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Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous malignancy that remains a
significant challenge in clinical management due to frequent treatment failures and pronounced therapy
resistance. While metabolic dysregulation appears to be a critical factor in this scenario, comprehensive
analyses of the metabolic HNSCC landscape and its impact on clinical outcomes are lacking. This study
utilized transcriptomicdata from four independent clinical cohorts to investigatemetabolic heterogeneity in
HNSCC and define metabolic pathway-based subtypes (MPS). In HPV-negative HNSCCs, MPS1 and
MPS2were identified,whileMPS3wasenriched inHPV-positivecases.MPSclassificationwasassociated
with clinical outcome post adjuvant radio(chemo)therapy, with MPS1 consistently exhibiting the highest
risk of therapeutic failure. MPS1 was uniquely characterized by upregulation of glycan (particularly
chondroitin/dermatan sulfate) metabolism genes. Immunohistochemistry and pilot mass spectrometry
imaging analyses confirmed this at metabolite level. The histological context and single-cell RNA
sequencing data identified themalignant cells as key contributors. Globally, MPS1was distinguished by a
unique transcriptomic landscape associated with increased disease aggressiveness, featuring motifs
related toepithelial-mesenchymal transition, immunesignaling,cancerstemness, tumormicroenvironment
assembly, and oncogenic signaling. This translated into a distinct histological appearance marked by
extensive extracellular matrix remodeling, abundant spindle-shaped cancer-associated fibroblasts, and
intimately intertwined populations of malignant and stromal cells. Proof-of-concept data from orthotopic
xenotransplants replicated theMPSphenotypes on the histological and transcriptome levels. In summary,
thisstudy introducesametabolicpathway-basedclassificationofHNSCC,pinpointingglycanmetabolism-
enriched MPS1 as the most challenging subgroup that necessitates alternative therapeutic strategies.

Head and neck squamous cell carcinomas (HNSCCs) derive from the
mucosal epithelium and manifest in the oral cavity, pharynx, and larynx.
The main risk factors are tobacco and alcohol consumption and human
papillomavirus (HPV) infection1. Due to the divergent etiology, HNSCCs

reveal a high degree of heterogeneity on all molecular levels2,3. Clinical
management of HNCC is essentially dependent on the disease stage. Most
cases requiremultimodality approaches, including surgery, radiationand/or
chemotherapy. For recurrent or metastatic disease, targeted therapies and
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immunotherapies are available.Despite combinedmultimodality treatment
approaches, the five-year survival rate for locally advanced cases remains
mediocre, ranging from 50 to 60%1.

A major determinant of therapeutic failure is the intrinsic and/or
acquired resistance of HNSCC cells to irradiation and/or chemotherapy.
While HPV-associated tumors show a generally favorable clinical response
compared to HPV-negative HNSCC, two intrinsically different subtypes of
HPV-positive tumors were recently reported, including a subgroup of
tumors with increased NFκB signaling and increased radiosensitivity4.
Additionally, the composition of the tumor microenvironment (TME),
including endothelial cells, cancer-associated fibroblasts (CAFs), and
immune cells, as well as non-cellular characteristics, such as components of
the extracellular matrix, oxygen and nutrient supply, pH-value, and others,
strongly influences the treatment outcome5. In this scenario, hypoxia,
immune infiltration, inflammatory signaling, and tumor-stroma interac-
tions (e.g. with CAFs) confer metabolic reprogramming of the tumor with
relevant implications for the response towards therapy6,7. Accordingly,
understanding metabolic heterogeneity and characterizing metabolic phe-
notypes of HNSCCs is of pivotal importance to gain insights into the
mechanisms of treatment resistance and to provide a basis for the devel-
opment of alternative therapeutic approaches for high-risk cases.

