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Abstract

According to the synaptic homeostasis hypothesis (SHY), sleep serves to renormalize syn-

aptic connections that have been potentiated during the prior wake phase due to ongoing

encoding of information. SHY focuses on glutamatergic synaptic strength and has been sup-

ported by numerous studies examining synaptic structure and function in neocortical and

hippocampal networks. However, it is unknown whether synaptic down-regulation during

sleep occurs in the hypothalamus, i.e., a pivotal center of homeostatic regulation of bodily

functions including sleep itself. We show that sleep, in parallel with the synaptic down-regu-

lation in neocortical networks, down-regulates the levels of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPARs) in the hypothalamus of rats. Most robust

decreases after sleep were observed at both sites for AMPARs containing the GluA1 sub-

unit. Comparing the effects of selective rapid eye movement (REM) sleep and total sleep

deprivation, we moreover provide experimental evidence that slow-wave sleep (SWS) is the

driving force of the down-regulation of AMPARs in hypothalamus and neocortex, with no

additional contributions of REM sleep or the circadian rhythm. SWS-dependent synaptic

down-regulation was not linked to EEG slow-wave activity. However, spindle density during

SWS predicted relatively increased GluA1 subunit levels in hypothalamic synapses, which

is consistent with the role of spindles in the consolidation of memory. Our findings identify

SWS as the main driver of the renormalization of synaptic strength during sleep and suggest

that SWS-dependent synaptic renormalization is also implicated in homeostatic control pro-

cesses in the hypothalamus.
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Introduction

Experience during the wake phase is encoded into the brain’s neuronal networks by strength-

ening the synaptic connections in specific neuron ensembles. The encoding of information

during wakefulness thus leads to a widespread strengthening of synaptic networks, which, in

the absence of counterregulatory processes, would ultimately yield a state of saturation. The

synaptic homeostasis theory (SHY) proposes that sleep following the wake phase is the essen-

tial process that broadly renormalizes synaptic strength [1,2]. Specifically, SHY assumes that

wake encoding of information manifests itself mainly in the potentiation of excitatory synap-

ses, which is known to result in increased numbers of α-amino-3-hydroxy-5-methyl-4-isoxa-

zolepropionic acid (AMPA) type glutamate receptors, while they are down-regulated during

subsequent sleep. This down-selection of potentiated synapses is assumed to be driven by the

<1 Hz slow oscillation (SO) that hallmarks the stage of slow-wave sleep (SWS). SOs might gen-

erally weaken synaptic strength by decreasing synchronized firing, except in those neuron

ensembles that were essentially involved in prior learning and, during subsequent sleep, are

reactivated in the excitable up-states of the SO [3–5]. However, there is also evidence that the

renormalization of potentiated synapses primarily occurs during theta activity, a key phenom-

enon of rapid eye movement (REM) sleep [6,7]. SHY has been supported by numerous func-

tional and structural studies of synaptic networks in the neocortex and hippocampus, which

represent the main building blocks of the episodic memory system [8–11].

Surprisingly, previous work has entirely ignored the question whether sleep also renor-

malizes synaptic networks in the hypothalamus, a brain region pivotal for the homeostatic

regulation of multiple organismic processes including metabolic and reproductive func-

tions, as well as circadian and sleep/wake rhythms. In principle, such bodily homeostatic

control processes could be established in the absence of encoding-related synaptic upscal-

ing; consequently, they would not be in need of any sleep-dependent processes of synaptic

renormalization. Alternatively, whole-body homeostatic control in hypothalamic networks

may be indispensably bound to the continuous encoding and integration of environmental

information during the wake phase; it would therefore imply the upscaling of synaptic net-

works and, as a consequence, the need for synaptic renormalization during sleep. In line

with the latter assumption, there is growing evidence suggesting that hypothalamic circuits

balancing such bodily functions exhibit plasticity involving glutamatergic neurotransmis-

sion [12–15]. Thus, challenging homeostatic regulation by high-fat feeding or osmotic salt

loading invokes distinct changes in glutamatergic neurotransmission and associated synap-

tic expression of AMPARs in local circuits and wider networks in the hypothalamus [16,17].

Moreover, recent studies point to a critical role of the hypothalamus in learning and the for-

mation of persisting memory representations for social and nonsocial (spatial, object) expe-

riences [18–21].

We investigated the role of sleep, and of distinct sleep stages, in the down-regulation of

excitatory glutamatergic synapses in the rat hypothalamus. To corroborate and relate our

results to previous findings [8], we also assessed respective changes in the neocortex. We

focused on postsynaptic AMPARs, specifically on the GluA1 and GluA2 subunits and the

phosphorylation of GluA1 in synaptoneurosomes, as key substrates of synaptic renormaliza-

tion and plasticity at excitatory synapses [22–24]. These 2 subunits are also the most promi-

nent AMPAR subunits expressed in rat hypothalamus and neocortex [15]. We conducted 2

independent experiments to disentangle sleep-specific from potential circadian effects. In

experiment 1, we compared a spontaneous wake group, in which tissue for synaptoneurosome

analyses was obtained at 24:00 h of the active phase, with a sleep group, in which tissue was

obtained at 12:00 h of the inactive phase, resulting in a between-group circadian shift of 12
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hours. In experiment 2, we compared 3 groups, i.e., sleep, total sleep deprivation (TSD), and

REM sleep deprivation (REM-D), which were all killed at precisely the same time as the sleep

group of experiment 1 (12:00 h of the inactive phase), effectively eliminating any circadian

influence. We found that independent of the circadian rhythm, sleep compared to wakefulness

leads to a distinct decrease in the synaptic AMPAR subunit GluA1 in the hypothalamus and

that the reductions in hypothalamic GluA1 subunits due to sleep parallel those found in neo-

cortex. Sleep-associated attenuations of GluA1-containing AMPARs phosphorylated at Ser845

or Ser831 appeared to be generally enhanced by circadian rhythmicity. Decreases in AMPAR

subunit expression were comparable after undisturbed sleep and selective deprivation of REM

sleep, indicating that SWS is the main driver of synaptic down-regulation in hypothalamic

networks.

Results

Diminished AMPAR expression in hypothalamus and neocortex after sleep

compared with wakefulness

We measured the expression of AMPAR subunits in synaptoneurosomes obtained in the

entire hypothalamus and in the left cortical hemisphere in 2 groups of rats after 6-hour peri-

ods, which took place either during the animals’ daytime rest period or nighttime active

period and, accordingly, were filled with spontaneous sleep (Sleep; n = 16) or spontaneous

wakefulness (Wake; n = 16; see Fig 1A for the design of experiment 1). Synaptoneurosomes

are enriched in synaptic proteins and, thus, optimal for detecting activity-dependent

changes in glutamate receptor levels (see also Methods/Preparation of synaptoneurosomes

and S1 Fig). Time spent asleep during the 6-hour interval was (mean ± SEM) 202.68 ± 15.33

min in the Sleep group and 94.93 ± 5.96 min in the Wake group (t(30) = −6.55, p < 0.001;

Fig 1B).

