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Abstract
Aims/hypothesis  Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the 
metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and 
type 2 diabetes.
Methods  As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consor-
tium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 
metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and 
logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory 
variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic 
model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statis-
tical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal 
effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively.
Results  In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites 
observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose 
regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose 
regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with 
some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, 
sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine 
and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA1c progression 
rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to 
estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association 
studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate 
[fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae 
C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially 
had a causal role in the development of type 2 diabetes.
Conclusions/interpretation  Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabo-
lites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18 
and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and n-3 fatty acids as being causal 
for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabo-
lite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions.
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Abbreviations
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Lac-Phe	� N-lactoyl-phenylalanine
LysoPC	� Lysophosphatidylcholine
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Introduction

Type 2 diabetes is a complex and common metabolic disor-
der, resulting from the body’s ineffective use of insulin. It can 
be characterised by hyperglycaemia (high blood sugar) due to 

impaired insulin secretion and insulin resistance, with most 
affected people being overweight or obese [1]. Impaired glu-
cose tolerance (IGT) and impaired fasting glucose, together 
known as impaired glucose regulation (IGR) or prediabetes, 
characterise an intermediate condition before converging 
towards diabetes. Recent studies show that a complex inter-
play of genetic susceptibility, environmental factors, lifestyle 
(including diet, physical activity, smoking and alcohol con-
sumption), clinical heterogeneity, drugs and gut microbiome 
orchestrates the development of type 2 diabetes [2]. Over 
time, individuals with type 2 diabetes are more likely to have 
a higher risk for heart attacks, strokes [3], neuropathy (nerve 
damage), retinopathy (causing blindness) and kidney failure 
as well as several infectious diseases including COVID-19, 
reducing life quality and causing social burden [4, 5].

Metabolomics profiles involve a set of low-molecular-
weight biochemicals (metabolites) that includes sugars, 
amino acids, organic acids, nucleotides, lipids, xenobiot-
ics and other compound classes. Identifying biochemi-
cal changes occurring between prediabetes and diabetes 
improves risk prediction for better-targeted prevention [6, 
7]. In addition, genetic composition can be used to make 
predictions regarding disease susceptibility. Genome-wide 
association studies (GWAS) show that more than 400 loci 
influence the risk of type 2 diabetes [8] and that 900 genetic 
variants have been associated with BMI [9]. Therefore, 
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linking metabolites with genetics gives access to genetics’ 
influence on the metabolic compositions [10–13], provid-
ing comprehensive molecular understanding of the disease.

In the Innovative Medicines Initiative - Diabetes Research 
on Patient Stratification (IMI-DIRECT), we characterised 
132 metabolites from targeted measurements and 779 
metabolites from untargeted measurements profiled in 3000 
individuals at baseline. The study population was stratified 
by following ADA 2011 glycaemic categories as follows: 
23.89% (n=692) had normal glucose regulation (NGR) with 
fasting glucose 5.23 (SD=0.39) mmol/l; 48.91% (n=1418) 
had IGR with fasting glucose 5.90 (SD=0.51) mmol/l; and 
27.2% (n=890) had type 2 diabetes with fasting glucose 7.15 
(SD=1.39) mmol/l [14]. For the integration of non-omics 
data such as health status, lifestyle and medication with 
metabolomics, advanced statistical techniques were applied 
to analyse the data (see Methods). Beyond multivariate and 
association analyses we performed causal mediation analysis 
to evaluate potential causal roles of mediators on outcome 
[15, 16]. A study on drug–omics associations in type 2 dia-
betes [17] used an unsupervised deep learning framework 
of multi-omics variational autoencoders (MOVE) to extract 
significant drug response patterns from 789 individuals 
newly diagnosed with type 2 diabetes in the IMI-DIRECT 
cohort. We integrated the polypharmacy effect on metab-
olomics knowledge from MOVE and compared with our 
molecular findings in this study.

Our aims in this study were as follows: (1) to characterise 
911 small molecular (132 targeted, 779 untargeted metabo-
lomics analysis approach) features associated with prediabetes/
IGR and type 2 diabetes; (2) to identify baseline metabolites 
associated with progression rate estimated from cross-sectional 
data; (3) to investigate potential mediation effects of metabo-
lites from baseline glycaemic status to follow-up using media-
tion analysis; and (4) to identify causal relationships between 
metabolites and type 2 diabetes using genetics drivers using 
two-sample Mendelian randomisation (2SMR) tests.

