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Abstract 

Background  Protein biomarkers may contribute to the identification of vulnerable subgroups for premature mortal-
ity. This study aimed to investigate the association of plasma proteins with all-cause and cause-specific mortality 
among individuals with and without baseline type 2 diabetes (T2D) and evaluate their impact on the prediction of all-
cause mortality in two prospective Cooperative Health Research in the Region of Augsburg (KORA) studies.

Methods  The discovery cohort comprised 1545 participants (median follow-up 15.6 years; 244 with T2D: 116 total, 
62 cardiovascular, 31 cancer-related and 23 other-cause deaths; 1301 without T2D: 321 total, 114 cardiovascular, 120 
cancer-related and 87 other-cause deaths). The validation cohort comprised 1031 participants (median follow-up 
6.9 years; 203 with T2D: 76 total, 45 cardiovascular, 19 cancer-related and 12 other-cause deaths; 828 without T2D: 169 
total, 74 cardiovascular, 39 cancer-related and 56 other-cause deaths). We used Cox regression to examine associa-
tions of 233 plasma proteins with all-cause and cause-specific mortality and Lasso regression to construct prediction 
models for all-cause mortality stratifying by baseline T2D. C-index, category-free net reclassification index (cfNRI), 
and integrated discrimination improvement (IDI) were conducted to evaluate the predictive performance of built 
prediction models.

Results  Thirty-five and 62 proteins, with 29 overlapping, were positively associated with all-cause mortality 
in the group with and without T2D, respectively. Out of these, in the group with T2D, 35, eight, and 26 were positively 
associated with cardiovascular, cancer-related, and other-cause mortality, while in the group without T2D, 55, 41, 
and 47 were positively associated with respective cause-specific outcomes in the pooled analysis of both cohorts. 
Regulation of insulin-like growth factor (IGF) transport and uptake by IGF-binding proteins emerged as a unique 
pathway enriched for all-cause and cardiovascular mortality in individuals with T2D. The combined model containing 
the selected proteins (five and 12 proteins, with four overlapping, in the group with and without T2D, respectively) 
and clinical risk factors improved the prediction of all-cause mortality by C-index, cfNRI, and IDI.

Conclusions  This study uncovered shared and unique mortality-related proteins in persons with and without T2D 
and emphasized the role of proteins in improving the prediction of mortality in different T2D subgroups.
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Background
Mortality rate is a powerful and accurate indicator of 
the overall health of a population. Notably, individuals 
diagnosed with type 2 diabetes (T2D) face an elevated 
risk of premature mortality, not only in terms of all-
cause mortality but also concerning various causes of 
death, especially cardiovascular disease (CVD) and 
cancer, with risks being 1.27–4.26 times higher than 
for those without T2D [1, 2]. Hence, it is crucial to 
understand the underlying mechanisms affecting mor-
tality across different T2D status and to implement 
effective preventive strategies tailored to these specific 
groups.

Circulating biomarkers have the potential to eluci-
date biological pathways contributing to disease, hold-
ing promise for future pathway‐specific therapies and 
personalized treatment approaches. High-throughput 
proteomics, potent technologies for biomarker discov-
ery [3], has been employed in prior studies exploring 
the associations [4–18] and predictive performance [4, 
8–13, 15, 16] with all-cause and cause-specific mortal-
ity, primarily focused on cardiovascular mortality [7, 
8, 13–16]. Of note, these studies mainly focused on 
the general population [4–8, 18], patients with CVD 
[9–15] or renal diseases [16], leaving a conspicuous 
research gap where comprehensive investigations in 
individuals with and without baseline T2D are lack-
ing. Given the reported associations and potential 
causal effect between T2D and protein levels [19, 20], 
it is likely that T2D might influence protein–mortality 
associations.

To address this gap, our study is the first to assess 
the association of plasma proteomics with all-cause 
and cause-specific mortality in individuals with and 
without T2D. Subsequently, we constructed protein-
enriched models stratified by baseline T2D status, 
evaluating the extent to which these protein biomark-
ers enhance the prediction of all-cause mortality 
beyond traditional risk factors.

Methods
Study population
The present analysis focused on two population-based 
Cooperative Health Research in the Region of Augs-
burg (KORA) cohorts for discovery and validation. 
The inclusion and exclusion criteria are illustrated in 
Additional file 1: Figure S1.

KORA S4 – Discovery sample
The KORA S4 study enrolled 4261 participants from 
1999 to 2001 [21]. The KORA S4 discovery sample used 
in the present analysis was restricted to those aged 55–74 
with available proteomics data (n = 1653). Following the 
exclusion of participants with missing proteomics data, 
missing covariables, those lost to follow-up, non-T2D 
cases, and those with unclear diabetes status, this study 
comprised 1545 participants followed for a median of 
15.6 years (244 participants with T2D and 1301 partici-
pants without T2D). Prevalent T2D included individu-
als with self-reported and subsequently validated T2D 
and with newly diagnosed T2D based on an oral glucose 
tolerance test (OGTT) using World Health Organization 
criteria [22] or baseline HbA1c ≥ 6.5%. Self-reported dia-
betes diagnoses were validated by contacting the treating 
physicians or reviewing medical charts; only participants 
without confirmed diabetes underwent an OGTT [23].