In the hypothalamus, expression of AMPAR subunits in synaptoneurosomes was generally

lower after sleep than after wakefulness (Fig 1C): relative to the Wake group, animals of the

Sleep group showed a decrease to 57.5 ± 4.3% of GluA1 levels in synaptoneurosomes (t(30) =

5.489, p< 0.001, mean Wake value set to 100%). The change in GluA2 levels to 88.5 ± 15.0%

was not significant (p = 0.577). Compared with the Wake rats, the Sleep rats also showed

decreased levels of GluA1 phosphorylated at Ser845 (61.0 ± 5.9%, t(30) = 3.517, p< 0.01;

Fig 1D), whereas the respective pattern in GluA1 phosphorylated at Ser831 did not reach sig-

nificance (91.3 ± 8.3%, p = 0.495).

In the neocortex, we detected differences between the Sleep and Wake groups in the levels

of GluA1- and GluA2-containing AMPARs in synaptoneurosomes and in GluA1 phosphory-

lated at Ser845 and Ser831. Compared with the Wake group, the Sleep group showed a

decrease in the cortical levels of AMPAR-containing GluA1 (63.1 ± 3.9%, t(30) = 2.873,

p< 0.05) and GluA2 (83.7 ± 3.7%, t(30) = 2.674, p< 0.05; Fig 1E), as well as distinct decreases

in the levels of GluA1 phosphorylated at Ser845 (55.8 ± 4.0%, t(30) = 2.674, p< 0.001) and

Ser831 (71.9 ± 7.2%, t(30) = 2.960, p< 0.01; Fig 1F). Direct statistical comparisons between

neocortex and hypothalamus of the relative decreases in protein levels of AMPAR subunits

after sleep versus wakefulness revealed the sleep-related decreases to be comparable between

both sites for all 4 protein measures (F(1,18) < 0.445, p> 0.51 for respective Sleep/

Wake × Neocortex/Hypothalamus interactions). Control analyses of AMPAR subunit levels in

supernatants did not indicate any detectable differences between the Sleep and Wake groups

in hypothalamic or cortical samples (S2 Fig), confirming that the observed sleep-associated

decreases in synaptoneurosomal GluA1 and GluA2 subunits are specific to the synapses.

Importantly, to exclude any potential confounding effect of normalization to β-actin bands,
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we also directly compared β-actin levels collected from synaptoneurosomes and found that

they did not differ between groups (hypothalamus: t(78) = 0.531, p> 0.597; neocortex: t(78) =

−1.318, p> 0.191).

Fig 1. AMPAR levels in hypothalamus and neocortex after sleep and wakefulness. (A) Experimental design: AMPAR subunit levels

were measured in synaptoneurosomes sampled from the entire hypothalamus and from the left cortical hemisphere of rats after

experimental 6-hour periods taking place either during the animals’ daytime rest period (starting at 6:00 h, lights on) or nighttime

active period (starting at 18:00 h, lights off) and, accordingly, filled with spontaneous sleep (Sleep group, S; n = 16; white bars) or with

wakefulness (Wake group, W; n = 16; black bars). During the 6-hour interval, animals were food-deprived while water was available ad

libitum, and sleep was assessed by visually scoring behavior (in 6 rats) and by EEG and EMG recordings (in 10 rats). (B) Mean (±
SEM) time (in min) spent asleep during the 6-hour interval before AMPAR assessment (dot plots overlaid). (C) Levels of GluA1- (left)

and GluA2-containing AMPARs (right) and (D) of GluA1 phosphorylated at Ser845 (left) and at Ser831 (right) in hypothalamus and

(E/F) neocortex. For AMPAR subunit levels, mean ± SEM normalized values are shown with means of the Wake group set to 100%.

On top of the panels, 2 example immunoblots are shown for each group (s1, s2, w1, w2; GluA1, GluA2, phospho-Ser845, and

phospho-Ser831 bands were normalized with reference to the corresponding β-actin band in the same sample, the latter serving as

loading control). * p< 0.05, ** p< 0.01, *** p< 0.001, unpaired t tests; the underlying data sets are available in an online supporting

file (S1 Data).

https://doi.org/10.1371/journal.pbio.3002768.g001
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AMPAR expression is higher after total sleep deprivation but unchanged

after selective REM sleep deprivation compared to sleep

In order to investigate the possible causal contribution of REM sleep to the down-regulation of

AMPARs, we performed a second experiment in 3 groups of rats (Fig 2A), which were

exposed to total sleep deprivation for the entire experimental 6-hour period before AMPAR

assessment (TSD), or to REM sleep deprivation by gentle handling during the 6-hour period

(REM-D), or whose sleep was not disturbed (Sleep, S; n = 8 rats in each group). For all groups,

the 6-hour period before AMPAR assessment started at 6:00 h (lights on), i.e., with the begin-

ning of the rest period. Total sleep deprivation reduced sleep time to a minimum of 0.47% of

that of the Sleep group (Fig 2B). REM sleep deprivation suppressed REM sleep to 0.78% of

that during undisturbed sleep in the Sleep group, while total sleep time and SWS duration in

the REM-D group did not significantly differ from the Sleep group (Fig 2B).

Hypothalamic levels of the AMPAR GluA1 subunit were increased after total sleep depriva-

tion to 142.7 ± 14.1% of those in the Sleep group (set to 100%; t(16) = −2.685, p = 0.018;

Fig 2C). After REM sleep deprivation, levels of GluA1-containing AMPARs in hypothalamic

synaptoneurosomes were closely comparable to those found after undisturbed sleep in the

Sleep group (t(16) = 0.015, p = 0.989) and, consequently, also significantly lower than after

total sleep deprivation (t(16) = 2.575, p = 0.022; F(2,21) = 5.518, p = 0.012 for main effect of

Sleep versus TSD versus REM-D). We did not find significant differences between any 2 of the

groups in GluA2 subunit levels (F(2,21 = 0.082, p = 0.921; Fig 2C). There were also no differ-

ences between the 3 groups in GluA1 subunits phosphorylated at Ser845 (F(2, 21) = 0.07,

p = 0.933) or at Ser831 (F(2,21) = 0.707, p = 0.504; Fig 2D).

In the neocortex, GluA1 levels were likewise highest after total sleep deprivation

(136.5 ± 5.2%, with levels of the Sleep group set to 100%). Thus, they were not only signifi-

cantly higher than levels in the Sleep group (t(16) = 3.768, p = 0.002) but also higher than levels

in the REM sleep-deprived rats (145.3 ± 5.5%, t(16) = 3.248, p = 0.009; F(2,21) = 6.665,

p = 0.006 for main effect; Fig 2E). GluA1 levels in REM-D and Sleep rats were almost identical

(t(16) = 0.414, p = 0.685). In parallel, levels of GluA1 subunits phosphorylated at Ser845 were

enhanced after TSD in comparison both with Sleep (139.92 ± 8.3%, t(16) = −2.435, p = 0.029)

and with REM-D (145.43 ± 8.6%, t(16) = 2.601, p = 0.021; F(2,21) = 3.644, p = 0.044, for main

effect; Fig 2F). There were no differences in neocortical synaptosomes in the levels of GluA1

subunits phosphorylated at Ser831 (F(2,21) = 1.547, p = 0.236) or GluA2-subunits of AMPARs

(F(2,21 = 1.593, p = 0.227; Fig 2E and 2F). Comparisons of changes in AMPAR subunits

found in hypothalamic versus neocortical synaptosomes did not yield any significant sleep-

dependent differences between the 2 sites (p> 0.289 for respective TSD/REM-D/

Sleep × Neocortex/Hypothalamus interactions).