Methods

DIRECT cohort

The Diabetes Research on Patient Stratification (DIRECT) 
cohort encompasses 24,682 European participants at varying 
risk of glycaemic deterioration, identified and enrolled into 
a prospective cohort (study 1) of prediabetes (n=2235) and 
type 2 diabetes (n=830). Using ADA 2011 glycaemic catego-
ries in study 1, 33% (n=692) of cohort 1 (prediabetes risk) 
had NGR, 67% (n=1418) had IGR and 108 were excluded. 
In study 2, 789 samples were included and 41 samples were 
excluded. From study 1, 101 excluded samples entered study 
2 (n=890). The ratio of self-reported sex varied in each study. 

Detailed characteristics on inclusion and exclusion criteria, 
along with the protocol timeline for visits and tests for both 
studies, have been described elsewhere [14, 18]. In summary, 
venous blood fasting samples were obtained, followed by per-
formance of DNA extractions and additional biochemical 
analyses. Metabolomics measurements for distinct samples 
at the baseline is considered in this study.

Targeted metabolomics (AbsoluteIDQ p150 Kit)

Blood samples in the study were analysed with the Abso-
luteIDQ p150 Kit (BIOCRATES Life Sciences, Innsbruck, 
Austria) (see electronic supplementary material [ESM] 
Methods for details) [19]. After data export, lower and upper 
outliers were defined as samples with >33% of metabolite 
concentrations below 25% quantile (±1.5 × IQR). Metabolite 
traits with too many zero-concentration samples and uniden-
tified metabolites (NAs, >50%) were excluded (none). The 
CV was calculated in reference samples for each metabolite 
over all plates. Metabolite traits with CV>0.25 were excluded. 
After quality control, 132 metabolites were included in 
this study (ESM Table 1). Metabolite concentrations were 
loge-transformed and scaled (mean=0, SD=1) to ensure com-
parability between the metabolites.

Untargeted metabolomics (Metabolon platform)

Untargeted LC/MS-based techniques covers a broad spec-
trum of metabolites, in contrast to the targeted techniques 
wherein metabolites are limited to a predefined set of 
molecules. For details on sample preparation, measure-
ment and identification of metabolites, see ESM Methods. 
Incomplete databases and the presence of unknown or 
novel metabolites have been reported with an asterisk (*) 
against the metabolite name. The measured volume of the 
datasets contained 12% missing values. We screened for 
outlier remover (see ESM Fig. 1 for an example), which 
added 4% more missing values onto existing missing val-
ues (ESM Table 2). Peaks were quantified using AUC. 
For studies spanning multiple days, a data normalisation 
step was performed to correct variation resulting from 
instrument inter-day tuning differences. Essentially, each 
compound was corrected in run-day blocks by register-
ing the medians to equal one and normalising each data 
point proportionately (termed the ‘block correction’; ESM 
Fig. 2). Principal component analysis was performed on the 
metabolite dataset and checked for technical effects such as 
centre and sex (see ESM Fig. 3). The data missing pattern 
was tested using logistic regression considering missing as 
0 and non-missing as 1; there was no significant association 
between missing and regressors indicating the missing-at-
random pattern. The K-nearest neighbour (KNN)-based 
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imputation method was applied using K=10 as suggested 
and optimised from German Cohort KORA F4 [20].

Statistics

Multivariable logistic regression and linear regression  Identi-
fying metabolites specifically associated with the presence of 
IGR and type 2 diabetes, we ran the logistic regression with 
adjustment for age, sex, BMI and centre as the basic model, 
and adjusted additionally for alcohol consumption, smok-
ing, BP, fasting HDL-cholesterol and fasting triacylglycerol 
as the full model. The concentration of each metabolite was 
loge-transformed and scaled to have a mean of zero and an 
SD of 1. Each metabolite was taken as exposure and a binary 
NGR-IGR, NGR-type 2 diabetes (NGR-T2D) or IGR-type 
2 diabetes (IGR-T2D) variable as an outcome. The OR of 
outcomes was calculated using the β coefficient from logistic 
regression, where OR>1 indicates higher odds of outcome 
and OR<0 shows lower odds of outcome. To account for 
multiple testing, the p values from regression analyses were 
adjusted for multiple testing using the Bonferroni correction 
(pfdr values). To stratify sex-dependent metabolites, men and 
women were separated to test the associations by performing 
the logistic regression full models.

For incidents of IGR and type 2 diabetes analysis, a 
binary NGR-IGR, NGR-T2D or IGR-T2D variable at fol-
low-up times of 18 months and 48 months was taken as the 
outcome; transformed metabolites and the same risk factors 
in the full model were taken as exposure and covariates, 
respectively. The same p correction method was adopted.

The linear regression model was used to explore the asso-
ciation between HbA1c progression rate and metabolites at 
the baseline. HbA1c progression rate was computed with 
a conditional linear mixed effect model and adjusted for 
changes in BMI and diabetes medications [21]. Each trans-
formed metabolite was taken as the independent variable and 
HbA1c concentration as the dependent variable, with adjust-
ment for age and sex. Bonferroni correction was performed 
for p correction.

