the WT activation (p =2.4 3 10�10; Figure S8).

Hence, we conclude that due to the composition of the dataset,

our model is particularly suited for TCRs that show a high affinity

toward the WT epitope.

To investigate the diversity in reaction patterns in the naive

repertoire, we trained the classification model on all TCRs in
the educated repertoire and predicted the activation scores of

the naive repertoire (leave-naive-out) and vice versa (leave-

educated-out). The classification performance measured by

AUC scores obtained from the leave-educated-out model

showed a large decrease in performance, with a mean absolute

difference of 0.090 over the leave-TCR-out validation (Fig-

ure S9A). In contrast, the leave-naive-out method only led to a

negligible maximal absolute difference of 0.025 (Figure S9B),

providing additional evidence that the prediction was mainly

driven by the educated repertoire, and TCRs in the naive reper-

toire were so diverse among one another that interaction pat-

terns were not easily transferable from one TCR to the other.

To evaluate this further, we quantified the distance of each

TCR toward the dataset by its mean TCRdist320 to the remaining

TCRs. The classification performance of the model for both rep-

ertoires indicated by the AUC showed a statistically significant

negative Spearman correlation (r =�0.480, p = 0.015; Figure 3C)

to the TCR distance, indicating lower performance for less-

related TCRs. This analysis strengthens the evidence that

P-TEAM performs well on reasonably similar TCRs, and its per-

formance is reduced to the degree to which the TCRs are

different. These results indicate the possibility of further

improving the performances of the model by acquiring experi-

mental data covering a broader spectrum of binding modes.

P-TEAM outperforms conventional TCR-epitope binding
predictors and epitope similarity measures
Recently, several machine learning approaches revealed good

performance in classifying general pairs of TCRs and epitopes

as binding or non-binding based on their sequences.5–10 These

tools are trained on large curated databases of publicly available

TCR-epitope pairs, which only contain a limited amount of

epitope mutations. Here, we report the comparative perfor-

mance of the two deep learning-based predictors ImRex10 and

ERGO-II,8 which were trained on general TCR epitope pairs,

against the classification prediction of P-TEAM trained with the

leave-TCR-out protocol on ourmutation datasets to test whether

specialized datasets are required to predict the effect of muta-

tions (Figure 3D).

P-TEAM significantly outperformed all tested models (paired

two-sided t test, all p < 0.0001) by a large margin (increase in

averaged AUC over all TCRs larger than 0.25). This confirms

the previous observations that these models often have

decreased performance for unseen epitopes.21 Overall, most

baseline models performed only slightly better than random on

this challenging dataset (average AUC < 0.60). However, this

was expected as both predictors have, in contrast to P-TEAM,

not encountered deep mutational scans, where small changes

in the epitope sequences may cause large changes in activation

patterns.

Intuitively, one could ask whether P-TEAM ‘‘simply’’ learns

epitope similarities, compared to TCR-epitope interactions. To

investigate this, we derived the WT epitope to APL similarities

from the BLOSUM62 matrix,22 indicating the likelihood of an

amino acid exchange, and the Atchley factors,17 which provide

physiochemical summaries for the amino acids. As both similar-

ity metrics neglect the position-dependent effect of a mutation,

we set their binarization threshold per position to the value,
Cell Genomics 4, 100634, September 11, 2024 5
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Figure 3. Generalization capabilities predicting activation for novel TCRs

(A) ROC curves for the different groups of TCRs.

(B) APS and AUC as additional classification metrics. The dashed line indicates the prediction using the labels of a random other TCR of the whole dataset (dark)

or from the educated repertoire (light).

(C) Classification performance shows negative correlation to the average TCRdist320 between the training and test sets.

(D) P-TEAM significantly (****p < 0.0001) outperforms existing TCR-epitope predictors ImRex10 and ERGO-II.8

The performance in (A)–(D) is shown for OT-I (n = 1 TCR), the educated repertoire (n = 15 TCRs), and the naive repertoire (n = 9 TCRs).

(E) The importance of input features obtained by replacing the test TCR input with a random CDR3 sequence of the dataset (+) or by shuffling the amino acid at

each epitope position in the test set compared to the unshuffled performance (� and dashed line). The performance is indicated for all TCRs of the educated

repertoire over repeated shuffling (n = 153 15 = 215). Below, the average distance of the center of mass between the epitope and TCR residues is shown (n = 32

TCRs).

(F and G) Predicted structural model of the TCR and epitope, and minimal distance to the individual epitope positions for receptors ED21 and E9 (highest and

lowest activation, respectively). The model shows the interaction between the epitope and the CDR3 of the TCRs.

See also Figures S7–S13, Table S1, and STAR Methods, quantification and statistical analysis.
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resulting in the highest accuracy across the dataset and

compared it to P-TEAM at the position-agnostic, unoptimized

threshold of 50% classification probability. Despite this,

P-TEAM outperformed BLOSUM62 and Atchley similarities on

average by 0.128 and 0.139 in accuracy (Figure S10). Due to

the optimized thresholds, epitope similarities performed on par

with P-TEAM for positions where most APLs were either bound
6 Cell Genomics 4, 100634, September 11, 2024
or not bound. However, they failed on themore variable positions

P1, P3, and P7 in the educated repertoire.

These results highlight that current general TCR-epitope clas-

sifiers and epitope similarity measures cannot be used to predict

T cell activation by APLs. Until the number of diverse epitopes

and mutational scans in public databases increases drastically,

specialized datasets and predictors such as P-TEAM are



Algorithm 1. Sample selection of P-TEAM

Data: Sfull, Sinit, Ainit

Nadd ) 8

M )10

Strain ) Sinit

Atrain ) Ainit

for i ) 1 to M do

classifier ) train_classifier(Strain, Ainit)

uncertainty ) classifier(Sfull \ Strain)

Snew ) B

for j ) 1 to Nadd do.