Control analyses of supernatants and β-actin levels did not reveal any differences between

the 3 groups, corroborating that the observed changes in AMPAR levels were specific to the

synaptoneurosomes (S3 Fig) and, furthermore, not related to changes in β-actin levels (hypo-

thalamus: F(2,93) = 0.099, p> 0.905); neocortex: F(2,93) = 1.100, p> 0.336).

In experiment 1, the 6-hour experimental sleep and wake periods took place during the ani-

mals’ rest and activity phases, respectively, and thus confounded effects of sleep and circadian

rhythm, whereas in experiment 2, the experimental 6-hour periods before AMPAR assessment

took place at the same circadian phase in all experimental groups, i.e., between 6:00 and 12:00 h.

Accordingly, additional analyses comparing the effects of undisturbed sleep relative to wakeful-

ness (i.e., with the values of the Wake and TSD groups in experiments 1 and, respectively, 2, set

to 100%), which covered experiments 1 versus 2 and both sites of interest (hypothalamus versus

neocortex), allowed the differentiation of potential circadian influences from effects of sleep.
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These ANOVA comparisons did not yield robust differences between experiments in the sleep

effect on GluA1 and GluA2 levels (all p> 0.065) but revealed a main effect of Experiment (1

versus 2) for the levels of GluA1 subunits phosphorylated at Ser845 and Ser831 (F(1,16) =

Fig 2. Changes in AMPAR subunit levels after undisturbed sleep (S), total sleep deprivation (TSD), and REM

sleep deprivation (REM-D). (A) Study design: 3 groups of rats were compared, i.e., a Sleep group with undisturbed

sleep during the 6-hour period before AMPAR assessment (S; n = 8 rats; white bars), a total sleep deprivation group,

which was kept awake during the 6-hour period (TSD; n = 8 rats; black bars), and a REM sleep deprivation group that

was selectively deprived of REM sleep during the 6-hour period (REM-D; n = 8 rats; grey bars). The experimental

6-hour period started always at 6:00 h and, as in experiment 1, included food but not water deprivation. Sleep

deprivation was achieved by gentle handling. (B) Mean ± SEM time (in min) spent in sleep (left), SWS (middle), and

REM sleep (right) by the 3 groups (dot plots overlaid). (C) Levels of GluA1 (left) and GluA2 AMPAR subunits (right)

and (D) of GluA1 subunits phosphorylated at Ser845 (left) and at Ser831 (right) in hypothalamus and (E/F) and

neocortex. For AMPAR subunit levels, mean ± SEM normalized values are shown with means of the Sleep group set to

100% (dot plots overlaid). On top of panels, 2 example immunoblots are shown for each group (s1, s2, t1, t2, r1, r2;

GluA1, GluA2, phospho-Ser845, and phospho-Ser831 bands were normalized with reference to the corresponding β-

actin band in the same sample, the latter serving as loading control). * p< 0.05, ** p< 0.01, *** p< 0.001, unpaired t
tests; the underlying data sets are available in an online supporting file (S1 Data).

https://doi.org/10.1371/journal.pbio.3002768.g002
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14.804, p< 0.01 and F(1,16) = 9.157, p< 0.01, respectively; p> 0.106 for respective

Experiment × Hypothalamus/Neocortex interactions). Post hoc analyses confirmed more pro-

nounced decreases (compared to Wake and, respectively, TSD) in the Sleep groups of experi-

ment 1 than experiment 2 for hypothalamic levels of GluA1 phosphorylated at Ser845

(60.930 ± 8.705% versus 103.846 ± 6.442%, t(16) = −3.963, p< 0.01) and for neocortical levels

of GluA1 phosphorylated at Ser831 (67.42 ± 8.145% versus 104.432 ± 8.807%, t(16) = −3.085,

p< 0.01). This pattern indicates a predominant role of sleep rather than circadian factors for

the regulation of GluA1 and GluA2 levels, whereas circadian rhythmicity might add to the effect

of sleep on GluA1 subunit phosphorylation.

Spindle density predicts levels of GluA1-containing AMPARs in

hypothalamic synaptoneurosomes

We next investigated which neurophysiological features of sleep may shape the configuration

of hypothalamic AMPARs. For this purpose, we analyzed the association of oscillatory sleep

features with AMPAR expression at the end of the experimental sleep period in the rats that

slept undisturbed while continuous electroencephalographic (EEG; from scull electrodes) and

electromyographic signals (EMG) were recorded. This was the case in 10 rats of the Sleep

group of experiment 1 and in all rats of the Sleep group in experiment 2.

Analyses of experiment 1 were run in an exploratory fashion and aimed to identify EEG

oscillatory features predicting AMPAR levels, and we used analyses of experiment 2 to rebut

or confirm these results. We focused on amplitude and duration of EEG oscillations that are

known to contribute to synaptic plasticity processes during sleep, i.e., on 0.1 to 4 Hz slow-

wave activity and 10 to 16 Hz spindles as hallmarks of SWS, and on 5 to 10 Hz theta activity as

a key characteristic of REM sleep [7,25,26]. After an initial analysis of correlations between

AMPAR subunit levels and sleep parameters for the entire experimental 6-hour interval pre-

ceding AMPAR assessment, we ran separate analyses for the first and second 3-hour intervals,

taking into account that total sleep time and time spent in SWS and REM sleep increased from

the first to the second 3-hour interval (Figs 3A-3C and S4). Only a few of the sleep parameters

assessed in experiment 1 showed consistent associations with AMPAR subunit expression,

and only with GluA1 subunit levels (see S1 Table for a summary of results). Thus, levels of

GluA1-containing AMPARs in hypothalamic synaptoneurosomes were positively correlated

with spindle density, i.e., sleep with high spindle density was associated with enhanced GluA1

subunit levels. This correlation approached significance for the 6-hour interval (r = 0.6135,

p = 0.0593) and was significant for the late 3-hour interval (r = 0.6791, p = 0.0308; Fig 3D).

