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3Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising,

Germany

4Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain

5TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany

6Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy

7Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland

8Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany

9Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany

Correspondence

Antonella Di Pizio, Leibniz Institute for Food

Systems Biology at the Technical University of

Munich, 85354 Freising, Germany.

Email: a.dipizio.leibniz-lsb@tum.de

Funding information

Leibniz Junior Research Groups programme,

Grant/Award Number: J112/2021; Università

di Ferrara, Fondo di Ateneo per la Ricerca,

Grant/Award Number: FAR 2022; Deutsche

Forschungsgemeinschaft, Grant/Award

Numbers: Ha6105-3, Ha6105-6, PI 1672/3-1;

Helmholtz Society, Grant/Award Number: VH-

NG-1039; Leibniz Programme for Women

Professors, Grant/Award Number: P116/2020;

FAR

G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing

signals from the extracellular environment to the inside of the cell. They mediate the

effects of various stimuli, including hormones, neurotransmitters, ions, photons, food

tastants and odorants, and are renowned drug targets. Advancements in structural

biology techniques, including X-ray crystallography and cryo-electron microscopy

(cryo-EM), have driven the elucidation of an increasing number of GPCR structures.

These structures reveal novel features that shed light on receptor activation, dimer-

ization and oligomerization, dichotomy between orthosteric and allosteric modula-

tion, and the intricate interactions underlying signal transduction, providing insights

into diverse ligand-binding modes and signalling pathways. However, a substantial

portion of the GPCR repertoire and their activation states remain structurally unex-

plored. Future efforts should prioritize capturing the full structural diversity of GPCRs

across multiple dimensions. To do so, the integration of structural biology with bio-

physical and computational techniques will be essential. We describe in this review

the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and

conformational dynamics, of atomic force microscopy (AFM) to explore the spatial–
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temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in

artificial intelligence for protein structure prediction to characterize the structures of

the entire GPCRome. In summary, the journey through GPCR structural biology pro-

vided in this review illustrates how far we have come in decoding these essential pro-

teins architecture and function. Looking ahead, integrating cutting-edge biophysics

and computational tools offers a path to navigating the GPCR structural landscape,

ultimately advancing GPCR-based applications.
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1 | INTRODUCTION

G protein-coupled receptors (GPCRs) are the most prominent family of

cellular receptors in eukaryotes. Approximately 800 GPCRs are encoded

by the human genome and mediate the effects of various stimuli, includ-

ing hormones, neurotransmitters, ions, photons, food tastants, and odor-

ants (Vass et al., 2018). GPCRs are involved in neurodegenerative

disorders, cardiovascular ailments, cancer, obesity, diabetes, and mental

health conditions (Alexander et al., 2023). Their key role has placed

GPCRs at the forefront of pharmaceutical research, with 34% of FDA-

approved drugs targeting them (Hauser et al., 2017; Yang et al., 2021),

and even more applications could be explored by targeting orphan

GPCRs (Scharf et al., 2024). However, GPCR structural complexity pre-

sents significant challenges for their determination. In this comprehen-

sive review, we delve into the multifaceted world of GPCRs, with a focus

on their evolving structural landscape. We highlight key milestones, start-

ing with an examination of GPCR classification and key structural fea-

tures, followed by an exploration of significant advances in structural

biology. Additionally, we discuss the intricate dynamics of orthosteric

and allosteric binding sites within GPCRs, complexes with downstream

partners, and dimer formation. Finally, we outline the prospects offered

by the use of biophysical and computational methods, which promise to

extend our understanding of GPCR structures to new horizons.

2 | THE GPCROME

GPCRs share a common structural architecture including seven trans-

membrane (TM) α-helices with an intracellular carboxyl tail and an extra-

cellular amino terminus. TM helices are connected by three intracellular

(ICL1, ICL2 and ICL3) and three extracellular loops (ECL1, ECL2 and

ECL3). The A-F classification system divides GPCRs into class A (rhodop-

sin-like), consisting of over 80% of all GPCRs, class B (secretin-like), class

C (metabotropic glutamate receptors), class D (pheromone receptors),

class E (cAMP receptors) and class F (frizzled/smoothened family)

(Davies et al., 2008; Harding et al., 2018; Pándy-Szekeres et al., 2018).

Class D and class E are composed of non-mammalian GPCRs. The

GRAFS system, based on their phylogenetic tree, divides mammalian

GPCRs into glutamate (G), rhodopsin (R), adhesion (A), frizzled/taste2 (F),

and secretin (S) families (Fredriksson et al., 2003). The main difference

from A-F is that in the GRAFS system, the class B GPCR family is divided

into two groups: the secretin family (B1) and the adhesion family (B2).

The Ballesteros–Weinstein (BW) numbering scheme is widely used

to assign fast and immediate structural references to residues of class A

GPCRs (Ballesteros & Weinstein, 1995). According to the BW system,

TM residues are numbered with the highest conserved residue of each

TM as the position X.50 (X indicates the helix number). The most con-

served TM residues are N1.50 (98%), D2.50 (90%), R3.50 (95%), W4.50

(97%), P5.50 (78%), P6.50 (99%) and P7.50 (88%) (Isberg et al., 2015). A

similar numbering scheme has been implemented for classes B, C

and F, but with different reference positions. Similar to the BW system,

the Wootten numbering scheme is based on highly conserved residues

What is already known?

• Structural biology advancements have revealed molecular

details about GPCR activation, dimerization and ligand-

binding modes.

• NMR and AFM techniques provide understanding of

GPCR plasticity and spatial–temporal dynamics.

What does this study add?

• A critical overview of major milestones in GPCR struc-

tural biology.

• A perspective on integrating structural biology, biophysi-

cal, and computational tools for better understanding

GPCR structures.

What is the clinical significance?

• Decoding GPCR structures promotes the development of

GPCR-based therapies.
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in the transmembrane helices: the single most conserved residue is

designated as X.50b, where X is a TM helix, and b stands for class B

(Hollenstein et al., 2014; Wootten et al., 2013). This numbering scheme

is predominantly used for the B1 subclass. However, the reference

X.50 residues are also conserved in B2 adhesion receptors, except for

the position 3.50 (frequency of E residue: 58%) and 4.50 (frequency of

W residue: 42%). Class C GPCRs exist as obligate dimers, including

homodimers such as metabotropic glutamate receptors (mGlu) and

calcium-sensing receptor (CaS), and heterodimers such as GABAB

receptors and Taste 1 receptors (TAS1Rs). The Pin numbering scheme,

proposed by Jean-Philippe Pin in 2003, is specifically designed for class

C receptors (Pin et al., 2003). Conserved residues in each TM (a G in

the middle of TM1, a central F for TM2, a K near the end of TM3, a W

at the end of TM4, a central L in TM5, a central W in TM6 and the

conserved motif xPKxY in TM7) are indicated as X.50c numbers. The

Wang scheme has been proposed for the class F GPCRs (Wang

et al., 2014). However, as there are only 17 members of class F GPCRs

in humans, the definition of conservation is challenging. Therefore, it

has been proposed that if a helix has more than one fully conserved

position, the reference position is chosen based on its proximity to the

conserved position in class A. In 2015, Isberg and colleagues developed

a generic GPCR numbering scheme based on conserved TM residues

across all GPCR subtypes (Isberg et al., 2015). The generic GPCR

numbering system allows structural comparisons across the different

classes and is used in this article.

3 | GPCR STRUCTURAL BIOLOGY

Structural biology provides the tools to capture the essential molecu-

lar details of receptor structures. Until 2017, X-ray crystallography

was the preferred approach for obtaining high-resolution structural

insights into GPCRs, leading to the determination of numerous GPCR

structures, mainly in their inactive or intermediate states (Figure 1).

X-ray crystallography is a well-established technique based on the

collision of an X-ray beam with atomic nuclei present in a crystal,

producing a diffraction pattern that depends on the 3D coordinates

of the macromolecular atoms. The application of Fourier transform

algorithms provides a three-dimensional 3D map of the electron

density.