Mediation analysis  Mediation analysis followed the basic 
steps suggested by Baron and Kenny [22], and the signifi-
cance of the mediation effect was tested with a non-para-
metric causal mediation analysis [22, 23]. Each identified 
metabolite was taken as a mediator, glycaemic category sta-
tus at the baseline as the independent variable and glycaemic 
category at the follow-up (18 months and 48 months) as 
the dependent variable. R package ‘mediation (4.5.0)’ was 
used to calculate the p value and proportion of the mediation 
effect by bootstrapping with 1000 resamples.

Mendelian randomisation  We used 2SMR approaches from 
the MRInstruments (0.3.2) and TwoSampleMR library 

(v0.5.6) to check causal inference [24]. The 2SMR technique 
enables the establishment of a causal relationship between 
two observational studies (ESM Fig. 4), solely relying on 
summary statistics obtained from GWAS [24, 25]. To evalu-
ate the influence of type 2 diabetes on metabolite levels, we 
conducted a 2SMR examination. Type 2 diabetes instruments 
were obtained from the genome-wide genotyping study [26] 
and the corresponding SNP estimates on metabolites were 
extracted from the metabolite-GWAS [10, 27]. Prior to per-
forming Mendelian randomisation (MR) analysis, exposure 
and outcome data were harmonised by aligning the SNPs 
on the same effect allele. We employed the inverse‐variance 
weighting [10, 26, 27] to estimate the causal effect.

Results

Study populations

After stringent quality control (see ESM Methods), we iden-
tified 132 (ESM Table 1) and 779 (ESM Table 2) metabolites 
from targeted and untargeted metabolomics measurements, 
respectively, that were profiled for 3000 samples (ESM 
Table 3) [28]. Baseline characteristics (Table 1) revealed 
that there were significant differences in BMI, fasting vari-
ables and health status observed between NGR, IGR and 
type 2 diabetes groups. No significant differences in age and 
smoking status were observed between these three groups. 
In addition, the study was conducted across seven countries; 
type 2 diabetes participants were recruited in all centres 
while participants with NGR or IGR were only recruited 
in the Amsterdam, Copenhagen, Kuopio and Lund centres.

Metabolites associated with prediabetes 
and diabetes from targeted metabolomics 
measurements

A multivariable logistic regression model was used with 
known diabetes-related variables as covariates to identify 
significant metabolites. Study centre, sex, age and BMI were 
covariates in the basic model while the additional variables 
systolic BP, fasting HDL-cholesterol, fasting triacylglycerol, 
smoking status, alcohol status and health status were added in 
the full model. Based on the full model, four metabolites dif-
fered significantly between the NGR and IGR groups (Fig. 1a). 
Of these, hexoses (H1) showed the strongest association (OR 
1.81 [95% CI 1.59, 2.06], pfdr=3.97×10−17) and served as a 
positive control throughout our analysis. Thirty-four and 50 
metabolites differed significantly between NGR and IGR vs 
type 2 diabetes, respectively (Fig. 1b,c). As a general pattern, 
phosphatidylcholines (PCs) and lysophosphatidylcholine 
(lysoPC) were negatively associated with progression to type 
2 diabetes, while branched-chain and aromatic amino acids as 
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well as valeryl/glutaryl-related acylcarnitines were positively 
associated with type 2 diabetes.

H1 (OR 9.67 [95% CI 6.54, 14.32], pfdr=1.13×10−27) also 
had the strongest associations in NGR-T2D while C5-M-DC 
(OR=5.31 [95% CI 4.16, 6.77], pfdr=1.07×10−38) had the 
strongest association in IGR-T2D. Three metabolites (H1, 

lysoPC a C17:0, lysoPC a C18:0) were significantly dif-
ferent in all comparisons (NGR-IGR, NGR-T2D and IGR-
T2D), suggesting their important roles in diabetes indica-
tion and severity. Detailed statistics for the basic model 
and full model are shown in ESM Tables 3–8. As there 
were many more male participants than female participants 

Table 1   Baseline characteristics 
of the DIRECT participants 
based on their glycaemic 
category

Quantitative variables are expressed as mean ± SD; categorical variables are expressed as n (%)
The significant difference of population characteristics between the individuals with IGR/type 2 diabetes 
and the normal participants (NGR) was calculated. Test statistics for categorical variables were calculated 
via the χ2 test and Student’s t test for continuous variables
T2D, type 2 diabetes; TG, triacylglycerol