Snew ) Snew + argmax(uncertainty)

end

Anew ) experimentally_test(Snew)

Strain ) Strain + Snew

Atrain ) Atrain + Anew

end

Article
ll

OPEN ACCESS
therefore needed to study the effect epitope mutations have on

T cell activation.

P-TEAM learns biologically relevant interactions
To shed light on the inner workings of our model, we investigated

the relevance of different input features in predicting TCR reac-

tivity for unseen TCRs in a regression setting. We employed

permutation importance tests tomeasure the contribution of fea-

tures in the fitted model.23 In short, the model is trained on the

regular dataset; however, during the prediction phase, a set of

input features is randomly perturbed. A large performance

drop during this evaluation indicates that the model strongly re-

lies on this information and is unable to perform accurate predic-

tions if neglected. Here, we tested the importance of the full

CDR3 region as well as each amino acid position individually

(Figure 3E).

P-TEAM assigned the greatest importance to the CDR3 re-

gion, indicated by a drop of 0.366 in Spearman coefficient in

the educated repertoire (Figure 3E). This behavior was expected

as the TCRs show different activation patterns toward the

epitope mutations. Hence, the model must incorporate the

TCR sequence to generalize to unseen TCRs and not simply pre-

dict the activation score of a random, observed TCR. When

analyzing epitope positions of SIINFEKL, the highest sensitivity

was assigned to positions P4 and P6, with an absolute decrease

in Spearman of 0.226 and 0.143, respectively (Figure 3E). In

contrast, epitope positions P1, P3, P5, and P8 remained robust

(decrease in Spearman <0.05), indicating the low importance of

the residues at these positions for TCR binding. In fact, the side

chains at these positions of SIINFEKL have previously been re-

ported as completely (P5, P8) or predominantly (P1, P3) buried

within the binding groove of MHC class I H-2Kb and, hence,

are not in contact with the TCR.24 The only exception is P2, which

was also reported to be enclosed by theMHC but showed higher

feature importance. Overall, this indicates that these positions

do not have a strong impact on TCR-epitope binding and hardly

influence prediction.

To further confirm that these results are in concordance with

biological findings, we modeled the three-dimensional structure
of each TCR and the epitope SIINFEKL using TCR-pMHC

models.25 The sensitive positions P4 and P6, which were previ-

ously identified to protrude from the binding groove,26 laid in

close proximity to the TCR, with a distance of less than 6 Å be-

tween the residues’ center of mass when averaging across the

murine dataset (Figures 3E–3G, S11, and S12), which corre-

sponds to a distance that is indicative of contact between these

residues.27 Overall, the proximity of the epitope residues re-

vealed a significantly strong correlation, with the feature impor-

tance indicated by a decrease in Spearman correlation (Pearson:

0.722, p = 0.043; Figure S13).

Overall, the feature importance analysis of our model, com-

bined with findings in the literature and our structural modeling,

further validated the results obtained by P-TEAM. The reliance

of the model on known biologically relevant features ensures

that its performance is not a statistical artifact but based on

learning the interaction between APLs and TCRs.

Iterative experimental design decreases training set
size to 24 APLs
As shown above, P-TEAM could accurately predict T cell activa-

tion while being trained with as few as 25% randomly selected

APLs (n = 38) in a classification and regression setting. To further

reduce the experimental effort required to train P-TEAM on new

TCR repertoires, we optimized the experimental design to find

the smallest subset of APLs needed to learn a well-performing

model, as opposed to the random selection of APLs tested

above. Active learning28,29 is a collection of machine learning

techniques that aim to iteratively improve the performance of a

model, by deciding which samples to label experimentally (see

Algorithm 1). These techniques require a small initial training da-

taset and further on request the label of additional examples,

which are likely to improve the performance of the model the

most by only collecting diverse and informative examples for

training. In practice, this procedure requires multiple experi-

ments to be performed sequentially in the wet lab with APLs sug-

gested by the P-TEAM active learning framework. However, the

total number of required samples, and therefore the total cost of

collecting the dataset, is lowered through this alternating inter-

play between the acquisition of experimental data and model

training.

We simulated this process by hiding the label for most

APLs and gradually revealing the labels of a batch of examples

(n = 8) whose prediction wasmost uncertain for the TCR-specific

models (STAR Methods, active learning). We compared our

active learning method with a baseline that randomly chooses

eight APLs to label in each iteration. To start the active learning

procedure, we provided an initial training dataset consisting of

one APL per position with the amino acid exchange that was

the most different from the WT epitope as quantified by the

BLOSUM62 substitution probability.22 Compared to a random

selection, using this initialization set (n = 8) improved the perfor-

mance noticeably in the regression task by an increase in

Spearman correlation of 0.120 in the educated repertoire (Fig-

ure 4A), reaching an average Spearman correlation of 0.614

from only 8 observed samples. However, this is only reflected

in aminor improvement during classification, with an absolute in-

crease in AUC of 0.024 (Figure 4B) at the first iteration. At
Cell Genomics 4, 100634, September 11, 2024 7
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Figure 4. Reduction in training samples through active learning

(A and B) Comparison of the active learning framework to random sample selection on the educated repertoire of the murine dataset for classification (A) and

regression models (B) for predicting within a TCR (n = 15 TCRs 3 100 repetitions). The expected performance is shown for up to m = 10 consecutive iterations

(NAPLs = 80) of alternating wet lab experiments and model training. The dashed horizontal line indicates the performance threshold of 0.7 Spearman and 0.85,

respectively, which can be obtained by using three iterations (24 APLs) of active learning, as indicated by the dashed vertical line.

(C) Fraction of the mutated positions of the APLs within the newly selected training batch during the active learning process for each iteration. The vertical lines

represent a random selection of the samples.