KORA‑Age1 – Validation sample
The KORA-Age1 study included 9197 participants from 
four cross-sectional Monitoring of Trends and Deter-
minants in Cardiovascular Disease (MONICA) / KORA 
surveys (Survey S1 in 1984/85, Survey S2 in 1989/90, 
Survey S3 in 1994/95, and Survey S4 in 1999/2001) 
born before 1943 [24]. The KORA-Age1 validation sam-
ple for the present analysis was restricted to those who 
participated in an onsite baseline examination in 2009 
(n = 1079, aged 65–93  years). After exclusions follow-
ing the discovery sample criteria, 1031 participants fol-
lowed for a median of 6.9  years remained for analysis 
(203 participants with T2D and 828 without T2D). Due 
to the lack of OGTT, prevalent T2D was defined based 
on self-report (with subsequent validation) and base-
line HbA1c ≥ 6.5% only. Notably, 231 participants from 
KORA-Age1 overlapped with the KORA S4 discovery 
sample because these participants fell into the studied 
age range for KORA-Age1. Since these participants were 
examined at two different time points in the two studies, 
we included them in the primary analyses of both studies 
and subsequently excluded them in a sensitivity analysis 
of the KORA-Age1 study.

Measurement of protein biomarkers
Plasma concentrations of 276 proteins were meas-
ured using the CVD-II, CVD-III, and Inflammation 
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panels from Olink® (Uppsala, Sweden) based on proxim-
ity extension assay (PEA) technology in KORA S4 and 
KORA-Age1. Log2-normalized protein expression val-
ues were provided [25], and these were standardized by 
division by their respective standard deviation within the 
complete dataset, before applying exclusions. The pro-
teomics data underwent consistent quality control cri-
teria, including exclusions for proteins with over 25% of 
values below the limit of detection (LOD), and with miss-
ing values. If a protein was included in two panels, the 
duplicate with fewer values below LOD and a lower inter-
assay coefficient of variation was retained. For the pooled 
sample of KORA S4 and KORA-Age1, protein values of 
KORA-Age1 were adjusted using bridging factors from 
duplicate KORA S4 measurements run together with 
the KORA-Age1 samples. In total, 233 unique proteins 
passed quality control in KORA S4 [26] and 90 pro-
teins with statistically significant associations with all-
cause mortality were carried forward to KORA-Age1 for 
validation.

Additionally, in KORA S4, five of the validated pro-
tein biomarkers (interleukin-1 receptor antagonist pro-
tein [IL-1RA], IL-6, insulin-like growth factor-binding 
protein [IGFBP] 2, IL-8, and N-terminal prohormone 
brain natriuretic peptide [NT-proBNP]) were addition-
ally measured in serum using sandwich enzyme-linked 
immunosorbent assay (ELISA) or electrochemilumi-
nescence immunoassay (ECLIA) (IL-1RA:  Quantikine 
ELISA human Il-1ra Kit (R&D Systems, Wiesbaden, Ger-
many) [27]; IL-6:  PeliKine Compact human IL-6 ELISA 
Kit (CLB, Amsterdam, the Netherlands) [28]; IGFBP 
2: Human IGFBP2 Quantikine ELISA Kit (R&D Systems, 
Wiesbaden, Germany) [27]; IL-8: ELISA from Sanquin 
[Amsterdam, the Netherlands] [29]; NT-proBNP: ECLIA 
[Roche Diagnostics, Mannheim, Germany] [30]).

Measurement of all‑cause and cause‑specific mortality
Participants from the KORA S4 and KORA-Age1 cohorts 
were followed for all-cause and cause-specific (cardio-
vascular, cancer-related and other-cause) mortality until 
November 2016, using death certificates coded accord-
ing to the International Classification of Diseases (ICD) 
9th Revision. Cardiovascular mortality includes diseases 
of the circulatory system (codes: 390–459) and sudden 
death with unknown causes (code: 798). Cancer-related 
mortality consists of neoplasms (codes: 140–208). Other-
cause mortality consists of the remaining causes of death, 
for example, pneumonia (code: 486), chronic bronchitis 
(code: 491) and dementias (code: 290).

Covariates
Standard physical and medical examinations were 
conducted at KORA S4 and KORA-Age1 [24, 31], 

encompassing questions on age, sex, smoking habits, 
education, alcohol consumption, physical activity, and 
medical history. Smoking status was classified as either 
current smoker or non-smoker. Educational attainment 
was recorded as completed years of schooling. Alcohol 
intake was divided into three categories: no consump-
tion (0 g/day), moderate consumption (men: 0.1–39.9 g/
day, women: 0.1–19.9  g/day), and high consumption 
(men: ≥ 40  g/day, women: ≥ 20  g/day), based on self-
reported consumption of beer, wine, and liquor. Physical 
activity levels were determined as either active or inac-
tive, considering the frequency and duration of weekly 
exercise throughout different seasons [31]. Medication 
usage was defined using Anatomical Therapeutic Chemi-
cal Classification System codes [32]. Total cholesterol and 
high-density lipoprotein cholesterol (HDL-cholesterol) 
were measured by enzymatic methods [32]. Body mass 
index (BMI) was calculated by dividing weight (kg) by 
height squared (m2). Systolic and diastolic blood pressure 
were taken on the right arm while seated, following the 
World Health Organization MONICA protocol [33].

Statistical analysis
The analysis strategy of the study is shown in Fig. 1.

