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Understanding the genetic basis of neuro-related proteins is essential for 
dissecting the molecular basis of human behavioural traits and the disease 
aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium 
conducted a genome-wide association meta-analysis of over 12,000 individuals 
for 184 neuro-related proteins in human plasma. The analysis identified 125 
cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. 
The mapped pQTL capture on average 50% of each protein’s heritability. At 
the cis-pQTL, multiple proteins shared a genetic basis with human behavioural 
traits such as alcohol and food intake, smoking and educational attainment, 
as well as neurological conditions and psychiatric disorders such as pain, 
neuroticism and schizophrenia. Integrating with established drug information, 
the causal inference analysis validated 52 out of 66 matched combinations 
of protein targets and diseases or side effects with available drugs while 
suggesting hundreds of repurposing and new therapeutic targets.

Certain patterns of human behaviours such as cigarette smoking, alco-
hol consumption and a high-fat diet may elevate the risk of developing 
a range of complex diseases1,2. Neuropsychiatric disorders are among 
the leading causes of lifelong disability globally, affecting around 800 
million people3,4. As of 2024, mental health remains a global crisis and 
priority brought to the forefront of public health discussions anew, 
after the impact of COVID-19 on people’s lives, where stressors such as 
isolation, notable changes in habits, and global enhanced mortality and 

fear of contracting the disease have had severe consequences on mental 
well-being5–7. These conditions represent a substantial challenge for 
medical research owing to the high complexity of their neurobiological  
mechanisms and heterogeneity of symptoms, which often overlap 
with other neurological, psychiatric and non-psychiatric disorders8–10.

In the past decade, genome-wide association studies (GWAS) 
have been successful in identifying numerous genetic variants that 
can partially account for variation in complex traits and diseases11,12. 
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locus; nevertheless, the associations were not completely due to the 
same causal variants (Supplementary Fig. 3). The nearest coding genes 
for 199 mapped pQTL have cis-eQTL data available from the eQTLGen30. 
Among them, 185 (93%) pQTL were also expression QTL (eQTL) signifi-
cantly associated with the expressions of the nearest genes (P < 5 × 10−8). 
However, regarding the underlying genetic regulation of transcripts 
and protein expressions, compared with trans-pQTL, cis-pQTL were 
more likely to colocalize with eQTL (Supplementary Figs. 1, 2 and 7). 
The lead variants of the cis-pQTL were also more centred around the 
transcription start sites (TSS) of the corresponding coding genes, 
compared with those of the trans-pQTL around the TSS of the nearest 
coding genes (Fig. 1c). The cis-pQTL also had stronger effects, less 
correlated with the minor allele frequencies (MAFs), compared with 
the trans-pQTL (Fig. 1c–d).

The fact that the trans-pQTL were not as colocalized as cis-pQTL 
were with eQTL could be partly due to the weaker signals of the 
trans-pQTL than those of the cis-pQTL. However, we hypothesized 
that the trans-pQTL may not necessarily reflect the biological regula-
tory mechanisms of the corresponding proteins, but rather driven by 
underlying features of the blood samples, owing to their influence on 
the immuno-reaction of the antibody-based assay. For example, the 
pleiotropic trans-pQTL across the proteins highlight major blood coag-
ulation and clotting factors such as KLKB1 (plasma kallikrein), KNG1 
(Kininogen-1) and F12 (coagulation factor XII), as well as glycosylation 
locus ST3GAL4. We thus also looked into the functional pathways and 
gene sets that involve the closest genes to our trans-pQTL using the 
gene set enrichment analyses (Supplementary Fig. 5). With a false dis-
covery rate <5%, 997 significant pathways were found to be enriched for 
the genes of our trans-loci, of which 443 (44.4%) were driven or partly 
driven by the HLA genes. The top enriched pathways were clustered 
into inflammatory and immune responses, coagulation processes, 
cell-to-cell signalling and adhesion, and protein glycosylation (Sup-
plementary Table 13). In particular, the trans-pQTL were found to be 
enriched in (1) established GWAS traits such as blood protein levels, 
platelet count and platelet crit; (2) GO pathways such as biological 
adhesion, wound healing, coagulation and glycosylation; (3) hallmark 
gene sets including coagulation; (4) Reactome pathways including 
haemostasis and clotting formation; and (5) microRNA targets and Wiki 
pathways for blood clotting cascade. To further justify the hypothesis 
that the blood coagulation factors may affect the performance of 
the antibody-based assay, we cross-referenced the lead variants of 
the mapped trans-pQTL in the pQTL results of the Icelandic popula-
tion31, where the proteome was measured using aptamer-based assays 
instead. In total, 69 trans-pQTL for 50 proteins overlapped between the 
2 datasets, and the 8 loci whose nearest genes are involved in coagu-
lation pathways replicate notably worse than the other trans-pQTL 
(Supplementary Fig. 6).

We assessed the overall heritabilities across the 184 analysed 
plasma proteins. Methods based on summary association statistics 
have been developed to infer heritability and genetic correlation 
parameters for complex traits with GWAS results; however, consist-
ent estimates can only be obtained for genetic correlations32–34. Thus, 
we used a standard polygenic mixed model on the individual-level 
data collected in the ORCADES cohort to assess the narrow-sense 
heritability for each protein35. Across the analysed proteins, we found 
that the higher the protein’s heritability, the more pQTL detected for 
the protein (Fig. 1e), the stronger the cis-pQTL effects are (Fig. 1g), and 
the higher amount of phenotypic variance captured by the detected 
pQTL (Fig. 1f). On average, the mapped pQTL together explain 49% 
of the proteins’ heritability. This indicates that proteins as molecular 
phenotypes have strong major regulatory loci. Nevertheless, their 
genetic effects can still be widespread across the genome, having a 
polygenic genetic architecture.

