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A B S T R A C T

Background: Cancer cachexia (CCx) presents a multifaceted challenge characterized by negative protein and
energy balance and systemic inflammatory response activation. While previous CCx studies predominantly
focused on mouse models or human body fluids, there’s an unmet need to elucidate the molecular inter-organ
cross-talk underlying the pathophysiology of human CCx.
Methods: Spatial metabolomics were conducted on liver, skeletal muscle, subcutaneous and visceral adipose
tissue, and serum from cachectic and control cancer patients. Organ-wise comparisons were performed using
component, pathway enrichment and correlation network analyses. Inter-organ correlations in CCx altered
pathways were assessed using Circos. Machine learning on tissues and serum established classifiers as potential
diagnostic biomarkers for CCx.
Results: Distinct metabolic pathway alteration was detected in CCx, with adipose tissues and liver displaying the
most significant (P ≤ 0.05) metabolic disturbances. CCx patients exhibited increased metabolic activity in
visceral and subcutaneous adipose tissues and liver, contrasting with decreased activity in muscle and serum
compared to control patients. Carbohydrate, lipid, amino acid, and vitamin metabolism emerged as highly
interacting pathways across different organ systems in CCx. Muscle tissue showed decreased (P ≤ 0.001) energy
charge in CCx patients, while liver and adipose tissues displayed increased energy charge (P ≤ 0.001). We
stratified CCx patients by severity and metabolic changes, finding that visceral adipose tissue is most affected,
especially in cases of severe cachexia. Morphometric analysis showed smaller (P ≤ 0.05) adipocyte size in
visceral adipose tissue, indicating catabolic processes. We developed tissue-based classifiers for cancer cachexia
specific to individual organs, facilitating the transfer of patient serum as minimally invasive diagnostic markers
of CCx in the constitution of the organs.
Conclusions: These findings support the concept of CCx as a multi-organ syndrome with diverse metabolic al-
terations, providing insights into the pathophysiology and organ cross-talk of human CCx. This study pioneers
spatial metabolomics for CCx, demonstrating the feasibility of distinguishing cachexia status at the organ level
using serum.
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1. Introduction

Cancer cachexia (CCx) is a complex, multifactorial disorder occurring
in 50–80 % of patients with cancer and is responsible for>20% of cancer-
related deaths [1,2]. Patients with cancers of the gastrointestinal tract,
such as pancreatic, gastric, or colorectal cancers, are frequently affected by
CCx [3]. Chronic inflammation and weight loss due to wasting of fat and
muscle mass are central hallmarks of CCx [4]. Signals released by the
tumor, the tumor microenvironment, and distant tissues such as the liver,
gut, inflammatory system, and brain in patients with CCx affect adipose
and muscle tissues and other organs including the heart and circulatory
system [5]. The derangement and wasting of adipose tissue in CCx is
characterized by activated lipolysis and increased release of free fatty
acids. In addition, breakdown of muscle protein in CCx leads to the release
of amino acids, which, along with inflammatory cytokines such as IL-6,
TNF-α, and IL-1β, induces the secretion of acute-phase proteins from the
liver [1,5]. These effects and crosstalk signals between organs all
contribute to systemic inflammation, sarcopenia, anorexia, hypermetab-
olism, metabolic dysregulation, and tissue wasting in patients with CCx
[6–8].

Metabolomics is being increasingly applied to study the metabolic
alterations in CCx, mainly using murine cancer models [9]. For example,
an analysis of mouse serum and muscle tissue identified significant al-
terations in lipid and energy metabolism in a murine model of cancer-
induced cachexia, including early reductions in amino acids, progres-
sive decreases in short-chain acylcarnitines, changes in lipoprotein
profiles, and shifts in phospholipid concentrations [10]. Aerobic and
resistance training have shown to induce skeletal muscle plasticity in the
colon-26 murine model of cancer cachexia, indicating potential thera-
peutic avenues targeting muscle metabolism [11]. In humans, mass
spectrometry-based metabolomics studies of plasma from patients with
and without CCx have revealed some relevant deviations. In one such
study, Cala et al. found that patients with CCx had increased plasma
levels of cortisol and decreased plasma levels of glycerophospholipids,
sphingolipids, and amino acids and their derivatives, especially argi-
nine, tryptophan, indolelactic acid, and threonine [12]. In another
study, Miller et al. found that a plasma profile of lysophosphatidylcho-
lines, L-Proline, hexadecanoic acid, octadecanoic acid, and phenylala-
nine was highly discriminative of weight loss in patients with CCx [13].
Furthermore, recent findings have underscored the critical role of
metabolic dysregulation in cancer cachexia. For instance, a study
highlighted that specific metabolic signatures in CCx are associated with
alterations in lipid metabolism and mitochondrial function in skeletal
muscle tissue, which may contribute to the characteristic wasting syn-
drome observed in CCx patients [14]. Additionally, another study
emphasized the importance of understanding metabolic alterations
across different tissues, suggesting that multi-organ approaches could
provide comprehensive insights into CCx pathophysiology [15]. The
critical role of whole-body lipolysis in human CCx has been well-
documented, demonstrating increased rates of lipolysis and free fatty
acid release, further contributing to the energy imbalance and muscle
wasting observed in these patients [16].

There have been few metabolite analyses of tissues other than blood
from patients with CCx. In a previous study, we used matrix-assisted
laser desorption/ionization (MALDI) mass spectrometry imaging (MSI)
to explore metabolic changes in CCx in a murine cancer model com-
plemented by human patients [17]. This method enables the spatially
resolved visualization of metabolites in biological tissue specimens and
quantitative study of metabolic dynamics in situ [17,18]. We found that
skeletal muscle tissues of cachectic mice and patients with CCx had
increased quantities of lysine, arginine, proline, and tyrosine and
reduced quantities of glutamate and aspartate [17]. Beyond the changes
in amino acid metabolism, we also observed a decreased energy charge
in cachectic mouse muscle tissues [17]. Energy charge is a measure of
the cell’s energetic status, defined as the ratio of adenylate energy forms
(ATP, ADP, and AMP), which reflects the balance between ATP

production and consumption [19]. This decrease in energy charge in-
dicates significant disruptions in energy metabolism, further under-
scoring the metabolic alterations characteristic of cancer cachexia [14].
Because CCx is a multi-organ syndrome, a systematic approach targeting
metabolic changes in multiple tissues simultaneously is more appro-
priate than investigating a single tissue or body fluid in isolation.

Here, we demonstrate for the first time a multi-organ spatial
metabolomics approach to detect metabolic alterations in the liver,
skeletal muscle, subcutaneous and visceral adipose tissues, and serum of
patients with CCx. Our comprehensive tissue-based datasets from
various organ systems of CCx cancer patients and control cancer patients
reveal significant metabolic differences between these patient groups.
We assessed their suitability for diagnostic classification using machine
learning techniques and explored the potential of tissue-based metabolic
classifiers as serum markers.