Currently, only a constrained body of research investigatingmetabolic
pathway dysregulations and metabolic heterogeneity for the purpose of
diagnostic stratification is available from other cancer entities8. In HNSCC,
transcriptome and genome analyses revealed molecular heterogeneity
within tumors and between matched primary-recurrent tumor pairs. The
transcriptome-based identification of molecular subtypes exhibited distinct
biological characteristics9,10, and identified intratumoral heterogeneity as a
relevant factor for clinical treatment planning and treatment success11,12.
Nevertheless, comprehensive analyses of metabolic phenotypes based on
transcriptional profiling in HNSCC are missing.

The present study was designed to examine metabolic heterogeneity
and to identify metabolic subtypes derived from transcriptomic data of
clinical HNSCC samples. However, HPV-positive tumors were included
into the study to provide a comprehensive picture of the diverse entity of
HNSCC. Starting with HPV-negative cases of four independent clinical
cohorts, we were able to determine metabolic pathway-based subtypes
(MPS) with distinct transcriptional profiles and association to clinical
outcome. Adding HPV-positive cases in the next step provided an even
more comprehensive picture of metabolic diversity in HNSCC. Beyond
metabolism, the MPS classes revealed clear differences in their tran-
scriptomic landscapes and their expression levels of cancer-relevant gene
signatures. Immunohistochemical and histopathologic analyses as well as
pilot MALDI mass spectrometric imaging (MALDI-MSI) experiments
confirmed the transcriptional MPS classification on the metabolite level.
Finally, proof-of-concept data from established HNSCC cell lines and
orthotopic xenografts demonstrated the replicability of the metabolic
HNSCC phenotypes both in vitro and in preclinical animal models, thus
enabling future mechanistic perturbation studies and preclinical trials of
novel therapeutic strategies.

Furthermore, in conjunction with this study, we have made novel
transcriptomic data from our in-house HNSCC clinical collective publicly
available, as well as an R library (MetabolicExpressR) for standardized and
reproducible metabolic subtyping in cancer transcriptomic data sets.

Results
To explore metabolic heterogeneity and the existence of distinct metabolic
phenotypes in HNSCC, we performed transcriptome analyses in four dif-
ferent patient cohorts. As a first step, we investigated how metabolic dys-
regulation occurs in HNSCC on the transcriptome and proteome level. To
this end,we comparedmetabolic gene andprotein expression levels between
normal and tumor tissues and analyzed the congruence of mRNA and
protein data. The observed divergence in metabolic gene expression across
different cases prompted us to hypothesize that distinct metabolic HNSCC
phenotypes exist and that they can be assigned on the transcriptome level.

For a clear definition of thesemetabolic pathway-based subtypes (MPS), we
made use of the KEGG metabolic pathways collection, gene set variation
analysis (GSVA), and k-means clustering. The metabolic phenotypes were
compared to established transcriptomic HNSCC subtype classifications,
their general transcriptomic landscape was explored, their association with
clinical prognosis was examined, and validation on themetabolite level was
achieved by immunohistochemical analysis of a key metabolite as well as
pilot MALDImass spectrometry imaging (MALDI-MSI) experiments. The
metabolic phenotype with particularly impaired clinical outcome was fur-
ther investigated by in-depthmolecular characterization and computational
deconvolution-based and histopathologic analysis of the tumor micro-
environment (TME). Finally, we provide proof-of-concept evidence that
MPS phenotypes as well as their molecular characteristics can be replicated
in HNSCC cell lines in vitro and in orthotopic xenotransplants derived
thereof, thus opening the perspective of future mechanistic analyses and
preclinical trials.

