
Citation: Schlieper, P.; Dombrowski,

M.; Nguyen, A.; Zanca, D.; Eskofier, B.

Data-Centric Benchmarking of Neural

Network Architectures for the

Univariate Time Series Forecasting

Task. Forecasting 2024, 6, 718–747.

https://doi.org/10.3390/

forecast6030037

Academic Editor: Daniele Apiletti

Received: 22 July 2024

Revised: 15 August 2024

Accepted: 22 August 2024

Published: 26 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

forecasting

Article

Data-Centric Benchmarking of Neural Network Architectures for
the Univariate Time Series Forecasting Task
Philipp Schlieper 1,* , Mischa Dombrowski 1 , An Nguyen 1, Dario Zanca 1 and Bjoern Eskofier 1,2

1 Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University,
91052 Erlangen, Germany; mischa.dombrowski@fau.de (M.D.); an.nguyen@fau.de (A.N.);
dario.zanca@fau.de (D.Z.); bjoern.eskofier@fau.de (B.E.)

2 Institute of AI for Health, Helmholtz Center Munich German Research Center for Environmental Health,
85764 Neuherberg, Germany

* Correspondence: philipp.schlieper@fau.de

Abstract: Time series forecasting has witnessed a rapid proliferation of novel neural network ap-
proaches in recent times. However, performances in terms of benchmarking results are generally not
consistent, and it is complicated to determine in which cases one approach fits better than another.
Therefore, we propose adopting a data-centric perspective for benchmarking neural network archi-
tectures on time series forecasting by generating ad hoc synthetic datasets. In particular, we combine
sinusoidal functions to synthesize univariate time series data for multi-input-multi-output prediction
tasks. We compare the most popular architectures for time series, namely long short-term memory
(LSTM) networks, convolutional neural networks (CNNs), and transformers, and directly connect
their performance with different controlled data characteristics, such as the sequence length, noise
and frequency, and delay length. Our findings suggest that transformers are the best architecture for
dealing with different delay lengths. In contrast, for different noise and frequency levels and different
sequence lengths, LSTM is the best-performing architecture by a significant amount. Based on our
insights, we derive recommendations which allow machine learning (ML) practitioners to decide
which architecture to apply, given the dataset’s characteristics.

Keywords: deep learning; time series; neural networks; model selection; data synthesis; univariate
forecasting

1. Introduction

Aside from computer vision and natural language processing, time series analysis
is one of the core domains for applications of neural network architectures. In particular,
forecasting univariate time series is a predominant task in various fields like finance and
economics, healthcare, environmental analysis, and predictive maintenance [1].

To predict future states of data which have been recorded over time, scientists have
implemented many derivations of common models like feedforward networks, recurrent
networks, and convolutional networks [2]. However, new approaches are presented at
a high pace in the time series analysis literature. As a result, even new neural network
paradigms, such as the transformer, which originally emerged in the natural language pro-
cessing domain [3], are introduced and applied to time series [4]. Usually, the latest model
variants will produce improved state-of-the-art performances which are benchmarked on
synthetic and open-source datasets. Given the fast developments in the community, ma-
chine learning practitioners can have difficulties choosing the suitable model or architecture
for their prediction task in use cases with individual real-world datasets.

What is more, when freshly published model variants are applied to real-world
use cases, respective performances may vary from the reported results in the litera-
ture. Thus, we hypothesize that it is difficult for machine learning users to judge pub-
lished performances regarding their impact on a user’s individual data. One explanation

Forecasting 2024, 6, 718–747. https://doi.org/10.3390/forecast6030037 https://www.mdpi.com/journal/forecasting

https://doi.org/10.3390/forecast6030037
https://doi.org/10.3390/forecast6030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0002-8792-3355
https://orcid.org/0000-0003-1061-8990
https://orcid.org/0000-0001-5886-0597
https://orcid.org/0000-0002-0417-0336
https://doi.org/10.3390/forecast6030037
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/article/10.3390/forecast6030037?type=check_update&version=2


Forecasting 2024, 6 719

might be that new approaches are usually tested using more or less subjectively chosen
datasets. Despite there being some familiar sources for benchmarking datasets, such as
the UCI Machine Learning Repository (accessible at http://archive.ics.uci.edu/, accessed
on 5 September 2023), in the least amount of cases, a real-world dataset shares its set of
characteristics with one of the benchmarking sets which was used for model evaluation. A
dataset from a real-world use case might present different long-term dependencies, have a
unique set of frequency and noise features, or might present large sequences. This is why,
for example, a freshly proposed version of the transformer architecture can be declared as
producing new state-of-the-art performance. Still, when applied to real-world data, the
results are diminished, or other models perform even better.

In this work, we switched from a model-centric perspective to a data-centric one
to compare different architectural designs of time series models. We use a synthetically
generated dataset to take complete control over the above-mentioned characteristics. By
synthesizing data as a combination of sinusoidal functions, we can define different levels of
the delay length parameter, which controls long- and short-term dependencies. We further
control the noise and frequency levels and the input length of the time series sequences.
These synthetic data exhibit a more simplistic structure than many real-world datasets.
However, this allows us to connect model performances with individual data characteristics.
In our experimental set-up, we evaluated the main neural network paradigms for time
series analysis (recurrence, convolution, and attention) on datasets where only one of the
characteristics varied. Specifically, we restricted the task to univariate time series prediction
to improve the results’ interpretability and not constrain generality.

The architectures we investigate are the long short-term memory (LSTM) network [5], a
convolutional neural network (CNN) model [6], and the transformer model [3]. These three
models are designed differently in terms of how they process the temporal information
in their internal structures. LSTM utilizes the cell and hidden states inside a recurrent
layer to handle time dependencies in the data. At the same time, the CNN applies one-
dimensional convolutions along the time axis. As our third paradigm, the transformer
employs multiple attention layers, where the whole temporal sequence is put in at once.
We used the most basic versions of these models by closely following the model structures
of their first presentations in the literature. While more advanced versions and adaptions
of these architectures would improve model performance in our experimental task, such as
residual connections in CNNs, our intention was to assess the performance of the inner
temporal information processing structures of the models. In addition, we performed
hyperparameter tuning for parameters like the learning rate and batch size.

For this study, our main emphasis is on neural networks, delving into the internal
mechanisms of prevalent architectures and examining their processing of univariate time
series data. Classic machine learning (ML) models require a generally lower investment
of implementation and training time and can therefore be applied with fewer resources.
In contrast, for neural networks, these costs are higher. These implications are even more
important when we consider real-world use cases where a limited budget of computational
resources and time is often a crucial factor.

The entire content of this article is illustrated in Figure 1. It summarizes our work’s
main aspects and describes our experimental procedure. How we designed our experiments
allowed us to draw conclusions by directly assessing the performance of the architectures
with respect to specific characteristics in the data. We bypassed any influence from cherry-
picked datasets with our generated data and dismissed any effects of highly specified and
tuned model structures. Our main goal is to provide insights into how the processing of tem-
poral information inside LSTM, CNN, and transformer models impacts their performance
in the face of data with different long- and short-term memories and frequency levels, as
well as different sequence lengths for the scenario of univariate time series prediction.

http://archive.ics.uci.edu/


Forecasting 2024, 6 720

Figure 1. High-level view of the content of this article. We synthesized time series with certain delay
lengths, frequencies, and sequence lengths to create datasets where only one of these characteristics
varies. For each dataset, we trained a long short-term memory (LSTM) network, convolutional
neural network (CNN), and transformer architecture to evaluate the performance concerning the
given characteristic.

In this research paper, we introduce three major contributions to the field of time
series forecasting. Firstly, we present a framework for synthetically generating time series
data which allows for precise control over various data characteristics. This framework is
designed to aid practitioners in creating customized datasets tailored to specific research
needs. Secondly, we conduct an in-depth analysis of the learning phase and performance
of the most common basic neural network architectures for univariate time series fore-
casting. This analysis provides valuable insights into the strengths and weaknesses of
the architectures’ different time series processing structures. Lastly, we establish a causal
connection between the performances of these architectures and specific characteristics
of the data. This connection helps with understanding how different data characteristics
influence model effectiveness, offering guidance for selecting appropriate models based on
the inherent properties of the time series data.

Our main goal is to develop a deeper intuition on how different neural network
architectures—specifically recurrence-based, convolution-based, and attention-based
models—process key characteristics in time series data, such as the delay length, fre-
quency and noise, and sequence length. By systematically analyzing these architectures,
we aim to uncover how each architecture type handles these distinct properties in the
data, providing a clearer understanding of their internal mechanisms and performance.
Additionally, we seek to detect any significant differences between these architectures
in terms of their ability to manage and learn from these characteristics, thereby offering
insights into their suitability for various time series forecasting tasks.

The remainder of this article is structured in the following way. Section 2 gives an
overview of related works from the literature, Section 3 provides a description of the data
synthesis and the experimental design, with the results and interpretations being included
in Section 4, Section 5 discusses the limitations of our approach, and Section 6 summarizes
the presented work.



Forecasting 2024, 6 721

2. Related Works

Numerous application papers offer extensive comparisons between different neural
network architectures for specific time series datasets.