2. Material and methods

2.1. Patient cohort and sample collection

The study was approved by the Ethics Committee of the Medical
Faculty of the Technical University of Munich (project number 409/16
S) and is registered under “Deutsches Register Klinischer Studien”
(DRKS00017285). All patients provided written informed consent
before participation in this study and the whole handling complies with
the Declaration of Helsinki. The study’s overall workflow performance is
illustrated in Fig. 1.

Samples of liver (from liver segments III, IVb or V where macroscopi-
cally no liver lesions were seen), musculus rectus abdominis, visceral fat
from the greater omentum, and subcutaneous fat were collected (75
samples in total) from a total of 15 patients with malignant diseases of the
gastrointestinal tract (10 with CCx and five control patients) during sur-
gical procedures at the Department of Surgery, Klinikum rechts der Isar
(University Hospital of the TUM). Upon recruitment prior to surgery, pa-
tients’ clinical characteristics were collected through standardized ques-
tionnaires, anthropometry, routine clinical chemistry, and medication
(Supplementary Tables 1–2). Skeletal muscle area index, a marker of
sarcopenia, was evaluated in all patients as described previously [20,21].
The 10 patients with CCx had a history of >5 % weight loss during the 6
months prior to surgery, which is in accordance with the international
consensus on CCx diagnosis [22]. The control group comprised five cancer
patients who had experienced weight loss of <5 % over the same period.
Two of these patients lost over 2 % of their weight and presented with
sarcopenia; however, they were included in the control group because our
study focused on weight loss as the primary indicator of cancer cachexia.
Previous studies have shown significant survival outcomes linked to 5 %
and 10 % weight loss thresholds in colorectal and pancreatic cancer pa-
tients [21,23], highlighting weight loss as a critical prognostic marker.

2.2. MALDI-FTICR mass spectrometry imaging

Liver, muscle, and adipose tissues were sectioned into 12 μm in a
cryostat (CM1950, Leica Microsystems, Wetzlar, Germany) according to
previous protocols [17,24].

A matrix solution of 10 mg/ml 9-aminoacridine (9AA) hydrochloride
monohydrate (Sigma-Aldrich, Germany) in water/methanol 30:70 (v/v)
was applied using a SunCollect™ automatic sprayer (Sunchrom, Frie-
drichsdorf, Germany). 9AA was selected for its ability to mitigate matrix
interferences in the low-mass range, thereby enhancing sensitivity and
ensuring linear detection across a wide spectrum of low-molecular-
weight metabolites. Previous studies have robustly demonstrated the
effectiveness of 9-AA in negative ion mode, underscoring its suitability
for our metabolomic approach [25,26]. The MALDI-FTICR MSI mea-
surement was conducted according to established methods [27–29]
using a Bruker Solarix 7T FT-ICR-MS (Bruker Daltonik, Bremen, Ger-
many) in negative ion mode, involving 100 laser shots at a 1000 Hz
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Fig. 1. Workflow of spatial metabolomics for studying inter-organ cross-talk in human cancer cachexia.
a: Samples of subcutaneous and visceral adipose tissue, liver, muscle, and serum from 10 cachectic and five control patients with cancer were investigated with
MALDI-MSI to detect differences in individual metabolomes and inter-organ cross-talk related to cancer cachexia.
b: MALDI-MSI workflow including tissue sectioning, spatial metabolomics using high mass resolution MALDI-FT-ICR MS imaging, mass spectra acquisition, and data
processing including peak picking and metabolite annotation.
c: Mass spectra of individual organs underwent unsupervised principal component analysis (PCA), metabolic correlation analysis, and inter-organ correlation
analysis.
d: Classification models were generated using the Random Forest-based machine learning algorithm.
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frequency. Data were acquired over the mass range ofm/z 75–1000 with
a 50 μm lateral resolution. Mass spectrometry peaks were annotated
using the Human Metabolome Database (HMDB, https://www.hmdb.
ca/) [30], METASPACE (https://metaspace2020.eu) [31], and the
KEGG database (https://www.genome.jp/kegg/) [32] (Supplementary
methods, Supplementary Table 3).

2.3. Data analysis

Metabolic correlation networks were created with Cytoscape (v.
3.9.1) [33]. Nodes represent metabolites with a node size and color
corresponding to the intensity log2 fold change between CCx and control
patients. Edges represent pathway correlations. Metabolites with sig-
nificant differences between CCx and control patients (P ≤ 0.05) are
shown. The network was visualized using the Compound Spring
Embedder layout.

The mass spectra were subjected to unsupervised principal compo-
nents analysis (PCA) using Python v. 3.8 to reduce the dimensionality of
the data and to identify the principal components that explained the
majority of the variance in the data. The data were first log-transformed
and auto scaled to standardize the data across samples.

Energy charge is calculated as the ratio of the concentrations of ATP,
ADP, and AMP as previously descript.[17] Quantitative morphometric
analysis of visceral and subcutaneous adipose tissues was performed on
H&E stained sections using an AxioScan 7 digital slide scanner (Zeiss,
Jena, Germany) equipped with a 20× magnification objective. Image
analysis was conducted using the Visiopharm software (Visiopharm,
Hoersholm, Denmark), as previously described [34,35].

A nonparametric Mann-Whitney U test (Python v. 3.8, sci-kit v.
0.23.2) was performed to identify molecules that differed significantly
between CCx and control patients. In all calculations, m/z values with a
P-value<0.05 were considered statistically significant. The significantly
altered molecules were used to perform pathway analyses using
MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/). In addition,
Spearman’s rank correlation was performed (Python v. 3.8, SciPy 1.2.0)
to compare measured metabolites between organs. Unique significant
correlations in the cachectic patients were visualized using Circos (v.
0.69.8). Pathway information for each metabolite was extracted from
the KEGG database (https://www.genome.jp/kegg/).

Random Forest (RF) was employed to develop a classification and
prediction model (R 4.3.1). The RF classifier was constructed using a
dataset comprising 2000 randomly selected data points from each organ
and the serum. The significance of each metabolite was assessed and
ranked based on the Gini coefficient within the RF classifier. The top 50
metabolites, identified as the most influential, were subsequently utilized
to construct and train the RF classifier based on the already selected 2000
data points. To evaluate the robustness and predictive performance of the
trained RF classifier, a separate dataset consisting of 1000 randomly
selected data points independent from the training set was employed for
validation. The prediction accuracy, sensitivity, and specificity metrics
were then calculated and reported. In the subsequent phase of our analysis,
we developed a classifier exclusively composed of metabolites shared
between the serum and the specific organs. This organ-specific classifier
was subsequently applied to the serum dataset. In the final step, we
established a comprehensive classifier, incorporating metabolites that
demonstrated commonality across both serum and all organs, including
the liver, skeletal muscle, subcutaneous adipose tissue, and visceral adi-
pose tissue. This extended classifier was then employed for the analysis of
the serum dataset.