Notably, whereas GluA1-containing AMPAR levels were positively associated with spindle

density, they were negatively correlated with SWS duration, i.e., were lower when rats spent

more time in SWS during the last 3-hour period (r = −0.729, p = 0.0168). None of the other

SWS-related parameters showed any consistent relationship with AMPAR levels (all

p> 0.095). However, levels of GluA1-containing AMPARs in hypothalamic synaptosomes

were also negatively correlated with REM sleep theta energy during the 6-hour interval (r =

−0.846, p = 0.0020). This negative correlation was even more pronounced in the separate anal-

ysis of the second 3-hour interval (r = −0.8740, p = 0.0009), where it also reached significance

for REM sleep duration (r = −0.6471, p = 0.0431; S1 Table). For AMPAR levels in cortical

synaptoneurosomes, we did not find any consistent associations with SWS- or REM sleep-

related parameters during the first and last 3 hours of sleep before their assessment (S1 Table).

In order to confirm or rebut spindle density, time spent in SWS, and REM sleep theta

energy as predictors of subunit levels in hypothalamic synaptoneurosomes, we analyzed data

from the Sleep group of experiment 2, where animals likewise experienced uninterrupted sleep

PLOS BIOLOGY Slow-wave sleep drives renormalization of synaptic AMPA receptor levels in hypothalamus

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002768 August 20, 2024 7 / 22

https://doi.org/10.1371/journal.pbio.3002768


for 6 hours prior to AMPAR subunit assessment. For this purpose, we subjected these parame-

ters to stepwise linear regression analyses. Again, we found increases in total sleep time as well

as SWS and REM sleep duration in the second compared to the first 3 hours of the experimen-

tal 6-hour interval (Figs 3B, 3C, and S4). Regression analyses confirmed spindle density as a

Fig 3. Spindle density predicts GluA1 AMPAR subunit levels in the hypothalamus. (A) Hypnogram for the 6-hour

period before assessment of AMPAR subunits obtained in an individual rat of the Wake (top) and Sleep (bottom)

group of experiment 1 (SWS, slow-wave sleep; REM, rapid eye movement sleep). (B) Mean (± SEM) total sleep time

(TST), time spent in SWS, and time spent in REM sleep in the first and second 3 hours of the 6-hour interval before

subunit assessment in the Sleep groups of experiment 1 (Sleep-Exp1, left) and experiment 2 (Sleep-Exp2, right), dot

plots overlaid; *** p< 0.001, ** p< 0.01; * p< 0.05, for t tests between first and second 3-hour intervals. (C) Mean (±
SEM) time courses for the major sleep oscillatory signals (spindle density, time in SWS, and theta energy in REM

sleep) during the 6-hour interval before subunit assessment in the Sleep groups of experiments 1 (white dots) and 2

(red dots). Sleep and oscillatory hallmarks of SWS and REM sleep were more pronounced during the second than first

3-hour interval. (D) Pearson product-moment correlations between levels of GluA1 subunit-containing AMPARs in

hypothalamus and spindle density (left) and REM sleep theta energy (right) during the 3 hours before subunit

assessment in the Sleep groups of experiment 1 (black dots and lines) and 2 (red dots and lines, grey shades, 95%

confidence intervals). Data of experiment 2 were used to validate, via stepwise regression models, significant

correlations identified in experiment 1. Only the positive correlation of spindle density with GluA1 subunit levels

proved to be robust; the underlying data sets are available in an online supporting file (S1 Data).

https://doi.org/10.1371/journal.pbio.3002768.g003
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factor predicting GluA1 subunit levels in hypothalamic synaptoneurosomes (b = 19.624,

SEM = 7.12, t(5) = 2.75, p< 0.05, for the optimal model fit): spindle density during the second

3-hour interval and GluA1 subunit levels were positively associated (r = 0.9135, p = 0.0015;

Fig 3D). This correlation was not observed for cortical levels of GluA1 subunits (r = −0.0563,

p = 0.8947, z = 2.6669, p = 0.0077 for the difference between correlations in hypothalamus and

neocortex). In contrast to spindle density, the negative associations of SWS duration and REM

sleep theta energy with GluA1-AMPAR subunit levels observed in experiment 1, however,

were not confirmed (Fig 3D). Note also that not only is the statistical link between high-ampli-

tude REM theta activity and the down-regulation of hypothalamic GluA1-containing

AMPARs restricted to experiment 1, but that the absence of effects on GluA1-AMPAR regula-

tion of selective REM sleep deprivation (compared to regular sleep) in experiment 2 indicates

that SWS alone is sufficient for sleep-dependent synaptic renormalization.

Discussion

The SHY assumes that periods of wakefulness, due to increased information encoding and

processing, go along with a net increase in synaptic networks, whereas subsequent sleep sup-

ports the renormalization of net synaptic strength [1,2]. The hypothesis refers mainly to gluta-

matergic transmission via synaptic AMPARs as a fundamental mechanism to control synaptic

strength in the major forms of synaptic plasticity [27]. Supporting SHY, wake-related increases

and sleep-related decreases in AMPAR levels have been shown in previous studies in neocorti-

cal as well as hippocampal networks [8–10,28,29]. The present findings extend and refine the

SHY in several ways: We provide first evidence that SHY also applies to hypothalamic net-

works, which, themselves, are mainly involved in the homeostatic regulation of various organ-

ismic functions, most notably energy metabolism [12,30] and the regulation of sleep and

wakefulness [31,32]. Moreover, comparing effects of selective REM sleep deprivation and total

sleep deprivation, our findings provide novel experimental evidence that SWS, rather than

REM sleep, is the main driver of synaptic renormalization during sleep, which is in agreement

with assumptions derived from previous work based mainly on correlational and computa-

tional approaches (e.g., [3,33,34]). Although our REM sleep deprivation experiments identified

SWS as a whole to promote renormalization of AMPAR subunits, spindle activity as one hall-

mark of this sleep stage consistently predicted increased, rather than decreased, GluA1-con-

taining AMPAR levels in the hypothalamus. This pattern is in line with the notion that

spindles contribute to the maintenance of synaptic potentiation and connectivity underlying

the formation of memories during sleep [35,36].

Our analyses of AMPAR subunit levels in neocortical synaptoneurosomes replicate virtually

all findings of a previous study by Vyazovskiy and colleagues [8], which compared the effects

of sleep and wakefulness on AMPAR levels in neocortex with those in hippocampal synapto-

neurosomes. Our first experiment revealed an almost 40% decrease in GluA1-containing

AMPARs after the daytime sleep period in comparison with the nocturnal wake period that is

closely comparable in size to the previous findings. The magnitude of the difference in GluA1

AMPAR subunit levels after sleep versus wakefulness very well matches changes observed after

learning and experimentally induced synaptic long-term potentiation (LTP) in vivo (e.g.,

[29,37–41]). This is consistent with the view that stimulus processing during wakefulness leads

to a net increase in potentiated synapses integrating GluA1 AMPARs, whereas sleep favors the

removal of these receptors and, thus, leads to a net renormalization of synaptic strength. Also,

the decrease in levels of GluA1 AMPARs phosphorylated at Ser845 and of receptors phosphor-

ylated at Ser831 after sleep replicates previous results by Vyazovskiy and colleagues [8]. Both

types of phosphorylation are acutely involved in mediating synaptic LTP and its maintenance.
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Phosphorylation at Ser831 mediates an increase in single-channel conductance at the