One related paper was published by Koprinska et al. [7]. Their goal was to compare
the performance of CNNs with other paradigms in terms of electric load and solar power
forecasting tasks. They used multilayer perceptron (MLP), LSTM, and persistent models as
the baseline. Measured by their mean absolute error (MAE), the CNN and MLP models
outperformed the baseline and the LSTM approach. LSTM performed even worse than
the baseline. However, this paper includes little analysis of the dataset’s characteristics
and why MLP models might be better in some cases, and they did not compare it with the
transformer approach. This shows that even though the performance of CNNs overall was
better, not a single architecture outperformed the other, and even LSTM models were best
in some cases. Nassar et al. [8] showed this ambivalence well. This paper analyzed various
machine learning and deep learning approaches to weather-to-yield and weather-to-price
prediction. Interestingly, LSTM performed better than CNNs in weather-to-yield prediction
but worse in weather-to-price prediction. Moreover, both models performed considerably
worse than hybrid models which combined all three model paradigms.

Wu et al. [9] compared the transformer model with LSTM in the task of univariate
time series forecasting. They used a fixed-length sliding window approach to perform
one-step-ahead prediction with the basic transformer architecture and compared it to a
baseline LSTM model. The paper showed that the transformer approach can improve
performance, suggesting it is suitable as an architecture for time series prediction. However,
the results were only supported by a single case study.

These results offer some interesting insights but often say little about the learning
capabilities of the architectures involved. Consequently, it remains challenging to under-
stand which architecture will work best on a new dataset, unless this coincides with a new
use case.

Furthermore, recent work has attempted to evaluate different neural network architec-
tures for time series more systematically based on a broader selection of public datasets.

Wen et al. [4] published a survey which presented and compareed the latest versions
of the transformer architecture for time series prediction tasks. They included in their
evaluation the vanilla transformer [3], Autoformer [10], Informer [11], Reformer [12], and
LogFormer models [13]. Additionally, they reported the results for a benchmark dataset
with respect to robustness, model size, and impact of seasonal trend decomposition. Al-
though Autoformer performed best in the robustness and model size analysis, for the
seasonal trend decomposition analysis, the vanilla transformer model showed better re-
sults for smaller output lengths. Since the authors only evaluated one dataset, a general
conclusion could not be drawn on which transformer variant was the best one. This further
supports our approach of utilizing a controllable synthetic dataset rather than a collection
of real-world datasets. Thus, we can directly relate architecture performances to specific
characteristics in the data.

Agarwal et al. [14] compared CNNs, RNNs, and transformer-based architectures on
publicly available datasets. Their goal was to choose these datasets based on a variability in
characteristics similar to our approach and select datasets with different lengths, domains,
scale variations, and time granularities. In contrast to our synthetic data generation, their
real-world data characteristics could not be controlled. They concluded that the transformer
model performed well across various problems and excelled on datasets where the number
of training points was small. The RNN-based architectures performed well when there
were enough training data and only a slight variance in the scale within the data. The CNN-
based architectures performed well on time series with many sampling points and not so
well if this number was small, although this number varied across different CNN-based
architectures. Interestingly, all three paradigms provided the best architecture for at least
one dataset. The transformer approach was best on the dataset which had many short time
series, the CNN was best on the dataset with only a few long time series in their training



Forecasting 2024, 6 722

set, and the RNN was best when the dataset had no scale variations. They compared a
total of 10 network-based forecasting models which are already advanced versions of the
original LSTM, CNN, and transformer architectures. Thus, their reported performances
can only be useful when the intent is to use one of these specific models. Since we are
benchmarking basic versions of each of the three architectures, our performances can be
associated with how these architectures process data.

Hewamalage et al. [15] focused on the recurrent neural network architectures and their
application to time series forecasting. By establishing a benchmark and an empirical study,
the authors provided guidelines and the best practices for LSTM and related recurrent
models. In their results, they showed that this network family can model seasonality
directly if the seasons are homogeneous in the dataset. By comparing them against an
ETS and ARIMA baseline, the authors concluded that recurrent neural networks, and
especially the LSTM variant, are competitive models for time series forecasting. This
work is related to our approach to providing insights on model performances in different
scenarios and deriving recommendations for their application based on those insights.
While Hewamalage et al. [15] assessed recurrent network models, we are interested in
comparing the three major network paradigms.

In the work “Benchmarking Attention-Based Interpretability of Deep Learning in Mul-
tivariate Time Series Predictions”, the authors compared attention-based neural networks
on synthetic multivariate time series data [16]. Therefore, they created different datasets
with various interactions in a multivariate series. Each model was evaluated regarding
their performance score, interpretability correctness, and sensitivity analysis. Their results
show that the IMV-LSTM model presented the best performance and interpretability since
it could learn both autocorrelations and crosscorrelations. While the perspective of their
experiments was, similar to ours, data-centric in employing controlled synthetic data to
test for performance differences, the target of the analysis was different. They were investi-
gating interpretability mechanisms, while we are evaluating the processing structure of
network architectures.

Other publications presented their takes on data-centric approaches for time series
analysis as data engineering to provide more robust model training. Whang et al. [17] pro-
vided an overview of the available techniques for engineered data collection and improving
its quality. Different approaches were presented which covered various techniques for im-
proving the quality of training data, like data cleaning and sanitization. They concluded that
the data-centric perspective would play a major role in future developments in the AI do-
main. Similarly, Hedge et al. [18] applied a data-centric approach to directly improve model
performance and robustness in an anomaly detection scenario. By ensuring the quality of
the training data, the model presented better performance than a model-centric baseline.
While both papers relate to data-centric research, their directions differ from our take on
benchmarking neural network architectures. Nonetheless, Whang et al. [17] acknowledged
and described the importance of data-centric approaches for AI-related research.

With Li et al. [13] providing LogFormer to counter the memory bottleneck for time
series forecasting, the authors also presented a technique to generate synthetic data based
on sinusoidal signals. By altering the amplitudes of the signals, they created variation in
the data. This approach is the foundation of our data synthesis method, as described in
Section 3.2. For our purposes, we extended data generation to create signals which vary in
different parameters and to obtain control over the varying characteristics.

Data-centric AI has become a more established technique across various ML domains.
Mazumder et al. [19] introduced DataPerf, a framework for data-centric AI benchmark-
ing which involves vision, speech, acquisition, debugging, and text-to-image prompting.
The approach is designed to include future community-based benchmarks as well. By
iteratively applying data-centric operations such as augmentation, cleaning, and repre-
sentation selection, DataPerf creates new train and test sets to enhance the performance
of ML models. The benchmark resembles an open-source platform intended to be ex-
tended with additional benchmarks in the future. A related approach was proposed by



Forecasting 2024, 6 723

Devarajan et al. [20] named DLIO, a benchmark aimed at scientific DL applications for
improving input and output performance.

The aforementioned papers demonstrate that comparisons centered on models can
benefit from a data-centric approach. Although model-centric approaches have been evalu-
ated across a large battery of different datasets, it is difficult to conclude what kinds of data
characteristics model-centric approaches are capable of learning and where it is possible
to exploit the temporal processing capabilities of certain models. Unlike these works, we
propose a data-centric evaluation, where dataset characteristics are tuned continuously
to provide a performance spectrum which can serve as a guideline when applying these
models to a specific time series problem.

3. Materials and Methods

This section provides a description of our methodology. First, we introduce the theo-
retical basics of the investigated neural network architectures. After that, the data synthesis
process is described, which is used to obtain three datasets with varying characteristics.
Next, we describe how we conducted the model training and testing. The following sub-
sections contain explanations of our three experiments where we tested the delay lengths,
frequency and noise levels, and sequence lengths.

3.1. Preliminaries

We investigated three learning paradigms of neural networks in our experiments. They
all have a different method of modeling temporal dependencies, as shown in Figure 2. One
follows the architecture of long short-term memory (LSTM) networks, one is based on con-
volutional neural networks (CNNs), and one is derived from the transformer architecture.
The basics of these architectures are described below.

Figure 2. Conceptional comparison of different deep learning paradigms to model time dependencies
across input samples: LSTM (left), CNNs (middle), and attention (right). Figure adjusted from [21].

3.1.1. Recurrence-Based Architectures

LSTM models differentiate themselves from feedforward networks by introducing
recurrent connections to the model. These edges can create cyclic paths within the model
used to learn the dependencies between single time steps. The main idea is that when
looking at a single time step t, they use information from the input x(t) of the network and
the hidden state from the previous time step h(t−1)[5].

In its basic equations (Equations (1) and (2)), the network propagates hidden states
into the future, which means that nodes corresponding to future values are conditioned on
the past. Therefore, these hidden states intuitively represent the past for the model:

h(t) = tanh(Wh(t−1) + Ux(t) + b) (1)

y(t) = f (Vh(t) + c) (2)

3.1.2. Convolution-Based Architectures

For many applications, such as time series prediction, the absolute position of a sample
is not as important as its relative position. Convolutional layers make use of this property
by applying the same convolution operation over the entire input sequence. This is realized
by moving a kernel over the entire input sequence to compute an output. The kernel size
defines how far the nodes can look to neighboring nodes. This size must be large enough



Forecasting 2024, 6 724

such that the output is conditioned on all the values that are input into the system, which
makes this architecture translation invariant.

Temporal convolution (TC) is a particular technique in CNNs which makes special
use of convolutional layers to process temporal information. Their unique property is
that instead of learning simple multiplications to change data representations, they learn
dilated convolutions [22]. In TC, instead of defining a kernel to look at the immediate
neighbors of each node, the kernel only looks at every lth input, where l is the predefined
dilation parameter. In mathematical terms, given a 1D input sequence x ∈ RT/2 and a filter
m : {− k−1

2 , . . . , k−1
2 } → R with an odd filter size k, the dilated convolution operation Fconv

on element t can be written as

Fconv(t) = (x ∗l m)(t) =

k−1
2

∑
i=− k−1

2

m(i) · xt−l·i (3)

which is similar to the formula from [23].