3. Results

3.1. Multi-organ metabolic constitution revealed a clear separation
between cachectic and control patients

Metabolic data revealed significant differences (P ≤ 0.05) between

cachectic and control cancer patients in all organ systems. Fig. 2a
showed representative visualizations of distinct metabolites in liver and
muscle sections. An unsupervised PCA analysis was performed to
structure the metabolites among all 15 patients according to similarities
and variances. The data were visualized in score plots separately for the
visceral adipose tissue, subcutaneous adipose tissue, liver, muscle, and
serum. The metabolic patterns of control patients formed a tight cluster,
whereas those of CCx patients were more widely dispersed, highlighting
a pronounced metabolic distinction between the two groups (Fig. 2b–f).

3.2. Adipose tissues and liver displayed the most metabolic alterations
associated with cachexia

We identified 6135m/z species (metabolites) across these organs and
serum samples. Significant metabolic differences (P ≤ 0.05) were
observed between patients with CCx and control patients (Fig. 2b–f). In
visceral adipose (Fig. 2b), subcutaneous adipose (Fig. 2c), and liver
(Fig. 2d), a greater number of metabolites exhibited increases in CCx
patients compared to control patients (visceral adipose: 1852 increased
vs. 124 decreased in CCx; subcutaneous adipose: 1662 increased vs. 392
decreased in CCx; liver: 392 increased vs. 208 decreased in CCx).
Conversely, muscle (Fig. 2e) and serum (Fig. 2f) showed the opposite
pattern, with more metabolites decreased in the patients with CCx
relative to the control patients (muscle: 84 increased vs. 170 decreased
in CCx; serum: 56 increased vs. 101 decreased in CCx). Thus, liver and
adipose tissues exhibited increased metabolic activity associated with
cachexia, whereas the serum and muscle showed the opposite trend.

3.3. Correlation network analysis

We constructed metabolic correlation networks using Cytoscape
based on pathway interactions in the liver, subcutaneous adipose,
visceral adipose tissues, muscle, and serum, respectively (Figs. 3–4,
Supplementary Figs. 1–5). Liver and adipose tissues displayed the most
metabolic alterations associated with cachexia and revealed intensive
network correlations (Figs. 3, 4), whereas only a few network associa-
tions were found in muscle tissue (Supplementary Fig. 4).

Fig. 3 shows the results of metabolic network analysis in the liver of
CCx versus control patients. The overall network shows that most me-
tabolites are increased in CCx. The representative visualizations of
significantly altered pathways with high impact are highlighted in the
correlation network analysis by color coding (Fig. 3). It is evident that
nucleotide metabolism, amino acid metabolism, and arachidonic acid
metabolism are highly upregulated in CCx liver compared with control
patients. In contrast, inositol phosphate metabolism, ascorbate and
aldarate metabolism, and pentose and glucuronate interconversions are
significantly downregulated in CCx liver.

Comparison of interaction networks of subcutaneous adipose and
visceral adipose is shown in Fig. 4. The resulting visualizations (Fig. 4a,
b) reveal significant differences in the pathway correlations of the two
networks. The majority of correlated pathways in the network of sub-
cutaneous adipose are decreased in CCx, whereas in visceral adipose, the
dominant pathways in the network are upregulated. In particular,
arachidonic acid metabolism and metabolism of unsaturated fatty acids
are highly downregulated in subcutaneous adipose, whereas a signifi-
cant increase of these pathways is observed in visceral adipose. In
addition, we observe perturbations in tryptophan metabolism, pyrimi-
dine metabolism, and purine metabolism in both adipose tissues (Fig. 4).

3.4. Metabolic pathways were substantially disrupted in CCx

In total, 53 metabolic pathways were significantly (P ≤ 0.05) altered
between the patients with CCx and the control patients (Fig. 5a). Path-
ways for lipid, carbohydrate, and amino acid metabolism were the most
affected by CCx. Other pathways contributing to metabolic changes in
CCx included pathways for cofactor and vitamin metabolism, nucleotide
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metabolism, energy metabolism, and translation. Each organ displayed
specific pathway changes in CCx. The liver contained the most altered
pathways, followed by adipose tissues, then serum, and finally muscle
(Fig. 5a).

3.5. Distinct energy charges are observed in the adipose, liver, and muscle
tissues in CCx

We calculated the energy charge in adipose, liver, and muscle,

respectively (Fig. 5b). Generally, the energy charge is higher in muscle
(Median EC: 0.45) and adipose tissues (subcutaneous adipose Median
EC: 0.43, visceral adipose Median EC: 0.47) than in the liver (Median EC:
0.25). We found a significant decrease (P ≤ 0.001) in energy charge in
CCx in muscle tissue. Furthermore, a significant increase (P ≤ 0.001) in
energy charge in CCx was detected in the liver, subcutaneous adipose,
and visceral adipose tissues compared to the control patient groups
(Fig. 5b).

Fig. 2. Metabolic data revealed a clear separation between cachectic and control cancer patients.
a: representative visualization and intensity distribution maps of distinct metabolites in liver and muscle sections from one control cancer patient are shown. AMP,
ADP, and ATP exhibit a gradually decreasing intensity in the liver. In contrast, a significant increase from AMP to ATP is observed in muscle tissue. Ribose phosphate,
PG(18:2(9Z,12Z)/18:0), and oleate, which are classified as fatty acid and lipid, are more abundant in the liver, whereas citric acid from tricarboxylic acid cycle (TCA)
cycle represents higher abundance in muscle tissue. Glycerol-3-phosphate and 6-Phosphono glucono-D-lactone, as intermediates in the glycolysis metabolic pathway
and pentose phosphate pathway represent similar abundances in liver and muscle tissue.
b–f: Score plots were generated from unsupervised Principal Component Analysis (PCA) which clearly separates control and cachectic patients in serum, liver,
muscle, subcutaneous adipose, and visceral adipose tissues. Volcano plots show the fold change of significantly altered metabolites, calculated by dividing the mean
intensity of cachectic patients by the mean intensity of control patients. The pie charts depict the number of significantly decreased and increased metabolites in each
tissue type. In subcutaneous adipose, visceral adipose tissues, and liver, more metabolites were increased in patients with CCx relative to control patients than vice
versa. Muscle and serum showed the opposite pattern, with more metabolites decreased in patients with CCx relative to control patients than vice versa. PC: principal
component; FC = fold change; p-val = P-value.