See also STAR Methods, quantification and statistical analysis.
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iteration 10 (80 training APLs), the model achieves an AUC of

0.914, which required a training set of 137 random APLs in pre-

vious experiments (Figure S6A), thus reducing the amount of

required training data by 42%. Overall, the active learning strat-

egy statistically outperformed random sampling at every itera-

tion on both datasets (unpaired t test, p < 0.0001 for regression

and classification, with the exception of AUC at iteration 3,

p = 0.004).

This improvement over random sampling can be attributed to

a dataset-specific focus on certain positions. P-TEAM showed

high uncertainty for mutations at positions P3 and P8 at the sec-

ond iteration, leading to an oversampling with 22.1%and 21.4%,

respectively, of the selected APLs stemming from these posi-

tions (Figure 4C). Over all 10 iterations, APLs with mutations at

position P3 were sampled most frequently (17.1% of the training

samples). Conversely, positions P2 and P4 were selected the

least, with a frequency of 8.4% and 8.5%, respectively, as

T cell reactivity was comparable for all exchanges at these posi-

tions (Figures 2A and 2C). With this interplay between experi-

mental design and computational modeling, P-TEAM was able

to reach a high performance of AUC > 0.85 and Spearman > 0.70

after the third iteration. We, therefore, conclude that three exper-

imental rounds of alternating wet-lab and in silico experiments,

collecting 24 APLs of an 8mer epitope (15.8% of the dataset)

in total, are sufficient to train P-TEAM to a satisfactory perfor-

mance level.

P-TEAM identifies cross-reactive APLs for neo-epitope-
specific human TCRs
To further validate P-TEAM on a therapeutically relevant epitope,

we introduced a second mutational scan for the human cancer

neo-epitope VPSVWRSSL (STAR Methods, data collection;

Figures S14A–S14C). The human leukocyte antigen (HLA)-

B*07:02-restricted epitope VPSVWRSSL occurs in a frame-
8 Cell Genomics 4, 100634, September 11, 2024
shift-induced neo-open reading frame of the gene RNF43,30,31

which is frequently mutated in gastrointestinal cancers.32 Seven

HLA-B*07:02/VPSVWRSSL-binding TCRs with therapeutic po-

tential were isolated from healthy donors, of which six TCRs

showed reactivity against the WT epitope and several of the

133 tested APLs (798 unique human pMHC-TCR interactions).

The dataset did not contain 38 APLs predicted to break MHC

binding via NetMHCpan,33 which occurred especially for muta-

tions at anchor positions P2 and P9 affecting 19 and 15 APLs,

respectively. Contrary to the murine dataset, all TCRs of the

neo-epitope dataset recognized at least 20 mutations, with a

maximum of 75 mutations (Figure 5A). Two TCRs, R24 and

R28, showed the least overall activation (Figure 5B) caused by

limited reactivity at the end positions P7–P9. Overall, the change

in activation score was again highly dependent on the position of

the mutation. Exchanges at center positions P4, P5, and P6

without MHC restrictions indicated in the HLA-B*07:02 motif

generally led to a drop in activation (Figures 5C and 5D).

During LMO classification, P-TEAM performed similarly to the

educated repertoire, with an average AUC of 0.890 and APS of

0.784 (Figures 5E and 5F; Table S2), with the worst-performing

TCR R24 (AUC: 0.761, APS: 0.322) and the best-performing

TCR R25 (AUC: 0.949, APS: 0.933). Predicting the activation

score in the regression setting showed high performance, with

a Spearman correlation of 0.734 (Figure 5F) in the neo-epitope

dataset indicating that the approach can be applied to different

epitopes as well as human TCRs.

As in the murine dataset, the model performed only slightly

worse when trained on 25% of the neo-epitope APLs (n = 33;

Figures S15A and S15B), with a decrease of 0.044 in Spearman

correlation and a decrease of 0.024 in AUC. Again, active

learning further improved sample efficiency for the neo-epitope

dataset (Figures 5G and 5H). With the initial set, the model

reached a Spearman correlation of 0.663 and an AUC of 0.810,
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Figure 5. Predicting the effect of neo-epitope mutations within a human TCR

(A) The normalized activation scores of six TCRs of the neo-epitope dataset express high activation against the mutation landscape.

(B) The activation scores averaged for all APLs (n = 133) of one TCR indicate two reactivity patterns.

(C) The epitope position onwhich themutation occurs strongly influences the activation per APL (n= 19, except P1: n= 17, P6: n = 17, and P9: n = 4) averaged over

all TCRs (n = 6). The threshold value represents the boundary between binding and non-binding, and WT indicates the activation scores of the base epitope

VPSVWRSSL.

(D)MHC restrictiveness indicated by information content in bits for HLA-B*07:02 obtained from n = 6,747 peptides in theMHCMotif Atlas16 per position. Reported

anchor positions are highlighted in yellow and the WT epitope is indicated above.

(E) The ROC curves of the six neo-epitope-specific TCRs indicate the TPR against the FPR at all prediction values as thresholds.

(F) Different evaluation metrics for regression (Spearman) and classification models (n = 6 TCRs).

(G and H) Comparison of the active learning framework to random sample selection on the neo-epitope dataset for regression (G) and classification models (H)

(n = 6 TCRs 3 100 repetitions). The expected performance is shown for up to m = 10 consecutive iterations (NAPLs = 80) of alternating wet lab experiments and

model training. The dashed horizontal line indicates the performance threshold of 0.7 Spearman and 0.85, respectively, which can be obtained by using three

iterations (24 APLs) of active learning as indicated by the dashed vertical line.

(I) Fraction of the mutation positions of the APLs within the newly selected training batch during the active learning process for each iteration. The vertical lines

represent a random selection of the samples.