3.1.3. Transformer-Based Architectures

The transformer architecture was initially introduced in the paper “Attention is all you
need” by Vaswani et al. [3]. By default, the transformer has two different types of inputs.
The first one is the encoder input, which comes from the input domain of the data. The
second type of input is supposed to lie in the output domain of the data. For time series
forecasting, we do not have an output domain, and hence it suffices to use the encoder-only
transformer depicted in Figure 3. The input embedding is a linear layer which increases the
dimensionality of the input time series to the latent dimensionality dmodel of the network.
For this embedding, positional encoding is added to give information about the locality.
The main building blocks are attention layers, a special type of layer which computes the
output as a weighted sum over the input using some kind of distance metric. In [3], these
are described as multi-head attention (MHA) layers, which means that the input is split
into a query Q, key K, and value V. The output is then computed in the following way:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V. (4)

Figure 3. Encoder-only transformer architecture.



Forecasting 2024, 6 725

The attention is fed into a simple linear layer, and then added to the input of the
MHA layer using a residual connection combined with layer normalization and finally
another feedforward layer with a residual connection, hidden dimensionality d f f , and
layer normalization. This encoder layer is then repeated N times to produce the encoder
memory which will be used in the decoder part of the network, as shown in Figure 3.

3.2. Data Synthesis

In this work, we explore whether the characteristics of a time series dataset influ-
ence the model’s performance. In particular, we focus on four data characteristics: the
length of a sequence, the noisiness of the data, the frequency of a signal, and the delay
between useful information and the prediction time (differentiating between long- and
short-term dependencies).

We used a modified version of the procedure described in [13] to develop our data
synthesis approach. Meaningful information was manually inserted into the signal, which
allowed for monitoring where this information is located. Additionally, we ensured that
this segment was the only segment the model used for prediction. The following equations
analytically describe our data generation process:

S(t) =



A1sin(2πt f ) + µ + Nx t ∈ [0, t0),
A2sin(2πt f ) + µ + Nx t ∈ [t0, t1),
A3sin(2πt f ) + µ + Nx t ∈ [t1, Ts/2),
A4sin(πt f ) + µ t ∈ [Ts/2, 3Ts/4),
A5sin(πt f ) + µ t ∈ [3Ts/4, Ts),

(5)

τ = Ts/8,

t0 = t1 − τ

t1 = Ts
2 − d,

A1, A2, A3 = AmplitudeSampler(),

A4 = max(A1, A2),

A5 = min(A1, A2),

µ = U [47, 97],

Nx ∼ N (0, σ2)

All parts use a sinusoidal as their base function. Ts is the sample sequence length and
must be distinguished from a dataset’s maximum sequence length T. The signal consists
of five parts corresponding to the parts with different amplitudes A1, A2, A3, A4, and A5.
These amplitudes are sampled randomly from a predefined range, such as [0, 60]. Therefore,
we can create segments from piece-wise sinusoidal functions which carry information or are
irrelevant to the prediction. In what follows, we will refer to each segment by its amplitude.
In our experiments, the input part of the sequence is where x ∈ [0, Ts/2]. The model is
supposed to predict x ∈ [Ts/2, Ts]. The input part has twice the frequency of the output
part to make predictions more difficult.

The analytical description immediately shows how we can generate samples with
different characteristics. Nx is the noise added to each sampling point of the input part of
the time series independently. We controlled the frequency by setting f and the delay by
setting d. An additional hyperparameter τ defines the length of the A2 segment. We fixed
this value to be Ts/8 throughout this work.

The useful information for the model’s prediction is contained in the amplitudes.
A1, A2, and A3 are randomly sampled. The sampling approach AmplitudeSampler de-
pends on the experiment, as displayed in Tables 5–7. A4 is the maximum of the first two
amplitudes, while A5 is the minimum of A1 and A2. The A3 amplitude has the purpose
of disturbing the model, incorporating a segment which carries no information. It is easy



Forecasting 2024, 6 726

to see that a model could calculate the entire output without knowing the value of A3.
Therefore, we refer to this part as a delay d in the signal, and we used it to characterize long-
and short-term dependencies.

Figure 4 visualizes one realization of this generation process. The blue part is the
time series input, while the turquoise part is the output. The vertical dashed lines indicate
the different parts of the time series. The first amplitude has the value A1 = 60 and is
larger than the second amplitude A2 = 40. Therefore, the first part of the output signal is
supposed to have the amplitude A4 = max(A1, A2) = 60, and the second part is supposed
to have the amplitude A5 = min(A1, A2) = 40. The model needs to learn this dependency,
dealing with the fact that A3 has no influence on the outcome of the signal, and use this
learned information to make a good prediction. The delay part of the signal can be increased
by making the A3 part of the time series longer. In this example, the delay length is set to
d = 32.

Figure 4. Sample from synthetic dataset with A1 = 60, A2 = 40, A3 = 20, d = 32, f = 1
16 , and µ = 0.

3.3. Experimental Design

In the following, we describe the training procedure applied in each of our experiments.
Additionally, this section contains the experimental descriptions.

3.3.1. Training Procedure

For all three experiments, we created distinct datasets with predefined characteristics.
Thus, for each experiment, we had separate train, validation, and test splits. For a single
experiment, all three models were trained on the same train and validation splits. All
experiments were performed on an NVIDIA Tesla V100 GPU. Furthermore, all of the
training sessions ran for a maximum of 100 epochs. This limit was chosen to cap the training
time and provide the same training conditions to every architecture while still achieving
convergence of the loss curves. The code for our training procedure is published on
GitHub (https://github.com/MischaD/Benchmarking-Univariate-Time-Series-Prediction,
accessed on 5 September 2023).

We chose the upper boundaries of the hyperparameter settings so that all models had
up to the same maximum amount of parameters, which was set to 450,000 in our exper-
iments. To optimize the hyperparameters, we used the tree-structured Parzen estimator
(TPE) due to its ability to outperform random search, as shown by Bergstra et al. [24]. For
the transformer model, a hyperparameter search space was defined based on the original
values from [3] as inspiration for the final search spaces. We chose the hyperparameters
for the other architectures such that the maximum amount of parameters one architecture

https://github.com/MischaD/Benchmarking-Univariate-Time-Series-Prediction


Forecasting 2024, 6 727

could reach did not significantly differ from the others. We performed 25 independent
optimizations for every model’s configuration using the Adam optimizer in Optuna [25].

All training sessions first performed 10 startup trials. During these trials, the TPE
started by randomly sampling from the hyperparameter optimization search space, with
a few attempts which were used for exploration. For the third experiment (i.e., sequence
length), we decreased the maximum possible model dimensionality of the CNN to make
up for the larger amount of model parameters due to the larger maximum dilation. Table 1
shows the hyperparameters for all of the models, including their ranges and the types
of sampling.

Table 1. Optuna hyperparameters and ranges which we optimized. Log-uniform means that we
sampled the values uniformly in the logarithmic domain.

Hyperparameter LSTM CNN Transformer Range Sampling Type

Model dimensionality dmodel No Yes No [1, 56], [1, 48] Uniform integer
Yes No No [1, 64] Uniform integer
No No Yes {8, 16, 32, 64} Uniform

Heads No No Yes {2, 4, 8} Uniform
Architecture depth N No Yes No [1, 2] Uniform integer

Yes No Yes [1, 5] Uniform integer
Feed-forward layer dimensionality d f f No No Yes [dmodel , . . . , 512] Log-uniform integer
Kernel size No Yes No {3, 5} Uniform
Learning rate No Yes No [3 × 10−5, 3 × 10−4] Log-uniform

Yes No No [5 × 10−5, 5 × 10−3] Log-uniform
Optimization factor No No Yes [0.1, 10] Log-uniform
Optimization warmup steps No No Yes [200, 800] Uniform integer
Dropout Yes Yes Yes [0.2, 0.5] Uniform float
Weight decay Yes Yes Yes [1 × 10−5, 1 × 10−2] Uniform float

∑ 6 5 8

Furthermore, we employed dropout and weight decay as regularization techniques to
ensure that the deep learning models performed well on the training and test data. Dropout
achieves this by randomly dropping features in hidden layers of the network to ensure that
no features are used as the sole source of information for the output. We employed dropout
for all models before the linear prediction layer.

After the 25 hyperparameter optimization trials, the best parameters are shown in
Table 2 for the LSTM model, in Table 3 for the CNN model, and in Table 4 for the transformer
architecture. Those settings were used for generating the results on the test dataset, as
presented in Section 4.

Table 2. Best LSTM hyperparameter settings.

LSTM N dmodel Dropout Learning Rate Weight Decay

Experiment 1 4 38 0.36886 0.00170 0.00002
Experiment 2 5 47 0.35929 0.00172 0.00001
Experiment 3 4 47 0.25551 0.00331 0.00001

Table 3. Best CNN hyperparameter settings.

CNN N dmodel Dropout Learning Rate Weight Decay Kernel Size

Experiment 1 2 45 0.31065 0.00016 0.00028 5
Experiment 2 2 53 0.24150 0.00011 0.00016 3
Experiment 3 1 47 0.28798 0.00029 0.00001 3



Forecasting 2024, 6 728

Table 4. Best Transformer hyperparameter settings.