AMPAR. The dephosphorylation at Ser845 decreases the probability of channel openings and

promotes the internalization of the receptor during long-term depression (LTD) and the

downscaling of synapses [23,24]. Dephosphorylation at Ser845 during downscaling results

from a loss of protein kinase A (PKA) from synapses [42]. Finally, both the present and the

previous study by Vyazovskiy and colleagues [8] agree in showing a slight sleep-associated

decrease in levels of GluA2-containing AMPARs, which generally was less robust than that of

GluA1 AMPARs, possibly reflecting less pronounced plasticity of GluA2-containing receptors

[43]. Thus, the decrease in GluA2 subunits did reach significance in the Sleep group of our

experiment 1, but not in the condition of undisturbed sleep of experiment 2 or in the respec-

tive sleep condition of the study by Vyazovskiy and colleagues [8]. Experimental induction of

synaptic LTP typically increases expression of GluA2 AMPARs in parallel with GluA1

AMPARs [37,39,44,45]. The presence of the GluA2 subunit, then, renders the receptor imper-

meable to calcium, thus restricting receptor gating mainly to sodium and potassium ions, a

function assumed to protect the neuron from excitotoxicity [46]. Overall, our results from neo-

cortical synaptoneurosomes, in accordance with the earlier findings by Vyazovskiy and col-

leagues [8] and in conjunction with studies employing various other structural and functional

measures of network synaptic connectivity—like the size of axon-spine interfaces and spine

heads determined by electron microscopy [9] and the amplitude of somatosensory and motor

evoked potentials in humans [47]—corroborate the view proposed by SHY that, in the neocor-

tex, network synaptic potentiation increases over periods of wakefulness, whereas sleep pro-

motes a depression and renormalization of synaptic strength.

The main finding of our experiments is that, in comparison with wakefulness, sleep induces

a decrease in synaptic AMPAR levels in hypothalamic networks in virtually the same way as in

neocortical networks. We did not find any statistically significant difference in the response to

sleep between hypothalamic and neocortical synaptoneurosomes in any of the 4 targeted

AMPAR proteins. Importantly, in hypothalamic synaptoneurosomes, we found pronounced

sleep-associated decreases (in experiment 1) of levels of GluA1-containing AMPARs and of

GluA1 AMPARs phosphorylated at Ser845, i.e., the proteins that displayed most robust sleep-

related decreases also in neocortical synaptoneurosomes. Thus, sleep appears to rather uni-

formly (down-)regulate connectivity in glutamatergic synaptic networks throughout cortical

and subcortical structures, not only in neocortex and hippocampus, as observed before, but

also in the hypothalamus. This is notable considering that the hypothalamus is thought to be

involved to a much lesser extent in classical forms of learning and memory formation and

underlying synaptic plastic processes than the hippocampus and neocortex [18,48]. Moreover,

in contrast to hippocampus and neocortex, the homeostatic regulation of organismic functions

by hypothalamic nuclei is predominantly controlled by neuropeptides, a process that has been

proposed to imply altered mechanisms of AMPAR-mediated plasticity [15]. Indeed, we have

previously shown that short-term high-fat feeding in rats induces opposing changes in synap-

tic AMPAR levels in hypothalamus and neocortex, i.e., robust reductions in the former and

signs of increases in the latter [17]. Those findings highlight that the uniform down-regulation

of synaptic AMPAR levels in neocortex and hypothalamus is specifically promoted by sleep.

The cellular mechanism mediating such unified down-regulation of AMPARs is presently not

clear but may involve pathways involving cyclin-dependent kinase 5 (CDK5) and the immedi-

ate early gene Homer1a [10,34,49].

Our second experiment, in which we compared the effects of selective REM sleep depriva-

tion and total sleep deprivation, provided firm evidence that SWS is the main driver of the

sleep-dependent down-regulation of synaptic AMPAR levels in neocortex and hypothalamus.

Whereas the selective deprivation of REM sleep periods in comparison to undisturbed sleep
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left the levels of all 4 AMPAR proteins of interest unchanged, only total sleep deprivation—

comprising deprivation of REM sleep and of SWS—induced basically the same pronounced

increase in GluA1-containing AMPAR subunit levels as wakefulness compared with sleep in

our first experiment. The more direct proof of a causal role of SWS by selectively depriving

SWS is basically impossible because the animal enters REM sleep only after a period of SWS

has occurred, so that preventing the occurrence of SWS inevitably results in total sleep depri-

vation. Accordingly, in the absence of any effect of selective REM sleep deprivation, the effect

of total sleep deprivation can be safely taken to infer a causal contribution of SWS to the renor-

malization of AMPAR levels. At a first glance, our finding of unchanged AMPAR levels after

REM sleep deprivation conflicts with several other studies pointing to a crucial role of REM

sleep in synaptic regulation [50–52]. All of these studies made use of the “flowerpot method”

to induce a preferential suppression of REM sleep [53]. However, whereas in the present

study, the animals were deprived of REM sleep only for a rather short 6-hour interval (in order

to dissociate effects of REM sleep from those of undisturbed sleep occurring over the same

short 6-hour time period), in those experiments REM sleep was prevented for much longer

intervals of up to 75 hours (of rest/activity cycles). Such prolonged REM sleep deprivation is

well known to induce signs of stress (reflected by increased levels of norepinephrine and corti-

costeroids), which themselves strongly affect AMPAR regulation [54]. By contrast, we pre-

vented REM sleep by gentle handling of the animals, and only for a rather short period, which

can be expected to minimize stress-related confounds [55,56]. Additionally, some of the above-

mentioned studies (e.g., [51]) did not differentiate between neural and glial contributions to

AMPAR levels, whereas the present study focused on synaptoneurosomes specifically reflect-

ing AMPAR levels at neuronal synapses.

While we applied sleep deprivation procedures to demonstrate a driving role of SWS in the

down-regulation of AMPAR levels, we used correlational analyses to identify sleep oscillatory

signatures that most likely contribute to the regulation of AMPARs during sleep. In a 2-step

procedure, we first ran exploratory correlation analyses of the data of the Sleep group of exper-

iment 1, which revealed that 3 sleep parameters (i.e., time in SWS, spindle density, and REM

theta energy) were consistently associated with GluA1 levels. We then applied a stepwise

regression approach to these parameters as assessed in the Sleep group of experiment 2. Only

spindle density survived this hypothesis-driven approach, i.e., across both experiments

increased spindle density during the 3 hours before subunit assessment predicted higher levels

of GluA1 subunit levels in hypothalamic synaptoneurosomes. This positive association fits

well with a body of evidence indicating an enhancing effect of sleep spindles on the consolida-

tion of newly encoded memories, a process associated with the persistence or relative enhance-

ment of connectivity in specific synaptic ensembles, rather than global synaptic down-

regulation [57,58]. In the neocortex, spindles have been shown to underlie plastic synaptic

changes mediating an augmenting response evoked by pulse trains [59]. Spindles are associ-

ated with the replay of newly encoded memories [60,61], and, in contrast to spindle-inactive

cells that decrease their activity during SWS, neurons active during spindles display a relative

up-regulation of their activity in the course of sleep [62]. Noteworthy, in the present experi-

ments, a robust association with spindles was observed for GluA1-containing AMPAR levels

in hypothalamic, but not in neocortical synaptoneurosomes. One reason for this might be that

in the neocortex, up-regulating effects of spindles on GluA1 AMPARs are primarily conveyed

by locally acting spindles [63,64], whereas we assessed the link between EEG spindles recorded

at only a single electrode site and global AMPAR levels in an entire neocortical hemisphere.

