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Understanding the genetic basis of neuro-related proteinsis essential for
dissecting the molecular basis of human behavioural traits and the disease
aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium
conducted agenome-wide association meta-analysis of over 12,000 individuals
for 184 neuro-related proteins in human plasma. The analysis identified 125
cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL.
The mapped pQTL capture onaverage 50% of each protein’s heritability. At

the cis-pQTL, multiple proteins shared a genetic basis with humanbehavioural
traitssuch as alcohol and food intake, smoking and educational attainment,

as well as neurological conditions and psychiatric disorders such as pain,
neuroticism and schizophrenia. Integrating with established drug information,
the causal inference analysis validated 52 out of 66 matched combinations

of protein targets and diseases or side effects with available drugs while
suggesting hundreds of repurposing and new therapeutic targets.

Certain patterns of humanbehaviours such as cigarette smoking, alco-
hol consumptionand a high-fat diet may elevate therisk of developing
arange of complex diseases". Neuropsychiatric disorders are among
theleading causes of lifelong disability globally, affecting around 800
million people**. As 0f 2024, mental health remains a global crisis and
priority brought to the forefront of public health discussions anew,
after theimpact of COVID-19 on people’slives, where stressors such as
isolation, notable changes in habits, and global enhanced mortality and

fear of contracting the disease have had severe consequences on mental
well-being®”. These conditions represent a substantial challenge for
medical research owing to the high complexity of their neurobiological
mechanisms and heterogeneity of symptoms, which often overlap
with other neurological, psychiatric and non-psychiatric disorders®™°,

In the past decade, genome-wide association studies (GWAS)
have been successful in identifying numerous genetic variants that
can partially account for variation in complex traits and diseases™".

A full list of affiliations appears at the end of the paper. < e-mail: shenx@fudan.edu.cn
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However, the effect of a genetic variant such as a single-nucleotide
polymorphism (SNP) on a complex disease is usually very small and
often does not provide information on the phenotype’s molecular
architecture. Measuring proteins may overcome this obstacle as pro-
teins are the product of translated DNA and functional elements that
bridge the genetic codes and disease outcomes. Circulating proteins
inblood plasma originate from various organ tissues and cell types in
the human body and have fundamental roles in different biological
processes” ™, Thus, such proteins are often used in clinical practice as
disease biomarkers. Circulating neurology-related proteins have the
potential to provide insight into the pathophysiology of neurological
and mental disorders and the genetic architecture of their molecular
pathways, setting the basis for the improvement of diagnostic instru-
ments and targeted therapy™.

Protein levels are more linked to variation in cognitive function
than genetic variants alone. Current studies on neurology-related
proteins either focused on neurodegenerative disorders or cognitive
function specifically or had alimited sample size””*2. Inarecent study,
neurology-related proteins were associated with general fluid cognitive
abilitiesinlatelife,and a portion of these was observed to be mediated
by brain volume, measured as a structural brain variable?.

The field of proteomics has been rapidly expanding in recent
years and produced results that have played afundamentalrolein the
decoding process of molecular mechanisms involved in several traits
and diseases, from cardiovascular disease to general health'>*2¢,
The genomic studies of the human proteome have benefited from
various high-throughput measurement techniques, such as mass
spectrometry'*”, aptamer-based assays** and antibody-based assays".
Among these, the antibody-based Proximity Extension Assay*’ has
high measurement precision, especially for many functional but
low-abundant proteins.

This study aims to identify genetic variants associated with
184 neurology-related blood circulating proteins via a large-scale
genome-wide association meta-analysis (GWAMA) and investigate the
proteins’ genetic relationships with potential disease-causing behav-
iours, common psychiatric disorders and related comorbidities. We
systematically investigate the proteins’ therapeutic implications based
on established drug information. We provide an atlas for the genetic
architecture of these proteins as a resource for biomedical research
on human behaviours and psychiatric disorders.

Results

GWAMA of 184 proteins identified 289 significant loci

In the discovery phase, we conducted a GWAMA using data from up
to12,176 individuals (mean age = 61.9, percentage females = 44.6%) for
92 proteins in the Olink Neurology panel, and up to 5,013 individuals
(mean age = 49.6, percentage females = 56.1%; see Supplementary
Tables16-30 for details) for 92 proteins in the Olink Neuro-Exploratory
panel, from a total of 12 participating cohorts (Supplementary
Tables 17-30). Overall, we identified 289 top variants distributed
acrossatotal of 125 cis-pQTL and 164 trans-pQTL with the significance
threshold of P <5 x 10" for the cis-lociand P< 5 x1078/184 =2.7 x 107
for the trans-loci (Supplementary Table 1 and Supplementary Figs.
10and11). Out of the 139 proteins with detected pQTL, 74 (53%) proteins
had significantly associated variants both in cis- and trans-regulatory
loci. The median number of primary associations per protein that
we observed was 2, with the maximum number of pQTLs per protein
being 6. Proteins with lower abundance tended to have weaker cis-pQTL
association signals (Supplementary Fig. 8).

As expected, the identified trans-pQTL, in general, were more
weakly associated than the cis-pQTL; nevertheless, we found that 24
proteins shared a total of 14 trans-pQTL. For example, well-known
pleiotropic loci such as the HLA region and the ABO locus showed
trans-regulatory effects across anumber of plasma proteins (Fig. 1a).
For instance, 19 proteins showed significant trans-pQTL at the ABO

locus; nevertheless, the associations were not completely due to the
same causal variants (Supplementary Fig. 3). The nearest coding genes
for199 mapped pQTL have cis-eQTL dataavailable from the eQTLGen.
Amongthem, 185 (93%) pQTL were also expression QTL (eQTL) signifi-
cantly associated with the expressions of the nearest genes (P < 5x107®).
However, regarding the underlying genetic regulation of transcripts
and protein expressions, compared with trans-pQTL, cis-pQTL were
more likely to colocalize with eQTL (Supplementary Figs. 1, 2 and 7).
The lead variants of the cis-pQTL were also more centred around the
transcription start sites (TSS) of the corresponding coding genes,
compared with those of the trans-pQTL around the TSS of the nearest
coding genes (Fig. 1c). The cis-pQTL also had stronger effects, less
correlated with the minor allele frequencies (MAFs), compared with
the trans-pQTL (Fig.1c-d).

The fact that the trans-pQTL were not as colocalized as cis-pQTL
were with eQTL could be partly due to the weaker signals of the
trans-pQTL than those of the cis-pQTL. However, we hypothesized
that the trans-pQTL may not necessarily reflect the biological regula-
tory mechanisms of the corresponding proteins, but rather driven by
underlying features of the blood samples, owing to their influence on
the immuno-reaction of the antibody-based assay. For example, the
pleiotropic trans-pQTL across the proteins highlight major blood coag-
ulation and clotting factors such as KLKB1 (plasma kallikrein), KNG1
(Kininogen-1) and F12 (coagulation factor XII), as well as glycosylation
locus ST3GAL4. We thus also looked into the functional pathways and
gene sets that involve the closest genes to our trans-pQTL using the
gene set enrichment analyses (Supplementary Fig.5). With a false dis-
covery rate <5%, 997 significant pathways were found to be enriched for
the genes of our trans-loci, of which 443 (44.4%) were driven or partly
driven by the HLA genes. The top enriched pathways were clustered
into inflammatory and immune responses, coagulation processes,
cell-to-cell signalling and adhesion, and protein glycosylation (Sup-
plementary Table 13). In particular, the trans-pQTL were found to be
enriched in (1) established GWAS traits such as blood protein levels,
platelet count and platelet crit; (2) GO pathways such as biological
adhesion, wound healing, coagulation and glycosylation; (3) hallmark
gene sets including coagulation; (4) Reactome pathways including
haemostasis and clotting formation; and (5) microRNA targets and Wiki
pathways for blood clotting cascade. To further justify the hypothesis
that the blood coagulation factors may affect the performance of
the antibody-based assay, we cross-referenced the lead variants of
the mapped trans-pQTL in the pQTL results of the Icelandic popula-
tion®, where the proteome was measured using aptamer-based assays
instead. Intotal, 69 trans-pQTL for 50 proteins overlapped between the
2 datasets, and the 8 loci whose nearest genes are involved in coagu-
lation pathways replicate notably worse than the other trans-pQTL
(Supplementary Fig. 6).