Transformer N dmodel Dropout Opt Factor Warmup Weigth Decay h d f f

Experiment 1 4 64 0.36731 0.62271 430 0.00002 8 489
Experiment 2 3 32 0.33472 1.92401 797 0.00002 8 42
Experiment 3 5 64 0.26745 0.42063 453 0.00002 8 171

We saved a reference to the characteristics we used to create the data for each time
series during data synthesis. This way, we could train the different models on a single
dataset and look at the differences afterward by marginalizing the MAEs over the charac-
teristics. For example, we only took the predictions from samples without delay (d = 0)
and calculated the different statistics of these predictions as if they were a single dataset.
In the end, we calculated the critical difference [26] to conclude which model performed
the best. First, we split the test dataset into different subsets, depending on the amount
of different characteristic values, separated by their respective characteristics. Finally, we
checked whether or not one model significantly outperformed the other models.

3.3.2. Experiment 1: Delay Length

In the first experiment, we investigated the influence of the delay lengths on the model
performance. Table 5 shows the different value ranges for all characteristics of the dataset.
The frequency f , sequence length Ts, and noise σ were constant throughout this experiment.
The delay values were equally sampled to guarantee their appearing in the dataset in the
same amount. We purposefully left out the delay d = 96 in the train and validation datasets
to further analyze the generalization capabilities of the models during testing.

Table 5. Description of the dataset sampling for the first experiment. The left-out delay length is
highlighted in bold font.

Characteristic Dataset Possible Values Sampling Type

Ts All 512

d
Train, validation 0, 16, 32, 48, 64, 80,

Uniform
112, 128, 144, 160, 176

Test 0, 16, 32, 48, 64, 80, 96,
112, 128, 144, 160, 176

f All 1/32

σ All 2

A1, A2, A3
Train

[0, 60]
NInteger(30, 10)

Validation, test UInteger[0, 60]

As mentioned in Section 3.3, by varying the delay length, we aimed to analyze the
difference between short- and long-term dependencies. The length of A2 was connected to
the design parameter τ = Ts/8. To learn the output, the model must observe a few samples
from the A1 part. If the delay length is too high, then preprocessing will cut off the relevant
part from the input signal. At least half of the period should be part of the input signal such
that the model can observe at least one local maximum of the amplitude. For the analysis of
time dependencies, the minimum possible amount of samples which have to be fed to the
model to be able to predict the output signal is Ts/8 + 1/(2 ∗ f ). For Ts = 512, f = 1/32,
which means that the maximum delay length is d = Ts/2 − Ts/8 − 1/(2 ∗ f ) = 176. A
delay length of d = 0 means that the A3 part of the time series is missing.

We restricted the values of the amplitudes to be integer values within the range
[−60, 60]. The validation and test datasets were sampled uniformly from this range. During
training, the values came from a normal distribution which was cut off at values smaller or



Forecasting 2024, 6 729

larger than the specified range, and then we randomly multiplied the amplitudes by −1.
Figure 5 shows the distributions of the amplitudes in the test and train datasets.

Figure 5. Distribution of the amplitudes in training and test datasets.

3.3.3. Experiment 2: Frequency and Noise

The second experiment examined the influence of the frequency and noise on a model’s
performance. We combined these experiments into one hyperparameter optimization since
both tested the model’s sensitivity to variations in the frequency domain. The optimization
followed the same procedure as the previous experiment and had the same hyperparameter
optimization settings.

For creation of the characteristics of the dataset, we reduced the number of different
delay lengths we included. Instead, we sampled from a large range of frequencies and a
large range of noise levels. We chose the frequency to capture the entire range of possible
values for the sequence length. Theoretically, a frequency of f = 1

4 would still be feasible.
Still, we chose not to include it because for low noise levels, this frequency reduces to
a problem where every second value is close to µ and every other value is close to the
absolute value of the amplitude. The maximum possible frequency is limited by τ. We
ensured that the time series reached the mode of the A2 part of the signal and returned
to zero at least once by setting the frequency to be larger than 1/(τ ∗ 2) = 1/128. Similar
to the first experiment, we chose to sample the amplitudes from different distributions.
Table 6 summarizes the possible characteristics and the sampling strategies chosen for the
second experiment.

Table 6. Description of the dataset sampling for the second experiment. The left-out frequency is
highlighted in bold font.

Characteristic Dataset Possible Values Sampling Type

Ts All 512

d All 0, 64, 128 Uniform

f
Train, validation 1

8 , 1
16 , 1

64 , 1
128 Uniform

Test 1
8 , 1

16 , 1
32 , 1

64 , 1
128

σ All 2, 3, 4, 5, 6, 7, 8, 9 Uniform

A1, A2, A3
Train

[0, 60]
NInteger(30, 10)

Validation, test UInteger[0, 60]

3.3.4. Experiment 3: Sequence Length

In the final experiment, we investigated how easily the models could adjust to different
sample sequence lengths. Different from the first two experiments, we shuffled and sorted
the data as described in Section 3 such that training of the same models was possible for



Forecasting 2024, 6 730

different sequence lengths. Additionally, we set the maximum sequence length to 2048
(equivalent to 1024 input nodes) in order to fit it on a single NVidia GTX 2080 SUPER
(6 GB) GPU. For the transformer time series, this means that the batch size could be as
large as four. We expected this to be high enough to still successfully train a model once we
obtained a sufficient number of GPUs training in parallel (i.e., the training of one single
batch was distributed across multiple GPUs by splitting the batch, forwarding the input
on separate GPUs, and then aggregating the loss as described in the documentation of
PyTorch Lightning). This resulted in hyperparameter optimization with a batch size of 64 for
all models.

Additionally, we slightly reduced the hyperparameter optimization range for the
CNN to ensure that the number of model parameters across architectures stayed roughly
the same. However, due to the longer sequences, the maximum dilation hyperparameter
for each TC block was higher, increasing the number of parameters in each block. To
compensate for this, we reduced the maximum model dimensionality from 56 to 48 for
the CNN during the final experiment (see Table 1). Table 7 summarizes the process of
data generation.

Table 7. Description of the dataset sampling for the third experiment. The left-out sequence length is
highlighted in bold font.

Characteristic Dataset Possible Values Sampling Type

Ts
Train, validation 128, 256, 1024, 2048

Uniform
Test 128, 256, 512, 1024, 2048

d Test 0, 32 Uniform

f All
1

32
,

1
16

Uniform

σ All 2, 5 Uniform

A1, A2, A3
Train

[0, 60]
NInteger(30, 10)

Validation, test UInteger[0, 60]

4. Results

In this section, we will present the results of the aforementioned experiments. We
analyzed the learning phase in terms of the training times of the different optimization
trials and forward pass time per experiment, as well as the performance on the test dataset
in terms of the MAE and average MAE per dataset sample. Additionally, we provide the
average root mean squared error (RMSE) and mean absolute percentage error (MAPE) per
architecture in our experiments.

4.1. Experiment 1: Delay Length
4.1.1. Learning Phase Analysis

To analyze the effect of different model initializations, Figure 6 shows how long each of
the 25 separate trials took in seconds. As expected, the LSTM architecture took the longest
to train due to its poor parallelization capability. On the other hand, the CNN was slightly
faster than the transformer architecture, plausibly due to the large matrix multiplications in
the self-attention layer. However, the transformer model suddenly became the slowest of
all three architectures during inference time, as shown in Figure 7. The memory bottleneck
of the transformer model was previously described by Li et al. [13]. On the other hand, the
CNN approach was the fastest of the three by a large margin.



Forecasting 2024, 6 731

Figure 6. Training times during hyperparameter optimization in Experiment 1.

Figure 7. Single-batch forward pass averaged over five test iterations.

In Figure 8, the loss curves of the best runs from the validation set are displayed for
each architecture. During the initial convergence, the curves of the transformer, CNN, and
LSTM models are pretty similar. However, after 20 epochs, the transformer model reached
a lower MAE than the CNN and LSTM models. It is observable that the curves of the CNN
and LSTM approaches are also more erratic. After 100 epochs, the transformer architecture
presented the lowest validation loss, which was close to the loss of the LSTM network,
while the CNN model converged to a higher MAE level of 0.06.

The distribution of the validation MAE depicted in Figure 9 shows that the transformer
model was more susceptible to changes made to the architecture, like the learning rate and
model size. While not performing as well as the other two models, the CNN model did not
show much variance. This may be related to the fact that many CNNs failed to learn and
were close to the value of the MAE which a simplistic model reaches that uses the mean of
the input as the value for prediction, depicted in the figure with a dashed line. Interestingly,
the training time suggests that the CNN models with the longest training time did not
perform the best. This agrees with the observations that the CNN model was already quite
deep due to the TC dilations and consequently subject to vanishing gradient problems.

Figure 8. Validation loss curve of the best runs for each model architecture in Experiment 1.



Forecasting 2024, 6 732

Figure 9. Validation MAE of each training session as a boxplot. The dashed line indicates the
performance when taking the mean of the input as the output prediction.

4.1.2. Performance Analysis

Table 8 summarizes the average error metrics of the first experiment. The Transformer
architecture displays the lowest values across MAE, RMSE, and MAPE. Figure 10 shows
how the delay length influenced the confidence interval of the median MAE, which we
calculated according to the description in Section 3.3.1. At first glance, this graph shows
that the LSTM and transformer models performed comparably and were able to better deal
with delays than the CNN approach. The transformer model generally showed more stable
results, with smaller confidence intervals for the median.