Association analyses for all‑cause and cause‑specific 
mortality
Cox regression was used to determine associations 
between each protein and time-to-death among partici-
pants with and without T2D using the R package sur-
vival [34]. The assumption of proportional hazard was 
checked using the Schoenfeld residual test [35]. Model 1 
included age and sex, while model 2 incorporated vari-
ables from the Framingham Risk Score [36] and the Euro-
pean Systematic COronary Risk Evaluation (SCORE) [37] 
/ SCORE2 model [38] which are widely used for fatal and 
nonfatal CVD, encompassing age, sex, total cholesterol, 
HDL-cholesterol, systolic blood pressure, smoking status, 
and antihypertensive medication usage, along with addi-
tional relevant factors including BMI, education years, 
alcohol consumption, and physical activity. Proteins with 
significance in model 2 in KORA S4 were subsequently 
validated in KORA-Age1, considering a P-value < 0.05 
after controlling for the Benjamini–Hochberg false dis-
covery rate (FDR) as statistically significant.

Validated proteins of all-cause mortality were further 
examined for their associations with cause-specific mor-
tality (cardiovascular, cancer-related, and other-cause 
mortality) in the pooled dataset of KORA S4 and KORA-
Age1 to obtain more robust estimates.
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Pathway enrichment analysis
To elucidate potential connections and mechanisms of 
all-cause and cause-specific mortality, we annotated the 
validated proteins in the group with and without T2D 
using the STRING version 12.0 [39]. Subsequently, the 
network of identified proteins was constructed to identify 
pathways associated with respective all-cause or cause-
specific mortality outcomes based on the Reactome path-
way knowledgebase [40].

Prediction analysis for all‑cause mortality
Three models were constructed for groups with and with-
out baseline T2D, incorporating a protein-based model, a 
clinical model, and a combined model. All three models 
developed in KORA S4 were applied to KORA-Age1 for 
validation.

First, a protein-based model was constructed using a 
least absolute shrinkage and selection operator (Lasso) 
regression [41] to address multicollinearity. The 47 / 
79 proteins that survived after FDR in the association 
analysis were retained for the Lasso regression. The 
penalization parameter λ was determined by five-fold 
cross-validation with Cox regression design with the R 
package glmnet [42]. The Lasso-selected proteins were 

included in the protein-based model and in the combined 
model. Second, a clinical model, corresponding to model 
2 employed in the association analysis, was calculated. 
Finally, a combined model, that included the clinical risk 
parameters and the selected proteins, was derived.

While Harrel’s concordance index (C‐index) has limi-
tations in assessing model discrimination [43, 44], we 
augmented our evaluation with integrated discrimination 
improvement (IDI) [45] and category-free net reclassifi-
cation improvement (cfNRI) [46]. R packages compareC 
[47] was used for the calculation of C-index and Hmisc 
[48] was used for cfNRI and IDI. Effect estimates were 
calculated as the arithmetic mean of these measures 
through five-fold cross-validation, with corresponding 
confidence intervals calculated from 200 bootstrap sam-
ples, using the R packages boot [49] and caret [50].

Sensitivity analysis
We excluded the 231 individuals who participated at 
two different time points in both KORA S4 and KORA-
Age1 from the KORA-Age1 sample. Furthermore, we 
performed a sensitivity analysis using the Fine-Gray sub-
distribution hazard model to estimate protein–mortal-
ity associations for cardiovascular, cancer-related, and 
other-cause mortality over time in the presence of other 

Fig. 1  Analysis strategy of the present study. Abbreviations: C-index, concordance index; CV death, cardiovascular death; FDR, false discovery 
rate; IDI, integrated discrimination improvement; KORA, Cooperative Health Research in the Region of Augsburg; Lasso, least absolute shrinkage 
and selection operator; NRI, net reclassification index; T2D, type 2 diabetes
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causes of death specific to the corresponding mortal-
ity outcome as a competing risk. Correlations between 
the five protein biomarkers measured by other methods 
and their measurements by PEA technology were tested 
using Spearman’s Rank correlation coefficient, and their 
associations with all-cause mortality were also evaluated.

The R version 4.3 (https://​www.r-​proje​ct.​org/) was 
used for all analyses.

Results
Baseline characteristics of the study participants
Table 1 presents the characteristics of the study partici-
pants at baseline stratified by T2D status. All-cause and 
cause-specific mortality rates can be found in Additional 
file  1: Figure S1. In the KORA S4 study, over a median 
follow-up time of 15.6  years, 116 and 321 participants 
died (37.5 vs. 17.2 per 1000 person-years) in the group 
with and without T2D at baseline, respectively. Causes 
of death included 62 and 114 cardiovascular deaths (20.0 
vs. 6.1 per 1000 person-years), 31 and 120 cancer-related 
deaths (10.0 vs. 6.4 per 1000 person-years), and 23 and 
87 deaths from other causes (7.5 vs. 4.7 per 1000 person-
years) in the group with and without T2D at baseline, 
respectively. In the KORA-Age1 study, over a median 
follow-up time of 6.9 years, 76 and 169 participants died 
(64.7 vs. 32.6 per 1000 person-years) in the group with 
and without T2D, respectively. Causes of death included 
45 and 74 cardiovascular deaths (38.3 vs. 14.3 per 1000 
person-years), 19 and 39 cancer-related deaths (16.2 
vs. 7.5 per 1000 person-years), and 12 and 56 deaths 
from other causes (10.2 vs. 10.8 per 1000 person-years), 
respectively. Kaplan–Meier curves depicting the survival 
status of participants by baseline T2D status are shown in 
Additional file 1: Figure S2.