Extracting GPCRs from their biological environment during purifi-

cation can compromise the integrity, stability and function of the pro-

tein, which is why structural elucidation of GPCRs has been daunting

for decades (Tate, 2010). Breakthroughs in GPCR crystallography

were celebrated with the 2012 Nobel Prize in Chemistry awarded to

Kobilka and Lefkowitz, and have led to the determination of several

GPCR structures, revealing details of the orthosteric binding site and

the interaction with different ligands and providing insights into the

GPCR interaction with G protein (Kobilka, 2013; Zhang, Zhao, &

Wu, 2015). Several technologies on protein expression, purifications,

crystallization, and X-ray diffraction data collection have been devel-

oped (Xiang et al., 2016). For example, fusion proteins, such as T4

F IGURE 1 Main milestones in G protein-coupled receptor (GPCR) structural biology and their impact in determining GPCR structures in
different conformational states with X-ray and cryo-EM. Literature to support the main milestones in chronological order: Palczewski et al. (2000),
Fotiadis et al. (2003), Rosenbaum et al. (2007), Michino et al. (2009), Lefkowitz (2013), Nygaard et al. (2013), Kruse et al. (2013), Manglik et al.
(2015), Liang et al. (2017), Garcia-Nafria and Tate (2019), Yin et al. (2020), Baek et al. (2021) and Heo and Feig (2022).
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lysosome and BRIL, are often used to stabilize ICLs (Chun et al., 2012;

Rosenbaum et al., 2007). Another common approach is to introduce

point mutations to produce detergent-resistant GPCRs with high ther-

mostability (Heydenreich et al., 2015; Klenk et al., 2023; Robertson

et al., 2011; Sarkar et al., 2008). Through this approach,

thermostable β2-, β1-, α1A-, and α1B-adrenoceptors (Roth et al., 2008;

Schuster et al., 2020; Serrano-Vega et al., 2008; Yong et al., 2018) and

the neurotensin receptor 1 (NTS1) (Schlinkmann et al., 2012; Shibata

et al., 2009) were obtained. Furthermore, to reduce the flexibility of

the receptors, high-affinity ligands or even covalent ligands can be

employed (Weichert et al., 2014). Nanobodies (Nbs), derived from

single-domain antibodies found in camelids, have emerged as a pow-

erful tool to stabilize a specific receptor conformational state, taking

advantage of their unique properties, such as small size and high affin-

ity (Jin et al., 2023; Manglik et al., 2017). Nbs have been employed to

obtain the X-ray structures of many GPCRs in the active state, like the

β2-adrenoceptor, M2 receptor, μ receptor, κ receptor, and

angiotensin II type 1 (AT1) receptors (Che et al., 2018; Huang

et al., 2015; Kruse et al., 2013; Rasmussen, Choi, et al., 2011;

Rasmussen, DeVree, et al., 2011; Wingler et al., 2019). Moreover, as

conformational biosensors, Nbs are used to monitor GPCR dynamics

both in vitro and in vivo (Irannejad et al., 2013; Stoeber et al., 2018),

and can also function as GPCR modulators (Staus et al., 2016; Yu

et al., 2023).

The onset of high-resolution structure determination by cryo-

electron microscopy (cryo-EM), celebrated with the 2017 Nobel Prize

in Chemistry (Cressey & Callaway, 2017), has triggered a rapid growth

in membrane protein structures. Since 2019, the number of protein

structures determined by cryo-EM has increased and now exceeds

those determined by X-ray crystallography (Figure 1). Cryo-EM is

based on the flash-freezing of solutions containing proteins, which are

analysed using an electron beam. This makes it possible to determine

the 3D coordinates of macromolecules in their physiological environ-

ment. Rapid instrumental implementation is overcoming the main limi-

tations of cryo-EM, and even atomic resolution can now be achieved

(Danev et al., 2021; Nakane et al., 2020). Using cryo-EM, unstructured

regions and post-translational modifications can be included (Lin

et al., 2021). Cryo-EM has provided new insights into the biology of

GPCRs (Ping et al., 2021; Xu et al., 2021) and is making a major contri-

bution to revealing the structural details of many understudied GPCR

subtypes (Scharf et al., 2024). Nevertheless, the alignment of particle

projections, especially for individual GPCRs is challenging. Therefore,

GPCR structures in the inactive state are particularly elusive for cryo-

EM-based determinations, but much progress is being made in this

direction. In 2020, Che and colleagues introduced Nb6, an antibody

engaging the κ opioid receptor in the inactive state (Che et al., 2020).

This approach then enabled high-resolution 3D reconstructions of

several GPCRs, including the NTS1, μ opioid receptor, somatostatin

receptor 2 (SST2), and histamine receptor 2 (H2 receptor) (Robertson

et al., 2022; Uchański et al., 2021). More recently, Guo et al. have suc-

cessfully solved the structures of the β2-adrenoceptor bound to both

antagonistic and agonistic ligands and the adhesion GPCR ADGRL3 in

its apo state, by tagging the receptors with a modified BRIL construct,

termed mBRIL, anchored to the receptor helix 8 (Guo et al., 2024).

This was proposed as a general approach for the cryo-EM-based

determination of GPCR structures.

X-ray crystallography and cryo-EM are currently complementary

techniques for understanding GPCR structure and function. According

to data collected in the GPCRdb, most of the cryo-EM GPCR struc-

tures are captured in the active state, but overall, the number of cryo-

EM structures (623) exceeds those obtained by X-ray (477) (Figure 1).

4 | ORTHOSTERIC AND ALLOSTERIC GPCR
BINDING SITES

Understanding the shape and composition of ligand-binding sites and

the differences between GPCR subtypes is crucial for designing

ligands that selectively target specific classes of GPCRs. The orthos-

teric site (OS) of GPCRs is the site occupied by endogenous ligands.

The OS of class A GPCRs is located in the extracellular region of the

TM domain, between the highly conserved residue W6.48 and

the extracellular loop 2. Residues at BW position 3.32, 3.33, 3.36,

4.52, 6.48, 6.51, 6.55 and 7.39 are most frequently involved in ligand

interaction (Chan et al., 2019; Di Pizio et al., 2016; Venkatakrishnan

et al., 2013). Typically, the orthosteric binding site of class B receptors

is deeper and wider than that of class A GPCRs. Residues in TM1

(1.47b) and TM2 (2.60b) were found to be important for peptide

ligand binding (Hollenstein et al., 2014). The orthosteric binding site

of class C GPCRs is in the extracellular Venus Fly Trap (VFT) domain.

Binding of full agonists stabilizes a closed VFT conformation, antago-

nists bind to the open VFT conformation, and binding of partial ago-

nists results in complete or partial, unstable closure of the VFT

domain (Chun, Zhang, & Liu, 2012). The class F orthosteric binding

site is located inside the 7TM, close to TM6, TM3 and TM7 (Huang

et al., 2018). Saccharomyces cerevisiae pheromone receptor (Ste2), the

only solved class D GPCR, has a large orthosteric binding pocket

throughout the extracellular half of the receptor. Approximately 40%

of the orthosteric binding residues are from TM5, TM6 and ECL3 and

35% from TM1, TM2, ECL1, TM3 and TM4 (Velazhahan et al., 2021).

The depth of the orthosteric binding site is similar to that of class B

receptors and deeper than that of class A receptors. In summary, the

location of the GPCR orthosteric ligand binding site varies from class

to class (OSs are schematically reported in Figure 2a).

When the binding pocket of a ligand differs from the site of

endogenous ligand binding, the ligand is classified as an allosteric

modulator (Nussinov & Tsai, 2013). Binding of ligand(s) to any

pocket(s) has the potential to disrupt the free energy landscape of the

receptor and consequently affect downstream signalling (Latorraca

et al., 2017). An allosteric ligand that enhances an agonist-mediated

receptor response is termed a positive allosteric modulator (PAM),

whereas one that diminishes such a response is termed a negative

allosteric modulator (NAM). Alternatively, an allosteric ligand is classi-

fied as a neutral allosteric ligand (NAL) if it exerts no influence on

either the receptor or the orthosteric ligand activity (Ballante

et al., 2021). Moreover, a subclass of PAMs called ago-PAMs can act

4 KOGUT-GÜNTHEL ET AL.
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as agonists independently of orthosteric ligands (Liu et al., 2012; May

et al., 2007). In GPCR allosteric systems, ligands binding at spatially

distinct sites can reciprocally affect each other's affinity and potency.

The interplay between affinity and potency is complex. For example, a

PAM can potentiate downstream signalling by various mechanisms:

(1) enhancing orthosteric agonist binding affinity without directly

affecting signalling, (2) directly enhancing signalling without affecting

orthosteric agonist binding, (3) simultaneously enhancing both orthos-

teric ligand binding affinity and signalling or (4) decreasing orthosteric

ligand binding affinity while independently enhancing signalling. A

NAM may use analogous combinations to decrease downstream sig-

nalling. Since ASs differ between subtypes, targeting GPCR allosteric

sites opens new opportunities for drug selectivity (Congreve

et al., 2017; DeVree et al., 2016; Roth et al., 2017; Wodak

et al., 2019).

The increasing number of experimental structures of GPCRs has

revealed several allosteric binding sites in GPCRs, which have been

reviewed by Persechino and colleagues (Persechino et al., 2022). In

Table 1 and Figure 2a, we list and schematically report the allosteric

sites (ASs) for different GPCR classes identified by structural studies.

Allosteric binding sites of class A GPCRs can be found on the extracel-

lular side above the orthosteric site (AS1), on the intracellular side

(AS2) or at the interface of TM helices (AS3, AS4, AS5, AS6 and AS7).