We assessed the overall heritabilities across the 184 analysed
plasma proteins. Methods based on summary association statistics
have been developed to infer heritability and genetic correlation
parameters for complex traits with GWAS results; however, consist-
ent estimates can only be obtained for genetic correlations®*. Thus,
we used a standard polygenic mixed model on the individual-level
data collected in the ORCADES cohort to assess the narrow-sense
heritability for each protein®. Across the analysed proteins, we found
that the higher the protein’s heritability, the more pQTL detected for
the protein (Fig. 1e), the stronger the cis-pQTL effects are (Fig. 1g), and
the higher amount of phenotypic variance captured by the detected
pQTL (Fig. 1f). On average, the mapped pQTL together explain 49%
of the proteins’ heritability. This indicates that proteins as molecular
phenotypes have strong major regulatory loci. Nevertheless, their
genetic effects can still be widespread across the genome, having a
polygenic genetic architecture.

Using data from the ORCADES cohort, we found TDGF1
(Teratocarcinoma-Derived Growth Factor 1) to have the highest

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-024-01963-z

a
Corresponding
eQTL -log,, P pQTL
00 77 @ Cis
Q@ 155 @ Trans
QO 232
@@ 309 o
QY
» 20 ¥
c ~
=] s
3 &
-
6 107 N % ?:O Q'\V%{b
(\/
: SR S
(o]
IS oo cumo olibe oio o 58 wBoodB a S
T e °
] H
13 e ©®o °g ®
18 * ) o
E ° e oc &
15 G} d/oo ® ¢
13
B ) @
é 14 &e .
2 °] ®
S &7 ° 8
(o) 7 - b4 °
£ e & ° e
T 64
8 ” &
57 e o ‘
4 é .
@ 0. '@
00
37 e° ) H . )
, & e ‘g °
° 4 ®
14 ) e o
é* e o

T T T T T T T T T T T TT
6 7 8 9 n 13

pPQTL position

T T TIrrT 1
15 18 21

Fig.1| Overview of the mapped pQTL. The displayed P values were obtained
from two-sided Wald tests in the GWAS without correction for multiple testing.
a, Pleiotropic trans-pQTL counts and overlap of the mapped pQTL with existing
eQTL. The upper bar plot shows the number of proteins that share trans-pQTL
(gene annotations based on the gene closest to the trans-pQTL). The scatter
plot shows the genomic location of significant cis-pQTLinred (P < 5x107%) and
significant trans-pQTL in blue (P < 5 x 107%/184), and the shading within the
dotsindicates the significance of the corresponding/nearest cis-eQTL for the
respective protein. b, Comparison of the phenotypic variance captured by the
discovered pQTL of each protein in the SCALLOP meta-analysis (in-sample R?)
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and the predictable phenotypic variance in the UKB-PPP data (out-of-sample R?).
¢, Scatter plot of the pQTL lead variants association signals versus their distance
tothe TSS of the corresponding/nearest coding genes. d, Scatter plot of the
absolute estimated genetic effects of the pQTL lead variants versus their MAFs.
e, Number of mapped pQTL per protein versus the linear mixed model estimated
heritability in the ORCADES cohort. f, The variance explained by the mapped
pQTL summed up for each protein versus the estimated heritability. g, For the
proteins with significant cis-pQTL mapped, the lead variant signal strength
versus the estimated heritability of each protein. The correlation coefficients (R)
and their relative confidence intervals (Cl) are indicated in the plot.

heritability (h*= 0.85), followed by MDGA1 (MAM Domain-Containing
Glycosylphosphatidylinositol Anchor Protein 1, h*=0.75), CLM1
(CD300 Molecule Like Family Member F, h*=0.72) and LAIR2
(Leukocyte-Associated Immunoglobulin-Like Receptor 2, h2=0.70).
By contrast, CTF1 (Cardiotrophin 1), EPHA1O (Ephrin Type-A Recep-
tor 10), GSTP1 (Glutathione S-Transferase Pi1), HSP90OB1 (Heat Shock
Protein 90 Beta Family Member 1), IFI30 (Gamma-Interferon-Inducible
Lysosomal Thiol Reductase), NDRGI (N-Myc Downstream Regulated
1) and SFRP1 (Secreted Frizzled Related Protein 1) all had an estimated
h?value close to O while having at least one pQTL.

We used the PhenoScanner database®®* to determine whether
the pQTL sentinel variants or variants in linkage disequilibrium (LD)
with them (2> 0.8) that we identified had been previously found
to be significantly associated with the corresponding proteins
(Supplementary Table 2). We identified 113 loci within our own
results that had already been discovered in previous studies. We also
checked whether the hits from the meta-analysis were significant in

the individual cohorts and observed that 73 of the sentinel variants
were found to be statistically significant only in the meta-analysis.
We extracted the established associations between our mapped cis-
pQTL and complex traits from the PhenoScanner database (Supple-
mentary Table 3). At a 5% false discovery rate, 39 cis-pQTL showed a
significant association with both complex traits and other proteins
(mostly based on an aptamer-based assay). We found that the level
of pleiotropy at the protein level, that is, being trans-pQTL for other
proteins, is associated with the level of pleiotropy on the complex traits
(Supplementary Fig. 4).

We performed LD pruning (r* < 0.001) to identify secondary
independent associations at the cis-pQTL. We identified a total of
162 additional significantly associated variants across all the 125
proteins with cis-pQTL mapped (Supplementary Tables 7 and 8).