Characteristic NGR IGR T2D p value

Sample size 692 1418 890
Male sex 519 (75.0) 1074 (75.7) 525 (59.0) <0.001
Centre <0.001
  Amsterdam 167 (24.1) 300 (21.2) 183 (20.6)
  Copenhagen 54 (7.8) 223 (15.7) 97 (10.9)
  Dundee 0 0 164 (18.4)
  Exeter 0 0 142 (16.0)
  Kuopio 407 (58.8) 820 (57.8) 34 (3.8)
  Lund 64 (9.2) 75 (5.3) 104 (11.7)
  Newcastle 0 0 166 (18.7)
Age, years 62.15±6.43 62.08±6.19 61.99±7.96 0.894
BMI, kg/m2 27.15±3.65 28.33±4.06 30.59±4.92 <0.001
Systolic BP, mmHg 128.48±15.21 131.62±15.20 132.02±15.78 <0.001
Diastolic BP, mmHg 79.18±8.73 81.20±8.97 76.48±9.88 <0.001
Fasting glucose, mmol/l 5.23±0.39 5.90±0.51 7.13±1.39 <0.001
Fasting HDL-cholesterol, mmol/l 1.37±0.35 1.30±0.36 1.18±0.38 <0.001
Fasting LDL-cholesterol, mmol/l 3.21±0.90 3.19±0.95 2.43±1.00 <0.001
Fasting TG, mmol/l 1.22±0.53 1.44±0.66 1.56±0.88 <0.001
Fasting cholesterol, mmol/l 5.14±0.97 5.15±1.01 4.33±1.17 <0.001
Fasting HbA1c, mmol/mol 35.34±2.22 37.86±2.88 45.86±5.94 <0.001
Fasting HbA1c, % 5.38±0.20 5.61±0.26 6.35±0.54 <0.001
Fasting insulin, pmol/l 50.84±30.90 72.42±50.22 96.56±72.69 <0.001
Smoking status 0.717
  Current smoker 93 (13.4) 215 (15.2) 117 (13.2)
  Ex-smoker 326 (47.1) 681 (48.0) 445 (50.1)
  Never 272 (39.3) 520 (36.7) 326 (36.7)
  Not Known 1 (0.1) 2 (0.1) 1 (0.1)
Alcohol consumption status 0.004
  Never 96 (13.9) 166 (11.7) 140 (15.7)
  Occasionally 134 (19.4) 282 (19.9) 214 (24.1)
  Regularly 462 (66.8) 968 (68.3) 534 (60.1)
  Not known 0 2 (0.1) 1 (0.1)
Health status <0.001
  Poor 1 (0.1) 10 (0.7) 28 (3.1)
  Fair 49 (7.1) 74 (5.2) 34 (3.8)
  Good 331 (47.8) 744 (52.5) 428 (48.1)
  Very good 213 (30.8) 396 (27.9) 239 (26.9)
  Excellent 49 (7.1) 74 (5.2) 34 (3.8)
  Not known 4 (0.6) 11 (0.8) 19 (2.1)
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enrolled in the study, a sensitivity analysis stratified by 
sex was conducted, and is reported in ESM Results, ESM 
Tables 9–14 and ESM Fig. 5.

Metabolites associated with prediabetes 
and diabetes from untargeted metabolomics 
measurements

Fifteen metabolites were significantly changed between 
NGR and IGR based on the logistic regression analyses 
in the full model (Fig. 2a). Fructosyl lysine had the high-
est statistically significant association with progression 
to IGR (OR 1.53 [95% CI 1.37, 1.71], pfdr=8.64×10−12). 
Similarly, 99 and 108 metabolites differed significantly 
between NGR or IGR and type 2 diabetes, respectively 
(Fig. 2b,c). As a general pattern, lipids were negatively 
associated and amino acids were positively associated 
with progression to type 2 diabetes. 1-(1-Enyl-palmitoyl)-
2-oleoyl-GPC (P-16:0_18:1)* (OR 0.23 [95% CI 0.17, 
0.31], pfdr=3.48×10−18) had the strongest association for 
the NGR-T2D comparison, while cysteine-S-sulphate 
(OR 3.25 [95% CI 2.55, 4.15], pfdr=3.11×10−18) was sig-
nificantly associated in the IGR-T2D comparison. Seven 
metabolites (fructosyl lysine, glutamate, 1-stearoyl-
GPC (18:0), N-lactoylphenylalanine, N-lactoylvaline, 
picolinoyl glycine, mannonate) appeared significant in 
all comparison groups, suggesting their important roles as 
diabetes risk indicators. Detailed statistics are presented 
in ESM Tables 15–20. A sex-based sensitivity analysis of 
metabolomics data from the untargeted measurements is 
reported in ESM Results, ESM Table 21–26, ESM Fig. 6.