Using data from the ORCADES cohort, we found TDGF1 
(Teratocarcinoma-Derived Growth Factor 1) to have the highest 

However, the effect of a genetic variant such as a single-nucleotide 
polymorphism (SNP) on a complex disease is usually very small and 
often does not provide information on the phenotype’s molecular 
architecture. Measuring proteins may overcome this obstacle as pro-
teins are the product of translated DNA and functional elements that 
bridge the genetic codes and disease outcomes. Circulating proteins 
in blood plasma originate from various organ tissues and cell types in 
the human body and have fundamental roles in different biological 
processes13–15. Thus, such proteins are often used in clinical practice as 
disease biomarkers. Circulating neurology-related proteins have the 
potential to provide insight into the pathophysiology of neurological 
and mental disorders and the genetic architecture of their molecular 
pathways, setting the basis for the improvement of diagnostic instru-
ments and targeted therapy16.

Protein levels are more linked to variation in cognitive function 
than genetic variants alone. Current studies on neurology-related 
proteins either focused on neurodegenerative disorders or cognitive 
function specifically or had a limited sample size17–22. In a recent study, 
neurology-related proteins were associated with general fluid cognitive 
abilities in late life, and a portion of these was observed to be mediated 
by brain volume, measured as a structural brain variable20.

The field of proteomics has been rapidly expanding in recent 
years and produced results that have played a fundamental role in the 
decoding process of molecular mechanisms involved in several traits 
and diseases, from cardiovascular disease to general health19,23–26. 
The genomic studies of the human proteome have benefited from 
various high-throughput measurement techniques, such as mass 
spectrometry14,27, aptamer-based assays28 and antibody-based assays15.  
Among these, the antibody-based Proximity Extension Assay29 has 
high measurement precision, especially for many functional but 
low-abundant proteins.

This study aims to identify genetic variants associated with 
184 neurology-related blood circulating proteins via a large-scale 
genome-wide association meta-analysis (GWAMA) and investigate the 
proteins’ genetic relationships with potential disease-causing behav-
iours, common psychiatric disorders and related comorbidities. We 
systematically investigate the proteins’ therapeutic implications based 
on established drug information. We provide an atlas for the genetic 
architecture of these proteins as a resource for biomedical research 
on human behaviours and psychiatric disorders.

Results
GWAMA of 184 proteins identified 289 significant loci
In the discovery phase, we conducted a GWAMA using data from up  
to 12,176 individuals (mean age = 61.9, percentage females = 44.6%) for 
92 proteins in the Olink Neurology panel, and up to 5,013 individuals  
(mean age = 49.6, percentage females = 56.1%; see Supplementary 
Tables 16–30 for details) for 92 proteins in the Olink Neuro-Exploratory 
panel, from a total of 12 participating cohorts (Supplementary 
Tables 17–30). Overall, we identified 289 top variants distributed 
across a total of 125 cis-pQTL and 164 trans-pQTL with the significance 
threshold of P < 5 × 10−8 for the cis-loci and P < 5 × 10−8/184 = 2.7 × 10−10 
for the trans-loci (Supplementary Table 1 and Supplementary Figs.  
10 and 11). Out of the 139 proteins with detected pQTL, 74 (53%) proteins 
had significantly associated variants both in cis- and trans-regulatory 
loci. The median number of primary associations per protein that  
we observed was 2, with the maximum number of pQTLs per protein 
being 6. Proteins with lower abundance tended to have weaker cis-pQTL 
association signals (Supplementary Fig. 8).

As expected, the identified trans-pQTL, in general, were more 
weakly associated than the cis-pQTL; nevertheless, we found that 24 
proteins shared a total of 14 trans-pQTL. For example, well-known 
pleiotropic loci such as the HLA region and the ABO locus showed 
trans-regulatory effects across a number of plasma proteins (Fig. 1a). 
For instance, 19 proteins showed significant trans-pQTL at the ABO 
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heritability (h2 = 0.85), followed by MDGA1 (MAM Domain-Containing 
Glycosylphosphatidylinositol Anchor Protein 1, h2 = 0.75), CLM1 
(CD300 Molecule Like Family Member F, h2 = 0.72) and LAIR2 
(Leukocyte-Associated Immunoglobulin-Like Receptor 2, h2 = 0.70). 
By contrast, CTF1 (Cardiotrophin 1), EPHA10 (Ephrin Type-A Recep-
tor 10), GSTP1 (Glutathione S-Transferase Pi 1), HSP90B1 (Heat Shock 
Protein 90 Beta Family Member 1), IFI30 (Gamma-Interferon-Inducible 
Lysosomal Thiol Reductase), NDRG1 (N-Myc Downstream Regulated 
1) and SFRP1 (Secreted Frizzled Related Protein 1) all had an estimated  
h2 value close to 0 while having at least one pQTL.

We used the PhenoScanner database36,37 to determine whether 
the pQTL sentinel variants or variants in linkage disequilibrium (LD)  
with them (r2 > 0.8) that we identified had been previously found  
to be significantly associated with the corresponding proteins  
(Supplementary Table 2). We identified 113 loci within our own 
results that had already been discovered in previous studies. We also  
checked whether the hits from the meta-analysis were significant in  

the individual cohorts and observed that 73 of the sentinel variants 
were found to be statistically significant only in the meta-analysis. 
We extracted the established associations between our mapped cis- 
pQTL and complex traits from the PhenoScanner database (Supple
mentary Table 3). At a 5% false discovery rate, 39 cis-pQTL showed a 
significant association with both complex traits and other proteins 
(mostly based on an aptamer-based assay). We found that the level 
of pleiotropy at the protein level, that is, being trans-pQTL for other 
proteins, is associated with the level of pleiotropy on the complex traits 
(Supplementary Fig. 4).

We performed LD pruning (r2 < 0.001) to identify secondary  
independent associations at the cis-pQTL. We identified a total of  
162 additional significantly associated variants across all the 125  
proteins with cis-pQTL mapped (Supplementary Tables 7 and 8).