For class B GPCRs, allosteric binding pockets were found in an

F IGURE 2 (a) Schematic location of
allosteric (AS) and orthosteric sites (OS).
Proteins are represented as dark salmon,
light blue, split pea and forest and sand
cartoons for Classes A, B, C, and D (PDB
IDs: 6KQI, 5EE7, 6UO8 and 6O3C),
respectively. (b) G protein-coupled
receptor (GPCR) (NTR1, shown as cyan
cartoons) in complex with Gi protein α, β

and γ subunits (dirty violet, deep purple
and light pink surfaces) (PDB ID: 6OS9),
β-arrestin (green surface) (PDB ID: 6UP7)
and Rho (cyan cartoons) with rhodopsin
kinase GRK1 (yellow surface) (PDB ID:
7MTA). (c) Schematic locations of dimer
interfaces for Classes A, C and D GPCRs
(PDB IDs: 7W0L, 7EB2, 7AD3). Small
molecule and peptide agonists are shown
in spheres with carbon atoms coloured
according to the chain to which they are
bound. The GABAB PAM is represented in
spheres with magenta carbon atoms. The
G protein is depicted as a transparent
solid surface and a cartoon representation
coloured according to the chain. GPCR
protomers are represented as cartoons
and colour-coded by chain, with the
protomer coupling to the G protein shown
in cyan and the other in orange. The dimer
interfaces (TM3/ICL2 in [a], TM6/TM6 in
C-Terminus and N-Terminus, TM1, TM2,
TM7, ECL3 in [d]) are highlighted as
surfaces matching the colour of the chain
to which the residues forming the
interface belong.
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induced-fit allosteric site within the TM bundle, between TM3, TM4

and TM5 (AS1), in extrahelical sites (AS2) or in the intracellular side

(AS3). The best characterized allosteric sites of class C GPCRs are

those located in the TM domain (AS1). Interestingly, allosteric sites in

the TM domain have also been found between the GPCR monomers

(AS2). Furthermore, class C GPCRs can be modulated by ligands that

bind to allosteric pockets in the VFT domain (AS3). The solved struc-

tures of SMO, class F GPCRs, also reveal multiple ligand-binding

pockets and a hydrophobic tunnel connecting them, allowing a

dynamic interplay between allosteric and orthosteric sites and

a sophisticated modulation of the receptor (Bansal et al., 2023; Huang

et al., 2018; Radhakrishnan et al., 2020).

5 | GPCRs IN COMPLEX WITH
DOWNSTREAM PARTNERS

The primary mode of GPCR signalling involves the activation of G pro-

teins, which are heterotrimeric proteins consisting of α, β and γ

subunits. Agonist binding to a GPCR leads to the recruitment of the

heterotrimeric G protein, nucleotide exchange in Gα, and the subse-

quent dissociation of the G protein subunits α and βγ. While there are

hundreds of GPCRs known to bind a wide spectrum of natural and

synthetic ligands, only a limited number of G proteins are available for

coupling. Gα proteins are encoded by 16 human genes and grouped

into four major families (GS, Gi/0, Gq/11, and G12/13) based on their

homology and downstream signalling pathways. The discrepancy in

the number of GPCRs and Gs proteins leads to a promiscuous cou-

pling, where different receptors can activate the same Gα protein. The

efficiency of coupling can vary, and the most efficient interaction is

termed ‘primary coupling’, while less efficient interactions are known

as ‘secondary coupling’ (Harding et al., 2018; Inoue et al., 2019). The

complexity and versatility of GPCR-mediated signalling is further

enhanced by the ability of GPCRs to couple with multiple Gα proteins

and activate different downstream signalling pathways. For example,

the β2-adrenoceptor primarily binds to the stimulatory Gs but also to

the inhibitory Gi to regulate different signalling pathways and modu-

late different cellular responses (Xiao, 2001). The GproteinDb

TABLE 1 GPCR allosteric binding sites.

Class Site Receptor Ligand Location PDB ID Reference

A AS1 M2 LY2119620 Extracellular side, near ECL2 4MQT (Kruse et al., 2013)

P2Y1 MRS2500 4XNW (Zhang et al., 2015)

FFA1 MK-8666

MK-8666

TAK-875

Extracellular side, protruding out of the TM bundle 5TZR,

5TZY

4PHU

(Lu et al., 2017),

(Srivastava et al., 2014)

AS2 CCR2 CCR2-RA-[R] Intracellular side 5T1A (Zheng et al., 2016)

CCR9 Vercirnon Intracellular side 5LWE (Oswald et al., 2016)

β2-adrenoceptor Cmp-15PA Intracellular side 5X7D (Liu et al., 2019)

AS3 CB1 ORG27569 Extrahelical site, between TM2, TM3 and TM4 6KQI (Shao et al., 2019)

PAR2 AZ3451 Extrahelical site, between TM2, TM3 and TM4 5NDZ (Cheng et al., 2017)

AS4 FFA1 AP8 Extrahelical site, between TM3, TM4 and TM5 5TZY (Lu et al., 2017)

C5a1 NDT9513727 Extrahelical site, between TM3, TM4 and TM5 5O9H (Robertson et al., 2018)

AS5 GPR88 (1R,2R)-2-PCCA Extrahelical site, cytoplasmic ends of TM5 and TM6 7EJX (Chen et al., 2022)

AS6 A1 MIPS521 Extrahelical site, between TM1, TM6 and TM7 7LD3 (Draper-Joyce et al., 2021)

AS7 P2Y1 BPTU Extrahelical site, between TM1, TM2 and TM3 4XNV (Zhang et al., 2015)

B AS1 CRF1 CP-376395 In the TM bundle, between TM3, TM4 and TM5 4Z9G (Doré et al., 2014)

AS2 PTH1 PCO371 Intracellular side 8JR9 (Zhao et al., 2023)

AS3 Glucagon MK-0893 Extrahelical site, between TM6 and TM7 5EE7 (Jazayeri et al., 2016)

AS4 GLP-1 LSN3160440 Extrahelical site, between TM1 and TM2 6VCB (Bueno et al., 2020)

C AS1 mGlu1 FITM TM domain, extracellular TM bundle 4OR2 (Wu et al., 2014)

mGlu5 AFQ-056 TM domain, extracellular TM bundle 4OO9 (Doré et al., 2014)

mGlu5 MCN-3377-98 TM domain, extracellular TM bundle 6FFH (Christopher et al., 2018)

AS2 GABAB GS39783
Rac-BHFF

Between monomers, TM6-TM6 6UO8

7C7Q

(Shaye et al., 2020)

AS3 mGlu2 LY354740 VFT domain 4XAQ (Monn et al., 2015)

mGlu1 LY341495 VFT domain 3KS9 (Wang & Yang, 2009)

F AS1 SMO cholesterol
SANT-1

Deep in the TM bundle 6O3C

4N4W

(Deshpande et al., 2019)

(Wang et al.,2014)

AS2 SMO Cholesterol Extracellular cysteine-rich domain (CRD) 6O3C (Deshpande et al., 2019)
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database compiles information on G protein couplings from currently

available datasets and available structural data (Hauser et al., 2022;

Pándy-Szekeres et al., 2024). Currently, a total of 122 structures are

available for non-complexed G proteins and 584 for receptor: G pro-

tein complexes, of which there are 208 distinct complexes (Pándy-

Szekeres et al., 2024). Although the structural coverage of the com-

plexes is limited, it is increasing over time, suggesting specific molecu-

lar features and interactions that drive subtype selectivity (Bernhard

et al., 2023; Huang, Xu, et al., 2022) or primary vs. secondary coupling

(Kim et al., 2020) for certain receptors.