Moreover, in the neocortex, the number of cells that are activated during a spindle is relatively

low and fluctuates significantly across consecutive SWS episodes [62]. It is therefore plausible

to assume that spindles in neocortical networks only affect a relatively small fraction of
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AMPARs. Our findings suggest a different scenario for hypothalamic networks, in which spin-

dles seem to exert a more widespread effect, regulating AMPAR levels throughout the hypo-

thalamus. While the presence of spindles in hypothalamic networks awaits confirmation, the

pattern found here might well be in line with a role of hypothalamic circuitries in gating long-

term memory formation [18,65]. In light of computational models predicting that temporal

firing patterns during slow-wave activity favor synaptic LTD and down-regulation of synaptic

connectivity [3,33], it might also surprise that we did not observe any systematic negative cor-

relation of neocortical GluA1 subunit levels and measures of slow-wave activity. However,

slow-wave activity is probably not a homogenous entity but comprises different types of waves

with partly opposing effects on synaptic scaling, whose distinction is difficult when based

solely on EEG criteria [66,67]. Also, the size of our samples was rather small in terms of corre-

lation analyses, rendering any conclusion tentative, particularly so with regard to null findings.

To dissociate effects of sleep from those of the circadian rhythm, we compared AMPAR

subunit levels between experiment 1 (in which sleep and wakefulness occurred at opposing

phases of the circadian cycle) and experiment 2 (in which the circadian phase was kept con-

stant across the 3 groups). These analyses confirmed that the pronounced decreasing effect of

sleep on GluA1-containing AMPARs emerges independently of any circadian influence. In

some contrast, circadian rhythmicity significantly contributed to the decrease in the levels of

phosphorylated GluA1-containig AMPARs. These findings are in line with evidence that the

phosphorylation of GluA1 AMPARs is, to a certain extent, controlled by circadian clocks and

may therefore occur at least in part independently of synaptic network plasticity associated

with learning and memory processes during sleep and wakefulness [68,69].

The molecular measures of AMPAR subunits obtained with western blots were collected in

the absence of complementing function measurements, which is an obvious limitation of our

study. We choose this approach as we aimed at a direct replication of the findings in neocorti-

cal synaptoneurosomes by Vyazovskiy and colleagues [8], which represents a key study in sup-

port of the SHY that has been confirmed by many other studies using different measures of

synaptic plasticity [2,34]. Western blotting provides a valid assessment of average receptor lev-

els in large regions like hypothalamus and neocortex but does not permit the assessment of

AMPAR subunit levels in specific circuits. Therefore, a tempting open question for future

research is to which extent sleep-dependent synaptic down-regulation of AMPARs pertains to

neuronal circuits that genuinely enable the homeostatic regulation of organismic functions,

like food intake and sleep itself.

Materials and methods

Animals

A total of 40 male Wistar rats aged 13 weeks (Janvier, Le Genest-Saint-Isle, France) were used

for the 2 experiments. The rats were kept at controlled temperature (22 ± 2˚C) and humidity

(45% to 65%) on a 12-h/12-h light/dark cycle with lights off at 18:00 h. Water and food were

available ad libitum. All animals were habituated to their home cage and handled for 7 conse-

cutive days (10 to 30 min/day) after arrival at the central animal facility. Animals were rou-

tinely checked by laboratory staff. Failure to groom and/or loss of more than 20% body weight

were set as criteria of potential sickness and lead to the exclusion of the animal.

Ethics statement

All experimental procedures were performed in accordance with the European animal protec-

tion laws and policies and were approved by the local animal welfare institutional review

board (Regierungspräsidium Tübingen, Baden-Württemberg; # MPV 1/17).
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Experimental procedures

Design and experimental schedules. Experiment 1 comprised 2 groups of rats, a Sleep

group and a Wake group, each including 16 animals. Each animal was habituated to the exper-

imental recording box (dark gray PVC, 30 × 30 cm, height: 40 cm) on 3 consecutive days prior

to the experiment proper, for 6 hours per day. On the fourth day, the experimental 6-hour

period was performed while EEG and EMG signals were continuously recorded and the rat’s

behavior was videotaped for offline analyses. For the Sleep group, the recording period took

place at the beginning of the light phase, i.e., between 06:00 and 12:00 h, and for the Wake

group at the beginning of the dark phase, i.e., between 18:00 and 24:00 h. During the experi-

mental 6-hour period, the animals had ad libitum access to water but were not provided food.

In 6 rats of each group, EEG and EMG signals were not recorded and sleep was scored based

on videotaped behavior.

Experiment 2 comprised 3 experimental groups of rats exposed to (i) TSD, or (ii) REM-D,

or (iii) whose sleep was not disturbed (Sleep), each including n = 8 animals. Animals were

habituated to the experimental 6-hour recording period as described for experiment 1. For all

groups, the recording period took place between 06:00 and 12:00 h; as in experiment 1, the ani-

mals were deprived of food but not of water. Sleep deprivation in the TSD and REM-D group

was implemented by “gentle handling,” which involves gentle tapping on the box and, if neces-

sary, gently shaking the box. No intense stimulation was used, and video recordings ensured

that no signs of startle or freezing behavior occurred. This procedure minimizes stress and

confounding influences of locomotion when applied over a longer period [70,71]. It was

applied in the TSD group whenever behavior and EEG recordings indicated signs of sleep, and

in the REM-D group upon the occurrence of signs of REM sleep (occurrence of EEG theta and

strong reduction in muscle tone).

In both experiments, animals were deeply anesthetized with isoflurane (within 1 min) and

killed by cervical dislocation immediately after the 6-hour experimental recording period. The

head was cooled in liquid nitrogen and the whole brain was removed. The left cortical hemi-

sphere and the hypothalamus were dissected, and samples were immediately frozen in liquid

nitrogen and stored at −80˚C for later assessment of AMPAR subunit levels.

Surgery. Animals were anesthetized with an intraperitoneal injection of fentanyl (0.005

mg/kg of body weight), midazolam (2.0 mg/kg), and medetomidin (0.15 mg/kg). They were

placed into a stereotaxic frame and were supplemented with isoflurane (0.5%) if necessary.