Metabolic dysregulation in HNSCC at the gene and protein
expression level
In this study, we selected 95 Kyoto Encyclopedia of Genes and Genomes
(KEGG) metabolic pathways consisting of 1659 unique genes to analyze the
metabolic characteristics of HNSCC on the transcriptome level. Using pub-
licly available data of theCPTAC-HNSCCcohort13, we observed a significant
positive correlation between mRNA and protein expression for the majority
ofmetabolic genes (94%, 1042out of 1107 availablemetabolic genes/proteins,
median Spearman correlation r = 0.592, Supplementary Fig. 1a). These
findings demonstrate that mRNA expression of metabolic genes can reliably
represent protein abundance and bears the potential to provide meaningful
insights intometabolic processes basedon transcriptomic data. Furthermore,
differential gene andprotein expressionanalysis betweenmatched tumor and
normal samples revealed dysregulation of manifold metabolic genes and
proteins (P. adj<0.05) pointing towards tumor-specific metabolic processes
(Supplementary Fig. 1d, e). Principal component analysis (PCA) of primary
tumor and normal tissue samples incorporating metabolic gene/protein
expression data revealed a) a clear separation of tumor and normal samples
and b) a pronounced level of variance in metabolic gene expression across
tumor samples suggesting the existence of different metabolic phenotypes in
HNSCC (Supplementary Fig. 1b, c).

Identification of metabolic pathway-based subtypes (MPS) in
four independent HNSCC cohorts
To infer metabolic heterogeneity in HNSCC, we determined enrichment
scores for 95 KEGG metabolic pathway gene sets in the HPV-negative
subsets of four independent clinicalHNSCCcohorts (LMU-KKG (n = 145),
TCGA (n = 241), GSE65858 (n = 176), andGSE41613 (n = 96)) using Gene
Set Variation Analysis (GSVA). The resulting GSVA matrices were sub-
jected to k-means clustering, revealing an optimum of k = 2 clusters and,
accordingly, two distinct MPS subtypes in each of the four independent
cohorts (Fig. 1a): MPS1, characterized by unique upregulation of glycosa-
minoglycan (GAG) metabolism pathways, and MPS2, associated with
broad-spectrum upregulation of multiple pathways from different meta-
bolic categories, including amino acid and lipid metabolism (Fig. 1b, d).
These findings illustrate the metabolic diversity within the subgroup of
HPV-negativeHNSCCs and substantiate our initial hypothesis that distinct
metabolic phenotypes exist across independent clinical cohorts. To validate
the presence and consistency of theMPS classes and their specificmetabolic
gene expression profiles, we further applied two complementary approa-
ches. First, correlation analyses of GSVA metabolic pathway score profiles
for MPS1 and MPS2 revealed a high degree of congruence in MPS classi-
fication as obtained independently in the four data sets (Fig. 1c). Second, the
methodologically alternative approachof nearest shrunken centroids (NSC)
classification with classifiers trained on one cohort and applied to the other
cohort, showed good agreement with k-means clustering-based classifica-
tion for LMU-KKGandTCGA(classification consistency rates of 0.897 and
0.880, Supplementary Fig. 2a, b).
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The observation that different methodological approaches applied to
four independent clinical cohorts precipitated in robust and congruent
classification of two MPS subtypes supported the validity of the newly
defined metabolic classification and stimulated us to compare them to
existing transcriptomic HNSCC subtype classifications.

To describe the association of the MPS-classification with the existing
transcriptome-based “Keck subtypes”10 which represent a widely used
molecular stratifier inHNSCC,wefirst compared theKEGGmetabolic gene
compilation (n = 1659) used forMPS classification with the genes employed
for molecular subtyping of HNSCC by Keck et al. (n = 821) and found a
marginal overlap of 92 genes only. Nevertheless, the two MPS groups
exhibited significantly different distributions of “Keck subtypes” (Fisher’s
exact test P < 0.001, in both the LMU-KKG and TCGA cohorts). MPS1 was
enriched in cases of the basal (BA) and inflamed/mesenchymal (IMS) sub-
types,while the classical (CL) subtypewasoverrepresented inMPS2 (Fig. 1e).