Table 8. Average errors of the test dataset for the first experiment. Lowest error values are highlighted
in bold font.

Model Average MAE Average RMSE Average MAPE

Transformer 0.040 0.066 9.925
CNN 0.054 0.074 14.209
LSTM 0.043 0.069 11.317

The drop in performance for larger delays comes from the fact that for large delays,
essentially all of the input time series only consists of noise. Therefore, earlier input values
are generally more reliant, and the models should be able to learn this. Additionally, the
A1 part became relatively short for long delays, which means that the models could only
observe rather few noisy observations of that amplitude. Figure 11 verifies this observation
by showing that heavy outliers started to appear at delay lengths greater than 64.

Figure 10. Confidence intervals for different delay lengths. Delay length d = 96, marked by a brown
rectangle, was not present during training and validation time.



Forecasting 2024, 6 733

Figure 11. Boxplot of distributions of MAEs of single samples, separated by their delay length. Delay
length d = 96, marked by a brown rectangle, was not present during training and validation time.

As described in Table 5, we tested the dataset on a delay length which did not appear
in the training or validation datasets. Therefore, when looking only at the confidence
interval of the median of the generalized delay length in Figure 10, we observe that the
transformer model exhibited the best generalization performance for an unseen delay
length. However, upon inspection of Figure 11, it becomes clear that the transformer model
had a considerably higher number of outliers. Furthermore, the CNN model handled
the generalization worst out of the three models. Overall, this shows that even though
the transformer model has global attention, which makes the intuition behind long and
short-term dependencies relatively unimportant, it did not outperform the LSTM approach
for long-term dependencies as clearly as expected based on the work of Li et al. [13]. The
cause for these results might be that changing the application to a multi-input multi-output
(MIMO) approach reduced the disadvantage of vanishing gradients for the LSTM approach.

For the subsequent analysis, we investigated how different amplitudes affected the
model performance. This analysis was slightly biased because high amplitudes resulted
in higher values for the MAE loss. However, looking at the distribution and spread of the
MAEs still yielded interesting insights into the influence of the differences in distributions
between the test and train sets. Figure 12 shows the effect of the value of the first amplitude
if the second amplitude was ∈ [−60,−50). The LSTM model has a massive spike at the low-
est amplitude, suggesting that it did not generalize well over the amplitude distributions
and had the most trouble distinguishing between similar amplitudes A1 and A2. On the
other hand, the transformer model was not influenced drastically by different amplitudes
and therefore made a reasonably good generalization over the amplitudes. Figure 13 plots
the average MAE for each combination of amplitudes of each model. The LSTM model
had more modes around the areas where the data distributions had their modes, namely
around 30 and −30. On the other hand, the transformer model showed a more consistent
heatmap, further reinforcing the assumption that the transformer approach generalizes
better among different amplitudes.

Figure 14 shows the results of the critical difference. The lower the score, the better.
This confirms that the LSTM and transformer models significantly outperformed the
CNN architecture. However, it also indicates that the difference between the LSTM and
transformer architectures was not significant.



Forecasting 2024, 6 734

Figure 12. Boxplot of MAEs of samples with A2 ∈ [−60,−50), separated by their values for A1.

Figure 13. Heatmap of average MAEs of each model separated by amplitude.

Figure 14. Critical difference of the models when separating the dataset by their delay lengths.

4.2. Experiment 2: Frequency and Noise
4.2.1. Learning Phase Analysis

Similar to the findings for Experiment 1, Figure 15 shows that the training time of the
LSTM model was about twice as long as the training times of the other two approaches, but
the overall time needed for hyperparameter optimization was comparable. The distribution
of validation losses during hyperparameter optimization in Figure 16 shows that not only
was the LSTM model the best model during this experiment, but the top five models in
terms of performance during hyperparameter optimization were all LSTM models. The
distribution of the CNN architecture’s performance even shows that the best-performing
model seemed more like an outlier in this case, further diminishing the suitability of this
type of architecture for learning the designed dataset.

Figure 15. Training times during hyperparameter optimization in Experiment 2.



Forecasting 2024, 6 735

Figure 16. Validation loss of all models. A dashed horizontal line indicates the performance of the
mean estimator.

The validation loss curves in Figure 17 look different for the three models. The
transformer model’s loss was the quickest to improve and only marginally continued
to decrease for the rest of training. The CNN model’s convergence was slow. For this
model, it could be possible that training for even more epochs would further improve
the performance. However, as previously mentioned, all models were given the same
maximum number of training epochs.

In contrast to the previous experiment, the transformer models showed lower com-
putation times than the LSTM models, as depicted in Figure 18. This was due to the fact
that for this experiment, the depth of the optimal transformer model was smaller than that
of the optimal LSTM model. This is interesting because, combined with the results from
Section 4.1, we can conclude that it is not possible to establish a priori which of the two
architectures will be more efficient in terms of computing time. As expected, the CNNs
were consistently faster in computation.

Figure 17. Validation loss curve of the best run for each model architecture in Experiment 2.

Figure 18. Inference time of a single forward pass with a batch size of 64 averaged over five runs on
the complete test dataset.

4.2.2. Performance Analysis

Table 9 summarizes the error metrics of the test dataset. The LSTM model was the best
model for this dataset. Both the transformer and CNN models performed considerably
worse than the LSTM counterpart. The error values were noticeably higher than the best
performances in the first experiment, suggesting that this training set was much more
difficult for all the models. One possible reason for this is that the output now changes



Forecasting 2024, 6 736

not only the amplitudes but also the frequencies. As a result, the first experiment only
required learning of the sinusoidal base function, which was the same for all of the samples.
Furthermore, the amount of noise injected in this experiment was significantly higher, and
outliers highly compromised the performance in terms of the MAE.

Table 9. Average errors of the test dataset for the second experiment. The lowest error values are
highlighted in bold font.

Model Average MAE Average RMSE Average MAPE

Transformer 0.073 0.102 16.731
CNN 0.071 0.097 15.734
LSTM 0.054 0.087 12.825

We analyzed the impact of changing the noise level of the dataset on the prediction
performance. Figure 19 shows the performance of each model as a function of the noise level.
As mentioned in Section 3.3.3, additive noise was only injected into the input. Therefore,
the output and the ground truth which the model was trained on were not affected by σ.
The graph clearly shows that all models could handle noise without any evident loss in
performance, even when the noise energy of the signal was higher. This contrasts with
previous findings by Greff et al. [27] on the influence of different hyperparameters on the
LSTM architecture. They showed that adding noise to the input as a form of regularization
did not help the model and negatively influenced the performance. A possible explanation
for this discrepancy is that in our case, the models were trained on different noise levels
simultaneously.

Next, we looked at the ability of the models to learn different frequencies. Figure 20
shows the MAEs of the samples separated by their frequencies. LSTM was the best model
across the whole of this characteristic. It had the best-performing median in each case, and
all the single best predictions in each category came from the LSTM model. It performed
consistently well throughout the frequency range, although a slight increase could be
observed for higher frequencies when looking at the confidence interval for the median.
The performance of the CNN approach was qiute close to that of the transformer model for
all frequencies, especially for low-frequency signals. The CNN model had a great deal of
trouble capturing the information in the signal for extremely high frequencies, as evidenced
by the increased median and variance for this dataset.

Figure 19. Boxplot of the impact of the noise level on the prediction performance.



Forecasting 2024, 6 737

Figure 20. MAEs, separated by frequencies. Here, f = 1/32, marked by a brown rectangle, was not
present during training or validation.

The frequency f = 1/32, marked by the brown rectangle in Figure 21, was not
present during training. All of the models had difficulties generalizing toward this new
frequency. The LSTM model was still significantly better than the other two models, but the
performance was barely on par with what a predictor which only predicts the mean would
achieve (see Figure 16). (For reference, the mean performance of this estimator was 0.0991
on the test dataset, whereas the LSTM model reached a mean of 0.0958 on the generalized
frequency.) Figure 22 shows the mean of the MAEs with respect to the amplitude bins for
the samples with a frequency f = 1/32. The transformer model only had reasonably good
performance in the area where the amplitude was small, but this was also where failed
interpretations, like predicting the wrong frequency f , had the slightest impact. This can
also be confirmed by looking at some of the best predictions from this frequency, such as
the samples with small amplitudes. In this case, the model did not learn to generalize over
the frequency but instead predicted some signal which looked similar to a mean predictor.

We calculated the critical difference for the second experiment, as shown in Figure 23.
The analysis included a total of 3 × 5 × 8 = 120 different datasets, which were generated
from the three different delay lengths, five different frequencies, and eight different noise
levels used for synthesis, as described in Table 6. As anticipated by previous analysis, the
LSTM model outperformed its competitors significantly during this training period, and
the CNN model was considerably better than the transformer approach. Furthermore, the
LSTM approach performed the best across all the models in all but two datasets.

Figure 21. Confidence interval of the median for various frequencies. Here, f = 1/32, marked by a
brown rectangle, was not present during training or validation.



Forecasting 2024, 6 738

Figure 22. Mean MAEs of all three models, depending on the amplitude only for data with the
frequency that did not appear during training.

Figure 23. Critical differences of the architectures on the test dataset.