See also Figures S14 and S15, Table S2, and STAR Methods, quantification and statistical analysis.
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outperforming random sampling by 0.138 and 0.025, respec-

tively. In the following iterations, the model steadily improved

to a Spearman correlation of 0.754 and an AUC of 0.924 at iter-

ation 10 (n = 80 APLs), significantly outperforming random sam-

ple selection at every iteration (unpaired t test, p < 0.0001 for

classification and regression, with the exception of AUC at itera-

tion 1, p = 0.015). At the threshold of n = 24 APLs, P-TEAM was

able to predict the T cell activation with an AUC of 0.864 and a

Spearman correlation of 0.713. As in the murine dataset (Fig-

ure 4C), APLs with exchanges at position P3 were identified as

beneficial to the training process, with a frequency of 19.5% at

the first iteration and 18.1% in total (Figure 5I). However, contrary

to the murine dataset, positions P1 and P4 were heavily over-

sampled at iteration 1, with 23.9% and 28.9% in the neo-epitope

dataset. This focus on the differing positions between the two

datasets emphasizes the need for an uncertainty-based experi-
mental design, as no generalized rules can be derived across

different epitopes.

Contrary to the LMO experiments, the average model perfor-

mance was reduced compared to the educated repertoire (AUC:

0.771, APS: 0.663, Spearman: 0.663) for predictions in the leave-

TCR-out setting (Figures 6A–6C; Table S2). Specifically, themodel

failed to generalize to the two TCRs, R24 and R28, with an AUC of

0.561 and 0.618, respectively, which followed different activation

patterns at positions P7–P9 (Figure 5A). Presumably, a larger vari-

ety in binding modes needs to be captured within the repertoire

data to further generalize to unseen TCRs with varying activation

patterns. Despite the low performance on these two TCRs, the

model outperformed the general TCR-epitope predictors by an in-

crease in AUC of 0.116–0.289 (Figure 6D).

Feature importancewas predominantly assigned to epitope po-

sition P5 (decrease in Spearman: 0.226; Figure 6E) that lay with an
Cell Genomics 4, 100634, September 11, 2024 9
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Figure 6. Across-repertoire prediction for the neo-epitope dataset

(A and B) ROC (A) and precision-recall (B) curves for the six TCRs of the neo-epitope dataset.

(C) APS, AUC, and Spearman correlation as classification and regression metrics. The dashed line indicates the prediction using the labels of a random

other TCR.

(D) P-TEAM outperforms existing TCR-epitope predictors ImRex10 and ERGO-II8 by a large margin (*p < 0.05; **p < 0.01).

(A–E) Performance over n = 6 TCRs.

(E) The importance of input features obtained by replacing the test TCR input with a random CDR3 sequence of the dataset (+) or by shuffling the amino acid at

each epitope position in the test set compared to the unshuffled performance (� and dashed line) (n= 6 TCRs3 15 repetitions). Below, the average distance of the

center of mass between the epitope and TCR residues is shown (n = 6).

(F and G) Predicted structural model of the TCR and epitope, and minimal distance to the individual epitope positions for receptors R25 and R28 (highest and

lowest activation, respectively). The model shows the interaction between the epitope and the CDR3 of the TCRs.

See also Figure S16, Table S2, and STAR Methods, quantification and statistical analysis.
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averagedistanceof 5.64 Å, secondclosest to the TCR in the struc-

tural models25 (Figures 6F, 6G and S16). The effects of the anchor

positions could not beobservedas thedataset containedonly four

APLswithmutationsatP9andnone forP2since the remainingmu-

tations were not experimentally determined. However, P3, which

was ranked second to last in importance (decrease in Spearman:

0.024), hadbeenreported to formanoptional stabilizing interaction

to the MHC class I HLA-B07*02.34 The predicted spatial models

show that the two outlier TCRs, R24 and R28, also follow different

structural patterns. Both TCRs lay closer to positions P1 and P2

than the remaining TCRs (Figures 6F, 6G, and S16), which might

further indicate a different TCR-pMHC interaction pattern. How-

ever, it must be noted here that structural interpretation on the

neo-epitope dataset must be viewed with caution as the underly-

ing template epitope in TCR-pMHC models25 expressed only

33.3% sequence identity to VPSVWRSSL.

To summarize, P-TEAMachieved high performance in predict-

ing the effects of mutations in the neo-epitope VPSVWRSSL on
10 Cell Genomics 4, 100634, September 11, 2024
T cell reactivity during classification and regression, even though

the leave-TCR-out setting is slightly limited due to the low

amount of available TCRs. The model adapted to the changing

effects of mutations at specific epitope positions as shown

through changes in feature importance and differing sample se-

lection during active learning.

Effects of mutations in viral epitopes are predictable
To showcase P-TEAM in other disease settings, we introduced a

third deepmutational scan against the commonly studied human

CMV epitope pp65 NLVPMVATV restricted to HLA-A*02:01

(STAR Methods, data collection). The scan comprised the acti-

vation of 20 TCRs against all 171 mutated APLs, resulting in

3,420 unique TCR-epitope interactions (Figure S17A). The

TCRs were activated with a mixed landscape from 3 to 99 acti-

vating APLs (Figure S17B) resembling the reactivity spectra of

the combined naive and educated murine dataset. The epitope

positions P4 and P5 without MHC restrictions were highly
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sensitive toward mutations in addition to the HLA-A*02:01 an-

chor position P9 (Figures S17C and S17D), where mutations,

presumably, broke MHC binding. In contrast to the murine re-

pertoire, we did not observe any correlation between MHC

restrictiveness and the average activation score per position

(Figure S17E).

On average, P-TEAM achieved an AUC of 0.728 and a

Spearman correlation of 0.592 for predictions of individual

TCRs (Figures S17F and S17G; Table S3), showing a consider-

ably larger variance than in the murine datasets. The model

mainly failed with an AUC <0.60 for 3 out of 20 TCRs for which

only limited APLs were indicated as binding (Figure S17H). As

for the two other datasets, the utilization of active learning

improved the performance at every iteration, albeit on an overall

reduced level (Figures S17I and S17J). Compared to LMO pre-

diction, the performance of P-TEAM increased in the leave-

TCR-out setting, reaching a Spearman correlation of 0.788 and

an AUC of 0.884 (Figures S18A–S18C), thus significantly sur-

passing general TCR-epitope predictors by >0.30 (p <0.0001;

Figure S18D; Table S3). Again, the largest importance was as-

signed to the CDR3 sequence (Figure S18E), followed by epitope

position P1 and position P5, which was estimated to be on

average closest to the TCRs (Figures S18F, S18G, and S19).