Metabolites associated with HbA1c progression rate

HbA1c progression rate was computed with a condi-
tional linear mixed effect model and adjusted for changes 
in BMI and diabetes medications [21]. In multivariable 
linear regression analysis, lysoPC a C17:0 (β −0.0535 
[95% CI −0.08, −0.0269], pfdr=0.0109), glycine (Gly) (β 
−0.0509 [95% CI −0.0782, −0.0236], pfdr=0.0347) and 
H1 (β 0.0481 [95% CI 0.0218, 0.0745], pfdr=0.0452) were 
significantly correlated with HbA1c progression rate and 
all were related to glycaemic-deterioration traits as well. 
In untargeted metabolomic profiling, 20 metabolites were 
significantly related to HbA1c progression rate, with pyru-
vate (β 0.0877 [95% CI 0.0609, 0.114], pfdr=1.28×10−7) 
showing the strongest association. Besides pyruvate, 
N-lactoylleucine, lactate, N-lactoylphenylalanine, X-15245, 
N-lactoylisoleucine, N-lactoylvaline, 1-(1-enyl-palmitoyl)-
2-oleoyl-GPC (P-16:0/18:1)*, cortolone glucuronide, 
X-24295, formiminoglutamate and N-lactoyltyrosine were 
also significantly associated with glycaemic categories. 

Tables 2 and 3 show the metabolites with significant asso-
ciations, while the complete results are reported in ESM 
Tables 27–28.

Metabolite association with incident diabetes (IGR/
type 2 diabetes)

Several metabolites were identified to be significantly 
associated with HbA1c progression rate as well as glycae-
mic category: three targeted metabolites (lysoPC a C17:0; 
glycine, H1); and 12 untargeted metabolites (pyruvate, 
N-lactoylleucine, lactate, N-lactoylphenylalanine, X-15245, 
N-lactoylisoleucine, N-lactoylvaline, 1-[1-enyl-palmitoyl[-
2-oleoyl-GPC* [PC(P-16:0/18:1)], cortolone glucuronide, 
X-24295, formiminoglutamate, N-lactoyltyrosine). Next, 
we investigated their predictive value for IGR and type 2 
diabetes by including baseline metabolite concentrations 
and incident IGT or type 2 diabetes in follow-up timelines 
in multivariable logistic regression. As shown in Table 4, 
lysoPC a C17:0 concentration at baseline was observed to 
significantly differ in 244 incident IGR individuals com-
pared with 398 NGR control individuals after 18 months. 
The sum of H1 at baseline concentrations showed significant 
differences between incident IGR (at 48 month follow-up) 
and NGR or incident type 2 diabetes and IGR at both the 18 
month and the 48 month follow-up.

In untargeted metabolomic profiling, lactate and X-24295 
baseline concentrations were significantly correlated with 
IGR or type 2 diabetes incidence at the 18 month and 48 
month follow-up (Table 5). Formiminoglutamate, N-lac-
toylleucine and N-lactoylvaline significantly differed in 244 
incident IGT individuals compared with 398 NGT control 
individuals after 18 months. We did not find any significant 
metabolites from untargeted measurements to predict the 
incidence of IGR from NGR at 48 months.

Mediation analysis

Causal mediation analysis was employed to explore the 
potential mediation effects of the identified metabolites 
from baseline glycaemic status to follow-up. Consistent 
with incidence results, lysoPC a C17:0 showed strong sig-
nificance (proportion of mediation by 13%, mediation effect 
p=0.034, Fig. 3a), indicating that this metabolite partially 
mediated the glycaemic deterioration from NGR to IGR at 
18 months. The positive control H1 exhibited significant 
mediation effects in all groups (between 6% and 9%) as it is 
mainly represented by blood glucose.

N-Lactoylvaline (proportion of mediation 24%, mediation 
effect p<2×10−16), lactate (proportion of mediation 22%, 
mediation effect p=0.002), N-lactoylleucine (proportion 
of mediation 20%, mediation effect p=0.006), formimino-
glutamate (proportion of mediation 11%, mediation effect 
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p=0.034) and X-24295 (proportion of mediation 11%, medi-
ation effect p=0.042) were all observed to show significant 
mediation effects from baseline NGR to IGR at 18 months’ 
follow-up (Fig.  3b). Furthermore, formiminoglutamate 
(proportion of mediation 23%, mediation effect p=0.006) 
showed a significant mediation effect from NGR to IGR at 
48 months. These results suggest that these metabolites own 
a significant mediation effect on glycaemic deterioration.