This meta-analysis within our SCALLOP collaborative frame-
work is a follow-up of a previous study on the proteins from the Olink
Neurology and Neuro-Exploratory panels, where data were collected
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Protein Trait OR (95% ClI) PMR Number of instrumentalSNPs ¢1 @2 @3 @4
Cognitive function |
ADAM22 Fluid intelligence test: conditional arithmetic 1.07 (1.02 - 1.12) 4.76x107 e
CDH6 Fluid intelligence test: word interpolation 0.92(0.88 - 0.97) 9.76 x10™* - |
DPEP2 Positional arithmetic 0.84 (0.74 - 0.96) 8.35x107° _—
Food/drink !
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|
Lifestyle |
CDH6 Frequency of friend/family visits 0.99 (0.98-1.00) 2.07x10” q
CDH6 Age first had sexual intercourse 0.98 (0.97-0.99) 2.36x10™* .:
CDH6 None of attendance/disability/mobility allowance 0.94 (0.90-0.99) 1.03x1072 -
CDH6 Disability living allowance 1.09 (1.03-1.14) 1.06x107° | —e—
CTSS Use of sun/UV protection 1.02 (1.01-1.03) 1.39x107 )
DEFB4A Usual side of head for mobile phone use: left 1.15 (1.07-1.24) 3.27x107 i —_—
DEFB4A Usual side of head for mobile phone use: right 0.87 (0.80-0.93) 1.62x107 —— i
DEFB4A Prefer an 'evening' than a 'morning' person 1.06 (1.02-1.09) 9.99x10™ |~
DEFB4A Times of suffering sunburn in childhood 1.10 (1.06-1.13) 1.95x107 ! -
DEFB4A Age first had sexual intercourse 1.09 (1.06-1.13) 3.02x107 | ——
FLRT2 Duration of walks 0.98 (0.97-0.99) 2.37x107 .:
NCAN Frequency of stair climbing in last 4 weeks 0.92 (0.88-0.97) 2.48x107° —_—
PAEP Ever addicted to a behaviour 1.32 (1.14-1.53) 1.85x10™ | —_—
WWP2 Risk taking 0.81(0.74-0.89) 1.94x107° —_—— |
Substance use i !
ASAH2 Opioid dependence 0.96 (0.94-0.99) 2.48 x10™ L il
CDH17 Number of cigarettes smoked daily 0.94 (0.92-0.97) 8.92x10°° & |
CDH6 Past tobacco smoking 0.97 (0.95-0.98) 4.03 x10 [ N
CDH6 Never smoked 0.95 (0.93-0.97) 1.41%x10°° o
Work/education |
CDH6 Qualifications: college or university degree 0.97 (0.95-0.99) 5.14 x10 '.':
CDH6 Qualifications: A levels/AS levels or equivalent 0.97 (0.95-0.99) 9.51x10 '.':
CDH6 Unable to work because of sickn or disability 1.07 (1.01-1.13) 1.19 x10 | ——
PRTG Qualifications: College or university degree 0.95 (0.93-0.98) 2.91x10 @ i
RGMA Sometimes feeling hot at the workplace 0.92 (0.85-0.99) 2.58x10™ ——
TPPP3 Qualifications: College or university degree 1.14 (1.07-1.22) 1.44 x10 | ——
VWC2 Work hours per week 1.06 (1.03-1.10) 2.67x10" . -

T T T T
-0.25 0 0.25 0.50

Fig. 2| Effects of the proteins on human behavioural traits inferred by MR
analyses. The forest plot shows the significant MR results (false discovery

rate < 0.05) based on LD-pruned (% < 0.001) instrumental variants within each
cis-pQTL.IVW MRresults are provided as the estimates (solid round dots) +/- half
of the 95% confidence intervals (CI; the whiskers). Odds ratios (OR) are indicated
inthe third columnwith the appropriate Cl. The Pvalues were obtained from

log(OR) (95% ClI)

two-sided Wald tests in the GWAS without correction for multiple testing. The
displayed protein-trait pairs all showed colocalization evidence in the standard
coloctest (PP.H4 > 0.8). The numbers of instrumental variants in the cis-pQTL
areindicated as the size of the dots. The sample sizes for deriving the GWAS
summary statistics are given in Supplementary Table 10.

fromthe two Greek cohorts that we included in this study’®. Our results
replicated over 90% of the established loci, including the previous
main discoveries of the cis-pQTL for CD33, GPNMB and MSRI.
Furthermore, we cross-referenced the significant loci discovered in
the meta-analysis with the currently available pQTL data from the
UK Biobank Pharma Proteomics Project (UKB-PPP)*. One hundred
seventy-four out of the 184 proteinsin our SCALLOP analysis currently
overlap with the UKB-PPP analysis (Supplementary Table 1). Among
these, we reported 117 cis-pQTL, where 110 (94%) can be replicated in
the UKB-PPP analysis (P <5 x 107%); UKB-PPP reported 22 additional
cis-pQTL; and for 32 proteins, there were no cis-pQTL reported in
either SCALLOP or UKB-PPP. We also reported 164 trans-pQTL for
88 proteins, where 84 proteins were also measured in the UKB-PPP
analysis. For these 84 proteins, we mapped 155 trans-pQTL, where
128 (83%) can be replicated in UKB-PPP (P <5 x1078/184 =2.7 x107°).
If we consider the UKB-PPP as a gold standard for ‘Olink assay
detectable cis-pQTL, this indicates that we have a type I error rate of
1.7%and atypellerror rate of 40.7%. If we lower the cis-pQTL discovery
thresholdto 5 x107¢, we would yieldatypelerrorrate of 2.4%and atype

Ilerror rate of 32.6%. Because of the protein measurement consistency,
the genetic effects of our discovered pQTL could be well replicated
in the UKB-PPP data: the out-of-sample predictable phenotypic vari-
ances of the proteins were consistent with the in-sample phenotypic
variances captured by the pQTL (Fig. 1b), especially for the proteins
with cis-pQTL discovered.

Shared genetics between proteins and neuro-related traits
Focusing on the cis-pQTL regions, we investigated the shared genetic
architecture between the studied proteins and other human complex
traits. We collected the union of GWAS summary statistics from two
sources as the outcome data: 4,085 traits from Neale’s lab UKB GWAS,
and 20 psychiatric or neurological disorder traits from PGC (Psychiatric
Genomics Consortium) (Methods and Data Availability; Supplementary
Tables 4-6). We adopted colocalization and Mendelian randomiza-
tion (MR) analysis to illustrate the genetic correlations between the
proteins and complex traits at the cis-pQTL. Potential causality might
beinferred from colocalized protein-trait combinations, given the
molecular biological basis of the cis-pQTL (Discussion).
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Protein Trait OR (95% Cl) Pwr Number of instrumentalSNPs ¢ 1 @2 @3 @ 4
Neurological disorder 3
CLEC10A Tourette syndrome 1.16 (1.05-1.28) 2.90x107° ! —
DPEP1 Carpal tunnel syndrome 1.06 (1.02-1.10) 6.57x107° e o
Psychiatric disorder 3

I

I

I

I

I

I

I

I

I

I

I

|
Symptom |
CDH6 Mood swings 1.03 (1.01-1.05) 2.24x107 :.
CDH6 Tense/highly strung 1.04 (1.01-1.07) 7.39x107° 3-.-
CDH6 Leg pain on walking 1.08 (1.03-1.12) 7.35x10™ e o
CDH6 Back pain in last month 1.04 (1.02-1.07) 3.01x107* @
CTSC Number of depression episodes 0.96 (0.94-0.98) 1.58x10™* L 4 |
DEFB4A Mood swings 1.11(1.04-1.19) 2.66x107 3 —_—
DEFB4A Miserableness 1.21(1.13-1.29) 3.89x107° | ——
DEFB4A Irritability 1.19 (1.10-1.28) 7.51x107° | —_—
DEFB4A Sensitivity/hurt feelings 1.18 (1.10-1.26) 1.25x10°° 3 ——
DEFB4A Fed-up feelings 114 (1.07-1.23) 113x10™ . ——
DEFB4A Nervous feelings 1.26 (1.16-1.36) 1.92x10° | ——
DEFB4A Tense/highly strung 1.27 (1.16-1.39) 1.94x107 | —_—
DEFB4A Worry too long after embarrassment 1.20 (1.12-1.29) 119x107 3 —_—
DEFB4A Neuroticism score 113 (1.09-1.17) 1.34x107° b e
DEFB4A Guilty feelings 114 (1.06-1.23) 5.73x10™ | ——
DPEP2 Longest period of mania or irritability 1.11 (1.04-1.20) 2.83x107° | ——
FLRT2 Ever self-harmed 0.86 (0.80-0.94) 453x10™ —— 3
FRZB Irritability 1.03 (1.01-1.05) 5.60x107° K J
IFNL1 Headache in last month 118 (1.09-1.29) 9.53x10™° | ——
NTRK3 Distress caused by unusual or psychotic experiences 0.72 (0.57-0.92) 7.19%107° —_— 3