The scalp was exposed and 5 holes were drilled into the skull. Four EEG screw electrodes (Plas-

ticsOne, United States of America) were implanted (2 frontal electrodes: anterior +2.6 mm, lat-

eral ±1.5 mm; parietal electrode: posterior −2.0 mm, lateral 2.5 mm from Bregma; occipital

reference electrode: posterior −10.0 mm, lateral 0.0 mm from lambda). For EMG recordings, 2

stainless steel wires (PlasticsOne) were implanted into the neck muscle. Electrodes were con-

nected to a 6-channel electrode pedestal (PlasticsOne) and fixed with cold polymerizing dental

resin, and the wound was sutured. After surgery, the animals were single-housed in their

home cages and sleep recording was conducted after at least 7 days of recovery.

Sleep recordings and classification of sleep stages. During the 6-hour experimental

recording period, the animal’s behavior was continuously monitored using a video camera

mounted on the recording box. The animals were connected to a commutator that compen-

sated their movements and enabled the connection of the electrodes with the amplifier (Model

15A54, Grass Technologies, USA). EEG and EMG signals were filtered between 0.1 and 300

Hz and 30 and 300 Hz, respectively. Signals were digitalized at a sampling rate of 1,000 Hz

(Power1401, Cambridge Electronic Design, United Kingdom). Recordings were visually
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inspected for artifacts in Spike2 (Version 8; Cambridge Electronic Design, UK), and parame-

ters of interest were determined as follows.

Sleep stages were scored based on EEG and EMG signals for succeeding 10-s epochs.

Besides Wake, 3 sleep stages, i.e., SWS, REM sleep, and Pre-REM sleep, were determined off-

line using standard visual scoring procedures as previously described [72–74]. Wakefulness

was identified by mixed-frequency EEG and sustained EMG activity, SWS by the presence of

high amplitude low activity (delta activity:<4.0 Hz) and reduced EMG tone, and REM sleep

by low-amplitude EEG activity with predominant theta activity (5.0 to 10.0 Hz), phasic muscle

twitches, and minimum EMG tone. Pre-REM was identified by decreased delta activity, pro-

gressive increase of theta activity, and presence of sleep spindles. Recordings were scored by 2

experienced experimenters (interrater agreement >89.9%). Consensus was achieved after-

wards for epochs with discrepant classification.

In 6 rats each of the Sleep and Wake groups of experiment 1, sleep versus wakefulness was

scored solely based on behavioral criteria following standard procedures [75–77]. Sleep was

scored whenever the rat showed a typical sleep posture and stayed immobile for at least 10 s.

This visual scoring approach has been shown in previous rodent studies by our and other

groups to consistently match conventional EEG/EMG-based scoring by more than 92%.

EEG analyses. EEG signals were analyzed to determine the power within the frequency

bands hallmarking SWS and REM sleep, i.e., slow-wave activity (0.1 to 4 Hz) and theta activity

(5 to 10 Hz), respectively. The EEG signal was filtered in the relevant frequency bands using a

third-order Butterworth filter. The power measure was determined by computing the absolute

value of the Hilbert-transformed filtered signal. In addition, energy within the slow-wave

activity and theta frequency bands was obtained by integrating the Hilbert-transformed fil-

tered signal over the duration of the respective SWS and REM sleep epochs.

To identify sleep spindles and SO events during SWS and Pre-REM, offline algorithms

were used as described in detail previously [78–81]. For detection of spindle events, the EEG

signal was filtered between 10.0 and 16.0 Hz. Then, the envelope was extracted via the absolute

value, i.e., the instantaneous amplitude, of the Hilbert transform on the filtered signal. Next,

we determined 3 thresholds for spindle detection based on the mean and standard deviation

(SD) of the spindle band envelope during NREM sleep: the absolute value of the transformed

signal exceeds 1.5 SDs (lower threshold) for at least 0.5 s but no more than 2.5 s, 2.0 SDs (mid-

dle threshold) for at least 0.25 s, and 2.5 SDs (upper threshold) at least once, respectively. Spin-

dle onset was defined by the time when the signal exceeds the lower threshold for the first

time. Spindle power was calculated as the integral of the envelope of the Hilbert-transformed

signal between spindle onset and end. For calculating Hilbert transformations, the built-in

function “hilbert” was used in Matlab. The envelope was extracted using the Matlab function

“abs,” which returns the absolute value (modulus), i.e., the “instantaneous amplitude” of the

transformed signal. For each rat, the total number of spindles, spindle density (per min SWS),

and the average spindle duration were determined.

For the detection of individual SO events, the EEG signal was filtered between 0.1 and 4.0

Hz, and an event was selected in the EEG if the following criteria were fulfilled: (i) 2 consecu-

tive negative-to-positive 0 crossings of the signal occur at an interval between 0.5 and 2.0 s and

(ii) the highest and lowest value are detected between every 2 of these time points (i.e., 1 nega-

tive and 1 positive peak between 2 succeeding positive-to-negative 0 crossings). Intervals of

positive-to-negative 0 crossings were marked as SOs if the corresponding difference between

the negative amplitude and negative-to-positive amplitude was greater than two-thirds of the

average of the respective amplitude values across the whole recording. For each animal, the

total number of SOs, SO density (per min SWS and PRE-REM sleep), and average SO ampli-

tude, were determined.
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Assessment of AMPAR subunit levels

Preparation of synaptoneurosomes. Preparation followed previously published proce-

dures [17]. Cortical and hypothalamic tissue was rapidly dissected and immediately homoge-

nized in a glass Teflon homogenizer in synaptic protein extraction reagent (Syn-PER; Thermo

Scientific, USA) supplemented with a protease and phosphatase inhibitor cocktail (Thermo

Scientific). The homogenate was centrifuged at 1,200 × g for 10 min at 4˚C to remove cell

debris, and the supernatant was centrifuged at 15,000 × g for 20 min at 4˚C. Subsequently, the

supernatant (cytosolic fraction) was removed, and the pellets containing the synaptoneuro-

somes were resuspended in Syn-PER. The protein concentration of the cytosolic and synapto-

neurosome fractions was determined by bicinchoninic acid assay (Thermo Scientific). After

each extraction procedure, samples of the homogenate, supernatant, and synaptoneurosome

samples were probed for expression of the postsynaptic marker PSD-95, to confirm enrich-

ment of PSD-95 in the synaptoneurosome fraction (S1 Fig) before further processing.