4.3. Experiment 3: Sequence Length
4.3.1. Learning Phase Analysis

In the last experiment, we investigated the effect of varying sequence lengths on model
performance. The mean MAE across the entire test dataset, summarized in Table 10, shows
that the LSTM approach had the best performance on the test data. The CNN model was,
again, slightly ahead of the transformer model for this metric. Overall, lower MAE values
suggest that the present task was generally easier than that of Experiment 2.

Table 10. Average errors of the test dataset for the third experiment. The lowest error values are
highlighted in bold font.

Model Average MAE Average RMSE Average MAPE

Transformer 0.049 0.079 11.23
CNN 0.044 0.067 11.615
LSTM 0.034 0.059 8.161

The training times shown in Figure 24 are similar to those observed in the previous
experiments. The corresponding validation errors of all optimization trials are summarized
in Figure 25. All models offered equal variance in their performance across different
hyperparameter settings. It is essential to notice that the best transformer model seemed
to be more of an outlier for this particular experiment than the other transformer trials.
However, a closer analysis of the transformer training times in Figure 24 suggests that the
best-performing model was also the largest model with the longest training time, which
means that a longer training time could potentially lead to better performance for this
architecture. However, as described in Section 3.3.1, we set the tuning trials to a certain
amount to give all models the same resources for training.

Figure 26 shows the validation loss curves for each model. The CNN and transformer
validation losses seemed relatively stable. The LSTM approach took the most epochs to con-
verge but ended up with the best validation loss. The inference time, visualized in Figure 27,
shows that the CNN model was the quickest model, followed by the transformer model.



Forecasting 2024, 6 739

Figure 24. Training time during hyperparameter optimization in Experiment 3.

Figure 25. Best validation loss of all models.

Figure 26. Validation loss curve of the best-performing models for each type in Experiment 3.

Figure 27. Inference time of a single forward pass with a batch size of four, averaged over five runs
over the entire test dataset.

4.3.2. Performance Analysis

During training, each model only saw four different sample sequence lengths. The fifth
one was only present during testing. In this way, we were able to analyze how increasing
the sample sequence length influenced the model performance and explore how each
model generalized to a new length.

In this experiment, the prediction task should have presented better outcomes for
longer sequences, since longer sample sequence lengths meant the models would have



Forecasting 2024, 6 740

more observations, leading to better accuracy. Also, long sequence lengths cannot be
entirely disconnected from long delay lengths. The parameter τ, introduced in Section 3.2,
is connected to the sample sequence length, which means that the last observation of the
mode of the A1 amplitude is at Ts/2 − (d + τ + 1/(2 ∗ f )).

Figure 28 shows how each model performed for any given sample sequence length.
All of the models could forecast the four sample sequence lengths present during training.
The median of the LSTM model was best for all datasets in this experiment. The longer
sequences showed less variance and fewer outliers, which was most evident in the case of
the transformer models. This is potentially related to the fact that the transformer approach
successfully extracted the information from the noisy input data even for extremely long
signals, especially the sign and absolute values of A1 and A2. Upon closer qualitative
inspection, we found that the transformer model often had difficulties learning that the
output signal was only supposed to have two different amplitudes. Instead, it constantly
increased or decreased the amplitude from higher to lower values. The LSTM approach,
while being the best model, had the most outlier performances and many predictions
which were significantly worse than the mean. These outliers, however, were quite rare and
corresponded to predictions where the sign of one of the amplitudes was flipped. Therefore,
the prediction was phase-shifted, resulting in a worse MAE. The CNN and transformer
architectures, on the other hand, did not show these outliers.

Figure 28. MAEs of different sample sequence lengths. Here, Ts = 512, marked by a brown rectangle,
was not present during training or validation.

The transformer and CNN approaches were not able to generalize to a new sample
sequence length (see the brown rectangle in Figure 28). Instead, the LSTM model only had
a slight drop in performance and still produced good results. Figure 29 shows the best
predicted sequence according to the MAEs from the entire dataset, which came from the
generalized sample sequence length Ts = 512.

To summarize the findings, we again calculated the critical difference by treating each
combination of characteristics as one dataset. This led to a total amount of 40 datasets. The
LSTM approach was the best one in 38 out of 40 cases. (The transformer approach was
better in both datasets with the following characteristics: f = 1/32, d = 32, T = 128, and
σ ∈ {2, 5}). The difference in model performance was statistically significant, as shown in
Figure 30. The CNN model once again was significantly better than the transformer model.
The transformer approach struggled with generalizing to new sample sequence lengths but
showed the most robust estimations toward long sample sequence lengths.



Forecasting 2024, 6 741

Figure 29. Best predicted sequence coming from a sample sequence length unseen during testing.

Figure 30. Critical difference of the architectures on all different datasets.

5. Discussion

This section discusses the results in Section 4. First, we derive recommendations based
on the performance of the LSTM, CNN, and transformer architectures. Additionally, we
elaborate on the limitations of our approach and the conducted experiments.

5.1. Recommendations

In our experiments, we demonstrated that all neural network models handled the
given challenge successfully by producing low error values (see Tables 8–10). However,
there were specific performance differences between the models, as described in Section 4.
These differences allowed us to derive the following recommendations for machine learning
practitioners who intend to apply neural networks to univariate time series forecasting use
cases with individual real-world data.

Assessing dataset characteristics

Depending on the use case, it can be more or less challenging to assess the character-
istics of a dataset. But more often than not, this is relatively straightforward and usually
performed during the data exploration phase of data science projects [28]. We recommend
the following studies to assess the characteristics investigated in this paper. To assess the
parameter we denote as the delay length, one should look at the long- and short-term
dependencies appearing in the sequences which are used as inputs for the models. This is
also called trend analysis and is often given by the data [29]. Depending on the outcome,
it can be assessed what delay lengths or temporal dependencies the model has to handle.
Then, frequency and noise levels can be assessed by analyzing the frequency spectra of the
training data by applying, for example, a Fourier transformation [30]. Additionally, one
could assess the variance in the spectrogram and detect the most prominent frequencies.
On the contrary, the sequence length is usually a factor defined by the given data or the
application of the given use case. More detailed elaborations on how to perform thorough
exploratory data analysis can be found in [31].

Model selection in consideration of delay lengths

When selecting a model regarding varying delay lengths, we recommend first looking
into transformer- or LSTM-based architectures. While the transformer model was the best-
performing model, as shown in Table 8, its margin was not significantly better than that of
LSTM. Both architectures are well suited to modeling the temporal dependencies in data.
As described in Section 3.1, LSTM uses a hidden state to memorize information which spans
many time steps. During the training process, LSTM is tuned to recognize when parts of the
input shall be memorized and when input information can be discarded. This explains the



Forecasting 2024, 6 742

good performance in the delay length experiment. Comparable findings regarding recurrent
neural networks were found in the experiments of Hewamalge et al. [15]. In contrast, the
transformer architecture processes the input sequence as a whole. By employing positional
encoding, the position of relevant information in the sequence, and therefore the delay
length, does not present a difference from the transformer approach’s processing structure.
With the multi-head attention blocks, as shown in Figure 3, each input time step is analyzed
regardless of its sequential position. Li et al. [13] presented a similar finding, where the
transformer approach could model long-term dependencies better than the LSTM model
in their experiments. A CNN architecture, on the other hand, captures local patterns
and features across a sequence. In our experiments, these locally receptive fields did not
maintain the information as well as the cell memory of the LSTM model or the positional
encoding or attention blocks of the transformer architecture. This appears to be contrary to
the findings of Lara-Benitez et al. [32]. They reported that their CNN model with temporal
convolutions outperformed LSTM models. However, they applied a more specialized CNN
variant to their prediction task. From our experiments, we concluded that for assessing
information where the context of its position in the sequence is a global factor, LSTM and
transformer models are better equipped in terms of their processing structure.

Furthermore, only a few outliers were present for small delay lengths when inspecting
the performances of the individual delay lengths in Figure 11. However, as the delay length
parameter increased to values greater than 64, the variation in the model performances
also increased. Therefore, we concluded that a larger delay length was a more challenging
task for the models. This was apparent since the information had to be maintained for
more time steps, and more information had to be processed. For the transformer approach,
however, the spread in Figure 11 is not as prominent as those for the CNN and LSTM
models since positional information was processed at once. The most significant variation
in the performances can be seen for the delay length, which was only present in the test set.
However, when looking at the delay lengths from 122 to 176, we can see that the transformer
architecture presented the most minor distribution in the boxplots and was therefore less
affected by larger delay values. In transformer-based architectures, the notion of delay
length is no longer present. Attention modules allow for attending to any value of the past
sequence in O(1), whereas convolutional blocks take O(log(n)) and LSTMs take O(n). This is
an explanation for why they performed so well in this experiment. Hence, we recommend
the transformer architecture as the first choice for data with long temporal dependencies
when computational resources are not a limiting factor. With greater delay lengths, the
input sequences are longer as well. This can drastically increase the training time and
memory requirements of the transformer model. In this case, the LSTM approach can still
be a good choice, despite its slightly reduced performance in the delay length experiment.