T T T T T
-0.6 -0.3 0] 0.3 0.6
log(OR) (95% CI)

Fig. 3 | Effects of the proteins on neuro-related conditions inferred by MR
analyses. The forest plot shows the significant MR results (false discovery

rate < 0.05) based on LD-pruned (* < 0.001) instrumental variants within each
cis-pQTL.IVW MRresults are provided as the estimates (solid round dots) +/- half
of the 95% confidence intervals (the whiskers). The Pvalues were obtained from

two-sided Wald tests in the GWAS without correction for multiple testing. The
displayed protein-trait pairs all showed colocalization evidence in the standard
coloctest (PP.H4 > 0.8). The numbers of instrumental variants in the cis-pQTL
areindicated as the size of the dots. The sample sizes for deriving the GWAS
summary statistics are given in Supplementary Table 11.

Westarted by identifying the protein-trait combinations that have
the pQTL and the corresponding trait association signal colocalized.
Both the standard coloc method*° (assuming a single causal variant)
and the SuSiE-coloc procedure**? (assuming multiple causal variants)
were applied. The 291 protein-trait pairs that showed a colocalization
posterior probability (PP.H4) greater than 0.8 in either of the two
models were passed onto subsequent MR analysis.

We performed an inverse-variance weighted (IVW) two-sample
MR analysis using the LD-pruned genetic instruments across the 125
cis-pQTL with colocalization evidence for the outcome phenotypes
(Supplementary Table 9). For binary outcomes, to avoid the influence
of the subpopulation structure, we focused on those with atleast1,000
cases. With a false discovery rate of 5%, we obtained 287 significant
MR effects for 56 proteins on 201 traits (Supplementary Tables 9-11),
including 43 human behavioural phenotypes (Fig. 2), 22 psychiatric
or neurological conditions (Fig. 3) and 19 other disease-related traits
(Fig. 4). Together with the colocalization support, these results are
consistent with a potential causal role of each protein, following the
assumptions of MR (Discussion).

In terms of human behaviours, for instance, Cadherin-6 (CDH6)
showed apositive effect onsmoking (Fig. 5a), while CDH17 showed aneg-
ative effect. PRTG and TPPP3 showed opposite effects on educational
attainment. The protein Cathepsin S (CTSS) showed a positive effect on
the use of sun protection; meanwhile, it showed anincreasing effect on
water intake and decreasing effects on tea and coffee intake (Fig. 5b).
Galectin-8 (LGALS8) was a plausible marker for alcohol intake (Fig. 5d).

Regarding psychiatric and neurological conditions, for example,
Dipeptidase 1 (DPEP1) showed potential risk-increasing effects on

mononeuropathies of the upper limb and carpal tunnel syndrome
(Fig. 5¢). Besides, ADAM22 and CD302 showed protective effects on
schizophrenia. The known effect of CD33 on Alzheimer’s disease®®**
could bereplicated using MR-Egger regression on CD33 cis-pQTL and
the regional associations from PGC (P=2.0 x 1073, two-tailed test).

There are protein markers that showed effects on both behavioural
phenotypes and neurological disorders. For example, the protein
CDH6 showed effects on behavioural traits such as smoking, word
interpolationand age of first sexual intercourse, as well as neurological
symptoms such as pain, tension and mood swings, where its effects on
behavioural traits and neurological symptoms had different directions
(Fig.5a). ADAM22, besides its protective effects on schizophreniaand
anorexianervosa, also showed a positive effect on arithmetic skills.

In relation to other complex diseases, for example, ADAM15
showed a protective effect oninfectious and parasitic diseases. CD302
both showed protective effects on hypothyroidism or myxoedema.
DPEP1 showed a protective effect against hypertension. Galectin-8
(LGALSS), besides its negative effect on alcohol intake, was found to
increase the risk of female genital prolapse (Fig. 5d). Neurocan core
protein (NCAN) was found to be genetically associated with high cho-
lesterol, and thus also cholesterol-lowering substitutes such as the use
of Flora Pro-Activ or Benecol, since it was used more frequently than
the other products, revealingits colocalized genetic associations at the
cis-pQTL of NCAN (Fig. 5e). Besides its effects on non-butter spread use
and stair climbing, the protein NCAN also showed protective effects
on hypertension and diabetes. However, such genetic correlations of
NCAN were likely driven by its nearby gene TM6SF2 owing to linkage
(Discussion).

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article https://doi.org/10.1038/s41562-024-01963-z

Number of
Protein Trait OR (95% Cl) PMR instrumentalSNPs <1 e¢2 e3 ©¢4 €5 @6 @7
Other disease |
ADAM15 Infectious and parasitic diseases 0.92 (0.86-0.98) 9.98x107° -.-3
CD200R1 None of clotting disorders, respiratory issues or allergies diagnosed  1.02 (1.01-1.04) 5.50x10° ’
CD302 Self-reported hypothyroidism/myxoedema 0.86 (0.81-0.91) 4.34x107 -
CLEC1B Other diseases of arteries and capillaries 2.62 (1.50-4.58) 7.32x10™ i
DEFB4A Self-reported hypertension 0.88 (0.81-0.94) 5.08x10™ —_
DEFB4A Self-reported hypothyroidism/myxoedema 1.38 (1.18-1.61) 4.31x107 i ——
DEFB4A None of diagnosed vascular/heart problems 113 (1.06-1.22) 511x10™ 3 ==
DEFB4A Diagnosed high blood pressure 0.87(0.81-0.94) 259x10™ —
DEFB4A None of clotting disorders, respiratory issues or allergies diagnosed  1.17 (1.09-1.26) 1.94x107° | ==
DEFB4A Other arthrosis 0.74 (0.65-0.84) 5.41x10° —_— i
DEFB4A Diseases of the musculoskeletal system and connective tissue 0.84 (0.78-0.91) 3.52x10° —_
DPEP1 Self-reported hypertension 0.96 (0.95-0.98) 6.19x107° °
DPEP1 None of vascular/heart problems 1.03 (1.02-1.04) 1.43x107° L.
DPEP1 Diagnosed high blood pressure 0.97(0.95-0.98) 1.14x10™° .3
DPEP1 ICD10: G56 mononeuropathies of upper limb 1.08 (1.03-1.12) 7.98x10™ R4
FCRL2 Self-reported hyperthyroidism/thyrotoxicosis 1.19 (1.05-1.35) 4.99x10° | ——
1112 Mouth ulcers 1.10 (1.06-1.13) 5.39x107° )
LGALS8 ICD10: N81 female genital prolapse 1.09 (1.02-1.16) 8.53x107° |-o-
MATN3 Self-reported psoriasis 1.18 (1.08-1.29) 1.99x107* | ——
NCAN Self-reported hypertension 0.84 (0.77-0.91) 5.20x107° —— 3
NCAN Self-reported diabetes 0.68 (0.56-0.82) 1.07x10™* —— !
NCAN Diagnosed diabetes 0.69 (0.58-0.82) 4.40 x107° —— i
SCARB2 Self-reported high cholesterol 1.1 (1.05-1.18) 7.51x107° | .-
SMOC1 Cataract 0.84(0.77-0.93)  4.70x10™ —
SMOC1 Trigger finger 1.41(1.12-1.78) 3.26x107° | ——
TPPP3 Self-reported hypothyroidism/myxoedema 0.71(0.62-0.82) 1.87x10° —— 3
T t T T T
0.5 0] 0.5 1.0 15
log(OR) (95% CI)
Fig. 4 | Effects of the proteins on other complex diseases inferred by MR two-sided Wald tests in the GWAS without correction for multiple testing. The
analyses. The forest plot shows the significant MR results (false discovery displayed protein-trait pairs all showed colocalization evidence in the standard
rate < 0.05) based on LD-pruned (r* < 0.001) instrumental variants within each coloctest (PP.H4 > 0.8). The numbers of instrumental variants in the cis-pQTL are
cis-pQTL.IVW MRresults are provided as the estimates (solid round dots) +/-half ~ indicated as the size of the dots. The sample sizes for deriving the GWAS summary
ofthe 95% confidence intervals (the whiskers). The Pvalues were obtained from statistics are given in Supplementary Table 9.
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Fig. 5| Examples of regional association patterns for colocalized cis-pQTL The other variants within the region are coloured based on their LD R?values
and complex traits. a-e, The cis-pQTL regions for five proteins (CDH6 (a), CTSS with the corresponding lead variants. Detailed descriptions of the complex traits
(b), DPEP1(c), LGALS8 (d) and NCAN (e)) are visualized. Each dot represents a analysed can be found in the supplementary tables and the original data sources.