MR

The availability of genetic data on type 2 diabetes makes 
the use of MR particularly compelling. To assess bidi-
rectional causal relationships between type 2 diabe-
tes and metabolites (Fig. 4), we employed 2SMR tests. 
After multiple testing correction only the concentration 
of the sum of H1 was determined by type 2 diabetes 
(p<0.05/117=0.00042). For untargeted metabolites we 
found instruments for only 19% of the metabolites (i.e. 
151 out of 779). For example, instruments are from genes 
TCF7L2, IGF2BP2, NOTCH2, CDKAL1, PABPC4, FTO 
and JAZF1, known to be associated with diabetes and that 
have been further significantly associated with the metab-
olites. Following multiple testing correction, it suggests 
that the change in an amino acid (glutamate) and a lipid 
(caproate, FA C6:0) was caused by change in type 2 diabe-
tes status (p<0.05/151=0.000331). However, metabolites 
that are causal for type 2 diabetes (meaning that the change 
in metabolite caused change in the disease status) included 
several phosphatidylcholines, namely PC aa C36:2, PC aa 
C36:5, PC ae C36:3 and PC ae C34:3, from the targeted 
metabolomics dataset. From the untargeted metabolomics 

Table 2   Metabolites from targeted measurements significantly associ-
ated with HbA1c progression rate from a linear regression model

The dependent variable is the HbA1c progression rate while the inde-
pendent variable is the loge-transformed and standardised baseline 
concentration of a given metabolite, adjusted by age and sex
The pfdr values represent the adjusted p value for multiple testing by 
Bonferroni correction

Metabolite β (95% CI) p value pfdr value

LysoPC a C17:0 −0.053 (−0.080, 
−0.027)

8.25×10−5 0.011

Gly −0.051 (−0.078, 
−0.024)

2.63×10−4 0.0345

H1 0.048 (0.022, 0.075) 3.42×10−4 0.045

Table 3   Metabolites from 
untargeted metabolomics 
measurements significantly 
associated with HbA1c 
progression rate from a linear 
regression model

The dependent variable is the HbA1c progression rate while the independent variable is the 
loge-transformed and standardised baseline concentration of a given metabolite, adjusted by age and sex. 
The pfdr are adjusted p for multiple testing by Bonferroni correction

Metabolite β (95% CI) p value pfdr value

Pyruvate 0.087 (0.060, 0.114) 1.65×10−10 1.28×10−7

N-Lactoylleucine 0.082 (0.056, 0.109) 8.43×10−10 6.57×10−7

Lactate 0.075 (0.049, 0.102) 3.30×10−8 2.57×10−5

N-Lactoylphenylalanine 0.074 (0.048, 0.100) 3.66×10−8 2.85×10−5

X-15245 0.074 (0.047, 0.100) 6.24×10−8 4.86×10−5

N-Lactoylisoleucine 0.068 (0.042, 0.095) 3.11×10−7 2.42×10−4

N-Lactoylvaline 0.067 (0.041, 0.094) 5.69×10−7 4.43×10−4

X-11444 0.068 (0.041, 0.094) 6.22×10−7 4.84×10−4

Orotidine 0.065 (0.038, 0.091) 1.74×10−6 1.35×10−3

Metabolonic lactone sulphate 0.063 (0.036, 0.089) 2.9 ×10−6 2.28×10−3

3,4-Dihydroxybutyrate 0.060 (0.033, 0.087) 1.11×10−5 8.64×10−3

N4-Acetylcytidine 0.059 (0.033, 0.085) 1.16×10−5 9.06×10−3

X-24337 0.058 (0.032, 0.085) 1.47×10−5 0.011
1-(1-Enyl-palmitoyl)-2-oleoyl-GPC(P-16:0/18:1)* −0.058 (−0.084, −0.032) 1.49×10−5 0.016
X-25828 −0.058 (−0.085, −0.032) 1.50×10−5 0.017
Cortolone glucuronide 0.058 (0.032, 0.085) 1.73×10−5 0.013
X-24295 0.057 (0.031, 0.084) 1.77×10−5 0.014
Formiminoglutamate 0.059 (0.032, 0.088) 2.75×10−5 0.021
1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.056 (0.029, 0.082) 3.59×10−5 0.028
N-Lactoyltyrosine 0.055 (0.029, 0.082) 3.98×10−5 0.031
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dataset, two n-3 fatty acids, namely stearidonate (18:4n3) 
and docosapentaenoate (n3 DPA; 22:5n3), were identified 
to be causal for type 2 diabetes. Detailed statistics of our 
MR analysis are presented in ESM Tables 29–32.