Fig. 3. Metabolic correlation network of liver in cachexia compared with control patients.
The network shows the correlation between different metabolites in liver cachexia compared with control patients, with nodes representing metabolites and edges
representing KEGG pathway correlation between them. Node size is proportional to the log2 fold change. The nodes are colored based on log2 fold change. Green
nodes represent value of 1 or greater for upregulation. Red nodes represent − 1 or less for downregulation. The representative visualizations of significantly altered
pathways with high impact are circled with a colored cloud. The intensity distribution maps of distinct metabolites from representative pathways in cachexia and
control liver are as follows: ATP, tryptophan, prostaglandin, hydroxyproline, and glucuronic acid. The network was generated using Cytoscape software. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.6. Patient stratification according to cachexia severity

We categorized patients into groups and assessed organ-specific
metabolic changes in relation to the severity of cachexia. Specifically,
we divided cachexia patients into two subgroups: ‘Cachexia >5–10 %
weight loss’ and ‘Cachexia >10 % weight loss’. When comparing all
cachexia patients with the control group, we observed the most significant
metabolic changes in adipose tissue (with significantly changed metabo-
lites of 41 % in subcutaneous adipose and 39 % in visceral adipose), fol-
lowed by the liver (12 %), muscle (5 %), and serum (3 %) (Fig. 5c).
However, when examining changes in patients with the most substantial
weight loss, it became evident that the significant metabolic alterations in
cases of severe cachexia were predominantly found in visceral adipose
tissue (with 59 % significantly changed metabolites), while changes in
subcutaneous adipose tissue exhibited a dramatic decrease to 9% (Fig. 5c).

3.7. Quantitative morphometric analysis of visceral and subcutaneous
adipose tissues

We performed an image-based evaluation of adipocyte size on H&E-

stained histological sections of visceral and subcutaneous adipose tis-
sues from cachexia patients and control subjects (Fig. 6a). Our analysis
reveals that adipocytes in visceral adipose tissue exhibit a significantly
smaller cell size compared to control tissue (P ≤ 0.05). Considering the
observed reduction in cell size and the pronounced metabolic processes,
these changes indicate a catabolic state. In subcutaneous adipose tissue,
we did not observe significant changes in adipocyte size in cachectic
conditions.

3.8. Specific pathways revealed inter-organ cross-talk in human CCx

The interactions between different metabolic pathways in CCx in the
liver, muscle, adipose tissues, and serum are visualized with a circos
plot. Specific pathways for carbohydrate, lipid, amino acid, and vitamin
metabolism displayed correlations across organ systems in the patients
with CCx (Fig. 6b). The liver exhibited the most pathway correlations
with other organs. Most metabolic pathway association was found be-
tween liver and muscle. Remarkably, there are fewer connections be-
tween subcutaneous and visceral adipose tissues. Subcutaneous adipose
tissue and visceral adipose tissue interacted with other organs in very

Fig. 4. Comparison of correlation networks of subcutaneous adipose and visceral adipose in cancer cachexia.
a, b: The network shows the correlation between different metabolites in cachexia compared with control patients, with nodes representing metabolites and edges
representing KEGG pathway correlation between them. Node size is proportional to the log2 fold change. The nodes are colored based on log2 fold change. Green
nodes represent value of 1 or greater for upregulation. Red nodes represent − 1 or less for downregulation. Subcutaneous adipose (a) and visceral adipose (b) reveal
significant differences in the pathway correlations networks. The representative visualization of selected pathways is circled with a colored cloud. c: Intensity
distribution maps of example metabolites in subcutaneous and visceral adipose tissues of one cachexia patient are as follows: AMP (m/z 346.0558), ADP (m/z
426.0218), ATP (m/z 505.9889), citric acid (m/z 191.0197), PI(18:1(11Z)/20:3 (8Z,11Z,14Z)) (m/z 885.5498), CPA(16:0/0:0) (m/z 391.2255), eicosatrienoate (m/
z 305.2486), palmitate (m/z 255.2330), linoleate (m/z 279.2331), taurine (m/z 124.0074), glucose 6-phosphate (m/z 259.0226), homocysteinesulfinic acid (m/z
166.0179), and uridine-monophosphate (m/z 323.0286). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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different ways. In subcutaneous adipose tissue, amino acid metabolism
had positive correlations with cofactor and vitaminmetabolism in serum
and negative correlations with lipid metabolism in muscle and carbo-
hydrate metabolism in the liver. By contrast, visceral adipose tissue had
relatively few pathway correlations with other organs. There were
multiple negative correlations between carbohydrate metabolism in the
liver and nucleotide metabolism in the serum, in addition to positive
correlations between lipid metabolism in the liver and cofactor and
vitamin metabolism in the muscle. There were also positive correlations
between amino acid metabolism in serum and various metabolic path-
ways in subcutaneous adipose tissue. Metabolism of cofactors and vi-
tamins in muscle was positively correlated with lipid metabolism in
serum, whereas energy metabolism in muscle was negatively correlated
with lipid metabolism in subcutaneous adipose tissue. By analyzing the
circos plot, we identified specific pathways that are dysregulated in CCx
and that may be involved in inter-organ cross-talk (Fig. 6b).

3.9. Exploring diagnostic models for cachexia classification

We applied machine learning to analyze metabolomic data from
various tissues, including 5 control samples and 10 cancer cachexia
samples, nsamples = 75, which encompassed the liver, muscle, visceral
and subcutaneous adipose tissues, and serum. In the first step, we
evaluated the ability to differentiate between cachexia and the control
group within each specific organ. Organ-specific classifiers for visceral
and subcutaneous adipose tissues, liver, skeletal muscle, and serumwere
developed using the 50 most distinguishing metabolites. The resulting
classifications exhibited high accuracy, sensitivity, and specificity
(Fig. 7).

In the subsequent step, we explored whether distinguishing cachexia
across various organs is possible through serum metabolomics,
providing a minimally invasive alternative to tissue biopsies. We
compared organ-specific classifiers with serum data, creating classifiers
incorporating metabolites common to both serum and the respective
organ. Applying these organ-specific classifiers to serum samples
allowed accurate assessment of cachexia status for individual organs
(Fig. 8a–d). Overall, our findings demonstrate promising accuracy,
sensitivity, and specificity of the organ-specific markers applied to
serum, indicating their potential utility in diagnosing cachexia across
diverse organ systems.

In the final stage, we developed a comprehensive classifier using
metabolites common to serum and all other organs (liver, muscle, sub-
cutaneous and visceral adipose tissues), which was then applied to
serum samples. This classifier also performs well, albeit slightly less
effectively than the individual organ-specific classifiers, revealing ac-
curacies, sensitivities, and specificities of 0.9755, 0.9760, 0.9750 for
liver; 0.8695, 0.9080, 08310 for muscle; 0.8005, 0.8140, 0.7870 for
subcutaneous adipose; 0.8380, 0.8520, 0.8240 for visceral adipose; and
0.8250, 0.7960, 0.8540 for serum (Fig. 8e).