Model selection in consideration of frequency and noise

For selecting a model while observing a great amount of noise in the data, we could not
identify a clear favorite since all model performances were unaffected by noise, as shown in
Figure 19. All three—transformer, CNN, and LSTM architectures—present similar boxplots
throughout the different noise levels we investigated during our experiments. On the
contrary, we saw a more noticeable difference in the models when examining the frequency
settings. With a held-out frequency value of 1/32, the LSTM model showed the best results
by a significant margin. Therefore, we recommend this architecture when dealing with
varying frequencies in a dataset. Figure 20 and Table 9 display this performance difference.
By examining many advanced LSTM variants, Hewamalage et al. [15] also concluded that
recurrent neural networks are quite capable of adapting to seasonality in datasets, which
aligns with our findings. Both the CNN and transformer approaches presented significantly
lower performance than the LSTM model. The CNN model employs dilated convolutions
on the time axis. It therefore learns the context of the information along this axis during
training. When new frequencies appear in the test set, this becomes difficult to model, as
shown in Figure 20. Here, the MAE increased for all three architectures for the held-out



Forecasting 2024, 6 743

frequency. Similar observations were present for the transformer model, which exhibited
the highest MAE in Table 9. The attention heads were tuned with regard to the positional
information of the input data during training. Generalizing to a changing frequency thus
did not work as well as with the LSTM architecture. This was denoted as locality-agnostics by
Li et al. [13], a major drawback of the transformer architecture which makes the model less
sensitive to the local context. Simultaneously, the LSTM approach employs feature learning
and temporal processing with its recurrent connections and cell state. The vanishing
gradient problem is also diminished when information occurs not only in the long term but
seasonally, as in our second experiment [33]. Additionally, this architecture is designed to
handle variable-length inputs. In combination, this enables the LSTM approach to model
different frequencies better than the CNN and transformer architectures.

For data containing frequent occurrences of relevant events, we recommend applying
network architectures which use recurrent processing, since the LSTM model showed the
best performance in the frequency experiment.

Model selection in consideration of sequence length

Our experimental findings suggest a preference for employing an LSTM architecture
in scenarios involving varying sequence lengths. This assertion is supported by the MAE
values in Table 10, which notably demonstrate a significantly lower MAE for the LSTM
approach than those observed for the CNN and transformer models.

With its recurrent cell structure, the LSTM model is, by design, able to process se-
quences with variable lengths [15]. Also, the gating mechanism and the memory cell
state make this architecture adaptive to sequence lengths. In contrast to the CNN and
transformer architectures, this enables LSTM to process time series data without implicitly
encoding the notion of time. The transformer model, on the other hand, utilizes a specific
layer to encode the position of each time step numerically for the attention mechanism.
In particular, with the held-out sequence lengths, the error of the transformer approach
increased, as shown in Figure 28. Although the CNN approach generalized better to
the held-out sequence length of 512, it showed the largest overall MAE in Table 10. As
mentioned before, the CNN architecture operates with receptive fields which capture local
features and dependencies. Varying sequence lengths could cause these features to shift
on the time dimension. Consequently, the CNN model has to adapt to this positional
independence during training, which adds to the complexity of the learning task.

Our recommendation finds further support in Figure 28. Upon analyzing the mean
MAEs for the three architectures with respect to the trained sequence lengths, we observed
their proximity to be within a narrow range. Nonetheless, the LSTM model presented an
elevated number of outliers for longer sequences attributed to the challenge of vanishing
gradients. Despite this, the LSTM model consistently yielded optimal performance across
varying sequence lengths. Additionally, it is necessary to underline that the transformer
architecture’s computational demands significantly escalate with longer input sequences.
Thus, it is advisable to explore novel strategies to enhance the efficiency of transformer
models, as discussed in the work of Wen et al. [4]. Although not presenting the lowest
mean MAE, the transformer approach’s resilience to extended sequences contributed to
the reduced existence of outliers and a narrower spread of the upper and lower quartiles
within the depicted box plots.

5.2. Limitations

Contrary to other publications which evaluate neural network architectures for time
series prediction, our approach focuses on the dataset’s perspective by assessing model
performance with regard to characteristics in the data. Unsurprisingly, this practice has
certain limitations which will be discussed in the following.



Forecasting 2024, 6 744

Data synthesis

The way we synthesized our data is quite distant from real-world data regarding
variability and complexity. We described the process in Section 3.2. However, we had to
consider a trade-off between more real-looking data and pronounced characteristics. We
understand that this scenario might not provide the most challenging learning task for
the networks. However, a more complex or real-world dataset would not have allowed
for connecting model performances to the characteristics we investigated in the respec-
tive experiments. Our results show that different dataset characteristics led to different
performances in the network models. Consequently, our goal was not to identify the sole
best-performing architecture for any univariate time series prediction task but to enable ML
users to choose applicable models from a family of network architectures based on certain
dataset characteristics. We acknowledge the increased complexity of real-world data. But
more often than not, there is a dominant characteristic in the data which the network has to
deal with or is relevant to the prediction task, such as the periodic property of biomedical
signals or frequencies in sound-based signals.

Benchmarking time series has been approached from different angles. Other tech-
niques often include a selection of datasets and models to be evaluated as in [34], which is
specific to the use case of solar radiation. Additionally, approaches like the Libra framework
propose automated benchmarking [35]. For all of these solutions, certain constraints have
to be defined on the data or model side. While we do not see our approach as a replacement
for other existing benchmarking techniques, we understand ours as an extension and
different point of view on gaining a prior comprehensive understanding of which model
to choose based on the data. If we evaluated our chosen architectures on a selection of
real-world and synthetic datasets, then we would lose the ability to accurately control
the characteristics we intended to investigate in the experiments. With our approach, we
exclude influences other than the characteristics to be investigated and the model structure
at hand. Since we changed the perspective of model benchmarking to a data-centric view,
our vision for the future would be to evaluate every new state-of-the-art (SOTA) model on
a volume of synthetic datasets with isolated characteristics in a standardized fashion. This
would enable the direct assessment of new SOTA models on the given characteristics.

Basic model architectures

In our experiments, we purposely used the most basic form of the LSTM, CNN, and
transformer architectures by closely following their first presentations in the literature.
While we recognize that restricting ourselves to basic variants of the three architectures
may limit the overall applicability of our conclusions, we believe that examining these
fundamental networks allows us to establish a direct connection between performance
outcomes and the intrinsic processing capabilities of these models. More advanced variants
of these architectures may achieve improvements both performance-wise and efficiency-
wise. However, the underlying procedure of how they encode information and predict
the future is the same. The assumption we make is that we can reduce architectures to
their individual way of modeling temporal dependencies and learn from observations
based on them. By applying advanced models, we would not be able to tell whether the
monitored performance in the time series prediction task originates from how the different
neural network architectures process the data or whether it results from clever encoding or
adjustment of the model. To the best of our knowledge, this work is the first instance of
trying to change the perspective on model selection from a model-centric to a data-centric
view. Therefore, this first investigation focused on these three fundamental neural network
architectures for time series forecasting.

Also, classical ML models might solve the prediction tasks in our experiments with
comparable or even better results. However, regression methods like ARIMA, gradient
boost, or random forest can be applied with less resource investment. For neural networks,
the implementation and training overhead can be a roadblock to evaluating these models.



Forecasting 2024, 6 745

Therefore, we want to provide insights on making an informed decision before selecting
and applying a network architecture for a time series prediction task.

Univariate prediction task

Observing model performances from a data perspective required us to constrain the
data structure and characteristics. For our experiments, we chose the univariate multiple-
input multiple-output prediction task. Consequently, the derived recommendations can
only be applied in such scenarios. Incorporating, for example, multivariate time series
analysis requires a considerable rework of the experiments and opens up further design
questions. Do we model each time series as independent of each other, or do we correlate
them? Adding more experiments means that the search space for our experiments grows
exponentially. In future experiments, this can provide further interesting insights. However,
univariate time series prediction is a prevailing task in many domains which is still actively
researched [1]. This underlines the relevance of this work.

Time series are not only processed for forecasting but also for the tasks of classification
and anomaly detection. For classification scenarios, the general structure of our experiments
could be adopted, which would be an interesting path of future research. Here, the delay
characteristic could be exchanged for a parameter which is more prevalent in classification,
such as the balance of classes in the dataset. In anomaly detection, one could investigate
which architecture performs best on which type of anomaly (point, collective, or contextual).
However, the data synthesis here needs to be changed. Generally, we encourage our
approach being extended and transferred to other domains and applications. We further
consider our work a first step in changing the performance assessment perspective to a
data-centric view.

Training resources

We trained the models for 100 epochs on NVIDIA Tesla V100 GPUs. This limited the
potential final performance of the models, since we could not preclude that more extensive
training would lead to better results. However, our goal was not to tune one model to
its fullest potential but rather to give each architecture the same resources for training to
conduct a comparative evaluation with regard to the dataset.

Hyperparameter tuning

Some of the best model performances were observed from the last trails of the Bayesian
hyperparameter optimization. This is a potential indicator that increasing the search space
toward larger model sizes would also improve its performance. However, as mentioned in
Section 4.3.1, all models were given the same budget. This also emphasizes the influence of
stochasticity in our experiments.

6. Conclusions

This paper provides new insights into the performance of neural network-based
architectures for time series prediction. Since transferring reported results from recent
publications for real-world use cases can be challenging, we switched to a data-centric
perspective and linked model performances with defined dataset characteristics.

Therefore, we created synthetically generated datasets, in which time series were
obtained as a combination of sinusoidal functions, where we can control various levels of
delay length, frequency and noise, and sequence lengths for our convenience. Finally, we
conducted a separate experiment to test the network architectures for their performance
during training with a held-out evaluation set for each of these characteristics.

The models we investigated for this work are the main neural network paradigms
used for time series prediction in the literature: LSTM-based, CNN-based, and transformer-
based models. We intended to assess these models by their most basic structures to relate
the models’ performances with specific data characteristics in the most direct way.