Association with all‑cause and cause‑specific mortality
In KORA S4, 47 and 79 proteins, including 36 overlap-
ping proteins, showed significant associations with 
all-cause mortality in the group with and without T2D, 
respectively (Additional file  2: Table  S1). Positive asso-
ciations of 35 and 62 proteins, respectively, with 29 
overlapping, were successfully validated in KORA-Age1 
(Additional file 2: Table S2). The correlation between the 
validated proteins is shown in Additional file 1: Figure S3.

Among the validated proteins of all-cause mortal-
ity, 35, eight, and 26 proteins were positively associated 
with cardiovascular, cancer-related, and other-cause 
mortality in participants with T2D, while 55, 41 and 47 
proteins were positively associated with respective cause-
specific outcomes in participants without T2D (Fig.  2 
& in Additional file  2: Table  S3-S4). Three (leukemia 
inhibitory factor receptor [LIF-R], tumor necrosis fac-
tor receptor superfamily member [TNFRSF] 10A, and 

growth/differentiation factor 15 [GDF-15]), two (angi-
otensin-converting enzyme 2 and matrix metallopro-
teinase-12 [MMP-12]), seven (tyrosine-protein kinase 
Mer [MERTK], LIF-R, protein S100-A12 [EN-RAGE], 
retinoic acid receptor responder protein 2 [RARRES2], 
interleukin-4 receptor subunit alpha [IL-4RA], CUB 
domain-containing protein 1, and TNFRSF10A), and 
three (RARRES2, TNFRSF10A, and vascular endothe-
lial growth factor A) proteins demonstrated significant 
interaction effects with baseline T2D status (Additional 
file  2: Table  S5) in the pooled dataset for all-cause, car-
diovascular, cancer-related, and other-cause mortality, 
respectively.

After excluding overlapping KORA S4 participants 
from the KORA-Age1 sample, the identified significant 
associations of proteins with all-cause mortality remained 
significant in the pooled sample among both persons 
with and without T2D (Additional file  2: Table  S6-S7). 
When considering competing risks, only three (IGFBP-2, 
NT-proBNP, and ST2) and four (IL-4RA, CUB domain-
containing protein 1, TNF-related apoptosis-inducing 
ligand receptor 2 [TRAIL-R2], and chitinase-3-like pro-
tein 1 [CHI3L1]) proteins of the validated proteins in the 
group with T2D were significantly associated with car-
diovascular and cancer-related mortality, respectively, 
while 15, 27 and four proteins remained significantly 
associated with the respective cause-specific outcomes in 
participants without T2D (Additional file 2: Table S8-S9).

The correlation coefficients of the five proteins meas-
ured by other methods and PEA technology ranged from 
0.5250 to 0.8884 (Additional file  2: Table  S10). Except 
for IL-8, the associations between IL-1RA, IL-6, and 
all-cause mortality in the group with T2D, as well as the 
associations between IGFBP-2, NT-proBNP, and all-
cause mortality in both groups with and without T2D, 
were replicated.

Mechanism network and related pathways of identified 
protein sets
The resulting protein–protein networks for all-cause 
mortality are presented in Fig.  3. Several pathways like 
the immune system and signaling by interleukins were 
overrepresented in both persons with and without T2D, 
while regulation of insulin-like growth factor (IGF) trans-
port and uptake by IGFBPs was enriched exclusively in 
the group with T2D. Results were similar for cardiovas-
cular mortality (Additional file 2: Table S11).

Prediction of all‑cause mortality
Five (NT-proBNP, GDF-15, TRAIL-R2, kidney injury 
molecule 1 [KIM1], and IGFBP-2) and 12 proteins (NT-
proBNP, GDF-15, TRAIL-R2, KIM1, MMP-12, CHI3L1, 
prostasin, EN-RAGE, polymeric immunoglobulin 

https://www.r-project.org/
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Table 1  Baseline characteristics of study population

Data are presented as median (25th, 75th percentile) for continuous variables and n (%) for categorical variables

Abbreviations: BMI body mass index; HbA1c haemoglobin A1c; HDL high‐density lipoprotein; KORA Cooperative Health Research in the Region of Augsburg; T2D type 
2 diabetes
a Data were calculated in 138 participants with T2D (60 deaths vs. 78 no event) and 1208 participants without T2D (296 deaths vs. 912 no event) at KORA S4
b Data were calculated in 128 participants with T2D (55 deaths vs. 73 no event) and 1177 participants without T2D (289 deaths vs. 888 no event) at KORA S4
c Data were calculated in 142 participants with T2D (62 deaths vs. 80 no event) and 1176 participants without T2D (286 deaths vs. 890 no event) at KORA S4
d Data were calculated in 1299 participants without T2D (321 deaths vs. 978 no event) at KORA S4

Characteristics Discovery sample—KORA S4 Validation sample—KORA-Age1

With T2D (n = 244) Without T2D (n = 1301) With T2D (n = 203) Without T2D (n = 828)

Death
(n = 116)

No event
(n = 128)

Death
(n = 321)

No event
(n = 980)

Death
(n = 76)

No event
(n = 127)

Death
(n = 169)

No event
(n = 659)

Median follow-
up time (years)

15.6 6.9

Age (years) 68 (64, 71) 63 (59, 67) 63 (68, 71) 62 (58, 67) 81 (76, 85) 76 (71, 80) 81 (77, 85) 74 (69, 79)

Male (%) 74 (63.8) 66 (51.6) 196 (61.1) 455 (46.4) 42 (55.3) 62 (48.8) 104 (61.5) 308 (46.7)

Systolic blood 
pressure 
(mmHg)