This meta-analysis within our SCALLOP collaborative frame-
work is a follow-up of a previous study on the proteins from the Olink  
Neurology and Neuro-Exploratory panels, where data were collected 
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Fig. 1 | Overview of the mapped pQTL. The displayed P values were obtained 
from two-sided Wald tests in the GWAS without correction for multiple testing. 
a, Pleiotropic trans-pQTL counts and overlap of the mapped pQTL with existing 
eQTL. The upper bar plot shows the number of proteins that share trans-pQTL 
(gene annotations based on the gene closest to the trans-pQTL). The scatter 
plot shows the genomic location of significant cis-pQTL in red (P < 5 × 10−8) and 
significant trans-pQTL in blue (P < 5 × 10−8/184), and the shading within the 
dots indicates the significance of the corresponding/nearest cis-eQTL for the 
respective protein. b, Comparison of the phenotypic variance captured by the 
discovered pQTL of each protein in the SCALLOP meta-analysis (in-sample R2) 

and the predictable phenotypic variance in the UKB-PPP data (out-of-sample R2). 
c, Scatter plot of the pQTL lead variants association signals versus their distance 
to the TSS of the corresponding/nearest coding genes. d, Scatter plot of the 
absolute estimated genetic effects of the pQTL lead variants versus their MAFs. 
e, Number of mapped pQTL per protein versus the linear mixed model estimated 
heritability in the ORCADES cohort. f, The variance explained by the mapped 
pQTL summed up for each protein versus the estimated heritability. g, For the 
proteins with significant cis-pQTL mapped, the lead variant signal strength 
versus the estimated heritability of each protein. The correlation coefficients (R) 
and their relative confidence intervals (CI) are indicated in the plot.
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from the two Greek cohorts that we included in this study38. Our results 
replicated over 90% of the established loci, including the previous  
main discoveries of the cis-pQTL for CD33, GPNMB and MSR1. 
Furthermore, we cross-referenced the significant loci discovered in 
the meta-analysis with the currently available pQTL data from the 
UK Biobank Pharma Proteomics Project (UKB-PPP)39. One hundred 
seventy-four out of the 184 proteins in our SCALLOP analysis currently 
overlap with the UKB-PPP analysis (Supplementary Table 1). Among 
these, we reported 117 cis-pQTL, where 110 (94%) can be replicated in 
the UKB-PPP analysis (P < 5 × 10−8); UKB-PPP reported 22 additional 
cis-pQTL; and for 32 proteins, there were no cis-pQTL reported in  
either SCALLOP or UKB-PPP. We also reported 164 trans-pQTL for  
88 proteins, where 84 proteins were also measured in the UKB-PPP 
analysis. For these 84 proteins, we mapped 155 trans-pQTL, where 
128 (83%) can be replicated in UKB-PPP (P < 5 × 10−8/184 = 2.7 × 10−10).

If we consider the UKB-PPP as a gold standard for ‘Olink assay 
detectable cis-pQTL’, this indicates that we have a type I error rate of 
1.7% and a type II error rate of 40.7%. If we lower the cis-pQTL discovery 
threshold to 5 × 10−6, we would yield a type I error rate of 2.4% and a type 

II error rate of 32.6%. Because of the protein measurement consistency, 
the genetic effects of our discovered pQTL could be well replicated 
in the UKB-PPP data: the out-of-sample predictable phenotypic vari-
ances of the proteins were consistent with the in-sample phenotypic 
variances captured by the pQTL (Fig. 1b), especially for the proteins 
with cis-pQTL discovered.

Shared genetics between proteins and neuro-related traits
Focusing on the cis-pQTL regions, we investigated the shared genetic 
architecture between the studied proteins and other human complex 
traits. We collected the union of GWAS summary statistics from two 
sources as the outcome data: 4,085 traits from Neale’s lab UKB GWAS, 
and 20 psychiatric or neurological disorder traits from PGC (Psychiatric 
Genomics Consortium) (Methods and Data Availability; Supplementary 
Tables 4–6). We adopted colocalization and Mendelian randomiza-
tion (MR) analysis to illustrate the genetic correlations between the 
proteins and complex traits at the cis-pQTL. Potential causality might 
be inferred from colocalized protein–trait combinations, given the 
molecular biological basis of the cis-pQTL (Discussion).
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rate < 0.05) based on LD-pruned (r2 < 0.001) instrumental variants within each 
cis-pQTL. IVW MR results are provided as the estimates (solid round dots) +/− half 
of the 95% confidence intervals (CI; the whiskers). Odds ratios (OR) are indicated 
in the third column with the appropriate CI. The P values were obtained from 

two-sided Wald tests in the GWAS without correction for multiple testing. The 
displayed protein–trait pairs all showed colocalization evidence in the standard 
coloc test (PP.H4 > 0.8). The numbers of instrumental variants in the cis-pQTL 
are indicated as the size of the dots. The sample sizes for deriving the GWAS 
summary statistics are given in Supplementary Table 10.
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We started by identifying the protein–trait combinations that have 
the pQTL and the corresponding trait association signal colocalized. 
Both the standard coloc method40 (assuming a single causal variant) 
and the SuSiE-coloc procedure41,42 (assuming multiple causal variants) 
were applied. The 291 protein–trait pairs that showed a colocalization 
posterior probability (PP.H4) greater than 0.8 in either of the two 
models were passed onto subsequent MR analysis.

We performed an inverse-variance weighted (IVW) two-sample 
MR analysis using the LD-pruned genetic instruments across the 125 
cis-pQTL with colocalization evidence for the outcome phenotypes 
(Supplementary Table 9). For binary outcomes, to avoid the influence 
of the subpopulation structure, we focused on those with at least 1,000 
cases. With a false discovery rate of 5%, we obtained 287 significant 
MR effects for 56 proteins on 201 traits (Supplementary Tables 9–11), 
including 43 human behavioural phenotypes (Fig. 2), 22 psychiatric 
or neurological conditions (Fig. 3) and 19 other disease-related traits 
(Fig. 4). Together with the colocalization support, these results are 
consistent with a potential causal role of each protein, following the 
assumptions of MR (Discussion).

In terms of human behaviours, for instance, Cadherin-6 (CDH6) 
showed a positive effect on smoking (Fig. 5a), while CDH17 showed a neg-
ative effect. PRTG and TPPP3 showed opposite effects on educational 
attainment. The protein Cathepsin S (CTSS) showed a positive effect on 
the use of sun protection; meanwhile, it showed an increasing effect on 
water intake and decreasing effects on tea and coffee intake (Fig. 5b). 
Galectin-8 (LGALS8) was a plausible marker for alcohol intake (Fig. 5d).