The classical model of homologous desensitization proposes

that the active receptor is ultimately phosphorylated by G protein-

coupled receptor kinases (GRKs) (Gurevich et al., 2012). This phos-

phorylation leads to the recruitment of arrestins, which bind to the

phosphorylated receptors with high affinity (Lohse et al., 1990;

Seyedabadi et al., 2021). By outcompeting G proteins, arrestins

effectively terminate G protein-mediated signalling. There are four

arrestin subtypes: two visual arrestins (arrestin 1, or S antigen, and

arrestin 4, or C-arrestin) and two β-arrestins (arrestin 2 and 3, also

called β-arrestin 1 and β-arrestin 2). A certain specificity exists

between arrestin family members and GPCRs. Visual arrestin binds

rhodopsin, class A GPCRs do not interact with visual arrestin and

show a preference for a β-arrestin subtype, while class B GPCRs do

not appear to have such selectivity (Macey et al., 2004; Oakley

et al., 2000; Sanni et al., 2010). Arrestins not only terminate G pro-

tein signalling through receptor desensitization but also initiate

alternative signalling pathways leading to sustained cellular

responses (Daaka et al., 1998; Reiter et al., 2012). This is known as

‘β-arrestin-biased signalling’, which is the ligand-dependent activa-

tion of the arrestin signalling pathways over others, which can lead

to a ‘functionally selective’ response (Kolb et al., 2022). In recent

years, there has been remarkable progress in understanding of the

structural details of GPCR:arrestin interaction. The ArrestinDb data-

base contains 48 structures of non-complexed arrestins and

10 receptor:arrestin complexes (https://arrestindb.org/), including

arrestin 1 in complex with rhodopsin, and β-arrestin 1 in complex

with the neurotensin receptor NTS1, M2 receptor, β1-adrenoceptor,

5-hydroxytryptamine receptor 2B (5-HT2B receptor), and the

glucagon receptor, and the highly phosphorylated tail and the full-

length of the V2 receptor. These structures revealed a biphasic

mechanism of GPCR:arrestin interaction involving the phosphory-

lated receptor tail (i.e., the C-terminus) and the receptor core

(Ranjan et al., 2017). Currently, only a crystal structure of

β-arrestin2 in complex with a phosphopeptide (C7pp) derived from

the carboxyl terminus of CXCR7 is available and revealed a slightly

different conformation of the C7pp compared to the GPCR C-tail in

β-arrestin1 complexes (Min et al., 2020).

Currently, structures of GPCR:GRK complexes are also available.

Chen et al. conducted cryo-EM single-particle reconstructions of the

light-activated rhodopsin bound to rhodopsin kinase (GRK1) (Chen,

Plasencia, et al., 2021). Duan et al. reported a complex structure

involving NTS1 bound to β-adrenergic receptor kinase 1 (GRK2), Gq,

and the arrestin-biased ligand SBI-553 (Duan et al., 2023).

Taken together, the dynamic interplay between GPCRs, G pro-

teins, arrestins and GRKs (Figure 2b) underscores the complexity and

versatility of cellular signalling mechanisms orchestrated by GPCRs

and the structural landscape of these complexes provides the basis

for the design of biased ligands that could modulate the receptor pro-

file towards the downstream partner or G protein family or G protein

subtype.

6 | GPCR OLIGOMERISATION

The increasing number of experimental structures of GPCR homo- and

hetero-dimers in different receptor states and complexes with ligands

and signalling partners is providing insights into GPCR oligomerisation

and its relationship to receptor activation and G protein coupling (Table

2). With the exception of class C GPCRs, which operate as obligate

homo- and hetero-dimers, receptor dimerization in other classes of

GPCRs has long been debated. In the last decade, increasing evidence

has shown that class A GPCRs can also exist as homo-, hetero-dimers

and larger oligomers in native tissues and animal models (Albizu

et al., 2010; González-Maeso, 2014). Moreover, GPCR dimers have

recently been linked to receptor constitutive activity (Zhang et al.,

2022) and biased signalling (Liu et al., 2022). Conversely, the mono-

meric β2-adrenoceptor has been proven to efficiently activate Gs and

exhibits GTP-sensitive allosteric ligand binding properties (Whorton

et al., 2007), thus suggesting that the monomeric form represents the

minimal functional unit essential for signalling for this GPCR. However,

it remains crucial to consider the dynamic nature of these receptors

and potential variations in cellular contexts (Table 2).

Understanding the interplay between G protein cooperativity and

oligomer: G protein stoichiometry can provide insights into how

GPCRs function as dynamic molecular complexes in the cellular con-

text. G protein cooperativity refers to the phenomenon whereby the

activation of one GPCR within a dimer or oligomer influences the acti-

vation of an adjacent GPCR, potentially enhancing and/or shifting the

resulting signalling response (Lazim et al., 2021). In the context of

dimeric GPCR:G protein complexes, stoichiometry plays a role in

determining how many G protein subunits can associate with the

receptor and the cooperativity of the resulting complex in G protein

signalling (Kamal et al., 2011). Activation of one protomer in a dimer

may indeed allosterically affect the ability of the neighbouring proto-

mer to couple to a G protein, thus leading to cooperative effects and

altered signalling with respect to monomer activation.

In Figure 2c, we compare the dimer interfaces and dimer: G pro-

tein stoichiometry as identified by structural investigations of selected

GPCRs in fully active state complexed with small molecule (a and b) or

peptide (c) agonists.

The dimer interface observed in the fully active apelin receptor

structure bound to a potent small molecule agonist (PDB ID: 7W0L)

has a head-to-head arrangement with a twofold symmetry axis

(Figure 2c) (Yue et al., 2022). In the dimer, both orthosteric binding

sites are occupied by a copy of the small molecule agonist (spheres

with cyan and orange carbon atoms in Figure 2c, left panel). The dimer
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TABLE 2 GPCR dimer structures solved to date. If not otherwise specified, the listed receptors are GPCR homodimers solved by cryo-EM.

Class Receptor State (G protein) Ligand PDB IDs Reference

A Rhodopsin Inactive None 6OFJ (Zhao et al., 2019)

CXCR4 Inactive Antagonist 3ODU; 3OE0; 3OE6; 3OE8; 3OE9a

4RWSa
(Wu et al., 2010)

(Qin et al., 2015)

Apelin Active (Gi) Agonist 7W0N; 7W0L (Yue et al., 2022)

C GABAB
(b) Active (Gi) Agonist, PAM 7 EB2 (Shen et al., 2021)

Active Agonist, PAM 6UO8

7C7Q

(Shaye et al., 2020)

(Mao et al., 2020)

Active PAM 7CA3 (Kim, Jeong, et al., 2020)

Intermediate I Agonist 6UO9 (Shaye et al., 2020)

Intermediate II None 6UOA (Shaye et al., 2020)

Inactive Antagonist, NAM 7CUM (Kim, Jeong, et al., 2020)

Inactive Antagonist 7C7S (Mao et al., 2020)

Inactive Inverse agonist, NAM 6W2Y; 6W2X (Papasergi-Scott et al., 2020)

Inactive NAM 6WIV (Park et al., 2020)

Inactive None 7CA5

6VJM

(Kim, Jeong, et al., 2020)

(Shaye et al., 2020)

mGlu1 Inactive Apo 7DGD (Zhang et al., 2021)

Intermediate Agonist 7DGE (Zhang et al., 2021)

mGlu2 Active (Gi) Agonist, Ago-PAM 7MTS (Seven et al., 2021)

Active Agonist 7EBP (Du et al., 2021)

Active Agonist, Ago-PAM 7MTR (Seven et al., 2021)

Intermediate (Gi) Agonist, PAM 7E9G (Lin et al., 2021)

Intermediate None 7EPA (Du et al., 2021)

Inactive Antagonist 7MTQ (Seven et al., 2021)

mGlu7 Inactive None 7EPC (Du et al., 2021)

mGlu2-mGlu7
b Inactive None 7EPD (Du et al., 2021)

mGlu5 Inactive None 6 N52 (Koehl et al., 2019)

Intermediate Agonist 6 N51 (Koehl et al., 2019)

mGlu5-5 M Active Agonist 7FD8 (Nasrallah et al., 2021)

Inactive Antagonist 7FD9 (Nasrallah et al., 2021)

mGlu3 Inactive Antagonist 7WI8; 7WI6 (Fang et al., 2022)

Active Agonist 7WIH (Fang et al., 2022)

mGlu4 Intermediate (Gi) Agonist 7E9H (Lin et al., 2021)

CaS Active Agonist 7DTT

7SIL; 7SIM

(Ling et al., 2021)

(Park et al., 2021)

Active Agonist, PAM 7DTV

7E6T

7MF3; 7M3G

(Ling et al., 2021)

(Chen et al., 2021)

(Gao et al., 2021)

Intermediate PAM 7DTU (Ling et al., 2021)

Inactive Agonist, PAM, NAM 7M3E (Gao et al., 2021)

Inactive Antagonist 7SIN (Park et al., 2021)

Inactive NAM 7M3J (Gao et al., 2021)

Inactive None 7E6U

7DTW

(Chen et al., 2021)

(Ling et al., 2021)

D Ste2 Active (Gpa1) Agonist 7 AD3 (Velazhahan et al., 2021)

Active Agonist 7QBI (Velazhahan et al., 2022)

Inactive Agonist 7QBC (Velazhahan et al., 2022)

Inactive Antagonist 7QA8 (Velazhahan et al., 2022)
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interface includes the extracellular tip of TM2 and TM3, including

ECL1, with a surface area of �445 Å2 (cyan and orange surface in

Figure 2c, left panel). It is stabilized by aromatic interactions and

hydrophobic contacts established by residues at positions 2.54

and 23.52 to 3.24 on the EC and at position 1.58, 12.48 and 12.49 on

the IC of each protomer. As per the oligomer: G protein stoichiometry,

mixed species were observed in both 2:1 and 1:1 ratios. In the dimer

structure, only one protomer (Prot A, cyan cartoon in Figure 2c, left

panel) couples to the G protein and is therefore deputed to signal

transduction. Superimposing the G protein-bound protomer (Prot A)

on the G protein-free protomer (Prot B, orange cartoon in Figure 2c,

left panel) in the dimer structure reveals that it is not possible to

accommodate two G proteins due to steric constraints imposed by

both the dimer interface and the orientation of Prot B with respect to

Prot A.