4. Discussion

In this study, for the first time, liver, muscle, subcutaneous, visceral
adipose tissues, and serum from 10 cachectic and five control patients
with cancer were investigated using spatial metabolomics to examine
metabolic alterations associated with CCx in situ. Multiple significant
differences in metabolism of cachectic compared to control patients
were demonstrated. When comparing all cachexia patients with the
control group, the most significant metabolic changes are observed in
adipose tissue, followed by the liver, muscle, and serum. In cases of
severe cachexia, there is a pronounced increase in metabolic changes in
visceral adipose tissue. Pathways for carbohydrate metabolism, lipid
metabolism, and metabolism of amino acids and vitamins had the most
interactions across different organ systems in CCx. The liver showed the
most correlations with other organs, followed by serum and muscle.
Subcutaneous adipose tissue and visceral adipose tissue interacted with
other organs in very different ways. Subcutaneous adipose tissue
exhibited multiple pathway correlations with serum, muscle, and liver,
whereas visceral adipose tissue had few pathway correlations with other
organs. These findings support the concept that CCx is a multi-organ
syndrome involving metabolic disturbance and altered function of
multiple organ systems.

The significant metabolic alterations in visceral adipose tissue are
morphologically correlated with a reduction in the cell size of adipo-
cytes. Therefore, the metabolic and morphological findings underscore
the catabolic metabolic state of these adipocytes. Most of the metabo-
lites in subcutaneous and visceral adipose tissues were increased in
patients with CCx. Subcutaneous adipose tissue was more affected by
amino acid changes, whereas visceral adipose tissue was more affected
by changes in lipid metabolism. Patients with CCx had increased levels
of pyruvate and oxalacetate and reduced levels of fumarate in their
subcutaneous adipose tissue compared with control patients. These
findings are in agreement with the results of a transcriptomics study of
subcutaneous adipose tissue in patients with CCx that found upregulated
fatty acid degradation pathways and alterations of alanine and aspartate
metabolism [36]. Under catabolic conditions, the rate of fat oxidation is
increased as a result of elevated lipolysis to provide energy [36].

We observed a significant upregulation of arachidonic acid (AA) and
unsaturated fatty acid metabolism in visceral adipose tissue, which plays
a crucial role in the regulation of inflammation and metabolic processes
in cancer cachexia [5,37]. The lipoxygenase (LOX) pathway, particu-
larly the 5-LOX enzyme, is instrumental in the production of pro-
inflammatory eicosanoids such as leukotrienes. Inhibiting LOX en-
zymes can reduce these eicosanoids, potentially mitigating muscle
wasting and systemic inflammation observed in cancer cachexia
[38,39]. This suggests that the AA-LOX pathway could be a viable
therapeutic target to alleviate the inflammatory and catabolic effects of
this condition. Obesity represents the other end of the spectrum of
cancer cachexia. In the context of obesity, adipose tissue also exhibits
increased AA metabolism, which is associated with heightened inflam-
mation and metabolic dysfunction [40,41]. Chronic inflammation in
adipose tissue is a key factor contributing to insulin resistance and

Fig. 5. Pathway enrichment analysis, energy charge in cancer cachexia and patient stratification according to cachexia severity.
a: Bubble plot presenting the pathway impact from MetaboAnalyst and the corresponding P value of each significantly altered pathway in cachexia. In total, 53
pathways were found to be altered in cachexia in individual tissues. The x-axis shows the pathway impact from MetaboAnalyst. The size and color of the bubbles
represent the P-value.
b: Energy charge (EC) revealed a significantly charge in cachectic compared with control in subcutaneous adipose, visceral adipose, liver, and muscle tissues.
Whiskers of the boxplots represent the lowest and highest peak intensities in each group. AMP, ADP, and ATP distribution in cachectic and non-cachectic muscle
tissues are shown as example. *** P ≤ 0.001, EC: energy charge.
c: Pie diagrams illustrated organ-specific metabolic changes in relation to the severity of cancer cachexia. Subgroups were formed for ‘Cachexia > 5–10 % weight
loss’ and ‘Cachexia > 10 % weight loss’ to investigate organ-specific metabolic changes based on cachexia severity. When compared with the control group, the most
significant metabolic changes were predominantly observed in visceral adipose tissue in cases of severe cachexia. As an example, we presented a visualization of
taurine (m/z 124.0074) in the visceral adipose tissue of cachectic cancer patients in the ‘Cachexia > 10% weight loss’, ‘Cachexia > 5–10% weight loss’, and control
cancer patient cohorts. The boxplot depicts the relative intensity of taurine in the visceral adipose tissue in these three patient groups, with the highest abundance
observed in the ‘Cachexia > 10% weight loss’ group. ** P ≤ 0.01.
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metabolic dysregulation in obesity. Therefore, inhibiting the LOX
pathway in obesity could lower inflammation levels, thereby improving
insulin sensitivity and overall metabolic health [42]. Furthermore, dif-
ferential regulation of the AA metabolism pathways in cancer cachexia
and obesity underscores the complexity of metabolic and inflammatory
responses in these conditions. While both conditions feature elevated AA
metabolism, the resultant metabolic and inflammatory outcomes differ,
necessitating tailored therapeutic approaches. Our findings highlight
the potential of targeting the AA-LOX pathway to modulate lipid
mediator production. By reducing inflammation and improving meta-
bolic outcomes, this strategy could offer therapeutic benefits for both
cancer cachexia and obesity-related conditions. This approach aligns
with the growing body of evidence supporting the role of lipid mediators
in inflammation and metabolic regulation, underscoring the need for
further research to elucidate the therapeutic potential of AA metabolism
modulation in these conditions.

The ‘browning’ of adipose tissue refers to the process by which white
adipocytes acquire characteristics similar to those of brown adipose
tissue, resulting in several notable metabolic changes. This phenomenon
is characterized by an increase in mitochondrial density, as brown adi-
pocytes possess a higher number of mitochondria compared to white
adipocytes [43]. The process also involves the upregulation of uncou-
pling protein 1 (UCP1) in the mitochondria of brown fat cells [44]. This
protein facilitates the uncoupling of oxidative phosphorylation, causing
the energy from fat burning to be released as heat instead of being used
to synthesize ATP, a mechanism known as thermogenesis [43,45].
Additionally, browning stimulates lipolysis, enhancing the mobilization

and breakdown of fat stores to provide fatty acids for heat generation
[43,45]. Furthermore, brown adipocytes secrete a range of metaboli-
cally active molecules (adipokines) that positively affect glucose meta-
bolism and overall energy homeostasis [5,43]. In our study, we
identified elevated energy charge, increased metabolic activity, and
enhanced lipolysis in adipose tissue associated with cancer cachexia
(CCx). These findings suggest the presence of a browning effect. How-
ever, we did not specifically evaluate UCP1 expression through staining,
which is a marker of browning. Future research should further investi-
gate the role of adipose tissue browning in cancer cachexia to develop
new strategies for mitigating its adverse effects on patients.