Regarding psychiatric and neurological conditions, for example, 
Dipeptidase 1 (DPEP1) showed potential risk-increasing effects on 

mononeuropathies of the upper limb and carpal tunnel syndrome 
(Fig. 5c). Besides, ADAM22 and CD302 showed protective effects on 
schizophrenia. The known effect of CD33 on Alzheimer’s disease38,43 
could be replicated using MR-Egger regression on CD33 cis-pQTL and 
the regional associations from PGC (P = 2.0 × 10−3, two-tailed test).

There are protein markers that showed effects on both behavioural 
phenotypes and neurological disorders. For example, the protein 
CDH6 showed effects on behavioural traits such as smoking, word 
interpolation and age of first sexual intercourse, as well as neurological 
symptoms such as pain, tension and mood swings, where its effects on 
behavioural traits and neurological symptoms had different directions 
(Fig. 5a). ADAM22, besides its protective effects on schizophrenia and 
anorexia nervosa, also showed a positive effect on arithmetic skills.

In relation to other complex diseases, for example, ADAM15 
showed a protective effect on infectious and parasitic diseases. CD302 
both showed protective effects on hypothyroidism or myxoedema. 
DPEP1 showed a protective effect against hypertension. Galectin-8 
(LGALS8), besides its negative effect on alcohol intake, was found to 
increase the risk of female genital prolapse (Fig. 5d). Neurocan core 
protein (NCAN) was found to be genetically associated with high cho-
lesterol, and thus also cholesterol-lowering substitutes such as the use 
of Flora Pro-Activ or Benecol, since it was used more frequently than 
the other products, revealing its colocalized genetic associations at the 
cis-pQTL of NCAN (Fig. 5e). Besides its effects on non-butter spread use 
and stair climbing, the protein NCAN also showed protective effects 
on hypertension and diabetes. However, such genetic correlations of 
NCAN were likely driven by its nearby gene TM6SF2 owing to linkage 
(Discussion).
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Headache in last month
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Fig. 3 | Effects of the proteins on neuro-related conditions inferred by MR 
analyses. The forest plot shows the significant MR results (false discovery 
rate < 0.05) based on LD-pruned (r2 < 0.001) instrumental variants within each 
cis-pQTL. IVW MR results are provided as the estimates (solid round dots) +/− half 
of the 95% confidence intervals (the whiskers). The P values were obtained from 

two-sided Wald tests in the GWAS without correction for multiple testing. The 
displayed protein–trait pairs all showed colocalization evidence in the standard 
coloc test (PP.H4 > 0.8). The numbers of instrumental variants in the cis-pQTL 
are indicated as the size of the dots. The sample sizes for deriving the GWAS 
summary statistics are given in Supplementary Table 11.
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Except for TPPP3 and hypothyroidism or myxoedema, reverse 
generalized summary-statistics-based MR44 did not show evidence 
for reverse causality. In general, the MR estimated odds ratios at a false 

discovery rate (FDR) of less than 5% were found to range from 0.21 to 
2.62, consistent with previous studies evaluating the MR effects of 
blood circulating proteins on other complex traits15,45.
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Self-reported hypothyroidism/myxoedema
Other diseases of arteries and capillaries
Self-reported hypertension
Self-reported hypothyroidism/myxoedema
None of diagnosed vascular/heart problems
Diagnosed high blood pressure
None of clotting disorders, respiratory issues or allergies diagnosed
Other arthrosis
Diseases of the musculoskeletal system and connective tissue
Self-reported hypertension
None of vascular/heart problems
Diagnosed high blood pressure
ICD10: G56 mononeuropathies of upper limb
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Fig. 4 | Effects of the proteins on other complex diseases inferred by MR 
analyses. The forest plot shows the significant MR results (false discovery 
rate < 0.05) based on LD-pruned (r2 < 0.001) instrumental variants within each 
cis-pQTL. IVW MR results are provided as the estimates (solid round dots) +/− half 
of the 95% confidence intervals (the whiskers). The P values were obtained from 

two-sided Wald tests in the GWAS without correction for multiple testing. The 
displayed protein–trait pairs all showed colocalization evidence in the standard 
coloc test (PP.H4 > 0.8). The numbers of instrumental variants in the cis-pQTL are 
indicated as the size of the dots. The sample sizes for deriving the GWAS summary 
statistics are given in Supplementary Table 9.
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Investigation of drug targets among the protein markers
We systematically investigated the protein markers identified by  
the causal inference based on colocalization and MR analysis for  
their therapeutic potential, as proteins are usually the direct drug  
targets. Among the 125 proteins with cis-pQTL, 53 proteins showed 
effects for at least one disease or health-related phenotype with  
FDR <5%. Using the DrugBank and Drugs.com databases, we found 91 
drugs targeting 17 of the 53 proteins, resulting in 443 drug–protein– 
phenotype combinations (Fig. 6 and Supplementary Table 14). 
Thirty-nine out of the 91 drugs were documented without clear clinical 
indications, which resulted in 235 drug–protein–phenotype combina-
tions that we considered ‘druggable’, which might be used in improving 
the corresponding phenotypes (Supplementary Table 15).

After matching the MR outcomes with the clinical indications or 
side effects of the 91 − 39 = 52 drugs, we found 142 repurposing (that is, 
established drugs exist for the targets but treating different diseases) 
and 66 matched combinations (that is, established drugs exist for the 
targets treating the same outcome diseases or leading to the same 
outcome side effects). Within 66 matched pairs of protein targets and 
phenotypes, 52 had the same directions between the MR-inferred drug 
impact and the drugs’ actual pharmacological effects on the pheno-
types (Fig. 6), indicating that MR is four times more likely to identify a 
protein marker whose effect direction aligns with a drug’s pharmaco-
logical action than to identify one with an inconsistent effect direction 
(one-tailed binomial test P = 1.4 × 10−6). Five out of the 66 combinations 
showed strong colocalization support (coloc PP.H4 > 0.8), and they all 
have consistent directions between the MR estimated effects and the 
corresponding drugs’ pharmacological effects.