An asymmetric activation model has also been proposed for the

metabotropic GABAB GPCR (Mao et al., 2020; Shen et al., 2021). This

class C receptor functions as an obligate heterodimer of two subunits,

namely GABAB1 and GABAB2, whose TMs share �70% sequence

homology. In the cryo-EM structure of the fully active state in com-

plex with a small molecule agonist and a positive allosteric modulator

(PAM, PDB ID: 7W0L), GABAB1 (orange cartoon in Figure 2c, central

panel) is responsible for ligand recognition with the agonist binding its

VFT domain, whereas GABAB2 (cyan cartoon in Figure 2c, central

panel) is responsible for G protein coupling through a shallow binding

site at the TM intracellular side. Several conformations have been

observed for the G protein-coupled complex (Mao et al., 2020), the

most populated of which shows the ICLs and the IC tip of TM3 inter-

acting with the α5-helix of the Gα subunit. The dimer interface is com-

posed of a symmetric TM6/TM6 interface, similar to other class C

GPCRs (Koehl et al., 2019), and involves residues in TM6, ECL3 and

the EC tip of TM7 with a surface area of �1190 Å2. The interface is

stabilized on the EC side by aromatic interactions and hydrophobic

contacts established by residues at positions 6.48, 6.52, 6.56, 6.59,

6.60, 7.27 and 7.31 in GB1 and 6.41, 6.48, 6.49, 6.52, 6.55, 6.56,

6.60, 7.24 and 7.27 in GB2. In addition, an H-bond network in the

middle of TM6 is established by residues 6.44 and 6.45 in both sub-

units, while further stabilization is provided by the PAM (spheres with

magenta carbon atoms in Figure 2c, middle panel) anchored in a

hydrophobic cavity formed by the IC tip of TM5 and TM6 in GABAB1

and TM6 in GABAB2. As per the oligomer: G protein stoichiometry,

only species with a 1:1 ratio were observed. Superimposing the iso-

lated G protein-bound GABAB1 monomer on the heterodimer shows

that it is impossible to accommodate two G proteins due to steric hin-

drance. This suggests that only one G protein can bind to the GABAB

receptor at a time.

The cryo-EM structure of a class D GPCR homodimer, namely

Ste2 (PDB ID: 7 AD3) (Velazhahan et al., 2021), in complex with a

peptide agonist revealed a unique dimer interface and G protein cou-

pling, not previously observed in other GPCR classes. The dimer inter-

face extends from the N-terminus involving TM1, TM2, TM7 and

ECL1 with a surface area of �2310 Å2 (in the TM domain only). The

interface is stabilized mainly by hydrophobic contacts, with a few

H-bonds established by residues bearing polar side chains in both

monomers. The entire TM1 (cyan and orange surface in Figure 2c,

right panel) is involved in the interface stabilization via a highly con-

served motif (glycine zipper) ranging from positions 1.43 to 1.51. A

copy of the peptide agonist (spheres with cyan and orange carbon

atoms in Figure 2c, right panel) is bound to the orthosteric binding site

in each protomer, which, in turn, seems to couple to the engineered

mini-G protein (continuous arrows in Figure 2c). The mini-G protein

shows an orientation of the alpha subunit to the TM bundle that is

remarkably different from the canonical orientation previously

observed for other GPCR classes. However, only one mini-G protein

was well ordered in the cryo-EM structure, while the other (grey sur-

face in Figure 2c, left panel) showed low density. Therefore, only the

C-terminal α5 helix was modelled in the final construct. MD analysis

of the dimer model as coupled to two mini-G proteins revealed alter-

nate stability of the beta subunit in one G protein as the result of sta-

bilizing the alpha subunit in the other. The authors ascribed this

alternate dynamism to a deletion in the G protein alpha subunit in the

engineered mini-G protein. Further structural biological evidence is

needed to support the 1:2 dimer: G protein stoichiometry and the rel-

ative G protein cooperativity in such complexes.

7 | NMR AS A TOOL TO PROBE GPCR
PLASTICITY

Understanding the dynamic nature of GPCRs is essential for drug dis-

covery and the development of novel therapeutic strategies (Lee

et al., 2019). NMR spectroscopy is an effective method for investigat-

ing the flexibility of GPCRs, as it offers detailed insights into the

atomic-level dynamics of proteins over a wide range of time scales

(Chao & Byrd, 2018). However, performing NMR studies on GPCRs is

a challenging task due to several factors. One of the main obstacles

is obtaining stable samples in sufficient amounts. Moreover, the high

molecular weight of GPCRs reconstituted in membrane mimetics leads

to long rotational correlation times and, therefore, reduced NMR sen-

sitivity and resolution. However, advances in instrumentation, such as

ultra-high-field NMR spectrometers and cryogenic probes, have made

it possible to study naturally stable GPCRs such as rhodopsin (Ahuja

TABLE 2 (Continued)

Class Receptor State (G protein) Ligand PDB IDs Reference

Inactive None 7QB9 (Velazhahan et al., 2022)

aStructure solved by X-ray.
bHeterodimer.
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et al., 2009; Stehle et al., 2014), the chemokine receptor (CXCR1)

(Park et al., 2006, 2011) and the adrenosine A2A receptor (Eddy, Lee,

et al., 2018; Ye et al., 2016).

The first NMR studies of GPCRs were carried out alongside

efforts to obtain their X-ray structures. As discussed above, the struc-

tural biology of GPCRs has made significant progress with the devel-

opment of stable receptors. The majority of GPCR structures solved

to date have been obtained from baculovirus-infected insect cells

(Mili�c & Veprintsev, 2015; Saarenpää et al., 2015). These cells are eas-

ier to maintain than mammalian cells, but still have the required

machinery for protein translation, folding, membrane insertion, and

post-translational modification that is not present in lower cellular

systems such as yeast and Escherichia coli. Native expression of

GPCRs in E. coli usually results in low yields, but the engineering

of fusion constructs that comprise periplasmic proteins attached to

the receptor N-terminus and cytoplasmic proteins at the receptor

C-terminus has allowed for the successful high-yield expression of

some GPCRs (Abiko et al., 2021; Dodevski & Plückthun, 2011;

Schuster et al., 2020; Tucker & Grisshammer, 1996; Yeliseev

et al., 2005; Yong et al., 2018). The preparation of GPCR samples for

NMR presents additional challenges due to the need for isotope label-

ling. Uniform 15N and 13C labelling and (partial) deuteration (2H) have

been accomplished in E. coli (Abiko et al., 2021; Mohamadi

et al., 2023; Park et al., 2011; Thomas et al., 2015), yeast (Eddy, Gao,

et al., 2018), and insect cells (Joedicke et al., 2018; Opitz et al., 2015).

The large signal overlap in the spectra of uniformly labelled receptors,

the low sensitivity of triple resonance experiments, and the ambiguity

of the NOE (Nuclear Overhauser Effect) make it difficult to achieve

the complete assignment of GPCR resonances. In addition, the high

levels of deuteration required for high-resolution NMR experiments

lead to the disappearance of resonances in the transmembrane helices

due to limited amide proton back-exchange (Mohamadi et al., 2023).

Therefore, most studies using solution-state NMR have focused on

employing selective labelling strategies such as side-chain methyl 13C

(Baumann et al., 2023; Bokoch et al., 2010; Bumbak et al., 2023;

Casiraghi et al., 2016; Goba et al., 2021; Kaneko et al., 2022; Kleist

et al., 2022; Kofuku et al., 2014; Rößler et al., 2020; Solt et al., 2017;

Sounier et al., 2015; Wu et al., 2020), amino acid-specific backbone
15N (Eddy, Gao, et al., 2018; Eddy, Lee, et al., 2018; Imai et al., 2020;

Isogai et al., 2016; Wu et al., 2022), or the incorporation of single

probes containing 19F (Dixon et al., 2022; Huang et al., 2021; Kim

et al., 2013; Liu et al., 2012; Sušac et al., 2018). Each of these labelling

methods presents unique advantages and disadvantages. Assignments

of side-chain methyl 13C and backbone 15N are typically obtained by

mutagenesis. However, not all amino acids can be mutated, as this

may impair protein functionality, limiting the mutagenesis approach.

Automated methyl group assignments based on an available GPCR

structure and 3D and 4D NOESY experiments might be a solution,

but this requires NMR spectra of sufficient resolution and additional

data (Kooijman et al., 2020). A new method to assign GPCR reso-

nances has been proposed based on pseudocontact shifts obtained

from bound nanobodies tagged with lanthanoid DOTA chelators (Wu

et al., 2022). This method provides multiple resonance assignments in

one experiment but requires engineered antibodies that recognize

specific receptor functional states.