143.0 (128.4, 
159.6)

144.8 (132.5, 
155.0)

137.5 (124.5, 
150.0)

131.8 (119.5, 
145.0)

137.5 (123.5, 
155.6)

139.0 (126.3, 
150.3)

137.0 (122.0, 
153.0)

137.0 (125.3, 
149.3)

Diastolic 
blood pressure 
(mmHg)

80.8 (73.5, 
89.1)

82.5 (77.0, 
88.5)

80.0 (73.0, 
87.0)

79.5 (73.0, 
86.5)

72.0 (64.3, 
79.8)

74.0 (66.0, 
82.0)

72.5 (66.5, 
82.0)

76.5 (70.0, 83.0)

Total cholesterol 
(mmol/l)

5.8 (5.3, 6.8) 6.0 (5.3, 6.7) 6.2 (5.5, 6.9) 6.4 (5.6, 7.0) 4.9 (4.2, 5.3) 5.2 (4.5, 6.0) 5.3 (4.4, 6.2) 5.5 (4.8, 6.2)

HDL-cholesterol 
(mmol/l)

1.2 (1.1, 1.6) 1.3 (1.0, 1.4) 1.5 (1.2, 1.8) 1.5 (1.2, 1.8) 1.2 (1.1, 1.5) 1.2 (1.1, 1.5) 1.4 (1.1, 1.7) 1.5 (1.2, 1.7)

BMI (kg/m2) 30.0 (27.7, 
33.5)

30.2 (27.7, 
33.5)

28.3 (25.9, 
31.0)

27.5 (25.3, 
30.2)

30.1 (26.9, 
33.3)

30.4 (28.0, 
34.3)

27.3 (24.8, 
30.0)

27.5 (25.2, 30.2)

Education 
(years)

10 (8, 10) 10 (8, 11) 10 (10, 12) 10 (10, 12) 10 (8, 11) 10 (10, 11) 10 (10, 12) 10 (10, 12)

Physical activity 
(active, %)

27 (23.3) 44 (34.4) 107 (33.3) 470 (48.0) 26 (34.2) 70 (55.1) 64 (37.9) 395 (59.9)

Current smoker 
(%)

21 (18.1) 14 (10.9) 63 (19.6) 115 (11.7) 3 (3.9) 5 (3.9) 14 (8.3) 26 (3.9)

Alcohol consumption (%)

  None 39 (33.6) 49 (38.3) 84 (26.2) 260 (26.5) 35 (46.0) 54 (42.5) 60 (35.5) 219 (33.2)

  Moderate 53 (45.7) 59 (46.1) 158 (49.2) 531 (54.2) 37 (48.7) 59 (46.5) 86 (50.9) 340 (51.6)

  High 24 (20.7) 20 (15.6) 79 (24.6) 189 (19.3) 4 (5.3) 14 (11.0) 23 (13.6) 100 (15.2)

Medication use (%)

  Antihyperten-
sive drugs

70 (60.3) 60 (46.9) 131 (40.8) 310 (31.6) 69 (90.8) 105 (82.7) 127 (75.1) 422 (64.0)

  Statins 16 (13.8) 20 (15.6) 30 (9.3) 85 (8.7) 32 (42.1) 47 (37.0) 41 (24.3) 168 (25.5)

  Lipid-lower-
ing drugs

21 (18.1) 24 (18.8) 33 (10.3) 103 (10.5) 32 (42.1) 51 (40.2) 43 (25.4) 172 (26.1)

  Fasting glu-
cose (mmol/l) a

7.1 (6.0, 7.8) 7.1 (6.3, 7.9) 5.5 (5.2, 6.0) 5.4 (5.1, 5.8) - - - -

  2-h glucose 
(mmol/l) b

11.8 (9.8, 13.6) 12.1 (10.2, 
13.6)

6.4 (5.4, 7.6) 6.1 (5.1, 7.3) - - - -

  Fasting insulin 
(pmol/l) c

75.2 (44.6, 
122.9)

86.0 (59.6, 
127.8)

59.4 (41.4, 
88.0)

58.5 (41.4, 
82.8)

- - - -

  HbA1c 
(mmol/mol) d

48.0 (42.0, 
56.0)

45.5 (40.0, 
53.0)

38.0 (36.0, 
40.0)

38.0 (34.5, 
40.0)

48.6 (42.8, 
55.2)

47.5 (42.1, 
50.4)

37.7 (34.4, 
39.9)

36.6 (34.4, 38.8)

  HbA1c (%) d 6.5 (6.0, 7.3) 6.4 (5.8, 7.0) 5.6 (5.4, 5.8) 5.6 (5.3, 5.8) 6.6 (6.1, 7.2) 6.5 (6.0, 6.8) 5.6 (5.3, 5.8) 5.5 (5.3, 5.7)
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receptor, fibroblast growth factor 23 [FGF-23], pen-
traxin-related protein PTX3, and IL-8), with four over-
lapping proteins, were selected to be included in the 
protein-based prediction model for all-cause mortality in 
those with and without T2D, respectively, using Lasso.

In the group with T2D, in KORA S4, the protein-based 
model displayed similar predictive performance as the 
clinical model with no significant improvements in any 
of the performance indicators, while the combined model 
showed significant improvements in ΔC-index, cfNRI, 
cfNRIsurvivors, and IDI, compared to the clinical model 
(Table  2 & Additional file  2: Figure S4). Results were 
similar in KORA-Age1. In the group without T2D, the 
model performance of all three models tended to be bet-
ter (higher C-index) than in persons with T2D, but differ-
ences between the protein-based and combined models 
compared to the clinical model were similar to those in 
persons with T2D for both KORA S4 and KORA-Age1, 
with the combined model demonstrating the best predic-
tive performance (Table 2 & Additional file 2: Figure S4).