Based on the results of these two datasets, we therefore

conclude that P-TEAM can be applied to therapeutically relevant

TCRs across different host organisms, epitopes, MHC alleles,

and diseases, if a sufficient number of annotated samples is

available.

DISCUSSION

Pathogens and cancer cells try to escape surveillance by the

adaptive immune system through epitopemutations that prevent

TCR binding. Indeed, single-point mutations can be enough to

evade previously formed immune memory.35 While even general

TCR binding prediction remains a challenge, predicting the ef-

fect of point mutations is especially difficult, as public datasets

used as training data contain very few examples of epitopes

differing by one residue toward the same receptor.

Asafirst step toward thisgoal,we introducedP-TEAM, a single-

point mutational effect predictor trained on three datasets that

measured TCR reactivity levels for single-point mutations of three

different epitope-MHC combinations comprising a total of 9,690

TCR-APL unique interactions. We modeled the interaction of

T cells to epitope mutation for individual TCRs, as well as across

repertoires, with high accuracy, indicating the validity of our

approach for different epitopes and host organisms. The model

was able to learn this interaction based on the APL and TCR

CDR3 sequences evenwhen trained on a limited number of anno-

tated samples. While most prediction methods treat the TCR-

epitope interaction as a binary event of recognition or non-recog-

nition,P-TEAMcouldpredict not only suchaclassificationbut also

a continuous reactivity score in a regression setting.

In general, T cell activation was sensitive to mutations at the

epitope’s center positions that were not restricted by the MHC.

Thus, MHCmotifs16 can serve as an initial indicator for the effect

of mutations but are agnostic to changing binding modes be-

tween TCRs leading to different activation patterns. We found
that the predictions of themodel were driven by these highly sen-

sitive residues in the epitope, which differed between different

WT epitopes. Based on the predicted spatial proximity of

epitope and TCR residues, we validated that the model ex-

tracted meaningful interactions of the TCRs to residues of the

APLs, which are in line with previous findings in the literature.

TCR-specific models could be trained with one-quarter of all

possible mutations (n = 38) without any notable changes in pre-

diction performance. This amount was further reduced to 24

samples (15% of the APLs) by alternating experimental design

framework between wet lab experiments and model training.

In conclusion, we present P-TEAM, a TCR-epitope binding pre-

dictor specializing in single-point mutations of epitopes that gen-

eralizes across receptors and can be trained with as few as 24

mutations. The model is able to estimate continuous activation

that ultimately characterizes TCR-epitope interactions beyond bi-

nary recognition. Our findings point to the intriguing possibility of

predicting changes in T cell functionality due to single-point mu-

tations in a quantitative manner from epitope and TCR sequence

alone. P-TEAM therefore bears the potential of improving the

safety and effectiveness of immunotherapies and vaccines.

Limitations of the study
While we demonstrated P-TEAM on three diverse datasets, more

epitope-MHC combinations would provide further validation of

the broad applicability of the model. Furthermore, we focused

on MHC class I epitopes in this study, while the predictability of

mutations in MHC class II epitopes remains to be tested.

Currently, our modeling approach incorporates only the APL

and CDR3 sequences to guide the predictions. The advantages

of including V(D)J-gene types, or pretrained TCR embeddings

such as TCRbert,36 remain untested, which could guide

P-TEAM toward better generalized predictions through an

improved TCR representation. While we reduce the amount of

training data through active learning, P-TEAM is applicable only

when the effect of severalmutations on a TCR is known.However,

recent advances in structural modeling such as AlphaFold337 and

similar methods might be harnessed to accurately model the

TCR-peptide-MHC structure. Such models could allow us to

investigate the mechanisms in their interaction, such as pMHC-

complex rigidity and advantageous TCR-peptide contacts,2

from a holistic perspective of all three components at large scale,

and thereby obtain a model that generalizes to novel epitopes.
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aTCRb APC BioLegend RRID: AB_313435

aCD3 Pacific Blue BD Biosciences RRID: AB_397038

aCD8 PC7 eBioscience RRID: AB_2637437

Chemicals, peptides, and recombinant proteins

Propidium Iodide (PI) Life Technologies Cat# P1304MP

RetroNectin� Takara Bio Europe Cat# T100B
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Fetal calf serum Biochrom N/A
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Critical commercial assays
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Experimental models: Cell lines

Jurkat triple parameter reporter cells In house N/A
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MP71 vector for retrovirus generation

in RD114 cells

Addgene #108214

Software and algorithms

FloJo V10 FlowJo LLC https://www.flowjo.com/

Prism 9 Graphpad https://www.graphpad.com

Python Conda Conda: python = 3.8

Numpy Conda Conda: numpy = 1.20.2

Pandas Conda Conda: pandas = 1.2.5

SciKit Learn Conda Conda: scikit-learn = 0.24.2

SciPy Conda Conda: scipy = 1.6.2

Generated Datasets In house Zenodo: https://doi.org/10.5281/zenodo.11195946
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S1074-7613(00)80540-3)
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Benjamin

Schubert (benjamin.schubert@helmholtz-munich.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Themurine and two human datasets, the aligned TCR sequences, TCR distances, and the structural models were deposited at

Zenodo: https://doi.org/10.5281/zenodo.11197941 and are publicly available as of the date of publication and are additionally

included in the supplementary material. The DOI is listed in the key resources table.

d All code including all experiments to reproduce the results, analysis, and tutorials has been deposited at Zenodo: https://doi.

org/10.5281/zenodo.11197941 and GitHub: https://github.com/SchubertLab/TcrPrediction_MutatedAPLs as of the date of

publication. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines
RD114 cell line was grown in Dulbeccos Modified Eagle Medium, supplemented with 10% FCS, 0.025% L-Glutamine, 0.1%HEPES,

0.001% gentamycin and 0.002% streptomycin (cDMEM). K562 and JTPR were grown in Roswell Park Memorial Institute medium,

supplemented with 10% FCS, 0.025% L-Glutamine, 0.1% HEPES, 0.001% gentamycin and 0.002% streptomycin (cRPMI). All cells

were grown in a 37�C humidified, 5% CO2 incubator. JTPR were originally obtained from Peter Steinberger (Medizinische Universi-

tät Wien).