variant, where the lead variant for each cis-pQTL is marked as a blue diamond.

Except for TPPP3 and hypothyroidism or myxoedema, reverse  discovery rate (FDR) of less than 5% were found to range from 0.21 to
generalized summary-statistics-based MR** did not show evidence 2.62, consistent with previous studies evaluating the MR effects of
for reverse causality. In general, the MR estimated odds ratiosatafalse  blood circulating proteins on other complex traits™*.
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Protein Trait R Drug Role Indication/side effect
*
*
*
GSTP1 Mean corpuscular haemoglobin o Clomipramine Inhibitor NA/anaemia
GSTP1 Mean corpuscular haemoglobin o Cisplatin Substrate NA/anaemia
IL12B Self-reported psoriasis - Briakinumab Antibody Psoriasis/NA
NGF Doctor-diagnosed high blood pressure e Clenbuterol Stimulator NA/hypertension
NGF Self-reported hypertension e Clenbuterol Stimulator NA/hypertension
PDGFRA Lymphocyte percentage 101 Midostaurin Inhibitor NA/lymphocytopenia

Fig. 6| Drugtargetsrevealed by MR analyses. The MR results with a 5% false
discovery rate were considered. a, The number of MR-inferred pairs of proteins
and traits splitinto five categories: new (drug) targets, druggable targets

that have drugs with unclear clinical function, repurposing targets that have
established drugs but for different diseases, and validated known targets where
the established drugs have pharmacological effects that match the MR effect
directions (Matched®) and those with opposite directions (Matched"). The sets of
targets that have strong colocalization support (PP.H4 > 0.8) are marked in lighter

colours. The Pvalue was obtained from a two-sided binomial test. b, Numbers

of different categories of drug targets per protein analysed. ¢, Summarized
examples of the validated known drug targets, the description of the drugs, the
indication (diseases treated)/side effects and the corresponding consistent MR
estimated effects. The MR estimates with colocalization support are marked with
stars. IVW MRresults are provided as the estimates (solid round dots) +/- half of
the 95% confidence intervals (the whiskers). NA, not applicable. The sample sizes
for deriving the GWAS summary statistics are given in Supplementary Table 9.

Investigation of drug targets among the protein markers

We systematically investigated the protein markers identified by
the causal inference based on colocalization and MR analysis for
their therapeutic potential, as proteins are usually the direct drug
targets. Among the 125 proteins with cis-pQTL, 53 proteins showed
effects for at least one disease or health-related phenotype with
FDR <5%. Using the DrugBank and Drugs.com databases, we found 91
drugs targeting 17 of the 53 proteins, resulting in 443 drug-protein-
phenotype combinations (Fig. 6 and Supplementary Table 14).
Thirty-nine out of the 91 drugs were documented without clear clinical
indications, whichresulted in235 drug-protein-phenotype combina-
tions that we considered ‘druggable’, which might be used inimproving
the corresponding phenotypes (Supplementary Table 15).

After matching the MR outcomes with the clinical indications or
sideeffects ofthe 91 -39 =52 drugs, we found 142 repurposing (that s,
established drugs exist for the targets but treating different diseases)
and 66 matched combinations (that s, established drugs exist for the
targets treating the same outcome diseases or leading to the same
outcomesside effects). Within 66 matched pairs of protein targets and
phenotypes, 52 had the same directions between the MR-inferred drug
impact and the drugs’ actual pharmacological effects on the pheno-
types (Fig. 6), indicating that MR is four times more likely to identify a
protein marker whose effect direction aligns with a drug’s pharmaco-
logical actionthan to identify one with aninconsistent effect direction
(one-tailed binomial test P=1.4 x 10°°). Five out of the 66 combinations
showed strong colocalization support (coloc PP.H4 > 0.8), and they all
have consistent directions between the MR estimated effects and the
corresponding drugs’ pharmacological effects.

Forinstance, gemtuzumab ozogamicinis amonoclonal anti-CD33
antibody conjugated with a calicheamicin derivative that can induce
celldeath uponinternalization through binding with CD33 on the cell
surface. One of the side effects of gemtuzumab ozogamicin is throm-
bocytopenia, acondition characterized by alow platelet count. This is
consistentwith the MRresult that decreased CD33 candecrease platelet
count and platelet crit as the binding process of CD33 antibody and
CD33 antigen should deplete the CD33 level*.

Taking another example, clenbuterol was used as a bronchodila-
tor in the treatment of patients with asthma. However, it can cause
long- and short-term side effects, including hypertension. From MR
analysis, the beta nerve growth factor (NGF) has a positive effect on
blood pressure, while clenbuterol is a stimulator of NGF. Also, it has
been shown that plasma beta NGF levels were higher in patients with
hypertension”, but their causal role was never established. Our MR
finding provides evidence suggesting that NGF is actively involved in
the blood pressure-increasing process.

Discussion
We identified pQTL for 139 of 184 neuro-related proteins, provided
insights into their molecular mechanisms and effects on complex
diseases and traits, and highlighted useful therapeutic targets with
established drugs. On average, we identified half of the genetic archi-
tecture underlying the concentration of these proteins. We provide
awell-powered genetic landscape for these proteins with large-scale
summary-level data for future research.