Variations in tryptophan metabolism, particularly through the
kynurenine pathway, can significantly influence systemic metabolic
processes, impacting both adipose tissue and skeletal muscle. The
kynurenine pathway converts tryptophan into kynurenine, which can
affect serotonin levels. Serotonin, a neurotransmitter synthesized from
tryptophan, plays a critical role in mood stabilization and appetite
regulation [46,47]. Altered serotonin levels can have profound effects
on metabolic states and contribute to the pathophysiology of cancer
cachexia [5,47]. In adipose tissue, disrupted serotonin signaling can lead
to increased lipolysis and subsequent fat depletion. In skeletal muscle,
impaired serotonin signaling can negatively impact protein synthesis,
contributing to acceleratedmuscle wasting and weakness. Disruptions in
serotonin levels can affect the brain’s control over hunger and satiety,
leading to reduced food intake and altered energy balance, which can
exacerbate the cachectic state [5,48]. Understanding the interplay be-
tween altered tryptophan metabolism, serotonin signaling, and brain

Fig. 6. Circos plot depicting inter-organ correlations among serum and liver, muscle, subcutaneous adipose, and visceral adipose tissues.
a: Image-based assessment of adipocyte size was performed on H&E-stained histological sections of visceral and subcutaneous adipose tissue obtained from both
cachexia patients and the control group. Adipocyte sizes were compared using box plots. In visceral adipose tissue, adipocytes displayed a significantly smaller size
compared to those in the control group. * P ≤ 0.05.
b: The inner ring of circos plot consists of multiple color bars representing specific KEGG pathways that were enriched in multiple organs. The arcs demonstrate multi-
organ correlations. Blue color means positive correlations, and red means negative correlations. The numbers in the Circos plot denote the metabolites analyzed in
our study. These metabolites are organized clockwise in the plot, aligning with the sequential order of their respective metabolic pathways, spanning from pathway
aging to transport and catabolism. Carbohydrate, lipid, amino acid, nucleotide and vitamin metabolism displayed correlations across organ systems in the patients
with CCx. The liver exhibited the most pathway correlations with other organs. Subcutaneous adipose tissue and visceral adipose tissue interacted with other organs
in very different ways. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Exploring diagnostic models for cachexia classification.
The feature importance of the top 50 important metabolites used for the Random Forest (RF) classifier to differentiate between the control and CCx groups were
illustrated. Their corresponding accuracy, sensitivity, and specificity were listed for visceral adipose (a), subcutaneous adipose (b), liver (c), muscle (d), and serum
(e), respectively. The respective m/z species of the shown metabolites are listed in Supplementary Table 3.
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function highlights the complexity of cancer cachexia.
We found that the liver exhibited significant metabolic changes and

correlations with other organs in CCx. The liver is thought to contribute
directly to CCx by inducing hypermetabolism and increasing energy
expenditure [49]. Potgens et al. reported a clear difference in the
metabolic profiles of tumor-bearing mice with and without cachexia;
using metabolomics data from mice with C26 tumor-induced cachexia,
they found more molecules to be increased than decreased in the
cachectic murine liver [50]. This is in line with our findings that more
molecules were increased rather than decreased in the livers of patients
with CCx compared with control patients. Our analysis of liver samples
revealed significant changes in amino acid, lipid, and carbohydrate
metabolism. A recent analysis of metabolomics data from cachectic C26
mice showed similar changes in lipid metabolism [51]. Morigny et al.
showed that ceramide turnover in liver was the major contributor to
elevated sphingolipid levels in CCx [52]. These results suggest that
instead of hepatic lipid accumulation or lipotoxicity contributing to
cachexia, lipid peroxidation and cellular oxidative damage might in-
fluence the uncoupling of OXPHOS in mitochondria of the cachectic
liver. This might in turn contribute to increased energy expenditure and
weight loss in cachexia.

We observed CCx-related changes in amino acid, lipid, and carbo-
hydrate metabolism in skeletal muscle. These results are in line with
previous findings. Der-Torossian et al. reported involvement of all three

macronutrients in cachexia-related changes in gastrocnemius muscle in
a colon-26 (C26) cachectic mouse model [53]. Furthermore, tran-
scriptomics and metabolomics data from murine gastrocnemius muscle
suggested that pathways for amino acid and carbohydrate metabolism
are perturbed in CCx [54]. The upregulation of arginine and proline
metabolism in the skeletal muscle of CCx patients in the present study is
in accordance with previous observations of increased arginine and
proline levels in the skeletal muscle of cachectic mice [17]. Another
previous study found increased levels of asymmetric dimethyl arginine
in the skeletal muscle of patients with CCx, which seemed to contribute
to impaired muscle protein synthesis [55]. These findings suggest that
upregulation of arginine and proline metabolism during metabolic stress
in CCx impedes protein metabolism and stimulates proteolysis, leading
to muscle wasting.

Energy charge (EC) reflects the balance between energy production
and consumption, crucial for regulating cellular metabolism. We
investigated EC in liver, muscle, and adipose tissues of cachectic patients
compared to controls. Our findings reveal distinct EC levels across these
tissues, with muscle and adipose tissues exhibiting higher EC compared
to the liver. This discrepancy stems from the higher metabolic activity of
muscle and adipose tissues, contrasting with the liver’s role primarily in
energy storage and metabolism. This pattern aligns with existing liter-
ature, which consistently reports lower ATP levels in the liver due to its
extensive metabolic functions such as gluconeogenesis, glycogen