For instance, gemtuzumab ozogamicin is a monoclonal anti-CD33 
antibody conjugated with a calicheamicin derivative that can induce 
cell death upon internalization through binding with CD33 on the cell 
surface. One of the side effects of gemtuzumab ozogamicin is throm-
bocytopenia, a condition characterized by a low platelet count. This is 
consistent with the MR result that decreased CD33 can decrease platelet 
count and platelet crit as the binding process of CD33 antibody and 
CD33 antigen should deplete the CD33 level46.

Taking another example, clenbuterol was used as a bronchodila-
tor in the treatment of patients with asthma. However, it can cause 
long- and short-term side effects, including hypertension. From MR 
analysis, the beta nerve growth factor (NGF) has a positive effect on 
blood pressure, while clenbuterol is a stimulator of NGF. Also, it has 
been shown that plasma beta NGF levels were higher in patients with 
hypertension47, but their causal role was never established. Our MR 
finding provides evidence suggesting that NGF is actively involved in 
the blood pressure-increasing process.

Discussion
We identified pQTL for 139 of 184 neuro-related proteins, provided 
insights into their molecular mechanisms and effects on complex 
diseases and traits, and highlighted useful therapeutic targets with 
established drugs. On average, we identified half of the genetic archi-
tecture underlying the concentration of these proteins. We provide 
a well-powered genetic landscape for these proteins with large-scale 
summary-level data for future research.

Although the proteins were found to have small effects individu-
ally in the MR analysis, our results indicated that for about 75% of the 

0

50

150

250
Ne

w
Dr

ug
ga

bl
e

Re
pu

rp
os

in
g

M
at

ch
ed

+
M

at
ch

ed
–

N
um

be
r o

f p
ai

rs

0

40

80

120

AO
C1

AS
GR

1

CD
33

CT
SS

DD
R1

DP
EP

1

GS
TP

1

IL
12

B

LA
YN

LE
PR

NC
AN NG

F

PA
EP

PD
GF

RA

RB
KS

SC
GB

1A
1

SR
P1

4

Druggable
Repurposing
Matched+

Matched–

PDGFRA
NGF
NGF
IL12B
GSTP1
GSTP1
DPEP1
DPEP1
DDR1
CTSS
CTSS
CTSS
CD33
CD33

Lymphocyte percentage
Self-reported hypertension
Doctor-diagnosed high blood pressure
Self-reported psoriasis
Mean corpuscular haemoglobin
Mean corpuscular haemoglobin
Haemoglobin concentration
Mean corpuscular haemoglobin
Neutrophil percentage
Platelet count
Mean platelet (thrombocyte) volume
Neutrophil percentage
Platelet count
Platelet crit

–0.2 0 0.1 0.2

Midostaurin
Clenbuterol
Clenbuterol
Briakinumab
Cisplatin
Clomipramine
Cilastatin
Cilastatin
Fostamatinib
Fostamatinib
Fostamatinib
Fostamatinib
Gemtuzumab ozogamicin
Gemtuzumab ozogamicin

Inhibitor
Stimulator
Stimulator
Antibody
Substrate
Inhibitor
Inhibitor
Inhibitor
Inhibitor
Inhibitor
Inhibitor
Inhibitor
Antibody
Antibody

NA/lymphocytopenia
NA/hypertension
NA/hypertension
Psoriasis/NA 
NA/anaemia
NA/anaemia
NA/decreased haemoglobin
NA/decreased haemoglobin
Chronic myeloid leukaemia (Ph+)/NA 
Thrombocytopenia/neutropenia
Thrombocytopenia/neutropenia
Thrombocytopenia/neutropenia
CD33-positive acute myeloid leukaemia/NA
CD33-positive acute myeloid leukaemia/NA

*

*
*

Protein Trait Drug Role Indication/side e�ect

N
um

be
r o

f p
ai

rs

1

100

235

142

52

14 2 0 0 01 0 0 0 2 2 0

132

8 3 0 0
12

0 3 0

20
6 0

52

32
28

4 1012 8
0 0 6 0 0 0 4 0 0

24
10

2 0
9 3 3 0 2 1 0 0 0

27

0
7 3 0 0 0 2 0 0 0 0 2 0 0

a b

c

P = 1.4 × 10−6

Fig. 6 | Drug targets revealed by MR analyses. The MR results with a 5% false 
discovery rate were considered. a, The number of MR-inferred pairs of proteins 
and traits split into five categories: new (drug) targets, druggable targets 
that have drugs with unclear clinical function, repurposing targets that have 
established drugs but for different diseases, and validated known targets where 
the established drugs have pharmacological effects that match the MR effect 
directions (Matched+) and those with opposite directions (Matched−). The sets of 
targets that have strong colocalization support (PP.H4 > 0.8) are marked in lighter 

colours. The P value was obtained from a two-sided binomial test. b, Numbers 
of different categories of drug targets per protein analysed. c, Summarized 
examples of the validated known drug targets, the description of the drugs, the 
indication (diseases treated)/side effects and the corresponding consistent MR 
estimated effects. The MR estimates with colocalization support are marked with 
stars. IVW MR results are provided as the estimates (solid round dots) +/− half of 
the 95% confidence intervals (the whiskers). NA, not applicable. The sample sizes 
for deriving the GWAS summary statistics are given in Supplementary Table 9.
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identified proteins, having low levels in plasma leads to a higher chance 
of having poorer health conditions (Supplementary Fig. 9). These 
conditions include both deterioration of mental health and related 
non-neurological comorbidities. Such results on the neuro-related 
proteins are consistent with the notion that psychiatric and neurologi-
cal disorders are multifactorial and not limited to the central nervous 
system but rather are products of interactions among multiple systems 
within the organism48–51. The intertwining of neuropsychiatric, inflam-
matory and cardiovascular disorders has long presented a challenge 
in clinical research owing to the difficulties in discerning the relation-
ships among them52,53. Our results suggest that these disorders may 
share molecular mechanisms and pathways and provide the basis for 
developing new diagnostic tools and treatment strategies. We also 
reported a large number of drug repurposing targets, suggesting the 
potential use of established drugs in new clinical trials for the treatment 
of different symptoms and disorders.