Although the proteins were found to have small effects individu-
ally in the MR analysis, our results indicated that for about 75% of the
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identified proteins, having low levelsin plasmaleads to a higher chance
of having poorer health conditions (Supplementary Fig. 9). These
conditions include both deterioration of mental health and related
non-neurological comorbidities. Such results on the neuro-related
proteins are consistent with the notion that psychiatricand neurologi-
caldisorders are multifactorial and not limited to the central nervous
systembutrather are products of interactions among multiple systems
within the organism*®*~*!, The intertwining of neuropsychiatric, inflam-
matory and cardiovascular disorders has long presented a challenge
in clinical research owing to the difficulties in discerning the relation-
ships among them’>**. Our results suggest that these disorders may
share molecular mechanisms and pathways and provide the basis for
developing new diagnostic tools and treatment strategies. We also
reported a large number of drug repurposing targets, suggesting the
potential use of established drugsin new clinical trials for the treatment
of different symptoms and disorders.

Regarding the MR methodology, we found that the MR analysis
with a single genetic instrument at the cis-pQTL tended to generate
a stronger estimated effect (Fig. 4). This is partly due to power, as
compared with multi-instrument MR, single-instrument MR tends to
produce effect estimates with larger standard errors so that only the
results with large effect estimates could reach statistical significance.
Thus, it indicates that (1) single genetic instrument analysis may be
more prone to winner’s curse, thatis, more likely to detect an overesti-
mated effect on the outcome trait, and (2) using multiple independent
instruments within alocus may not only improve power but also control
false discoveries owing to overestimated effects in the outcome GWAS.

MR assumes that the genetic effect on the outcome is mediated
through the exposure. To justify the MR direct effect assumption and
infer potential causality, we strictly used only independent variants
at the cis-pQTL as genetic instruments, and trans-pQTL were never
considered in the MR analysis. This is based on the fundamental biol-
ogy that the variants near the coding gene of a protein are most likely
to directly affect the protein-coding gene expression and less likely
to have other indirect actions on other phenotypes. Variants within
the cis-pQTL thus provide strong and most likely valid genetic instru-
ments in MR. With the colocalization between the cis-pQTL and the
outcome phenotype, stronger causal inferences can be made owing
to the high genetic correlation between the exposure protein and the
outcome trait. However, it should be noted that genetic variants may
regulate multiple nearby genes, including those encoding proteins
not captured on our assay platform, making it challenging to rule
out local pleiotropic effects. For example, although we saw that
NCAN was genetically correlated with fibrosis and cirrhosis of the
liver (N cases = 252), established knowledge supports the nearby
gene TM6SF2to be causal instead of NCAN**.

While MR is a robust method for establishing potential causal
links between exposures and outcomes®*°, potential pitfalls should
be noted, emphasizing the need for cautious interpretation of results.
MR analyses typically may be limited by unobserved confounders,
nonlinear protein-outcome relationships, reverse causation and
population-specific effects®”’. In particular, when using MR as a
procedure for drug target inference, with colocalization support,
the analysis shows a strong genetic link between the protein targets
and the corresponding complex diseases. However, the analysis does
not suggest the actionability of the targets, nor their clinical effect if
targeted by certain drugs or treatments.

Furthermore, it should be noted thatboth MR and colocalization
are statistical approaches applied to summarized data from GWAS.
While they share similarities, their objectives, implementations and
interpretations are different. Colocalization between exposure and
outcome phenotypesis crucial for causal inference using MR because
it reinforces the validity of the genetic instruments used in MR. By
confirming that the same genetic variants influence both the exposure
and outcome, colocalization ensures that MR analyses are based on

solid genetic grounds, reducing the risk of spurious or biased results.
Infact, for shared locibetween the exposure and outcome, colocaliza-
tionis essential or even necessary to validate causality. Specifically, if
thereisapositive MR result atagenetic locus without colocalization of
the exposure and outcome associations, it cannot be deemed causal.
Colocalization serves as a safeguard against false-positive MR results
stemming from the LD structure.

The improved causal inference specificity by the colocaliza-
tion analysis can also be seen from the drug target investigation. MR
revealed that glutathione S-transferase P (GSTP1) is negatively regu-
lating mean corpuscular haemoglobin in the blood; however, both
clomipramine and busulfan have side effects of anaemia, while they
have differentactions on GSTP1. A similar situation was also observed
with platelet-derived growth factor receptor alpha (PDGFRA). Both
olaratumab and imatinib could cause lymphopenia, while they are anti-
bodyandinhibitor of PDGFRA, respectively. These controversial results
indicate that, although MR is more likely to reveal potential causal
effects consistent with the drugs’action directions, limitations do exist
in MR analyses, because of the great complexity of pharmacological
and biological processes. Nevertheless, among the matched pairs of
proteintargets and traits, the five pairs with strong colocalization sup-
portallshowed consistent MR effects and actual drug effect directions.

The mapped trans-pQTL were enriched in blood clotting and
coagulation pathways. For instance, a blood clotting factor KLKB1
appeared to be a trans-regulatory hub for multiple proteins. We thus
infer that some of the trans-pQTL discovered are not directly involved
inthe genetic mechanisms of the corresponding proteins, but rather
theyregulate blood characteristics that affect the performance of the
antibody-based assays.

Considerable attention must be paid to the effect of coagulation
factors on protein quantification methods, especially in plasma-based
assays. The enrichment of trans-pQTLs with coagulation factors and
their established links to diverse neurological conditions empha-
size the need for cautious interpretation® % Previous research has
demonstrated the functional relationship between psychiatric and
neurological conditions, structural brain features, immune response
and coagulation®*®* highlighting the importance of accounting for
these factorsintheanalysis of blood-based protein quantification data.

Similar to the effect of clotting factors on the antibody-based
assay, since glycosylation could potentially impact the binding of
antibodies, it is likely to reveal the trans-pQTL effect of the glycosyla-
tionlocus ST3GAL4 or other glycosylation-related genes®®*%, These are
important discoveries for biotechnological developmentin proteom-
ics, suggesting that the features of the plasma samples and protein
structure modifiers could be non-negligible factors in circulating
protein quantification.

The fundamental of pQTL studies, such as this particular large-
scale GWAMA by the SCALLOP Consortium, is to map the genetic basis
of proteinabundance (see also the SCALLOP studies of the cardiovas-
cular® and inflammatory®® proteins). Although the biology of protein
functions can be complicated, the genetic coding of each protein and
the effects of genetic variants on each protein are generally consistent
across the human body. A large proportion of the proteins measured
in plasmaare not primarily synthesized by blood cells. As aresult, the
pQTL (particularly cis-pQTL) that we identify in plasma are likely to
be indicative of genetic loci within the tissues or cells responsible for
producing these proteins. This, in turn, offers valuable insights into
the underlying intracellular processes when we assess proteins in
plasma. Despite the variation in pQTL observed across different tis-
sues or cells, a substantial level of convergence is evident, especially
when examining cis-pQTL". This suggests that, even when protein
levels in plasma, brain and cerebrospinal fluid do not exhibit strong
correlations, there are instances where QTL are shared. Nevertheless,
the effect size of the cis-pQTL could vary across tissues and cell types
owingto complicated biological interactions. Current proteogenomics
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still lacks tissue-specific pQTL studies, which ought to be addressed
infuture studies.