Forecasting 2024, 6 746

In our experiments, we evaluated the architectures during their training phase and
their performance after training. The transformer model showed the best MAEs for various
delay lengths (Experiment 1), although not by a statistically significant margin. Except for
the positional encoding, the transformer approach has no sense of position, and thus we
expected that this architecture would generalize well on multiple delay lengths (as shown
in [13]). The LSTM approach performed significantly better when varying the frequencies
and noise levels (Experiment 2) or sequence lengths (Experiment 3).

When observing the obtained results between our experiments, we can note that the
MAE values were in a similar range between 0.01 and 0.2, including outliers. This implies
that, on the one hand, the experiments were on par in terms of the learning challenge the
models had to handle, and on the other hand, those challenges were suitable to all models.
Nonetheless, we could monitor differences in the performances and draw the conclusions
above, also demonstrating that we could use synthetically generated time series data to
reveal those differences.

For future work, we suggest that the difficulty level of the experiments can be increased
by synthesizing more complex datasets. Incorporating more variance in the data could
already create a more challenging learning task. Furthermore, in our experiments, we were
only looking at univariate time series prediction. It is the logical next step to investigate
multi-variate time series as well. It would then be interesting to see how the models
perform when multiple characteristics vary within one multi-variate time series dataset.

Author Contributions: Conceptualization, P.S.; methodology, P.S., M.D. and A.N.; data curation,
M.D.; validation, P.S., M.D., A.N., D.Z. and B.E.; formal analysis, P.S., A.N. and D.Z.; writing—original
draft preparation, P.S.; writing—review and editing, P.S.; visualization, P.S.; supervision, B.E. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The code for our training procedure and the synthesis of the custom
datasets with controlled characteristics is publicly available on GitHub at https://github.com/
MischaD/Benchmarking-Univariate-Time-Series-Prediction, accessed on 5 September 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. He, X. A Survey on Time Series Forecasting. In Proceedings of the 3D Imaging—Multidimensional Signal Processing and Deep Learning;

Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 13–23. [CrossRef]
2. Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big

Data 2021, 9, 3–21. [CrossRef]
3. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All you Need. In

Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Sydney, Australia, 2017; Volume 30.
4. Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in Time Series: A Survey. arXiv 2023, arXiv:2202.07125.
5. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
6. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
7. Koprinska, I.; Wu, D.; Wang, Z. Convolutional Neural Networks for Energy Time Series Forecasting. In Proceedings of the 2018

International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8, ISSN: 2161-4407.
[CrossRef]

8. Nassar, L.; Okwuchi, I.E.; Saad, M.; Karray, F.; Ponnambalam, K.; Agrawal, P. Prediction of Strawberry Yield and Farm Price
Utilizing Deep Learning. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK,
19–24 July 2020; pp. 1–7, ISSN: 2161-4407. [CrossRef]

9. Wu, N.; Green, B.; Ben, X.; O’Banion, S. Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case.
arXiv 2020, arXiv:2001.08317.

10. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series
Forecasting. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Sydney, Australia,
2021; Volume 34, pp. 22419–22430.

11. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [CrossRef]

12. Kitaev, N.; Kaiser, L.; Levskaya, A. Reformer: The Efficient Transformer. arXiv 2020, arXiv:2001.04451.

https://github.com/MischaD/Benchmarking-Univariate-Time-Series-Prediction
https://github.com/MischaD/Benchmarking-Univariate-Time-Series-Prediction
http://doi.org/10.1007/978-981-99-1145-5_2
http://dx.doi.org/10.1089/big.2020.0159
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/IJCNN.2018.8489399
http://dx.doi.org/10.1109/IJCNN48605.2020.9206998
http://dx.doi.org/10.1609/aaai.v35i12.17325


Forecasting 2024, 6 747

13. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates,
Inc.: Sydney, Australia, 2019; Volume 32.

14. Agarwal, K.; Dheekollu, L.; Dhama, G.; Arora, A.; Asthana, S.; Bhowmik, T. Deep Learning based Time Series Forecasting. In
Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA,
14–17 December 2020; pp. 859–864.

15. Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current status and future
directions. Int. J. Forecast. 2021, 37, 388–427. [CrossRef]

16. Barić, D.; Fumić, P.; Horvatić, D.; Lipic, T. Benchmarking Attention-Based Interpretability of Deep Learning in Multivariate Time
Series Predictions. Entropy 2021, 23, 143. [CrossRef] [PubMed]

17. Whang, S.E.; Roh, Y.; Song, H.; Lee, J.G. Data collection and quality challenges in deep learning: A data-centric AI perspective.
VLDB J. 2023, 32, 791–813. [CrossRef]

18. Hegde, C. Anomaly Detection in Time Series Data using Data-Centric AI. In Proceedings of the 2022 IEEE International
Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 8–10 July 2022; pp. 1–6,
ISSN: 2766-2101. [CrossRef]

19. Mazumder, M.; Banbury, C.; Yao, X.; Karlaš, B.; Rojas, W.G.; Diamos, S.; Diamos, G.; He, L.; Parrish, A.; Kirk, H.R.; et al. DataPerf:
Benchmarks for Data-Centric AI Development. arXiv 2023, arXiv:2207.10062.

20. Devarajan, H.; Zheng, H.; Kougkas, A.; Sun, X.H.; Vishwanath, V. DLIO: A Data-Centric Benchmark for Scientific Deep Learning
Applications. In Proceedings of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), Melbourne, Australia, 10–13 May 2021; pp. 81–91. [CrossRef]

21. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [CrossRef]
[PubMed]

22. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
23. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.

arXiv 2018, arXiv:1803.01271.
24. Bergstra, J.; Yamins, D.; Cox, D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions

for Vision Architectures. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA,
17–19 June 2013; PMLR; pp. 115–123, ISSN: 1938-7228.

25. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework.
arXiv 2019, arXiv:1907.10902.

26. Jones, G.R.D. Critical difference calculations revised: Inclusion of variation in standard deviation with analyte concentration.
Ann. Clin. Biochem. 2009, 46, 517–519. [CrossRef] [PubMed]

27. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

28. Wirth, R.; Hipp, J. CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th International
Conference on the Practical Applications of Knowledge Discovery and Data Mining, Lyon, France, 13–16 September 2000;
Volume 1, pp. 29–39.

29. Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [CrossRef]
30. Cooley, J.W.; Lewis, P.A.W.; Welch, P.D. The Fast Fourier Transform and Its Applications. IEEE Trans. Educ. 1969, 12, 27–34.

[CrossRef]
31. Shumway, R.H.; Stoffer, D.S. Time Series Regression and Exploratory Data Analysis. In Time Series Analysis and Its Applications:

With R Examples; Springer Texts in Statistics; Springer: Berlin/Heidelberg, Germany, 2006; pp. 48–83. [CrossRef]
32. Lara-Benítez, P.; Carranza-García, M.; Luna-Romera, J.M.; Riquelme, J.C. Temporal Convolutional Networks Applied to

Energy-Related Time Series Forecasting. Appl. Sci. 2020, 10, 2322. [CrossRef]
33. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International

Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; PMLR; pp. 1310–1318, ISSN: 1938-7228.
34. Voyant, C.; Notton, G.; Duchaud, J.L.; Gutiérrez, L.A.G.; Bright, J.M.; Yang, D. Benchmarks for solar radiation time series

forecasting. Renew. Energy 2022, 191, 747–762. [CrossRef]
35. Bauer, A.; Züfle, M.; Eismann, S.; Grohmann, J.; Herbst, N.; Kounev, S. Libra: A Benchmark for Time Series Forecasting Methods.

In Proceedings of the ACM/SPEC International Conference on Performance Engineering, Virtual Event, France, 19–23 April 2021;
ACM: New York, NY, USA, 2021; pp. 189–200. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijforecast.2020.06.008
http://dx.doi.org/10.3390/e23020143
http://www.ncbi.nlm.nih.gov/pubmed/33503822
http://dx.doi.org/10.1007/s00778-022-00775-9
http://dx.doi.org/10.1109/CONECCT55679.2022.9865824
http://dx.doi.org/10.1109/CCGrid51090.2021.00018
http://dx.doi.org/10.1098/rsta.2020.0209
http://www.ncbi.nlm.nih.gov/pubmed/33583273
http://dx.doi.org/10.1258/acb.2009.009083
http://www.ncbi.nlm.nih.gov/pubmed/19837723
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1016/j.earscirev.2018.12.005
http://dx.doi.org/10.1109/TE.1969.4320436
http://dx.doi.org/10.1007/0-387-36276-2_2
http://dx.doi.org/10.3390/app10072322
http://dx.doi.org/10.1016/j.renene.2022.04.065
http://dx.doi.org/10.1145/3427921.3450241

	Introduction
	Related Works
	Materials and Methods
	Preliminaries
	Recurrence-Based Architectures
	Convolution-Based Architectures
	Transformer-Based Architectures

	Data Synthesis
	Experimental Design
	Training Procedure
	Experiment 1: Delay Length
	Experiment 2: Frequency and Noise
	Experiment 3: Sequence Length


	Results
	Experiment 1: Delay Length
	Learning Phase Analysis
	Performance Analysis

	Experiment 2: Frequency and Noise
	Learning Phase Analysis
	Performance Analysis

	Experiment 3: Sequence Length
	Learning Phase Analysis
	Performance Analysis


	Discussion
	Recommendations
	Limitations

	Conclusions
	References