The developments in biochemical and spectroscopic methods

described above have allowed for NMR studies of various receptors.

These studies revealed considerable conformational diversity in all

functional states, which cannot be detected in static structures

(Figure 3a).

Studying GPCRs in their apo form by NMR is challenging due to

their high flexibility and instability, particularly for insensitive experi-

ments such as 2D 1H-15N NMR spectroscopy. Nevertheless, this was

feasible for a thermostabilised mutant of 15N-valine labelled

β1-adrenoceptor (Grahl et al., 2020; Isogai et al., 2016). The more sen-

sitive 1D 19F and 2D 1H-13C NMR experiments have successfully cap-

tured the dynamic nature of apo receptors, as demonstrated by

studies on A2A receptor (Ye et al., 2016), β2-adrenoceptor (Horst

et al., 2013; Liu et al., 2012; Manglik et al., 2015; Nygaard et al., 2013)

and β1-adrenoceptor (Solt et al., 2017).

A study on the β1-adrenoceptor using 19F NMR relaxation experi-

ments and double electron–electron resonance EPR spectroscopy

(Manglik et al., 2015) showed that apo and antagonist-bound states

have two conformations (S1 and S2) that are interconverting within

hundreds of microseconds and which differ by the presence or

absence of a salt bridge between TM3 and TM6. The addition of an

agonist to the apo β1-adrenoceptor increased the receptor heteroge-

neity, and an additional long-lived active state (S3) was observed in

slow exchange with S1 and S2. By adding a G protein-mimicking

nanobody to the agonist-bound receptor, a distinct, fully active state

(S4) was observed (Figure 3a). As S4 was not observed in the agonist-

bound state, it was suggested that the orthosteric- and effector-

binding sites are only weakly coupled.

A 19F NMR study conducted on the A2A receptor (Ye

et al., 2016) revealed that the ligand-free receptor populates four dif-

ferent conformations (Figure 3b). Of these states, two are inactive

conformations (S1 and S2) similar to those observed in the β2-

adrenoceptor (Figure 3a). The other two conformations are associ-

ated with active states (S3 and S30) as identified by the binding of G

protein-derived peptides. It was observed that the addition of ligands

or G protein mimics did not lead to the observation of other confor-

mations but instead shifted the conformational equilibrium between

the already existing four states, according to their pharmacological

profile. This suggested that the binding of ligands to the A2A receptor

occurs through conformational selection instead of an induced fit

process.

While several studies provided important information based on

single 19F probes located on the intracellular side of TM6 (Horst

et al., 2013; Kim et al., 2013; Liu et al., 2012; Manglik et al., 2015; Ye

et al., 2016), 15N resonances from specifically labelled amino acids

(Abiko et al., 2022; Eddy, Gao, et al., 2018; Eddy, Lee, et al., 2018;

Grahl et al., 2020; Imai et al., 2020; Isogai et al., 2016; Wu

et al., 2022), as well as 13CH3-methyl resonances (Baumann

et al., 2023; Goba et al., 2021; Imai et al., 2020; Nygaard et al., 2013;

Okude et al., 2015; Solt et al., 2017) have revealed additional details

about the GPCR activation process.
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Studies on the 13CH3-methionine labelled β2-adrenoceptor

showed that agonist binding increases the receptor intracellular het-

erogeneity compared to apo or antagonist-bound states (Nygaard

et al., 2013). However, the various states resulting from agonist bind-

ing do not include the fully active conformation observed when the

receptor is in a ternary complex with G protein. The study suggests

that the conformational heterogeneity caused by high-efficacy ago-

nists may be crucial in enabling the β2-adrenoceptor to interact with

different downstream signalling proteins.
15N relaxation experiments and line shape fitting of 15N-valine

β1-adrenoceptor resonances near the orthosteric binding site

indicated a fast exchange equilibrium (microseconds to milliseconds)

between an inactive and a preactive state for the antagonist-bound

receptor (Grahl et al., 2020). These states are equivalent to S1

and S2 states observed for the β2-adrenoceptor and the A2A recep-

tor. Additionally, for agonist-bound β1-adrenoceptors, a slow

exchange (>5 ms) between the preactive and an active state was

detected (Abiko et al., 2019; Grahl et al., 2020). This active

state largely corresponds to the conformation in ternary

complexes with G protein and was fully populated by the addition

of a G protein-mimicking nanobody, indicating conformational

selection.

The dynamic equilibrium of GPCRs is influenced by various fac-

tors such as ligands, mutations, lipids, and pressure. In many cases, the

effect of such factors cannot be evaluated by X-ray crystallography or

cryo-EM due to their specific requirements for crystal formation or

preparation of vitrified samples. NMR, on the other hand, allows for a

wider range of sample conditions, for example, the effect of pressure

(up to 2500 bar) on the conformational equilibria of the β1-

adrenoceptor (Abiko et al., 2022). Surprisingly, pressure alone can

completely shift the agonist-bound β1-adrenoceptor to its fully active

state in the absence of intracellular binding partners. By analysing

peak intensities in 1H-15N NMR spectra, the relative proportions of

the different conformations were estimated at increasing pressure,

giving a quantitative measure of the volume variation between the

preactive and active states.

F IGURE 3 (a) GPCR dynamics captured by NMR. Schematic diagrams and free energy landscapes derived from solution state NMR studies of
the β2-adrenoceptor(2, A2A receptor and β1-adrenoceptor. The colour code of the free energy landscapes follows the ligand binding states from
the schemes on the left. Diagrams inspired from: Grahl et al., 2020; Manglik et al., 2015; Nygaard et al., 2013; Ye et al., 2016. B: AFM and GPCRs
(Dumitru & Koehler, 2023; Müller et al., 2020). Left: Dynamic mode (DM) AFM, which oscillates the AFM tip to reduce friction while contouring
the sample (GPCRs) for high-resolution topography imaging (Fotiadis et al., 2003). High-speed AFM, which speeds up the image acquisition time
by a factor of �1000, can provide access to dynamic processes in GPCR structural biology (Perrino et al., 2021). Right: Imaging of GPCRs while
quantifying their ligand binding free energy landscape at single molecule and cell level. To characterize ligand binding to GPCRs (e.g., PAR1), the
receptor-activating peptide (e.g., thrombin receptor-activating peptide, TRAP) is covalently linked to a poly (ethylene glycol) spacer that was
chemically attached to the AFM tip (Alsteens et al., 2015). Alternatively, dendrimers, for instance, can be also directly attached to an amino-
functionalized AFM tip (Dague et al., 2022). Using the functionalised AFM tip, GPCR containing proteoliposomes (deposited on a substrate,
e.g., mica) or cells overexpressing the GPCR of interest were imaged and FD curves recorded pixel by pixel, from which sample topographs and
adhesion maps can be reconstructed (not shown). (c) Top left: current coverage of MD simulations in GPCRmd. Bottom left: Example of a GPCR
model, TAS2R1, in AlphaFoldDB (coloured by per-residue model confidence score, pLDDT). Right: Example of a complex model, the
muscarinic M5 receptor:Gq/11, in GproteinDB (coloured by per-residue model confidence score, pLDDT).
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Since stabilization of GPCRs might lead to altered functional

properties, NMR is a well-suited tool to probe the conformational

landscape and the change in the population of the structural sub-

states when bound to different orthosteric ligands. Like 19F labelling

described above, solvent-exposed cysteine residues can be chemically

modified with 13C-labelled methyl groups using the reagent methyl

methanethiosulfonate (MMTS). Using the NTS1 receptor as a model

system, this readout enabled the restoration of the conformational

switching functionality of a highly stabilized NTS1 variant by just a

few back-mutations to the wild-type amino acid type (Goba

et al., 2021).