This study substantially advances our understanding of the
genetics of neuro-related proteins and provides new targets for
drug discovery. The pQTL discovery and causal inference with dis-
ease outcomes caninform clinical studies to identify actionable drug
targets and enable integration into multi-omics analyses. The UKB-
PPP and more cohorts could provide additional insights through
larger meta-analyses and replication analyses, potentially reveal-
ing secondary signals in the pQTL. The inclusion of cohorts with
diverse ancestries could further elucidate pQTL alleles that are
not sufficiently polymorphic in European populations, identifying
distinct molecular mechanisms underlying complex diseases.

Methods

Proteins

This study focused on plasma proteins from the Olink Neurology and
Olink Neuro-Exploratory panels. Circulating plasma protein levels were
quantified using Proximity Extension Assay technology, consisting of
pairs of oligonucleotide-labelled antibodies to bind target proteins
and hybridize to have their sequence extended and amplified through
polymerase chain reaction (PCR). The level of amplified DNA is then
quantified by microfluidic qPCR*.

Proteins were selected by a panel of experts to include protein
biomarkers that areknown to be associated with neurological disorders
and conditions through existing literature. The functions of these pro-
teins comprise axonal development, metabolism, immune response
and cell-to-cell communication. The proteins have been included in
their respective panel on the basis of their observed involvement in
neurological conditions and disorders, as well as the general perfor-
mance of the assay.

Cohorts and data collection

We obtained summary statistics from the GWAS analyses performed
on the Olink Neurology proteins from ten cohorts and the Olink
Neuro-Exploratory proteins from six cohorts. Cohorts comprised
population-based and case-control studies. The analysis plan that
was circulated to the cohorts analysts is included in Supplemen-
tary Information, and the summary statistics information for each
cohortcanbe foundinSupplementary Tables 16-30. The total sample
size for the Neurology panel meta-analysis was 12,176, whereas the
Neuro-Exploratory panel meta-analysisincluded up to 5,013 individu-
als. The participating cohorts used whole-genome sequencing data or
imputed data using the1000 Genomes Project (phase 1and phase 3) or
the Haplotype Reference Consortium as reference panels. An average of
14.5million SNPs were tested per protein, and the lowest per-SNP filter
imputation quality ranged from 0.4 to 0.3, depending on the cohort.
Each cohort carried out quality controlaccording to their study design,
asreported in Supplementary Table 16.

Data below the Olink limit of detection is calculated based on
the negative controls included in each PCR run. Data below the limit
of detection was available only for some cohorts participating in the
meta-analysis. As the proteins were quantified at different times across
cohorts, notallstudies have dataonall proteins in the two Olink panels.

Genome-wide association analysis of the proteins

The normalized protein expression (NPX) values, Olink’s unit of pro-
teinabundancelevel on alog2scale”, were rank-based inverse normal
transformed before running the per-protein GWAS analyses. Genotypic
data were the allelic dosages resulting from imputation using the
Haplotype Reference Consortium or the 1000 Genomes data as
reference panels. Monomorphic SNPs were excluded. The genotype-
phenotype association analysis was performed using regression
models adjusting for sex, age, plate number, plate column, plate
row, sample time in storage, season of sample collection, population

structure (when appropriate) and other study-specific covariates. The
analysis was done either by alinear regression model of the normalized
proteinabundance (NPX values) on the genotype data of each genetic
variant, where the cohort-specific covariates were included, or by a
linear mixed model, where the polygenic random effects were included
to correct for population structure, besides the fixed effects covariates.

Meta-analysis

The summary association statistics from each participating cohort
were uploaded through a secured FTP channel to the University of
Edinburgh’s ECDF Eddie Mark 3 cluster. The meta-analysis was run per
protein in METAL (version 2018-08-28)"" using the IVW method. We
defined cis-pQTL to be 500 kb upstream or downstream of the gene
coding for the respective protein and set the trans-pQTL window to
be 1 Mb around the top variants that were found outside the defined
cis-window. A1% MAF filter was applied to the meta-analysis summary
statistics for subsequent analyses. The variants that existed inonly one
participating cohort were also removed before subsequent analyses.
Thesignificance threshold was set tobe 5 x 1078 for the top variants of
cis-regulatory variants and 5 x 1078/184 =2.73 x 107 for the variants
intrans-regions. The meta-analysed GWAS summary statistics for the
184 proteins are publicly available (see Data availability).

Heritability analysis

We used astandard polygenic mixed modelimplemented in GenABEL*
on the individual-level data collected in the ORCADES cohort to
assess the narrow-sense heritability for each protein. The heritability
captured by each pQTL is calculated as 2f(1 — /)32, where fand j are
the codingallele frequency and estimated genetic effect, respectively,
assuming Hardy-Weinberg equilibrium.

Established genetic associations

We used PhenoScanner v2°** to cross-reference the lead (most
significant) genetic variants in the cis-pQTL from our meta-analysis
with other phenotypes. PhenoScanner is an extensive database of
over 65 billion associations from publicly available GWAS. We used
thelead variants of our cis-loci as input without the additional option
of using proxy markers. When checking the novelty of our mapped
cis-pQTL, we consider established pQTL associations with P<5x 107
asknown. When extracting the established complex trait associations,
we set the P-value threshold to 1 to include all possible associations.
As all these established associations had reported P values, P-value
adjustment procedures can be used to compute the corresponding
FDR. We used the standard p.adjust (method = 'fdr') function
in R to calculate the corresponding FDR values. Thereafter, results
with a false discovery rate of less than 0.05 were considered. We
excluded the studies with non-European ancestry.

Cross-referencing and replication in other pQTL studies

For the antibody-based assay, we cross-referenced the discovered
cis-pQTL with results from the two Greek cohorts that we included in
this study*® and those reported by the UKB-PPP*’. We checked whether
acis-pQTLwas also reported as genome-wide significant (P <5 x 107)
for the same proteinin either one of the two pQTL studies.

For each trans-pQTL in UKB-PPP, we checked whether the
trans-pQTL was reported withina £500 kb window of the lead variant
of our discovered trans-pQTL. Also, for the aptamer-based assay, we
compared the estimated trans-pQTL effectsin our SCALLOP study and
those in the Icelandic population where the proteome was measured
using the SomaScan assay™’.

Out-of-sample predictionin the UKB

Taking the independent cis-pQTL and trans-pQTL variants for
each protein, we calculated the SCALLOP in-sample proportion of
phenotypic variance explained as R2 = Bic, opBscaop » and the
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out-of-sample predictable proportion of variance in the UKB-
PPP data was CaICUIated as Rgut = (ﬂSCALLOPﬂUKB—PPP)Z/ﬁSCALLOPlBSCALLOP 4
where each element j in the B vectors was normalized as

Bi=b1/ 15; +N-var(b;), and b; is the GWAS effect estimate for SNP
inthe corresponding summary association statistics.

Functional enrichment and annotation of trans-pQTL

We performed our gene set enrichment analyses using the GENE2FUNC
inFUMA v1.3.7>”, which returns functional annotation to gene models
for the submitted list in a biological context. We identified the genes
closest to the top SNPs in our trans-loci using the locuszoom v0.12"*7
database and then submitted the list of genesto the FUMA website. We
selected all types of gene to use as background for this analysis, includ-
ing over 57,000 genetic elements. We set the maximum FDR-adjusted
Pvalue for gene set associationto 1.