METHOD DETAILS

CRISPR-Cas9-mediated orthotopic TCR replacement
CRISPR-Cas9-mediated orthotopic TCR replacement (OTR) for RNF43-specific TCRs was performed as previously described.38–40

All HDR templates were constructed in the followingmanner: 50 homology arm (human TCR alpha chain constant region), P2A, TCRb,

T2A, TCRa, bovine growth hormone polyadenylation signal (pGHpA), 30 homology arm. All TCR constructs were assembled in silico

and synthesized in an ampicillin expression vector by Twist Bioscience. The dsDNA HDR templates were generated by PCR as pre-

viously described.38,40 For the generation of assembled guide RNA (gRNA) of human TCRa constant (hTRAC) and human TCRb con-

stant region (hTRBC) (40mM), equal amounts of crRNA (80mM) was annealed with tracrRNA (80mM) at 95�C for 5min. Subsequently,

6mM Cas9 (61mM) was combined with the respective gRNAs and incubated for 15 min at RT to generate ribonucleoproteins (RNPs).

For the electroporation procedure, 1mg of template DNA (1 mg/mL) was co-incubated for at least 30s with RNPs. JTPR cells were re-

suspended in 20mL SE buffer with added supplement (18mL/100mL) andmixed with the assembled RNPs for nucleofection. The elec-

troporated JTPR cells (hTRBC, hTRAC, HDR template) were then transferred to 96-well U-bottom plates containing 175mL cRPMI

without antibiotics and transferred to cRPMI with antibiotics after 24h.

Generation of retroviruses and transduction
The TCR DNA templates were designed in silico based on retrieved TCR sequences from single cell PCR. TCR constructs were syn-

thesized by Twist Bioscience in a retroviral vector. The pp65-reactive DNA constructs had the following structure as previously

described41: TCRb chain including mTRBC1 (Ensembl: ENSMUST00000192856.6), P2A, TCRa chain, including hTRAC (Ensembl:

ENSG00000277734.8). SIINFEKL-reactive TCRs had the following structure as previously described14: Murine Kozak sequence,42

TCRb chain including mTRBC1 (Ensembl: ENSMUST00000192856.6), P2A, TCRa chain, including mTRAC (Ensembl:

ENSMUST00000103740.2). All TCRs were cloned into the pMP71 vector (kindly provided by Wolfgang Uckert, Berlin, added as

Addgene plasmid backbone #108214). For retrovirus production, RD114 packaging cells were transfected with the retroviral vectors

encoding for pp65-reactive TCRs via calcium phosphate precipitation. The supernatant of RD114 cells was collected at 72h after

transfection and purified from remaining cells by centrifugation at 1,500r.p.m. at 4�C for 7min. The supernatant was stored at 4�C
and used within 4 weeks after collection. Non-treated 48-well plates were coated with 120mL of RetroNectin (1:100 in PBS) over night

at 4�C. After incubation the remaining PBS was removed and 400mL of RD114 virus supernatant encoding a specific TCRwas added

per well of a tissue-culture treated 48-well plate and centrifuged at 3,000 x g at 32�C for 2 h. After centrifugation, 350mL the virus

supernatant was removed. 40,000 JTPR were added in 400mL of cRPMI to each coated well. The cells were centrifuged for

15min at 800 x g at 32�Cand incubated (37�C, 5%CO2) for 48 h. Transduction efficacywas determined via flow cytometry and trans-

duced cells were purified by fluorescence-activated cell sorting for comparable TCR expression.
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Data collection
Murine dataset

In this work, we analyzed the dataset described in Straub et al.14 The authors experimentally determined TCR functional reactivity in

response tomutations of the SIINFEKL epitope presented on the H-2Kb allele. Each epitope residue at every position was exchanged

against all other 19 encoded amino acids, at a time, resulting in a library of 152 unique mutations of the wild-type peptide. Functional

reactivity against these APLs was experimentally determined for 36 different murine TCRs as described by Straub et al.14 In brief,

Jurkat triple parameter reporter cells (JTPRs) were engineered to express a single SIINFEKL-reactive TCR, and co-incubated with

peptide-pulsed splenocytes. After 24h incubation time, NFAT reporter expression was assessed via flow cytometry. The murine

TCR library consisted of 15 unique TCRs isolated from the memory compartment of mCMV-SIINFEKL infected C57Bl/6 mice

(educated repertoire, Data S1),15,43 as well as 20 SIINFEKL-reactive TCRs from a naive C57Bl/6 donor (naive repertoire, Data

S2).14 The TCR OT-I was included as a reference control. TCR sequences were isolated from single-cell sorted, H-2Kb/SIINFEKL

multimer positive CD8+ T cell clones stemming from either infected or naive donors via the TCR SCAN platform44 as described by

Straub et al. TCR functional reactivity as assessed by JTPR stimulation was normalized as an activation score A across experiments

(Datas S1 and S2). JTPRs expressing a unique TCR were stimulated with the APL library in independent experiments resulting

in NFATAPL. In order to normalize the data, JTPRs of each TCR were included simultaneously in a single experiment and stimulated

with the wild-type peptide resulting in NFATsim. NFATAPL expression from APL library stimulated JTPR were normalized to this

experiment:

A½APL� = NFATAPL � NFATsim½SIINFEKL�
NFATAPL½SIINFEKL� (Equation 1)

For computational analysis to predict meaningful T cell activation, we set a threshold in the activation score of 46.9%. As described

by Straub et al., this valuewas experimentally determined in this screening platform to predict effective recruitment and clonal expan-

sion in vivo after adoptive transfer of low numbers of TCR transgenic naive T cells and infection. For the predictions, we excluded 11

TCRs for which the activation scores of all APLs fall short of this threshold.