In a sensitivity analysis excluding overlapping partici-
pants from KORA-Age1, except for the ΔC-index, which 
was not significantly improved in the T2D group, the 
prediction results demonstrated improved performance 
of the combined model compared to the clinical model in 
both T2D groups (Additional file 2: Table S12).

Discussion
Using a discovery–validation approach, we examined 
the association of 233 protein abundance levels, meas-
ured by PEA-based technology, with all-cause and 
cause-specific mortality in individuals with and without 
T2D. In individuals with T2D, we identified 35 proteins 
that were positively associated with all-cause mortality, 
while 62 proteins with positive associations were iden-
tified in those without T2D. Interestingly, both sets of 
proteins shared common pathways, such as immune- 
and inflammatory-related pathways. However, regula-
tion of IGF transport and IGFBPs emerged as a unique 
pathway in the T2D group, confirming that T2D-related 
pathways might contribute to premature mortality in 
persons with T2D. Of note, albeit the examined proteins 
were initially selected for their links to inflammation and 

CVD, the identified proteins linked to all-cause mortality 
demonstrated associations with all examined cause-spe-
cific outcomes, including cardiovascular, cancer-related, 
and other-cause mortality. While many of the identified 
protein–mortality associations have been previously 
reported [4–16, 51], our study identified four novel pro-
teins associated with all-cause mortality. Furthermore, 
we showed that the addition of a limited number of pro-
teins to prediction models based on clinical risk factors 
significantly improved the prediction of all-cause mortal-
ity for both persons with and without T2D.

Novel protein candidates for all‑cause mortality
A novel protein was defined as one lacking a significant 
association with all-cause mortality in previous epidemi-
ological studies, such as those using proteomics measure-
ments after controlling multiple testing. Consequently, 
we identified four novel proteins, including MERTK, 
IL-27, monocyte chemotactic protein 3 (MCP-3), and 
lymphotoxin-beta receptor (LTβR). MERTK, which was 
found specifically in the group with T2D, also exhibited 
a unique association with cancer mortality and demon-
strated a significant interaction effect with T2D when 
examined in the total study group. MERTK is known to 
contribute to the oncogenesis of various human cancers 
[52, 53] and has been linked to atherosclerosis [54] and 
diabetes [55]. Although excessive circulating levels of 
MERTK have been associated with renal injury, especially 
in patients with T2D [56, 57], its role in the development 
of premature mortality in T2D remains undefined.

In the group without T2D, IL-27 was significantly asso-
ciated with cardiovascular and cancer mortality in the 
present study. This pro-inflammatory cytokine has previ-
ously been associated with incident coronary heart dis-
ease [58] and various inflammatory diseases, including 
lung [59], sepsis [60], and hepatic injury [61]. Similarly, 
in the group without T2D, MCP-3 (also known as C–C 
motif chemokine 7 [CCL7]) showed a significant associa-
tion with cancer-related mortality and a borderline signif-
icant association with cardiovascular mortality. Playing a 
crucial role in cell recruitment to inflammatory sites and 
diseases [62], dysregulation of MCP-3 has been linked to 
cardiac inflammation and impaired cardiac function [63]. 

Fig. 2  Association of validated 35 and 62 proteins for all-cause mortality in the groups with and without baseline type 2 diabetes (T2D), 
respectively, and their associations with all-cause and cause-specific mortality in the pooled sample. Hazard ratios have been calculated per 1 SD 
increase in normalized protein expression values on a log2 scale. Effect estimates and P-values were derived from Cox regression analysis adjusted 
for age, sex, total cholesterol, high‐density lipoprotein cholesterol, systolic blood pressure, antihypertensive medication use, current smoking, body 
mass index, education years, physical activity, and alcohol consumption (model 2). * indicates that the interaction term with T2D status at baseline 
was statistically significant (P-value < 0.05). The interaction effect of T2D status was examined by adding the term (protein × T2D status) to model 2 
among all participants combined. Abbreviations: KORA, Cooperative Health Research in the Region of Augsburg; T2D, type 2 diabetes. Full names 
of the biomarkers can be found in Additional file 1: Table S1

(See figure on next page.)
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Another novel biomarker observed in both groups with 
and without T2D was LTβR. In both T2D groups, LTβR 
was associated with cardiovascular and other-cause 

mortality, while among individuals without T2D only, it 
showed significant association with cancer-related mor-
tality in this study. LTβR, a cell surface receptor and a 

Fig. 2  (See legend on previous page.)
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member of the tumor necrosis factor receptor superfam-
ily, is involved in various immunological and inflamma-
tory pathways [64, 65], contributing to processes such as 
liver regeneration and lipid homeostasis [66, 67]. Nota-
bly, IL-27, MCP-3, and LTβR, in a population-based 
cohort study, were reported to have a positive but non-
significant association with all-cause mortality after Bon-
ferroni correction [4].