The high sensitivity of NMR for probing small changes in the con-

formational landscape of a GPCR makes this method suitable for

detecting the impact of specific lipids as allosteric modulators (Jones

et al., 2020). For such studies, lipids can be simply added to the

detergent-solubilized GPCR, or the NMR experiments can be per-

formed in a defined lipid environment using lipid nanodiscs as a mem-

brane mimetic. With the help of nanodiscs, it is possible to create a

detergent-free and lipid-based environment and capture the protein

in the most native state possible while increasing the stability or mod-

erate protein dynamics of GPCRs in purified systems. Therefore, they

are now used also for GPCR structural analysis by cryo-EM (Günsel &

Hagn, 2021; Zhang, Wu, et al., 2022; Zhang, Gui, et al., 2021). Nano-

discs that facilitate solution NMR experiments are available (Daniilidis

et al., 2022; Hagn et al., 2013; Miehling et al., 2018). Using 19F NMR,

it has been shown that cholesterol has a rather indirect activating

effect on the adenosine A2A receptor by changing the properties of

the membrane (Huang, Almurad, et al., 2022), contradicting the obser-

vation of cholesterol molecules in GPCR crystal structures and previ-

ous NMR binding experiments (Gater et al., 2014). Using methyl

groups as probes, the ability of cholesterol to modulate the conforma-

tional landscape of GPCRs has been shown (Casiraghi et al., 2016). In

contrast, cholesterol stabilized the inactive state of the β1-

adrenoceptor probed by 2D-[1H,15N]-NMR (Abiko et al., 2022). Thus,

it appears that the response to cholesterol may vary with different

GPCRs. In addition to cholesterol, the presence of anionic lipids has

been reported to enhance the GPCR active state of A2A receptor

(Thakur et al., 2023), and the addition of lipids containing long chain

fatty acids, such as docosahexaenoic acid, has been shown to activate

the same GPCR (Mizumura et al., 2020). Recently,

phosphatidylinositol-4,5-bisphosphate has been shown to tune GPCR

motions without strong effects on the structural ensemble (Bumbak

et al., 2023).

The combination of NMR data and structural information from

X-ray crystallography and cryo-EM has provided a detailed picture of

GPCR conformational switching upon activation and G protein or

β-arrestin binding (Hilger et al., 2018; Lee et al., 2020; Rasmussen,

DeVree, et al., 2011). NMR studies with μ-opioid receptor using 13C-

ε-methyl groups in methionine residues and 13C-methylated lysine

side chains as probes show that specific receptor conformations are

induced by biased agonists (Cong et al., 2021). However, a broader

picture is still missing and will require more systematic investigations

to extract common principles that will be essential to design more

specific biased agonists as novel drugs with improved efficacy and

reduced side effects.

Another important area where NMR can provide new insights is

the identification of allosteric binding sites. A recent study combining

high pressure NMR and X-ray crystallography on the β1-adrenoceptor

demonstrated that empty cavities detected by xenon may serve as

allosteric pockets (Abiko et al., 2022). Kaneko and colleagues used

solution NMR analysis of the μ opioid receptor to investigate the con-

formational equilibrium between conformational states and were able

to monitor the equilibrium shift by an allosteric modulator, which

shifted the equilibrium to a level that could not be reached by orthos-

teric ligands alone. The binding site of the allosteric modulator and

the residues contributing to the regulation of the equilibrium could be

identified (Kaneko et al., 2022). The ability of NMR to probe and map

the binding of allosteric modulators is crucial for guiding their chemi-

cal optimisation, making NMR an important method for the design of

GPCR allosteric ligands.

8 | ATOMIC FORCE MICROSCOPY
AND GPCRs

Information obtained from static GPCR structures is not sufficient to

provide a complete picture on the inter- and intra-molecular behav-

iour of GPCRs under physiological conditions. The interaction dynam-

ics of a transmembrane protein depend on its surrounding

microenvironment. While there is evidence for physical changes in

GPCRs during signal transduction, inferring such nanoscale kinetics is

challenging. Atomic force microscopy (AFM) is one such tool used to

study and understand the behavioural dynamics of GPCRs in their

native-like state with (sub)-nanometre resolution and in real time.

Invented more than three decades ago, AFM has evolved from a

robust, multifunctional tool to a nanoscopic analytical laboratory due

to critical improvements in recent years (in terms of force sensitivity,

thermal stability, lateral and temporal resolution and imaging modes)

(Dumitru & Koehler, 2023; Müller et al., 2020). Therefore, it is now

readily applicable to unravel the GPCR structural landscape in multiple

dimensions. AFM uses a small probe to visualize biological structural

surface topography and mechanical properties, while providing valu-

able information about their chemical composition and interactions,

enabling a comprehensive understanding of biological systems, such

as GPCRs.

The first GPCR imaged by high-resolution contact mode AFM in a

physiological buffer was rhodopsin in the native membrane of rod

outer segments (ROS), enabling structural insights into the arrange-

ment of rhodopsin (Fotiadis et al., 2003). This study elucidated not

only the physical attributes of the protein (e.g., total protein height),

but also the dimerization of rhodopsin arranged as paracrystalline

arrays. Technological advances in AFM have also made it possible to

obtain spatial–temporal protein dynamics. Using High-Speed AFM

(HS-AFM), different conformational states of the protein (open

vs. closed) have been reported for bacteriorhodopsin (Perrino

et al., 2021).
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An essential model of AFM, called FD-AFM (Force-Distance

AFM), can be used to probe the kinetic aspects of proteins, such as

their folding and/or ligand (un)binding. This can enable mapping of the

energy landscape, thereby explaining the existence of different transi-

tion states between bound and unbound GPCRs, as extensively

reviewed by Zocher and colleagues (Zocher et al., 2013). An example

is human proteinase-activated receptor 1 (PAR1), where its binding

strength in the absence and presence of an antagonist, for example,

thrombin receptor-activating peptide (TRAP), has been quantified

(Alsteens et al., 2015). By extrapolating the data and applying the

Bell-Evans model, the authors were able to extract the kinetic and

thermodynamic parameters of these interactions, allowing them to

accurately describe the PAR1 ligand binding free energy landscape.

Dumitru and colleagues, by combining AFM with steered MD simula-

tions, elucidated the ligand-binding mechanism of the human G

protein-coupled C5a1 receptor and discovered a cooperativity

between two orthosteric binding sites (Dumitru et al., 2020). The

ligand-binding free energy was measured for an overall ΔG � �13.6

± 4.1 kcal�mol�1, which is higher than the sum of individual binding

and effector sites, that is, ΔG � �8.6 ± 2.3 kcal�mol�1.

The cell membrane matrix that houses the GPCRs also influences

their overall functionality. Any change in the microenvironment has

been shown to alter the role of GPCRs. Cholesterol, an essential com-

ponent of the mammalian cell membrane, maintains membrane fluidity

and integrity of the membrane and its ability to form microdomains

(called lipid rafts), which are suggested to affect the overall organiza-

tion of phospholipids (Karanth et al., 2021). In 2012, Zocher and col-

leagues reported that cholesterol increases the kinetic, energetic and

mechanical stability of the β2-adrenoceptor compared to the receptor

reconstituted in proteoliposomes lacking this steroid. Around the

same time, several laboratories showed a remarkable dependence of

rhodopsin activation on curvature-induced elastic stress in lipid mono-

layers (Zocher et al., 2012). Importantly, phospholipids display key

processes such as lateral and rotational diffusion and can influence

the overall organization of proteins in the membrane. The quantifica-

tion of these biophysical activities is still poorly understood. It remains

an open question whether transmembrane proteins always act in con-

cert in the phospholipid bilayer. Therefore, understanding GPCRs at

the cellular level can redefine binding kinetics. Recently, Dague and

colleagues made the first attempt, where the HA-tagged

β2-adrenoceptors expressed on CHO cells were probed by FD-AFM,

revealing different oligomerization states on the cell membrane along

with the unfolding of the GPCR on the cell surface (Dague

et al., 2022). Such experiments help obtain the overall spatial organi-

zation of the protein and add complexity to the GPCR pharmacology.

The main advantage of AFM over other techniques is its adapt-

ability to observe individual GPCRs down to their organization at the

cellular level and to sense their interaction with ligands under physio-

logical conditions. Such obtained adhesive or binding force can be fur-

ther extrapolated to broader applications (e.g., screening of drug

molecules). The easy integration of AFM with other microscopy

methods makes it a lynchpin to answer many biological questions and

provide more insights into how cellular states modulate GPCRs

and vice versa (Dumitru & Koehler, 2023). Correlating this information

with functional assays may provide a more reliable basis for control-

ling GPCR activity with pharmacological chaperones in health and

disease.

9 | GPCR STRUCTURE PREDICTION

For quite some time, understanding GPCR activation mechanisms and

advancing structure-based drug design has posed significant chal-

lenges due to the limited availability of high-resolution structures. As

a result, specialized protein structure prediction methods for GPCRs

have emerged, allowing the generation of structural models even in

the absence of experimental structures. Available resources are sum-

marized in Table 3. Despite advances in GPCR structural biology, cur-

rently, only 23% of unique GPCR structures are available, and we

know even less about complexes with downstream partners and

dimer formation, highlighting the continued need for structure predic-

tion methods in GPCR research.

Two major approaches dominate modern protein modelling:

template-based modelling (TBM) and neural network (NN)-based

modelling. TBM, which includes techniques like threading and homol-

ogy modelling, relies on existing protein structures as templates to

generate models. However, TBM struggles when no known structure

closely resembles the target protein domain, leading to potential inac-

curacies. On the other hand, since the last Critical Assessment of

Structure Prediction (CASP) 14 round, CASP14, NN-based algorithms

have emerged as convincing tools and are being used more and more.