Western blotting. Samples were heat-denatured and equal amounts (30 μg in experiment

1; 15 μg in experiment 2) of the protein sample from each animal were separated with SDS-poly-

acrylamide gel electrophoresis (5% (w/v) stacking and 8% separating gels) before electrophoretic

transfer onto a 0.45-μm-pore nitrocellulose membrane (Carl Roth, Germany) using a semi-dry

transfer system (Bio-Rad, Germany) at 0.8 mA/cm2. Membranes were first blocked for 1 hour at

room temperature in freshly prepared 5% powdered nonfat milk (Carl Roth) in phosphate-buff-

ered saline (PBS) and subsequently incubated overnight with primary antibodies with agitation

at 4˚C. Primary antibodies were diluted in blocking buffer containing 0.1% Tween 20 (Carl

Roth) as follows: rabbit-anti-GluA1 (1:3,000), rabbit-anti-GluA2 (1:1,000), rabbit-anti-phospho-

Ser845 (1:3,000), rabbit-anti-phospho-Ser831 (1:750; all Merck Millipore, Germany), mouse-

anti-β-actin (1:10,000; Abcam, UK), rabbit-anti-β-tubulin (1:50,000; BioLegend, USA), mouse-

anti-PSD95 (1:1,000; BD Biosciences, Germany). After several washes in PBS, membranes were

incubated in HRP-conjugated anti-rabbit (1:5,000; Merck Millipore) or anti-mouse antibodies

(1:4,000; BioLegend) for 2 hours. HRP activity was detected using the chemiluminescence

reagents provided with the ECL kit (Thermo Scientific). Fluorescence images of the blots were

obtained with a FUSION-FX7 imaging system (Vilber Lourmat, France) in experiment 1 and an

Azure 600 imaging system (Azure Biosystems, USA) in experiment 2. For antibody stripping,

blots were incubated in stripping solution (2% SDS, 0.8% ß-mercaptoethanol in 0.0625 M Tris-

HCl (pH 6.8)) at 50˚C for 30 to 45 min with some agitation, rinsed with ultrapure water for 1 to

2 min, and subsequently washed 3 times for 5 min with PBS with 0.1% Tween.

Image analysis. Integrated background-subtracted (rolling-ball algorithm) signal inten-

sity for each antibody band was quantified with ImageJ software. GluA1, GluA2, phospho-

Ser845, and phospho-Ser831 bands were normalized with reference to the corresponding β-

actin band in the same sample, the latter serving as loading control. To compare experimental

groups, actin-normalized intensity values were normalized (in %) to the average of the values

in the reference group within the same blot. To assess GluA1 phosphorylation, we first probed

blots with anti-phospho-Ser845 or anti-phospho-Ser831 antibody, stripped them, and subse-

quently reprobed them with anti-GluA1 antibody, which recognizes both phosphorylated and

nonphosphorylated GluA1. Individual AMPAR subunit levels were expressed as percent val-

ues, with the respective average levels in the Wake group (experiment 1) and Sleep group

(experiment 2) set to 100%.

Statistical analyses

Statistical analyses were performed with Matlab (R2021a; MathWorks, USA) and SPSS statisti-

cal software (IBM SPSS Statistics 24, USA). They generally relied on Student t tests (unpaired,
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two-sided) and analyses of variance (ANOVA) with a Group factor for the different experi-

mental groups and an Experiment factor for comparisons between experiments 1 and 2, as

appropriate. Linear correlation analyses between individual AMPAR subunit levels (expressed

as percent values) and sleep parameters of interest relied on Pearson product-moment correla-

tion coefficients. Stepwise regression analysis of data from experiment 2 was employed to con-

firm or rebut significant correlations obtained in the analyses of experiment 1.

Differences in correlations coefficients were tested using Cocor analysis (http://

comparingcorrelations.org/; [82]). All analyses were run after normal distribution of the

respective data had been confirmed using Shapiro–Wilk test. In one case where normality was

violated, the result of the t test was confirmed by an additional nonparametric test (Mann–

Whitney U test). A p-value of< 0.05 was considered statistically significant.

Supporting information

S1 Fig. Expression of the postsynaptic marker PSD-95, of tubulin, and of ß-actin in differ-

ent protein fractions. Representative western blots showing homogenate (Ho), synaptoneuro-

somes (Sn), and supernatant (Su) fractions from (A) hypothalamus and (D) neocortex. (B, E)

Quantification of PSD-95, tubulin, and ß-actin. Integrated density values were normalized to

values of homogenates (set to 100%) for samples from each animal. (C, F) Quantification of

PSD-95 and tubulin relative to ß-actin density were normalized to values of homogenates (set

to 100%). Circles represent samples from individual animals (hypothalamus, n = 8 rats; neo-

cortex, n = 15 rats); the underlying data sets are available in an online supporting file

(S1 Data).

(TIF)

S2 Fig. AMPAR levels in supernatants of hypothalamic and neocortical samples in the

Sleep and Wake groups of experiment 1. (A) Levels of GluA1- (left) and GluA2-containing

AMPARs (right) and (B) of GluA1 phosphorylated at Ser845 (left) and at Ser831 (right) in

hypothalamus and (C, D) neocortex. Mean ± SEM normalized AMPAR levels are shown with

the mean for the Wake group set to 100%. On top, 2 example immunoblots are shown for each

group (s1, s2, w1, w2; GluA1, GluA2, phospho-Ser845, and phospho-Ser831 bands were nor-

malized with reference to the corresponding β-actin band in the same sample, the latter serv-

ing as loading control). There were no significant differences between groups for any measure;

the underlying data sets are available in an online supporting file (S1 Data).

(TIF)

S3 Fig. AMPAR levels in supernatants of hypothalamic and neocortical samples after

undisturbed sleep (S), total sleep deprivation (TSD), and REM sleep deprivation (REM-D)

in experiment 2. (A) Levels of GluA1- (left) and GluA2-containing AMPARs (right) and (B)

of GluA1 phosphorylated at Ser845 (left) and at Ser831 (right) in hypothalamus and (C, D)

neocortex. Mean ± SEM normalized AMPAR levels are shown with the mean for the Sleep

control group set to 100%. On top, 2 example immunoblots are shown for each group (s1, s2,

t1, t2, r1, r2; GluA1, GluA2, phospho-Ser845, and phospho-Ser831 bands were normalized

with reference to the corresponding β-actin band in the same sample, the latter serving as load-

ing control). There were no significant differences between groups for any measure; the under-

lying data sets are available in an online supporting file (S1 Data).

(TIF)

S4 Fig. Sleep architecture across the 6-hour recording intervals. Amount of (A) SWS and

(B) REM sleep in minutes during each hour of the 6-hour recording session in the Sleep and

Wake groups of experiment 1 (left panels) and in the Sleep and, as applicable, REM sleep-
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deprivation (REM-D) groups of experiment 2 (midline panels); SWS and REM sleep duration

in minutes during the final 3 hours in the Sleep (Exp1:S and Exp2:S, respectively) and, as appli-

cable, REM-D groups in experiments 1 and 2 (right panels); *** p< 0.001, unpaired t tests.

Note that overall, the sleep ratios are very much comparable between the respective groups of

experiments 1 and 2; the underlying data sets are available in an online supporting file

(S1 Data).

(TIF)

S1 Table. Correlations between sleep parameters of interest and levels of GluA1-contain-

ing AMPARs in hypothalamus and neocortex in experiment 1.

(DOCX)

S1 Data. Raw data underlying, in the order of Excel sheets and, respectively, data sets in

the file, Figs 1B, 1C, 1D, 1E, 1F, 2B, 3B, 3C, 3D, S1B, S1C, S1E, S1F, S2A, S2B, S2C, S2D,

S3A, S3B, S3C, S3D, S4A and S4B. In each sheet, the data are referenced to the respective sec-

tions of the figure panels (e.g., left, right).

(XLSX)

S1 Raw Images. Original images of the western blot results.

(PDF)
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