Regarding the MR methodology, we found that the MR analysis 
with a single genetic instrument at the cis-pQTL tended to generate 
a stronger estimated effect (Fig. 4). This is partly due to power, as 
compared with multi-instrument MR, single-instrument MR tends to 
produce effect estimates with larger standard errors so that only the 
results with large effect estimates could reach statistical significance. 
Thus, it indicates that (1) single genetic instrument analysis may be 
more prone to winner’s curse, that is, more likely to detect an overesti-
mated effect on the outcome trait, and (2) using multiple independent 
instruments within a locus may not only improve power but also control 
false discoveries owing to overestimated effects in the outcome GWAS.

MR assumes that the genetic effect on the outcome is mediated 
through the exposure. To justify the MR direct effect assumption and 
infer potential causality, we strictly used only independent variants 
at the cis-pQTL as genetic instruments, and trans-pQTL were never 
considered in the MR analysis. This is based on the fundamental biol-
ogy that the variants near the coding gene of a protein are most likely 
to directly affect the protein-coding gene expression and less likely 
to have other indirect actions on other phenotypes. Variants within 
the cis-pQTL thus provide strong and most likely valid genetic instru-
ments in MR. With the colocalization between the cis-pQTL and the 
outcome phenotype, stronger causal inferences can be made owing 
to the high genetic correlation between the exposure protein and the 
outcome trait. However, it should be noted that genetic variants may 
regulate multiple nearby genes, including those encoding proteins 
not captured on our assay platform, making it challenging to rule  
out local pleiotropic effects. For example, although we saw that  
NCAN was genetically correlated with fibrosis and cirrhosis of the 
liver (N cases = 252), established knowledge supports the nearby  
gene TM6SF2 to be causal instead of NCAN54.

While MR is a robust method for establishing potential causal 
links between exposures and outcomes55,56, potential pitfalls should 
be noted, emphasizing the need for cautious interpretation of results. 
MR analyses typically may be limited by unobserved confounders, 
nonlinear protein–outcome relationships, reverse causation and 
population-specific effects57–59. In particular, when using MR as a 
procedure for drug target inference, with colocalization support, 
the analysis shows a strong genetic link between the protein targets 
and the corresponding complex diseases. However, the analysis does  
not suggest the actionability of the targets, nor their clinical effect if 
targeted by certain drugs or treatments.

Furthermore, it should be noted that both MR and colocalization 
are statistical approaches applied to summarized data from GWAS. 
While they share similarities, their objectives, implementations and 
interpretations are different. Colocalization between exposure and 
outcome phenotypes is crucial for causal inference using MR because 
it reinforces the validity of the genetic instruments used in MR. By 
confirming that the same genetic variants influence both the exposure 
and outcome, colocalization ensures that MR analyses are based on 

solid genetic grounds, reducing the risk of spurious or biased results. 
In fact, for shared loci between the exposure and outcome, colocaliza-
tion is essential or even necessary to validate causality. Specifically, if 
there is a positive MR result at a genetic locus without colocalization of 
the exposure and outcome associations, it cannot be deemed causal. 
Colocalization serves as a safeguard against false-positive MR results 
stemming from the LD structure.

The improved causal inference specificity by the colocaliza-
tion analysis can also be seen from the drug target investigation. MR 
revealed that glutathione S-transferase P (GSTP1) is negatively regu-
lating mean corpuscular haemoglobin in the blood; however, both 
clomipramine and busulfan have side effects of anaemia, while they 
have different actions on GSTP1. A similar situation was also observed 
with platelet-derived growth factor receptor alpha (PDGFRA). Both 
olaratumab and imatinib could cause lymphopenia, while they are anti-
body and inhibitor of PDGFRA, respectively. These controversial results 
indicate that, although MR is more likely to reveal potential causal 
effects consistent with the drugs’ action directions, limitations do exist 
in MR analyses, because of the great complexity of pharmacological 
and biological processes. Nevertheless, among the matched pairs of 
protein targets and traits, the five pairs with strong colocalization sup-
port all showed consistent MR effects and actual drug effect directions.

The mapped trans-pQTL were enriched in blood clotting and 
coagulation pathways. For instance, a blood clotting factor KLKB1 
appeared to be a trans-regulatory hub for multiple proteins. We thus 
infer that some of the trans-pQTL discovered are not directly involved 
in the genetic mechanisms of the corresponding proteins, but rather 
they regulate blood characteristics that affect the performance of the 
antibody-based assays.

Considerable attention must be paid to the effect of coagulation 
factors on protein quantification methods, especially in plasma-based 
assays. The enrichment of trans-pQTLs with coagulation factors and 
their established links to diverse neurological conditions empha-
size the need for cautious interpretation60–62. Previous research has 
demonstrated the functional relationship between psychiatric and 
neurological conditions, structural brain features, immune response 
and coagulation60,63–65, highlighting the importance of accounting for 
these factors in the analysis of blood-based protein quantification data.

Similar to the effect of clotting factors on the antibody-based 
assay, since glycosylation could potentially impact the binding of 
antibodies, it is likely to reveal the trans-pQTL effect of the glycosyla-
tion locus ST3GAL4 or other glycosylation-related genes66–68. These are 
important discoveries for biotechnological development in proteom-
ics, suggesting that the features of the plasma samples and protein 
structure modifiers could be non-negligible factors in circulating 
protein quantification.

The fundamental of pQTL studies, such as this particular large- 
scale GWAMA by the SCALLOP Consortium, is to map the genetic basis 
of protein abundance (see also the SCALLOP studies of the cardiovas-
cular15 and inflammatory69 proteins). Although the biology of protein 
functions can be complicated, the genetic coding of each protein and 
the effects of genetic variants on each protein are generally consistent 
across the human body. A large proportion of the proteins measured 
in plasma are not primarily synthesized by blood cells. As a result, the 
pQTL (particularly cis-pQTL) that we identify in plasma are likely to 
be indicative of genetic loci within the tissues or cells responsible for 
producing these proteins. This, in turn, offers valuable insights into 
the underlying intracellular processes when we assess proteins in 
plasma. Despite the variation in pQTL observed across different tis-
sues or cells, a substantial level of convergence is evident, especially 
when examining cis-pQTL70. This suggests that, even when protein 
levels in plasma, brain and cerebrospinal fluid do not exhibit strong 
correlations, there are instances where QTL are shared. Nevertheless, 
the effect size of the cis-pQTL could vary across tissues and cell types 
owing to complicated biological interactions. Current proteogenomics 
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still lacks tissue-specific pQTL studies, which ought to be addressed 
in future studies.