Discussion

In this study, we used untargeted metabolomics to provide 
semi-quantitative global screening of metabolites in the 
development of a disease whereas targeted metabolomics 
was used to quantify a pre-selected subset of metabo-
lites with absolute concentrations. However, the overlap 
between the two metabolomic techniques was limited to a 
few amino acids and lipids. In the current study we report 
19 metabolites (three from targeted and 14 from global 
profiling, plus one common lysoPC a C18:0 / 1-stearoyl-
GPC [18:0]) that were significantly associated with predia-
betes in the DIRECT cohort. The advantages of global pro-
filing become evident as it allows for the identification of 
a broader spectrum of metabolites. Few notable examples 
are given here. First, picolinoylglycine (HMDB0059766), 
which is potentially a phase II product of picolinic acid, 
a degradation product of tryptophan [29] and glycine 
[30], and shows potential as a novel marker for glycaemic 
deterioration. Prediabetes is often associated with dyslipi-
daemia, marked by an imbalanced lipid profile compared 
with individuals with NGR [24]. Second, N-lactoyl amino 
acids are not infrequently observed in metabolomic data-
sets. In fact it has come to light that N-lactoyl amino acids 
were misidentified in some metabolomic studies and were 
erroneously reported as 1-carboxyethyl amino acids. In 
particular, N-lactoyl-phenylalanine (Lac-Phe) is known to 
act as an appetite suppressant when given to obese mice 
[31]. However, in humans Lac-Phe concentrations were 
observed to rise following vigorous exercise [32]. In fact, 
the most recent study shows that Lac-Phe facilitates the 
impact of metformin on both food intake and body weight 
[33, 34]. It seems that the exact role of Lac-Phe in the 
human body and pathways downstream, such as energy 
metabolism, insulin signalling, exercise-induced pathways, 
are unclear and needs further research.

We are aware of several limitations to our study. 
Although metabolomics screening showcases numerous 
valuable attributes in health science, challenges inherent 
to this approach continue to exist, especially in the accu-
rate identification of metabolites which is crucial for the 
biological interpretation and validation of metabolomics 

Table 4   Metabolites from targeted measurements that were signifi-
cantly associated with incidence of IGR and type 2 diabetes in differ-
ent pairwise comparisons

Baseline metabolites were taken as the independent variables with 
glycaemic category in different timelines (18 months and 48 months) 
as the dependent variables, adjusted by study centre, sex, age, BMI, 
BP, fasting HDL-cholesterol, fasting triacylglycerol, smoking status, 
alcohol status and health status
ORs and p values were calculated from the logistic regression model
T2D, type 2 diabetes

Comparison OR (95% CI) p value

18 months
  398 NGR vs 244 IGR
    lysoPC a C17:0 −0.246 (−0.452, −0.043) 0.018
  897 IGR vs 71 T2D
    H1 0.545 (0.164, 0.945) 0.006
48 months
  244 NGR vs 295 IGR
    H1 0.433 (0.189, 0.690) 7x10−3

  821 IGR vs 128 T2D
    H1 0.347 (0.064, 0.642) 0.018

Table 5   Metabolites from untargeted measurements that were signifi-
cantly associated with incidence of IGR and type 2 diabetes in differ-
ent pairwise comparisons

Baseline metabolites were taken as the independent variables with 
glycaemic category in different timelines (18 months and 48 months) 
as the dependent variables, adjusted by study centre, sex, age, BMI, 
BP, fasting HDL-cholesterol, fasting triacylglycerol, smoking status, 
alcohol status and health status
ORs and p values were calculated from the logistic regression model
T2D, type 2 diabetes

Comparison OR (95% CI) p value

18 months
  398 NGR vs 244 IGR
    Formiminoglutamate 0.369 (0.157, 0.588) 7.7×10−4

    Lactate 0.373 (0.143, 0.557) 0.002
    N-Lactoylleucine 0.294 (0.079, 0.514) 0.008
    N-Lactoylvaline 0.248 (0.039, 0.460) 0.021
    X-24295 0.225 (0.022, 0.432) 0.031
  897 IGR vs 71 T2D
    X-24295 0.474 (0.162, 0.801) 3.6x10−3

    Lactate 0.409 (0.077, 0.747) 1.6x10−2

48 months
  821 IGR vs 128 T2D
    X-24295 0.474 (0.162, 0.801) 3.6x10−3

    Lactate 0.409 (0.077, 0.747) 1.6x10−2
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data [35]. Variability in sample collection, preparation 
and analytical techniques can impact the reproducibil-
ity and comparability of results across different studies. 
Standardisation efforts are ongoing but may not fully 
address all sources of variation. The identification of 
metabolites, especially in untargeted metabolomics, can 
be challenging. Incomplete databases and the presence of 
unknown or novel metabolites have been reported with 
a metabolite name with an asterisk (*) sign. However, 
ongoing advancements in technology, methodology and 
standardisation efforts aim to enhance the robustness and 
applicability of metabolomics studies [35]. The current 
study is predominantly based on White male participants 
from the Kuopio region of Europe, and for this reason 
an additional sex-based sensitivity analysis has been per-
formed and reported separately (ESM Results 1 and 2). 
Challenges in MR studies include limited statistical power, 
potential reverse causation, confounding and pleiotropy 
[36]. Caution is advised in interpreting causality inference, 

considering the various limitations mentioned in the meth-
ods, and precautionary measures were taken by using valid 
MR instruments and reporting Bonferroni significance.