Neo-epitope dataset

This dataset was experimentally generated in an analogous manner to the murine dataset. The APLs were formed by every single-

amino acid mutation of the human cancer neo-epitope VPSVWRSSL. Prior to the experiments, binding of the APLs to the HLA-

B*07:02 allele was computationally determined via NetMHCpan 4.1.33 APLs without predicted binding were excluded from the data-

set affecting positions P1, P2, P6, and P9 with 2, 19, 2, and 15 mutations, respectively, leading to a total amount of 133 peptides.

JTPRs were engineered to express a single neo-epitope specific TCR recognizing the VPSVWRSSL epitope. JTPRs were co-incu-

bated with peptide-pulsed K562 cells expressing HLA-B*07:02 for 24h. After 24h incubation time, NFAT reporter expression was as-

sessed via flow cytometry. The repertoire consists of 7 TCRs isolated via pMHC multimer staining and antibody staining for a naive

phenotype (CD3+ CD8+ CD45RA+ CD62L+) from healthy donors. In all experiments, the TCR R27 was excluded as it did not show the

expected activation against all APLs. The percentage of activated cells was experimentally determined for the remaining combina-

tions leading to a total of 798 pMHC-TCR interactions. The activation scores were normalized by their positive control. 66.09% was

chosen as a threshold for binarization, which represents the lowest activation of a TCR against the cognate epitope alongside sub-

optimal tumor-cell lysis in vitro (data not shown, Data S3).

CMV dataset

These data were generated in the same manner as described for human neo-epitope reactive TCRs. The APLs were formed by sin-

gle-amino acid mutations of the human CMV HLA-A*02:01 restricted epitope NLVPMVATV (pp65), irrespective of binding prediction

to theHLA allele, leading to a total amount of 172 peptides. JTPRswere engineered via retroviral transduction to express a single TCR

recognizing the pp65 epitope. The pp65 TCR library comprised 20 unique TCRs derived from CMV seropositive donors that were

previously isolated and provided by Mueller and colleagues.41 JTPR were co-incubated with peptide-pulsed K562 cells expressing

HLA-A*02:01 and NFAT reporter activation was assessed as described. In total, wemeasured 3,440 unique pMHC-TCR interactions.

We chose a threshold of 40.0% for binary classification of antigen recognition. This threshold represents the lowest activation of a

TCR against the pp65 epitope which displayed a detectable TCR-ligand koff rate (data not shown). This TCR affinity measurement is

indicative of high functionality and underscores a significant binding strength to the epitope.45,46 JTPR were stained for surface an-

tigens (TCR b-chain, CD3) to assess the percentage of TCR transgenic cells. The activation scores were normalized based on the

fraction of transgenic TCR-expressing JTPR (Data S4).

Predictors
Data representation

To provide the RandomForests with information on the APLs, we encoded their sequences into numeric representations. To this end,

we represent each amino acid via five factors representing a summary of physiochemical properties as developed by Atchley et al.17

which summarize polarity, secondary structure, molecular size, amino acid composition in proteins, and electrostatic charge. Based

on this encoding, we provided the full APL sequence and the difference between the APL and the wild-type sequence. Additionally,

the position of the mutation, the original, and the new amino acid at this position are provided.
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When predicting across TCRs, we provided the CDR3 sequences of the a- and b-chain as additional input to the Random Forests.

To this end, we represented the amino acid of each position via the Atchley factors as described above. To counteract the effect of

different lengths, we aligned the sequences using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm47 for

the murine and two human datasets, separately (Data S5), which aligns multiple biological sequences by introducing padding while

still preserving homology. Padding tokens were consequently encoded with all zero values.

Random Forests

The Random Forest predictors were consequently trained on this representation. While each Random Forest consisted of 250

different Decision Trees when predicting activation for the remaining APLs of a TCR, the number of Decision Trees was increased

to 1,000 for cross-TCR prediction to tackle the larger feature space. Each individual tree was fit on a bootstrap sample of the

data and a random subset of
ffiffiffi

d
p

features. We chose this setup with a large amount of diverse trees to prevent overfitting and aid

generalization,48 and the resulting performance is saturated by the number of trees (Figure S20). The trees were fully grown using

the Gini impurity as the splitting criterion in case of classification and mean absolute error for regression, in order to avoid outliers

dominating the models’ predictions.

Metrics

The classification models were mainly evaluated by the AUC and APS. The AUC can be interpreted as the probability that a positive

sample is scored higher than a negative sample, and is thus a natural and commonmetric used in binary classification tasks. The APS

on the other hand, is more robust toward imbalanced data, thus providing a reliable performance measure even when most events

are negative, as we observed for some TCRs in the dataset.49 To avoid differences in activation scores caused by the normalization,

we used the Spearman’s rank correlation to evaluate regression models. To calculate the accuracy, the prediction was binarized at a

threshold of 50% classification probability, which signifies the predicted likelihood of an APL exceeding the dataset-dependent acti-

vation score threshold.

Perturbation tests
To determine the importance of input features, the Random Forest was first trained as described above on the unperturbed data.