Previous proteomics studies
Many of our validated all-cause mortality-associated 
proteins align with previous investigations using high-
throughput technologies [4–13] (details see Additional 
file  2: Table  S13). Our study successfully replicated 50 
proteins among 1364 significant all-cause mortality-asso-
ciated proteins identified using affinity-based proteomics 
(SOMAscan assay) in a population-based cohort (22,913 
participants and 7061 deaths) [4]. Using the same type 
of assay, another prospective study (997 participants and 
504 deaths) identified 193 proteins significantly associ-
ated with all-cause mortality, with 24 of them aligning 
with our findings [6]. Using PEA technology, in a pro-
spective study (3918 participants with 974 deaths), four 
of their identified eight all-cause mortality-associated 
proteins showed consistent positive association with our 

findings [5]. In addition, a further cohort study (1713 
participants and 590 deaths) explored seven diabetes-
related proteins, revealing two of our validated proteins 
to be associated with both all-cause and cardiovascular 
mortality [7]. Moreover, another population-based study 
(3523 participants and 755 all-cause and 167 cardiovas-
cular deaths) employed a modified ELISA technique, 
identifying 38 and 35 proteins to be associated with all-
cause and cardiovascular mortality, respectively, with six 
proteins overlapping with our study [8].

Other proteomics population-based studies using mass 
spectrometry-based methods and nuclear magnetic 
resonance spectroscopy also explored associations with 
all-cause and cause-specific mortality [17, 18]. Further 
studies focused on all-cause mortality among patients 
with CVD [9–13]. Additionally, four proteomics stud-
ies explored associations with cardiovascular mortality 
among patients with CVD [13–15] and renal diseases 
[16].

Notably, proteins such as IL-6 [4, 6, 8, 10–15] identified 
in the group without T2D, FGF-23 [4, 8–15], TRAIL-R2 
[4, 11–15], and GDF-15 [4–6, 8, 11, 12, 14, 15] identi-
fied in both groups with and without T2D in the present 
study, emerge as the most reported proteins for all-cause 
and cardiovascular mortality. These consistent findings 

Fig. 3  Protein–protein interaction networks of validated all-cause mortality-associated proteins among participants (A) with and (B) without type 
2 diabetes at baseline. The edges between protein nodes represent the interaction score between the proteins from the STRING database 
considering all types of evidence. Only edges featuring interaction scores > .15 are displayed. The thickness of edges corresponds to the strength 
of data support. Node color signifies the Reactome pathway the protein is associated with. The five most enriched Reactome pathways are 
displayed. Abbreviations: Full names of the biomarkers can be found in Additional file 1: Table S1
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across various studies underscore the robustness and 
clinical relevance of these proteins as potential markers 
for mortality risk.

However, our study distinguishes itself by specifically 
identifying biomarkers according to baseline T2D status, a 
novel approach compared to previous studies that assessed 
associations in population-based samples or in patients 
with CVD or renal diseases. Differences in targeted age 
groups, follow-up durations, and measurement techniques 
[25, 68] contribute to variations among studies.

Prediction of all‑cause mortality
Our study is the first to establish proteomics-enriched 
predictive models for all-cause mortality separately for 
those with and without prevalent T2D. The significant 
improvement in predictive performance by adding the 
selected proteins to a clinical prediction model, evi-
dent in both the discovery and validation samples, was 
reflected by a 6.8% and 6.6% increase in the C-index for 
the group with and without baseline T2D, respectively, 
in the validation sample. This enhancement underscores 
the clinical relevance and potential applicability of these 
protein-enriched models in clinical practice.

Notably, our finding highlighted proteins such as GDF-
15 [4, 8, 11, 12], TRAIL-R2 [9, 11–13], KIM1 [9, 16], 

NT-proBNP [8], IGFBP-2 [8], and MMP-12 [9] as stand-
out prognostic proteins for all-cause mortality, align-
ing partially with previous investigations in the general 
population or patients with CVD. For instance, Eiriksdot-
tir et  al. [4] developed prediction models with 98, 117, 
and 199 proteins for all-cause mortality at 2-, 5-, and 
10-year intervals in a population-based sample, show-
casing a 4.3%, 3.4%, and 2.4% improvement in C-index 
compared to age-sex-based protein models, respectively. 
In these models, GDF-15 emerged as the most powerful 
predictor. Similarly, in another population-based cohort 
with 14.3 years of follow-up, Ho et al. [8] constructed a 
12-protein-based model that showed a 4.6% improve-
ment in the C-index on top of clinical variables. Their 
constructed model included GDF-15, NT-proBNP, and 
IGFBP-2. Unterhuber et  al. [9] established a 20-protein 
model in patients with CVD, demonstrating a 9.6–12.5% 
improvement in the C-index for 10-year all-cause mor-
tality prediction compared to a baseline clinical model, 
which also included TRAIL-R2, MMP-12, and KIM1. 
Additionally, Skau et  al. reported GDF-15 and TRAIL-
R2 as potent predictors for 10-year all-cause mortality in 
patients with acute myocardial infarction [12] or periph-
eral arterial disease [11]. However, the practical applica-
tion of these models in clinical settings requires cautious 

Table 2  Predictive performance for all-cause mortality

Abbreviations: C‐index concordance index; cfNRI category‐free net reclassification index; IDI independent discrimination improvement; KORA Cooperative Health 
Research in the Region of Augsburg; T2D type 2 diabetes
a The five selected proteins which were included in the protein-based model and the combined model in the group with type 2 diabetes are NT-proBNP, GDF-15, 
TRAIL-R2, KIM1, and IGFBP-2
b The 12 selected proteins which were included in the protein-based model and the combined model in the group without type 2 diabetes are NT-proBNP, GDF-15, 
TRAIL-R2, KIM1, MMP-12, CHI3L1, PRSS8, EN-RAGE, PIGR, FGF-23, PTX3, and IL-8
c The difference in concordance index (ΔC‐index) comparing the protein-based and the combined models with the clinical model was calculated according to the 
formula: ΔC‐index = C‐index protein-based model / combined model - C‐indexclinical model)