AlphaFold 2 (AF2), a programme developed by DeepMind, the arm of

Google AI, was able to determine protein structures with an accuracy

level previously obtained only with experimental methodologies

(Callaway, 2020; Service R, 2020). In 2021, Baker's group developed

RosettaFold, able to predict the protein structure with accuracies near

to AlphaFold (Baek et al., 2021). Artificial intelligence (AI)-based pro-

tocols, exemplified by AF2 (Jumper et al., 2021) and RoseTTAFold

(Baek et al., 2021), deploy NN models trained on co-evolutionary cou-

pling and high-resolution structure data from known experimental

structures. In a recent study by Lee et al., the novel NN-based model-

ling methods, AF2 and RoseTTAFold, were thoroughly tested on a set

of solved GPCRs obtained from the Protein Data Bank, and compared

with models generated by Modeller, a TBM approach (Lee

et al., 2022). They found that AF2 and RoseTTAFold outperformed

Modeller in cases where no good templates were available, but TBM

performed better when good templates were available. AF2 outper-

formed RoseTTAFold in terms of the accuracy of the top-ranked

models, while RoseTTAFold showed less variance, ie generated more

similar models, than AF2. However, it was found that NN-based

models often only represented the inactive state. To address this, Heo

and Feig introduced a multi-state prediction protocol that extends the

capabilities of AF2 to predict both active and inactive states with

remarkable accuracy (Heo & Feig, 2022). This protocol uses

state-annotated GPCR template databases to accurately

capture state-specific structural changes. GPCRdb now contains
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state-specific structural models of all human non-olfactory

GPCRs, generated using AlphaFold2-MultiState (Pandy-Szekeres

et al., 2023).

AlphaFold Multimer is an extension of AlphaFold specifically

designed to predict the 3D structures of protein complexes and can

now be used to generate models of GPCR oligomers or GPCR in com-

plex with downstream partners (He et al., 2022; Lee et al., 2023;

Paradis et al., 2022). AF2 structure models of GPCR:G protein com-

plexes are now also incorporated in the GproteinDb, significantly

expanding the database structural templates and enhancing interac-

tive analysis tools for interface studies, crucial in understanding cou-

pling selectivity (Pandy-Szekeres et al., 2024).

A main challenge in GPCR structure prediction results from the

ECL2, the longest and most diverse loop among class A GPCRs (Nicoli

et al., 2022). Due to its pivotal role in ligand binding and subsequent

drug design, various computational groups have committed their

research efforts to understanding and modelling ECL2 (Blaszczyk

et al., 2013; Gervasoni et al., 2023; Goldfeld et al., 2011; Kmiecik

et al., 2014; Nicoli et al., 2022; Wink et al., 2019; Won et al., 2018).

Indeed, the loop conformational space increases exponentially with

the length, posing a great challenge for the loop structure prediction

(Wink et al., 2019; Won et al., 2018). Even in the models built with

AF2, the ECL2 is often indicated as a low or very low confidence

region (Varadi et al., 2022), and various studies have shown as

TABLE 3 Webservers for modelling GPCRs.

Tool Description URLs References

GOMoDo,
pyGOMoDo

An automated homology modelling protocol based on

MODELLER. Homology modelling is followed by small

molecule ligand docking (using AutoDock VINA or HADDOCK)

if binding site information is available.

pyGOMoDo is a python library with the updated functionality

of the GOMoDo web server, specifically designed for human

GPCRs.

https://github.com/rribeiro-sci/

pygomodo

(Sandal et al., 2013;

Riberio et al., 2023)

GPCR-I-
TASSER

A specialized version of I-TASSER designed for GPCRs. Based

on the use of GPCR structure-specific features with the

I-TASSER template-based and template-free modelling pipeline.

https://zhanggroup.org/GPCR-I-

TASSER/

(Yang et al. 2015)

GPCR-
ModSim

Dedicated web server for GPCR modelling using homology

modelling and molecular dynamics simulation (GPCR structure

prediction and refinement).

https://modsim-pharma.com/index.

php/gpcrmodsim/

(Esguerra et al. 2016)

MODELLER A widely used homology modelling software. https://salilab.org/modeller/ Web and Sali 2016

GPCR-

SSFE2.0

It selects templates for each α-helix by using a database of

sequence fingerprint features correlated with experimental

GPCR structural data.

http://www.ssfa-7tmr.de/ssfe2/

https://proteinformatics.uni-leipzig.

de/sl2/

(Worth et al., 2011)

GPCRM A web service designed to predict GPCR structures, using

advanced homology modelling techniques. It uses profile-

profile alignment, multiple structural templates, and Z

coordinate-based filtering to refine the models. Two different

loop modelling techniques—Modeller and Rosetta—are used to

further improve model accuracy. The final ranking of GPCR

models is determined using the BCL::Score, a knowledge-based

energy function tailored for membrane-protein structures.

https://gpcrm.biomodellab.eu/ (Miszta et al., 2018)

GPCR-AIM This approach is entirely template-free (ab initio method). It

consists of a four-step protocol including 2D helix topology

optimisation, 3D helix topology optimisation, full-length

optimisation and a refinement step.

https://zhanggroup.org/GPCR-AIM/ (Hongjie Wu, 2018)

RosettaGPCR A dedicated version of the Rosetta modelling protocol for

GPCRs. It uses a combination of sequence- and structure-based

alignment. It considers also the structural conservation in the

extracellular loops and then builds the model with the best

possible templates for each region of the target GPCR.

https://github.com/benderb1/

rosettagpcr

Link to GPCR structural models

(Bender et al., 2020)

AF2 A deep-learning based method.

AlphaFold Multimer: AF extension to model complexes.

AlphaFold MultiState: AF extension to model specific GPCR

conformational states.

https://github.com/google-deepmind/

alphafold

Available also via Google Colab:

https://colab.research.google.com/

github/sokrypton/ColabFold/blob/

main/AlphaFold2.ipynb

(Heo & Feig, 2022;

Jumper et al., 2021;

Mirdita et al., 2022)

RosettaFold A deep-learning based method. https://github.com/RosettaCommons/

RoseTTAFold

(Baek et al. 2021)
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AlphaFold performs poorly on loop regions (Burley et al., 2021; Lee

et al., 2022). Impressively, the recently solved first structure of an

odorant GPCR, the OR51E2, has the same folding for the ECL2/N-

terminus of the AF2 model (Billesbølle et al., 2023; Nicoli et al., 2023).

However, in this case, as in others (Callaway, 2022; He et al., 2022;

Terwilliger et al., 2022), it has been observed that the residue arrange-

ments in the binding sites of GPCR AF models are not optimal for

structure-based investigations. Addressing the flexibility of residue

side chains with sampling optimization, molecular dynamics simula-

tions, as well as flexible docking tools could improve the applicability

of GPCR structural models in drug design campaigns (Kapla

et al., 2021). MD simulations are often integrated with experimental

investigations (X-ray, cryo-EM, AFM, NMR, single-molecule spectros-

copy) to investigate the structural changes and interactions of GPCRs

with ligands and signalling partners over time, providing important

insights into the mechanisms underlying receptor activation (Albizu

et al., 2010), dimerization (Di Marino et al., 2023), G protein selectivity

(Sandhu et al., 2022), or β-arrestin binding to the membrane and

receptor (Grimes et al., 2023). Docking and MD simulations are also

used to map and predict allosteric pockets (Ciancetta et al., 2021;

Hedderich et al., 2022). These are just a few examples, and others are

discussed in other sections of this review. We will not go into further

detail on the application of simulations to structural data, as this is

outside the scope of this review. However, MD data are precious

structural data and efforts are underway to make them accessible to

the GPCR community. The GPCRmd web-based platform (https://

submission.gpcrmd.org/home/) has recently been developed to collect

MD simulations of GPCRs and currently contains simulations of

116 GPCR subtypes (Figure 3c) (Rodriguez-Espigares et al., 2020).

10 | CONCLUSIONS

This review has highlighted the remarkable progress in understanding

the GPCR structural landscape. From the early pioneering work that

provided the first GPCR structures to the more recent breakthroughs in

cryo-EM, the complexity of receptor activation, ligand binding, oligo-

merisation and signalling bias has been unveiled. These findings under-

score the need for sophisticated methods to probe GPCR plasticity. The

integration of biophysics and innovative computational tools could play

a pivotal role in addressing the issues raised. The future of GPCR

research paves the way for uncovering the complete structural land-

scape, including the dynamic nature of these receptors and understand-

ing them in multiple dimensions, ultimately driving advances in drug

development by improving our ability to target GPCRs precisely.

10.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in and are permanently archived in the Concise

Guide to PHARMACOLOGY 2023/24 (Alexander Christopoulos

et al., 2023; Alexander Fabbro et al., 2023).
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