Following, selected groups of input features – but not the labels –were randomly shuffled. Intuitively, using random values for features

breaks their dependency on the target. Therefore, the model is not able to predict accurately when important input features are per-

turbed and thus themodel’s performance is greatly reduced. Unimportant features, instead, are not used bywell-performingmodels,

thus using random values for them should not impact performance. For P-TEAM, either the full CDR3 region or the amino acid at each

position individually was perturbed. In the former case, the model gets presented with the sequence of a random other TCR, but is

evaluated on the original TCR. Therefore, a drop in performance indicates that themodel strongly relies on the CDR3 sequence for its

prediction and does not solely reproduce the result of a random other TCR.

Baseline TCR predictors and distances
The data for the TCR predictors ERGO-II8 and ImRex10 were formatted as described by the authors in the corresponding GitHub re-

positories. While the trained model provided for ImRex uses the CDRb sequence as a sole input, ERGO-II can optionally incorporate

the CDR3a sequence, V- and J-genes of both chains, and MHC type. To allow fair comparison, we reduced the input for ERGO-II to

the information used by P-TEAM, i.e., the sequences of the CDR3 sequences of both chains. ERGO-II offers two different models

which were trained on the VDJdb12 and McPas-TCR50 databases, respectively. Since it is unclear which model better fits the

data used in this work, we report the performance of both models. Distances between the TCRs within a dataset were calculated

based on the implementation of TCRdist320 (Data S6). To derive epitope similarities, we compared the amino acid of the base epitope

and itsmutation in the APL. The amino acid similarity was determined by the corresponding entry in the BLOSUM62matrix22 or by the

Euclidean distance of their Atchley factors,17 which was subtracted from 10 to convert the distance to similarity. For the epitope sim-

ilarity measurements, the threshold was set per position to optimize the corresponding accuracy.

Structural modeling
The full nucleotide sequences of the TCRa and TCRb chains (Datas S1–S4) were translated to amino acid sequences. a- and b-chains

of each TCR, the wild-type epitope and the sequence of the MHC (H-2Kb for SIINFEKL, HLA-B*07:02 for VPSVWRSSL, HLA-A*02:01

for NLVPMVATV) were used as input for TCRpMHCmodels-1.025 to derive the structural models (Datas S7–S9). Four TCRs of the

educated repertoire (TCR ED5, TCR ED10, TCR ED23, and TCR ED40) were excluded from the following tasks, as the modeling soft-

ware failed to derive structural models presumably due to lack of TCR templates for these sequences. Thesemodels were aligned by

their MHC and visualized with PyMol,51 which also served as an interface to determine the structural relationships. The distances of

the center of mass for each amino acid residue in the CDR3a and CDR3b toward all peptide residues were calculated via the ’center-

ofmass’ command. Following, the minimal distances between TCR and epitope were determined for each epitope position.

Active learning
Active learning was used to reduce the amount of data needed to derive accurate predictors by choosing training samples in a so-

phisticated manner. We applied active learning in two settings. First, the algorithm selected the best APLs for an individual TCR to

predict the remaining APLs. Second, given a set of TCRs for which the activation scorewas known for all APLs, the algorithm selected
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the best APLs to be experimentally determined for a novel TCR. The general workflow of the active learning procedure followed an

iterative approach (Algorithm 1). In our experiments, we simulated the iterative experimental procedure by holding out the activation

scores for all yet unknown samples.

Initialization

The activation scores Ainit were experimentally determined for an initial set of training samples Sinit out of the full set of samples Sfull.

This initial set consisted of the APLs with the largest BLOSUM6227 distance to the base epitope for each position and the wild-type

epitope itself. These Sinit and Ainit were assigned as training samples Strain and training activation labels Atrain.

Iterative process

After initialization, the iterative process is started. A classification predictor following the samemodel as described above was trained

on Strain and Atrain. This classifier predicted the binary activation for the remaining APLs (Sfull \ Strain). In each step, theNadd APLs Snew

with the most uncertain prediction were identified and the corresponding activation scores Anew were experimentally determined.

Following, Snew and Anew were added to Strain and Atrain, respectively. After the evaluation of the yet unobserved data, the iterative

process continued with this updated training set until M=10 iterations were reached.

Uncertainty

This active learning process requires a measure of prediction uncertainty for each sample. Since the Random Forest consists of an

ensemble of different Decision Tree classifiers, the proportion of votes between these individual predictors can be interpreted as the

class probability of the Random Forest. Since the models were biased toward the dominating class of the training set, the inverse

difference of this class probability for each sample toward the average class probability across all samples was used to indicate

the uncertainty of the model.

Evaluation

At each iteration, the predictors were tested for classification as well as regression based on the selected samples Strain. For this

evaluation, the unobserved APLs (Sfull \ Strain) were used. The active learning scheme was compared against a baseline model,

for which training data was added randomly. The experiments were conducted on 100 random seeds to obtain robust performance

estimates for the different acquisition methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in Python (version 3.8) using the libraries SciKit Learn (version 0.24.2), SciPy (version 1.6.2),

Numpy (version 1.20.2), and Pandas (version 1.2.5). The sample size n and its description can be found in the corresponding figure

legends. All boxplots indicate the data quartiles while the whiskers extend to the extreme values excluding outliers outside the 1.5

interquartile range. The median is indicated as a horizontal line. If present, a triangle highlights the mean. Regression plots show the

linear regression fit and line plots the mean of the data as a line, and both indicate the 95% confidence interval as an error band. Bar

plots represent the data mean and their error bars the 95% confidence interval. Significance was defined by a p-value less than 0.05

with the values indicated through the following symbols: * <0.05, ** <0.01, *** <0.001, **** <0.0001. If not stated otherwise in the cor-

respondingmain text, a two-sided, paired t test was used to compare performances. For Spearman and Pearson correlations, a t test

against the null hypothesis that the data are uncorrelated was performed. The present study utilized all samples excluding eleven

TCRs from the naive without reactivity to any of the presented APLs. Four TCRs of the educated repertoire (TCR ED5, TCR ED10,

TCR ED23, and TCR ED40) were excluded from the distance calculation as the modeling software failed to derive their structural

models.
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