Bold indicates statistically significant value

Baseline status KORA S4 KORA-Age1

Clinical model Protein-based 
model

Combined model Clinical model Protein-based 
model

Combined model

With T2Da

  C‐index 0.672 [0.630; 0.739] 0.706 [0.662; 0.756] 0.722 [0.686; 0.780] 0.659 [0.622; 0.772] 0.717 [0.675; 0.802] 0.704 [0.681; 0.822]

  ΔC‐indexc - 0.035 [-0.029; 0.092] 0.050 [0.009; 0.090] - 0.058 [-0.032; 0.116] 0.045 [0.005; 0.114]
  cfNRI - 0.111 [-0.404; 0.433] 0.481 [0.125; 0.664] - 0.112 [-0.446; 0.465] 0.436 [0.191; 0.761]
  cfNRIdeaths - 0.062 [-0.194; 0.204] 0.011 [-0.113; 0.207] - 0.087 [-0.205; 0.217] 0.096 [-0.125; 0.357]

  cfNRIsurvivors - 0.050 [-0.283; 0.279] 0.470 [0.130; 0.569] - 0.025 [-0.324; 0.291] 0.340 [0.222; 0.627]
  IDI - 0.015 [-0.069; 0.107] 0.089 [0.042; 0.149] - 0.057 [-0.068; 0.116] 0.085 [0.032; 0.179]
Without T2Db

  C‐index 0.715 [0.684; 0.747] 0.710 [0.686; 0.745] 0.741 [0.718; 0.780] 0.744 [0.724; 0.797] 0.779 [0.742; 0.816] 0.793 [0.759; 0.837]

  ΔC‐indexc - -0.005 [-0.034; 0.030] 0.026 [0.016; 0.050] 0.035 [-0.010; 0.072] 0.049 [0.020; 0.077]
  cfNRI - -0.253 [-0.383; 0.006] 0.217 [0.151; 0.432] - 0.091 [-0.167; 0.364] 0.448 [0.237; 0.635]
  cfNRIdeaths - -0.128 [-0.207; -0.007] -0.046 [-0.107; 0.087] - 0.075 [-0.093; 0.173] 0.053 [-0.089; 0.201]

  cfNRIsurvivors - -0.125 [-0.205; 0.042] 0.263 [0.185; 0.357] - 0.016 [-0.139; 0.222] 0.395 [0.252; 0.472]
  IDI - -0.022 [-0.048; 0.013] 0.030 [0.020; 0.056] - 0.009 [-0.032; 0.048] 0.040 [0.023; 0.082]
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consideration due to variations in proteins, populations, 
and methodologies across studies.

Strengths and limitations
We employed advanced targeted proteomics technology 
to investigate associations of a broad spectrum of pro-
teins with mortality. A notable strength of our analysis 
strategy is the validation of the initially identified pro-
teins in another study. Specifically examining protein–
mortality associations by T2D status offered insights into 
the underlying mechanisms leading to mortality in indi-
viduals with and without T2D.

However, certain limitations of the present study 
need consideration. First, the PEA approach provided 
relative, rather than absolute, protein concentrations. 
Importantly, this difference did not affect the reported 
associations in this study, as evidenced by consistent 
results obtained with other measurements for a sub-
set of proteins (Additional file 2: Table S10) [25]. None-
theless, it has to be acknowledged that the availability 
of absolute protein measurements would facilitate the 
transfer of derived prediction models into clinical prac-
tice. Secondly, the limited number of deaths resulted in 
a relatively low power for detecting differences in cause-
specific mortality. Therefore, we restricted analyses on 
cause-specific mortality to the proteins significantly 
related to all-cause mortality after validation and did 
not follow a stringent discovery–validation strategy for 
the identification of proteins related to cause-specific 
mortality outcomes based on all measured proteins. Fur-
thermore, to enhance statistical power, we pooled sam-
ples from the discovery and validation cohorts to obtain 
more robust estimates for associations between proteins 
and cause-specific mortality and refrained from devel-
oping prediction models for cause-specific mortality 
outcomes. Additionally, although validation in KORA-
Age1 reinforced the results for the validated proteins, 
we might lack replication for some proteins, especially if 
their impact was influenced by age, given that the KORA-
Age1 participants were all older than 64 years. Moreover, 
it is noteworthy that there is some overlap between the 
participants of KORA-Age1 and KORA S4 albeit par-
ticipants were examined at different time points. How-
ever, excluding these overlapping participants from our 
analyses did not lead to substantial changes. Finally, the 
shorter follow-up duration of KORA-Age1 compared to 
KORA S4 needs to be acknowledged as a limitation.

Conclusions
In summary, our study identified common and distinct 
mortality-related proteins among individuals with and 
without baseline T2D, emphasizing the pivotal role of 

these proteins in mortality. The findings highlighted the 
significance of immune and inflammatory processes in 
both examined groups and the regulation of IGF trans-
port and uptake by IGFBPs specifically in individuals 
with T2D. In addition, some variations in the most rel-
evant proteins for improved mortality prediction were 
observed between those with and without T2D, under-
scoring the need to further explore disease-specific pre-
diction models.
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