This study substantially advances our understanding of the  
genetics of neuro-related proteins and provides new targets for 
drug discovery. The pQTL discovery and causal inference with dis-
ease outcomes can inform clinical studies to identify actionable drug  
targets and enable integration into multi-omics analyses. The UKB- 
PPP and more cohorts could provide additional insights through 
larger meta-analyses and replication analyses, potentially reveal-
ing secondary signals in the pQTL. The inclusion of cohorts with  
diverse ancestries could further elucidate pQTL alleles that are  
not sufficiently polymorphic in European populations, identifying 
distinct molecular mechanisms underlying complex diseases.

Methods
Proteins
This study focused on plasma proteins from the Olink Neurology and 
Olink Neuro-Exploratory panels. Circulating plasma protein levels were 
quantified using Proximity Extension Assay technology, consisting of 
pairs of oligonucleotide-labelled antibodies to bind target proteins 
and hybridize to have their sequence extended and amplified through 
polymerase chain reaction (PCR). The level of amplified DNA is then 
quantified by microfluidic qPCR29.

Proteins were selected by a panel of experts to include protein 
biomarkers that are known to be associated with neurological disorders 
and conditions through existing literature. The functions of these pro-
teins comprise axonal development, metabolism, immune response 
and cell-to-cell communication. The proteins have been included in 
their respective panel on the basis of their observed involvement in 
neurological conditions and disorders, as well as the general perfor-
mance of the assay.

Cohorts and data collection
We obtained summary statistics from the GWAS analyses performed 
on the Olink Neurology proteins from ten cohorts and the Olink 
Neuro-Exploratory proteins from six cohorts. Cohorts comprised 
population-based and case-control studies. The analysis plan that 
was circulated to the cohorts analysts is included in Supplemen-
tary Information, and the summary statistics information for each 
cohort can be found in Supplementary Tables 16–30. The total sample 
size for the Neurology panel meta-analysis was 12,176, whereas the 
Neuro-Exploratory panel meta-analysis included up to 5,013 individu-
als. The participating cohorts used whole-genome sequencing data or 
imputed data using the 1000 Genomes Project (phase 1 and phase 3) or 
the Haplotype Reference Consortium as reference panels. An average of 
14.5 million SNPs were tested per protein, and the lowest per-SNP filter 
imputation quality ranged from 0.4 to 0.3, depending on the cohort. 
Each cohort carried out quality control according to their study design, 
as reported in Supplementary Table 16.

Data below the Olink limit of detection is calculated based on 
the negative controls included in each PCR run. Data below the limit 
of detection was available only for some cohorts participating in the 
meta-analysis. As the proteins were quantified at different times across 
cohorts, not all studies have data on all proteins in the two Olink panels.

Genome-wide association analysis of the proteins
The normalized protein expression (NPX) values, Olink’s unit of pro-
tein abundance level on a log2 scale29, were rank-based inverse normal 
transformed before running the per-protein GWAS analyses. Genotypic 
data were the allelic dosages resulting from imputation using the  
Haplotype Reference Consortium or the 1000 Genomes data as  
reference panels. Monomorphic SNPs were excluded. The genotype–
phenotype association analysis was performed using regression  
models adjusting for sex, age, plate number, plate column, plate 
row, sample time in storage, season of sample collection, population 

structure (when appropriate) and other study-specific covariates. The 
analysis was done either by a linear regression model of the normalized 
protein abundance (NPX values) on the genotype data of each genetic 
variant, where the cohort-specific covariates were included, or by a 
linear mixed model, where the polygenic random effects were included 
to correct for population structure, besides the fixed effects covariates.

Meta-analysis
The summary association statistics from each participating cohort 
were uploaded through a secured FTP channel to the University of 
Edinburgh’s ECDF Eddie Mark 3 cluster. The meta-analysis was run per 
protein in METAL (version 2018-08-28)71 using the IVW method. We 
defined cis-pQTL to be 500 kb upstream or downstream of the gene 
coding for the respective protein and set the trans-pQTL window to 
be 1 Mb around the top variants that were found outside the defined 
cis-window. A 1% MAF filter was applied to the meta-analysis summary 
statistics for subsequent analyses. The variants that existed in only one 
participating cohort were also removed before subsequent analyses. 
The significance threshold was set to be 5 × 10−8 for the top variants of 
cis-regulatory variants and 5 × 10−8/184 = 2.73 × 10−10 for the variants  
in trans-regions. The meta-analysed GWAS summary statistics for the 
184 proteins are publicly available (see Data availability).

Heritability analysis
We used a standard polygenic mixed model implemented in GenABEL35 
on the individual-level data collected in the ORCADES cohort to  
assess the narrow-sense heritability for each protein. The heritability 
captured by each pQTL is calculated as 2f(1 − f)β̂2, where f and β̂  are  
the coding allele frequency and estimated genetic effect, respectively, 
assuming Hardy–Weinberg equilibrium.

Established genetic associations
We used PhenoScanner v236,37 to cross-reference the lead (most  
significant) genetic variants in the cis-pQTL from our meta-analysis 
with other phenotypes. PhenoScanner is an extensive database of  
over 65 billion associations from publicly available GWAS. We used 
the lead variants of our cis-loci as input without the additional option 
of using proxy markers. When checking the novelty of our mapped 
cis-pQTL, we consider established pQTL associations with P < 5 × 10−6 
as known. When extracting the established complex trait associations, 
we set the P-value threshold to 1 to include all possible associations. 
As all these established associations had reported P values, P-value 
adjustment procedures can be used to compute the corresponding 
FDR. We used the standard p.adjust(method = 'fdr') function 
in R to calculate the corresponding FDR values. Thereafter, results  
with a false discovery rate of less than 0.05 were considered. We 
excluded the studies with non-European ancestry.