Fig. 8. Organ-specific classifiers applied to serum for cachexia classification.
Organ-specific classifiers were compared with serum, resulting in the creation of a classifier that exclusively incorporates metabolites common to both serum and the
respective organ. The heatmap and Venn diagram illustrate the common metabolites found in the classifiers of serum and the respective organ: visceral adipose (a),
subcutaneous adipose (b), liver (c), muscle (d), and serum (e), as well as a comprehensive classifier across both serum and all 5 multiple organs (f). The performance
of the Random Forest (RF) classifier validated in serum was presented.
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storage, detoxification, and lipid metabolism. In contrast, skeletal
muscle maintains higher ATP levels owing to its efficient ATP produc-
tion through both aerobic and anaerobic pathways, ensuring a stable
energy supply during muscle contraction. Adipose tissue, primarily
involved in energy storage, maintains relatively high ATP levels due to
its lower metabolic rate and energy demand. Our study reveals a sig-
nificant decrease in energy charge (EC) within muscle tissue affected by
cancer cachexia (CCx), indicating impaired metabolic activity in these
patients, consistent with previous findings [14,17]. This decline in EC
correlates with specific protein breakdown, disruptions in protein
turnover, mitochondrial dysfunction, and changes in substrate utiliza-
tion, collectively contributing to the observed metabolic dysregulation
in CCx muscle tissue [14,17]. Interestingly, liver and adipose tissues
showed increased EC levels in the context of cachexia, suggesting
adaptive metabolic changes in response to altered energy demands and
metabolic stress. Liver tissue plays a crucial role in metabolic regulation
and could be enhancing energy production to meet increased demands
in cachectic states. Adipose tissue alterations in energy charge reflect
shifts in lipid metabolism and energy storage mechanisms in response to
systemic metabolic changes in CCx. These observations underscore the
complexity of tissue-specific metabolic adaptations in cancer cachexia.
Notably, the influence of hypoxia on tissue EC warrants consideration.
Hypoxia-induced metabolic alterations could potentially influence EC
measurements, particularly in tissues with high oxygen demand like
skeletal muscle and liver. Future research should explore the molecular
mechanisms underlying these tissue-specific responses to deepen our
understanding of their implications for disease progression and thera-
peutic strategies.

As CCx is seen as a multi-organ syndrome, it was hypothesized that
mediators released from various tissues might be directly involved in the
generation of the main metabolic alterations in CCx [1]. Organs such as
muscle, adipose tissue, and liver may also play an important role in the
progression of CCx by exacerbating the pro- and anti-inflammatory re-
sponses initially activated by the tumor and the immune system [56].
Argiles et al. reported that abnormalities associated with CCx include
alterations in carbohydrate, lipid, and protein metabolism as well as
anorexia, insulin resistance, and increased muscle protein degradation
[1,57]. We found indirect evidence that the liver communicates strongly
with other organs, whereas serum, muscle, and adipose tissue do so less
strongly. We also found that subcutaneous adipose tissue and visceral
adipose tissue interact with other organs in very different ways. Car-
bohydrate metabolism, lipid metabolism, and amino acid and vitamin
metabolism were the metabolic pathways with the most interactions
across different organ systems in patients with CCx. Our results suggest a
complex and still poorly understood inter-organ crosstalk in CCx; how-
ever, future studies are needed to uncover the molecular mechanisms of
this crosstalk.

We also emphasized nucleotide metabolism, an area of notable in-
terest in the study of cancer cachexia (CCx). Previous studies, such as
those by Lautaoja et al. [58], have observed changes in nucleotide and
amino acid metabolism in mouse models of cachexia, further under-
scoring the relevance of these pathways in CCx. Similarly, research by
Rohm et al. (2019) highlighted alterations in nucleotide metabolism in
cachectic mice, indicating its role in muscle wasting and energy
imbalance [59]. In our study, network analysis clearly indicates that
nucleotide metabolism, amino acid metabolism, and arachidonic acid
metabolism are significantly upregulated in CCx liver compared to
control patients. This upregulation contributes significantly to the
metabolic changes in CCx, as evidenced by the prominent role of
nucleotide metabolism in the circus plot. Notably, nucleotide metabo-
lism’s influence extends beyond isolated pathways, suggesting a sys-
temic impact on overall metabolic homeostasis. Moreover, we identified
multiple negative correlations between carbohydrate metabolism in the
liver and nucleotide metabolism in the serum. This finding suggests
intricate regulatory mechanisms and compensatory responses in the
body’s attempt to maintain metabolic balance under cachexia

conditions. These complex interactions underscore the critical role of
nucleotide metabolism within the broader metabolic network affected
by CCx. The significance of nucleotide metabolism in CCx is also sup-
ported by studies indicating its involvement in inflammation and im-
mune responses, key components of cachexia pathophysiology [1,22].
Altered nucleotide metabolism can influence cellular energy status,
signal transduction, and gene expression, all of which are vital for
maintaining muscle and liver function during cachexia.

Our extensive datasets, gathered from various organ systems in
cancer patients with and without cancer cachexia, reveal significant
metabolic differences. These datasets are valuable for diagnostic clas-
sification through machine learning, effectively distinguishing cachexia
within specific organs such as the liver, muscle, and adipose tissue.
However, organ-specific differentiation, which relies on invasive and
ethically complex biopsies, has limited practical utility for developing
biomarkers. To overcome this challenge, we explored the potential to
differentiate cachexia across organs using serum metabolomics, offering
a simple alternative to tissue biopsies. For the first time, we compared
organ-specific classifiers with serum data and developed classifiers that
combine metabolites shared between serum and respective organs.
Applying this organ-specific classifier to serum enables effective evalu-
ation of cachexia in individual organs. Additionally, we created a ver-
satile classifier containing metabolites common to serum and all other
organs. While not as potent as individual organ-specific classifiers, this
comprehensive classifier enables a clear distinction of CCx. Examination
of these classifiers identified metabolites with the highest Gini impor-
tance, revealing distinctive patterns representing key metabolic path-
ways, including glucose metabolism, the tricarboxylic acid cycle, purine
metabolism, amino acid metabolism, and lipid metabolism. These key
metabolites serve as surrogates for essential metabolic pathways altered
in cancer cachexia, explaining the effective differentiation between
cachexia and control groups. The selection of AMP, arachidonic acid,
citric acid, glucose phosphate, phosphatidylethanolamine, oleic acid,
and uric acid for the joint classifier distinguishing serum from all organs
is attributed to their potential synergistic effects in reflecting the com-
plex metabolic alterations associated with cachexia. AMP serves as a
crucial indicator of energy metabolism, while arachidonic acid, a pre-
cursor to inflammatory eicosanoids, reflects tissue inflammation and
metabolic dysregulation in cachectic states [60]. Citric acid, pivotal in
the citric acid cycle, alongside glucose phosphate, the primary energy
substrate, indicate systemic metabolic shifts and energy production
changes observed in cachexia [22]. Phosphatidylethanolamines, essen-
tial in cell membrane integrity and signaling, may reflect tissue-specific
alterations in lipid metabolism, with oleic acid, a monounsaturated fatty
acid, contributing to lipid homeostasis disturbances characteristic of
cachectic conditions. Uric acid, the endpoint of purine metabolism,
mirrors metabolic stress and inflammation in tissues affected by
cachexia [61]. Together, these metabolites provide a comprehensive
view of the multifactorial nature of cachexia, leveraging their combined
metabolic and biological roles to distinguish between cachectic and
control states with greater sensitivity and specificity. Their synergistic
interactions in reflecting diverse aspects of metabolic dysfunction and
tissue inflammation underscore their utility in the classifier model
aimed at non-invasive diagnosis and understanding of cachexia.