Colocalization analysis

We used the Bayesian colocalization analysis tool coloc with the
posterior probabilities testing the H4 colocalization hypothesis
for two models: (1) testing for a single shared causal variant between
the pair of traits*’; (2) testing for multiple shared causal variants,
known as a SuSiE model*’. The tests were applied to the mapped
cis-pQTL and the established GWAS summary statistics, as well as to
the cis-eQTL and the mapped pQTL. For the eQTL-pQTL colocalization
analysis, we adopted the v7 release of boththe GTEx eQTLand eQTL-
Gensummary-level data. For each cis-pQTL, we tested colocalization
with the cis-eQTL of the corresponding coding gene in each tissue.
For each trans-pQTL, we tested colocalization with the cis-eQTL of
the nearest coding gene.

MR analysis

For the protein-trait pairs with strong colocalization support
(PP.H4 > 0.8), we performed a two-sample MR analysis using the IVW
method to evaluate effects between the proteins with genome-wide
significant cis-pQTL and (1) 4,085 traits from Neale’s lab UKB GWAS and
(2) 20 psychiatric or neurological disorder traits from PGC. Asthe GWAS
ofthebinary traitsby Neale’s lab were conducted using ordinary linear
regression, we transformed the estimated genetic effects fromsuchan
observed scale to the logistic scale (that is, the log of odds ratios). As
the phenotypic variance explained by the genetic variantis avery small
fraction, this can be done using the estimates from the linear regres-
sion, the prevalence of the cases and the allele frequency of each variant
(see formula3.2 derived by Pirinen et al.”®). Multiple genome-wide sig-
nificant sentinel variants of our cis-pQTL after LD pruning (r* < 0.001)
were used jointly as instrumental variables. We report the significant
discoveries at a level of 5% false discovery rate, for which we also per-
formed areverse generalized summary-statistics-based MR from the
complex trait exposures to protein outcomes.

Drug targetinvestigation

For the protein markers from IVW MR results with a false discovery rate
ofless than 5%, we systematically investigated available drugs targeting
these markers using the DrugBank and Drugs.com databases. We con-
sidered adrugtarget validated ifan MR discovery between the protein
marker and the trait/disease suggested the same effect direction as the
drug’s effect onthe proteintarget. The protein targets that have avail-
abledrugsbutarenotdirectly related to the MR-discovered outcomes
were regarded as repurposing targets. The remaining MR discoveries
were reported as either new (no drug available) or druggable (drugs
available without clear clinical indications) targets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The full genome-wide summary association statistics for the 184
proteins are publicly available at https://doi.org/10.7488/ds/7522;
cis-eQTL summary-level data by eQTLGen, https://eqtlgen.org/
cis-eqtls.html; GTEx data, https://gtexportal.org/home/datasets;
1000 Genomes phase 3 genotype data, https://www.cog-genomics.
org/plink/2.0/resources#phase3_1kg; Neale’s lab UK Biobank round
2 GWAS summary-level data, http://www.nealelab.is/uk-biobank;
Psychiatric Genomics Consortium (PGC) summary-level data, https://
pgc.unc.edu/for-researchers/download-results/; DrugBank, https://
www.drugbank.com; and Drugs.com, https://www.drugs.com.
Source data are provided with this paper.

Code availability

Software used included METAL (https://genome.sph.umich.edu/wiki/
METAL_Documentation), PLINK (https://www.cog-genomics.org/
plink/), GenABEL (https://cran.r-project.org/src/contrib/Archive/
GenABEL/), GCTA-GSMR (https://yanglab.westlake.edu.cn/software/
gsmr/), PhenoScanner (http://www.phenoscanner.medschl.cam.
ac.uk), MendelianRandomization (https://cran.r-project.org/web/
packages/MendelianRandomization/index.html), coloc (https://
chriswallace.github.io/coloc/index.html), locuszoom (http://
locuszoom.org/) and FUMA (https://fuma.ctglab.nl).
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The full genome-wide summary association statistics for the 184 proteins are publicly available at https://doi.org/10.7488/ds/7522;
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Reporting on sex and gender Data on participants' sex was collected and used as a covariate in the GWAS model for every study that contributed their
data to the meta-analysis. Sex and gender-based analyses were not performed.

Population characteristics Covariate-relevant population characteristics, as well as information relative to the protein levels can be found in
Supplementary Tables 16 to 30. Participants to the meta-analysis were all of European Ancestry. All proteins were measured
with Olink's Proximity Extension Assay (PEA) technology.

Recruitment Participants were recruited differently across studies that took part to the meta-analysis, and is described in the original
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NHS Lothian approved the study (reference: 12/55/0151).

2) INTERVAL. Ethical approval: approved by the UK National Research Ethics Service approved the study (reference 11/
EE/0538).

3) HELIC.

4) WHI. This study was conducted within the Belmont Report—recognized ethical guidelines. Written informed consent was
obtained from all participants, and this study was approved by each institution's institutional review board (IRB).

5) The NSPHS study. Ethical approval: the study was approved by the local ethics committee at the Uppsala University
(Regionala Etikprovningsnamnden, Uppsala Dnr 2005:325).

6) LBC1936. Ethics permission for the Lothian Birth Cohort 1936 protocol was obtained from the Multi-Centre Research
Ethics Committee for Scotland (Wave 1: MREC/01/0/56), the Lothian Research Ethics Committee (Wave 1: LREC/2003/2/29),
and the Scotland A Research Ethics Committee (Waves 2-6: 07/MRE00/58). The research was carried out in compliance with
the Helsinki Declaration.

7) FENLAND. Ethical approval: the study was approved by the Cambridge Local Research Ethics Committee.

8) STANLEY. IRB approvals and study consent forms from each of the sample contributing organizations were sent to the
Broad Institute before samples were sequenced and analyzed.

9) SALHSIS_Gothenburg. This study, including the procedure for obtaining consent, was approved by the IRB, i.e. the local
ethics committee of Lund University. All studies were approved by the local ethics committees of the University of
Gothenburg or Lund University.

10) The Rotterdam Study. The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC
(registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO,
license number 1071272-159521-PG). The Rotterdam Study has been entered into the Netherlands National Trial Register
(NTR; www.trialregister.nl) and into the WHO International Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/
network/primary/en/) under shared catalogue number NTR6831.
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Sample size No sample size calculation was performed for this study, as there is currently no established lower bound on the pQTL effect. The meta-
analysis includes multiple participating cohorts, reaching a total sample size of over 10,000 individuals. For molecular QTL analysis, the sample
size is sufficient for major QTL discoveries, especially given that 1) the PEA technology quantifies the proteins abundance with high specificity
and 2) even the analysis in one participating cohort can yield a number of pQTL findings.

Data exclusions  Data points that did not pass the internal QC of each cohort were excluded. No data filtering was performed on the protein readouts using
PEA, in order to maximize the available sample size in the QTL analysis.

Replication The pilot phase data analysis was performed as a discovery-replication design, where the HELIC cohorts were used for replication of the pQTL
discoveries. Based on a high replication rate, we finally performed an all-cohort meta-analysis, in order to boost discovery power. Given that

each cohort conducted independent analyses, the meta-analysis inherently involves replication. The discovered QTL were then cross-
referenced in the UK Biobank analysis.

Randomization  No group allocation was performed in this study.

Blinding Investigators were not blinded to group allocation during data collection and/or analysis - this is not relevant in the case of GWAS and
proteomics studies, as participants are not allocated to any group.
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