Cross-referencing and replication in other pQTL studies
For the antibody-based assay, we cross-referenced the discovered 
cis-pQTL with results from the two Greek cohorts that we included in 
this study38 and those reported by the UKB-PPP39. We checked whether 
a cis-pQTL was also reported as genome-wide significant (P < 5 × 10−8) 
for the same protein in either one of the two pQTL studies.

For each trans-pQTL in UKB-PPP, we checked whether the 
trans-pQTL was reported within a ±500 kb window of the lead variant 
of our discovered trans-pQTL. Also, for the aptamer-based assay, we 
compared the estimated trans-pQTL effects in our SCALLOP study and 
those in the Icelandic population where the proteome was measured 
using the SomaScan assay31.

Out-of-sample prediction in the UKB
Taking the independent cis-pQTL and trans-pQTL variants for  
each protein, we calculated the SCALLOP in-sample proportion of 
phenotypic variance explained as R2

in = β̂ββ
′
SCALLOPβ̂ββSCALLOP , and the 
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out-of-sample predictable proportion of variance in the UKB- 
PPP data was calculated as R2

out = ( β̂ββ
′
SCALLOPβ̂ββUKB−PPP)2/β̂ββ

′
SCALLOPβ̂ββSCALLOP ,  

where each element j in the β̂ββ  vectors was normalized as  

β̂j = ̂bj/√ ̂b
2
j + N ⋅ var( ̂bj) , and ̂bj  is the GWAS effect estimate for SNP j  

in the corresponding summary association statistics.

Functional enrichment and annotation of trans-pQTL
We performed our gene set enrichment analyses using the GENE2FUNC 
in FUMA v1.3.772,73, which returns functional annotation to gene models 
for the submitted list in a biological context. We identified the genes 
closest to the top SNPs in our trans-loci using the locuszoom v0.1274,75 
database and then submitted the list of genes to the FUMA website. We 
selected all types of gene to use as background for this analysis, includ-
ing over 57,000 genetic elements. We set the maximum FDR-adjusted 
P value for gene set association to 1.

Colocalization analysis
We used the Bayesian colocalization analysis tool coloc with the 
posterior probabilities testing the H4 colocalization hypothesis  
for two models: (1) testing for a single shared causal variant between 
the pair of traits40; (2) testing for multiple shared causal variants, 
known as a SuSiE model42. The tests were applied to the mapped 
cis-pQTL and the established GWAS summary statistics, as well as to 
the cis-eQTL and the mapped pQTL. For the eQTL–pQTL colocalization 
analysis, we adopted the v7 release of both the GTEx eQTL and eQTL-
Gen summary-level data. For each cis-pQTL, we tested colocalization 
with the cis-eQTL of the corresponding coding gene in each tissue. 
For each trans-pQTL, we tested colocalization with the cis-eQTL of 
the nearest coding gene.

MR analysis
For the protein–trait pairs with strong colocalization support  
(PP.H4 > 0.8), we performed a two-sample MR analysis using the IVW 
method to evaluate effects between the proteins with genome-wide 
significant cis-pQTL and (1) 4,085 traits from Neale’s lab UKB GWAS and 
(2) 20 psychiatric or neurological disorder traits from PGC. As the GWAS 
of the binary traits by Neale’s lab were conducted using ordinary linear 
regression, we transformed the estimated genetic effects from such an 
observed scale to the logistic scale (that is, the log of odds ratios). As 
the phenotypic variance explained by the genetic variant is a very small 
fraction, this can be done using the estimates from the linear regres-
sion, the prevalence of the cases and the allele frequency of each variant 
(see formula 3.2 derived by Pirinen et al.76). Multiple genome-wide sig-
nificant sentinel variants of our cis-pQTL after LD pruning (r2 < 0.001) 
were used jointly as instrumental variables. We report the significant 
discoveries at a level of 5% false discovery rate, for which we also per-
formed a reverse generalized summary-statistics-based MR from the 
complex trait exposures to protein outcomes.

Drug target investigation
For the protein markers from IVW MR results with a false discovery rate 
of less than 5%, we systematically investigated available drugs targeting 
these markers using the DrugBank and Drugs.com databases. We con-
sidered a drug target validated if an MR discovery between the protein 
marker and the trait/disease suggested the same effect direction as the 
drug’s effect on the protein target. The protein targets that have avail-
able drugs but are not directly related to the MR-discovered outcomes 
were regarded as repurposing targets. The remaining MR discoveries 
were reported as either new (no drug available) or druggable (drugs 
available without clear clinical indications) targets.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The full genome-wide summary association statistics for the 184 
proteins are publicly available at https://doi.org/10.7488/ds/7522; 
cis-eQTL summary-level data by eQTLGen, https://eqtlgen.org/
cis-eqtls.html; GTEx data, https://gtexportal.org/home/datasets; 
1000 Genomes phase 3 genotype data, https://www.cog-genomics.
org/plink/2.0/resources#phase3_1kg; Neale’s lab UK Biobank round 
2 GWAS summary-level data, http://www.nealelab.is/uk-biobank;  
Psychiatric Genomics Consortium (PGC) summary-level data, https://
pgc.unc.edu/for-researchers/download-results/; DrugBank, https://
www.drugbank.com; and Drugs.com, https://www.drugs.com.  
Source data are provided with this paper.

Code availability
Software used included METAL (https://genome.sph.umich.edu/wiki/
METAL_Documentation), PLINK (https://www.cog-genomics.org/
plink/), GenABEL (https://cran.r-project.org/src/contrib/Archive/
GenABEL/), GCTA-GSMR (https://yanglab.westlake.edu.cn/software/ 
gsmr/), PhenoScanner (http://www.phenoscanner.medschl.cam.
ac.uk), MendelianRandomization (https://cran.r-project.org/web/ 
packages/MendelianRandomization/index.html), coloc (https:// 
chr1swallace.github.io/coloc/index.html), locuszoom (http:// 
locuszoom.org/) and FUMA (https://fuma.ctglab.nl).
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