A drug–metabolomics associations study [17] was exam-
ined to determine whether or not metabolites linked to type 
2 diabetes from the DIRECT study were also associated 
with a particular drug. Looking at our results and those of 
Allesøe et al [17], we found that 44% (15 out of 34) of tar-
geted metabolites and 3% (three out of 99) of non-targeted 
metabolites that were significantly associated with type 2 
diabetes also showed a significant association with at least 
one of the 20 drugs. This suggests that metabolites linked to 
type 2 diabetes may be confounded by polypharmacy.

However, metabolite association with incident predia-
betes or diabetes (IGR-T2D) showed that lysoPC a C17:0 
could predict the risk of developing IGR at 18 months and 
48 months. It has already been shown that lysoPCs differ 
significantly between individuals with incident IGT or type 
2 diabetes and individuals with NGR in the KORA study 

a

b

Fig. 3   Schematic overview of mediation analysis with lysoPC a 
C17:0 and hexoses (a) or N-lactoylvaline, lactate, N-lactoylleucine, 
formiminoglutamate and X-24295 (b) as mediators. Numbers above 

the red arrows indicate the percentage and significance of mediation 
effects. T2D, type 2 diabetes
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[37]. LysoPC a C17:0 was negatively associated with diabe-
tes, a finding that was confirmed in several studies [38, 39]. 
The aforementioned drug–metabolomics association study 
[17] showed that lysoPC a 17:0 was not associated with the 
drugs. However, the origin of odd-chain fatty acids (mainly 
C15:0 and C17:0) remains elusive. Jenkins et al [40] investi-
gated the origin of circulating odd-chain fatty acids (C17:0, 
C15:0) through a combination of animal and human stud-
ies to determine possible contributions of fatty acids from 
the gut-microbiota, diet and novel endogenous biosynthesis 
[41]. The findings suggested that C15:0 was linked to die-
tary intake, while C17:0 was predominantly biosynthesised, 
indicating independent origins and non-homologous roles in 
disease causation.

Causal mediation analysis indicated that plasma lactate 
strongly mediates the effects of identified metabolites in the 
transition from baseline glycaemic status to follow-up [42]. 
In a longitudinal study of Swedish men, elevated serum lac-
tate was independently linked to a higher incidence of type 
2 diabetes, irrespective of obesity measures [43]. Formimi-
noglutamate was confirmed to be associated with a higher 
risk of incident type 2 diabetes in older Puerto Ricans [44]. 
N-lactoylleucine and N-lactoylvaline, derivatives of leucine 
and valine, respectively, are ubiquitous pseudodipeptides of 
lactic acid and amino acids that are formed by reverse prote-
olysis [32] and are correlated with underivatised amino acids 
in human plasma. The Microbiome and Insulin Longitudinal 
Evaluation Study (MILES) [45] investigated the association 
between ABO haplotypes and insulin-related characteristics, 
and explored possible pathways that could mediate these 

associations. The study showed that the A1 haplotype poten-
tially enhances favourable insulin sensitivity in non-Hispanic 
White individuals, with lactate likely influencing this mecha-
nism, while gut bacteria are not believed to be a contributing 
factor.

In MR, causality signifies that modifying exposure leads 
to a predictable change in the outcome. Our 2SMR analysis 
suggests that the metabolites causal for type 2 diabetes are 
PC aa C36:2, PC aa C36:5, PC ae C34:3 and PC ae C36:3 
and all these metabolites are significantly associated with 
drug–metabolomics. However, from untargeted metabo-
lomics two n-3 fatty acids, namely stearidonate (18:4n3) and 
docosapentaenoate DPA 22:5n3), are not further associated 
with drugs. In 2012, Banz et al [46] explored the therapeutic 
implications of stearidonate acid in preventing or managing 
type 2 diabetes. The Fatty Acids and Outcomes Research 
Consortium (FORCE) [47] found that higher circulating bio-
markers of seafood-derived n-3 fatty acids were associated 
with lower type 2 diabetes risk. On the contrary, branched-
chain amino acids [48] and sphingomyelin [15] have been 
shown to have a causal role in type 2 diabetes development, 
a correlation not observed in the DIRECT study.

Conclusions

Our study demonstrates that alteration in blood plasma 
metabolites is associated with glycaemic deterioration. The 
progression from prediabetes to diabetes is mediated by novel 
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metabolites such as picolinoylglycine and N-lactoyl-amino 
acids, as demonstrated by evidence from the DIRECT study. 
N-lactoyl-amino acids are known to be exercise-induced 
metabolites that suppress food intake and influence glucose 
homeostasis. Additional functional research and quantifica-
tion are needed to advance the identification of early meta-
bolic biomarkers such as N-lactoyl-amino acids, which have 
the potential to forecast the onset of type 2 diabetes. Collec-
tively, these findings direct attention towards novel metabolic 
signatures associated with glycaemic deterioration.
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