The identified metabolic changes across liver, muscle, adipose tis-
sues, and serum in CCx underscore the multi-organ involvement and
complex metabolic dysregulation characterizing this syndrome. Thera-
peutically, targeting these metabolic pathways could potentially miti-
gate the progression of cachexia. For instance, strategies aimed at
restoring amino acid balance, regulating lipid metabolism, and
enhancing energy utilization pathways in affected tissues may attenuate
muscle wasting and metabolic stress associated with CCx [15,62].
Furthermore, understanding the role of nucleotide metabolism and its
interactions with other metabolic pathways could offer novel thera-
peutic targets, potentially influencing inflammation and immune re-
sponses crucial to cachexia pathophysiology [14]. Integrating these
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insights with advanced diagnostic approaches, such as serum
metabolomics-based classifiers, could facilitate early detection and
personalized treatment strategies for patients with CCx, emphasizing the
importance of multi-omics research in advancing therapeutic
interventions.

The brain plays a crucial role in the pathophysiology of cancer
cachexia by integrating and responding to systemic metabolic changes
occurring in the liver, skeletal muscle, and adipose tissue. This central
integration affects the overall progression of cachexia and its manifes-
tations across these organs [5,63]. In the liver, cancer cachexia disrupts
glucose and lipid metabolism. The brain monitors these changes through
circulating metabolites and hormones, and impaired liver function
contributes to systemic insulin resistance, affecting brain energy regu-
lation. The liver also produces inflammatory cytokines in response to
systemic inflammation, which can cross the blood-brain barrier, leading
to neuroinflammation and influencing appetite and energy expenditure
[64,65]. In skeletal muscle, cachexia leads to significant muscle wasting
due to increased protein breakdown and decreased synthesis. The brain
responds to signals of muscle loss by altering appetite and energy bal-
ance. Muscle-derived myokines, which are altered in cachexia, affect
brain signaling related to muscle mass and physical function, potentially
worsening fatigue and cognitive impairment. In adipose tissue, the loss
of fat mass in cachexia alters the production of adipokines like leptin and
adiponectin. These changes disrupt the brain’s regulation of appetite
and energy expenditure, contributing to further weight loss and meta-
bolic imbalance [63]. Inflammation in adipose tissue releases mediators
that can impact brain function, influencing systemic inflammation and
the progression of cachexia. Overall, the brain regulates appetite and
energy expenditure through complex feedback systems involving pe-
ripheral metabolic signals. Disruptions in these systems during cancer
cachexia lead to decreased food intake, increased energy expenditure,
fatigue, and cognitive impairments, which exacerbate the condition
[5,46,63]. Understanding these interactions is crucial for developing
targeted interventions to manage cancer cachexia effectively and
improve patient outcomes.

5. Strengths and weaknesses

This study is the first to employ spatial metabolomics to investigate
multiple organs from cachectic and control cancer patients, offering a
comprehensive and detailed analysis of cancer cachexia (CCx). By
analyzing multiple tissues simultaneously, the study underscores the
systemic nature of CCx and sheds light on inter-organ cross-talk and
metabolic interactions. The identification of significant metabolic
pathway alterations, coupled with advanced techniques such as
pathway enrichment and correlation network analyses, deepens our
understanding of CCx pathophysiology. Our approach of integrating
organ-specific metabolic classifiers into serum samples from cancer
cachexia patients represents a significant advancement in the develop-
ment of classifiers for potential diagnostic biomarkers using machine
learning techniques.

However, it’s essential to note that these findings are preliminary
and limited due to the small dataset of 75 tissue samples and the absence
of an independent validation cohort. In the next phase, it is of great
interest to validate and, more importantly, refine these classifiers using
larger and statistically robust cohorts through artificial intelligence and
machine learning. The comparison of metabolites between the CCx and
control groups did not include P-value corrections to align with our
discovery-oriented study’s goal of maximizing sensitivity to identify
potential associations and generate hypotheses. Additionally, we vali-
dated our findings through spatial two-dimensional visualization of
metabolites and further confirmed them using machine learning and
principal component analysis. Our study provides a snapshot of each
patient at a single time point and does not take into account dynamic
changes over time. Further studies should be designed as longitudinal
studies to validate our findings. It is important to clarify that our study

primarily focused on the metabolic consequences of cancer cachexia
rather than on the direct analysis of tumor growth dynamics. The
observed changes reflect the metabolic alterations associated with the
systemic effects of cancer cachexia and provide valuable insights into
pathways potentially relevant to cancer cachexia in humans.

Moreover, comparative analyses across different metabolic states,
including healthy controls and obese groups, would deepen our under-
standing of metabolic differences and similarities. Cancer cachexia and
obesity represent two extremes of metabolic dysregulation, and
comparing these conditions can help identify overlapping metabolic
pathways. This approach could also highlight specific biomarkers and
therapeutic targets relevant to both conditions, potentially improving
clinical outcomes. For instance, our findings reveal overlapping meta-
bolic disturbances in arachidonic acid metabolism between cancer
cachexia and obesity. This indicates that further research into these
shared pathways could uncover new therapeutic aspects and strategies
for managing both conditions effectively.

6. Conclusions

In summary, we conducted a multi-organ metabolomics study using
spatial metabolomics in human patients with CCx. The results reveal
multiple changes in metabolic pathways across organs, indicating
various interactions. Our analysis suggests a close interaction between
liver and adipose tissue in CCx, whereas interactions involving muscle
metabolism were less pronounced. These interactions should be inves-
tigated in more detail in the future to gain a better understanding of
cachexia. The classification models demonstrate that achieving effective
differentiation at the organ level is feasible, and obtaining distinction in
serum regarding cachexia status at the organ level is also possible. This
tissue-based approach has been undertaken in this study for the first
time, suggesting its potential for further development and application in
larger patient cohorts.

7. Translation potential

This study significantly advances the understanding of cancer
cachexia by illustrating the multi-organ nature of the syndrome and
identifying distinct metabolic alterations across various tissues. The
integration of spatial metabolomics and machine learning opens new
avenues for diagnosing and monitoring CCx. The development of serum-
based classifiers holds significant translational potential by providing a
less invasive alternative to tissue biopsies. These classifiers could facil-
itate the monitoring of CCx progression and treatment response in
clinical practice. Additionally, serum-based classifiers can be used for
identifying patients at higher risk of developing CCx, necessitating more
intensive monitoring. Future research should focus on validating these
findings in larger cohorts and exploring longitudinal studies to capture
the dynamic changes in CCx. The study’s approach and findings
contribute to the development of therapeutic strategies targeting the
metabolic dysregulation in CCx, ultimately improving patient outcomes.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.metabol.2024.156034.
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