Metabolic gene expression of MPS1 and MPS2 cases in com-
parison to normal tissue samples on the RNA and protein level
and pilot metabolite level analyses
We further investigated the MPS on protein level and compared MPS-
classified tumors and normal tissue samples. For this purpose, we used the
TCGA (n = 275 samples) and the CPTAC (n = 241 samples) cohorts,
including adjacent normal tissue samples (TCGA: n = 34 matched normal
samples; CPTAC: n = 53 matched normal samples with mRNA expression
data and n = 62 with protein expression data), thus enabling a comparison
with respective MPS-classified tumors. PCA based on metabolic gene or
protein expression showed a separation of MPS classes within tumor tissue
samples and a distinct normal tissue cluster for both cohorts (Supplemen-
tary Fig. 3a, c). Interestingly, tumor samples exhibited higher numbers of
metabolic genes and proteins down- than upregulated (Supplementary Fig.
3b, d) and therefore lower overall metabolic pathway scores (gene and
protein expression level) as compared to normal tissue samples. This
reduced metabolic pathway expression – except for GAG-related pathways
– might be attributed to the attenuation of energy consuming cellular
functions andcorrespondingmetabolic processes in tumors14. BothHNSCC
cohorts indicated anMPS1-specific upregulation ofGAG-relatedmetabolic
pathways compared to MPS2 and/or to the corresponding normal tissues
(Supplementary Fig. 3e). Importantly, the consensus results on RNA level
could be confirmed on the protein level in the CPTAC cohort – again
demonstrating the validity of the transcriptome-derived MPS profiles
(Supplementary Fig. 3e). Metabolite level data (metabolite abundance or
flux measurements) are necessary to explore the association between
metabolic gene/protein expression and metabolic activity. Unfortunately,
systematic data are not available for the clinical cohorts analyzedwithin this
study. Inpilot experiments,we subjected exemplary tumor cases toMALDI-
MSI analysis and identified m/z species previously described for fragments
of chondroitin sulfate originating from glycan metabolism15, strongly
enriched in MPS1 (Supplementary Fig. MALDI-MSI HE). This finding
reinforces the RNA and protein level-based observation that GAG meta-
bolism is upregulated inMPS1. Conversely, multiple m/z species associated
with various metabolic processes from the energy, amino acid, and lipid
metabolism categories were detected in greater abundance in MPS2 (Sup-
plementary Fig. MALDI-MSI HE), once again confirming the RNA and
protein level data.

Association of MPS subtyping with clinical response in HPV-
negative HNSCC
Next, we set out to assess the implications of divergent metabolic gene
expression for clinical prognosis. No association betweenMPS1/MPS2 and
previously reported prognostic clinical variables was observed by Fisher’s
exact test in the LMU-KKG, TCGA, GSE65858, and GSE41613 HPV-
negative cohorts (Supplementary Table 1), but univariable Cox
Proportional-Hazards (Cox PH) modeling and Kaplan-Meier (KM) ana-
lysis revealed significantly impaired overall survival (OS) for MPS1 com-
pared to MPS2 cases in the LMU-KKG, GSE6558, and GSE41613 cohorts
(LMU-KKG, GSE65858, and GSE41613; P = 0.035, HR = 1.723, 95%
CI = 1.025–2.895, P = 0.015, HR = 1.86, 95% CI = 1.125–3.073 and
P = 0.043, HR = 1.777, 95% CI = 1.015–3.111, respectively) (Fig. 2a, b).
Additionally, recurrence-free survival (RFS) and locoregionalRFS (LR-RFS)
were significantly reduced for MPS1 in the LMU-KKG cohort (logrank
P = 0.043, HR = 1.636, 95% CI = 1.003-2.669 and logrank P = 0.044,
HR = 1.65, 95%CI = 1.001–2.719, respectively) (Fig. 2a, Supplementary Fig.
4a). In contrast to MPS phenotypes, “Keck subtypes” exhibited no asso-
ciation with clinical endpoints (OS, RFS) in LMU-KKG (Supplementary
Fig. 5), therebyvalidating the lackof aprognostic valueof “Keck subtypes” in
HPV-negativeHNSCCas reported byKeck et al.10. Thus,MPS classification
turned out to be independently associated with the clinical response of
HPV-negative HNSCC upon adjuvant radio(chemo)therapy. In the subset
of HPV-negative HNSCCs with adjuvant radio(chemo)therapy of the
TCGA cohort, MPS classification did not reach statistical significance in
association with OS (n = 77, logrank P = 0.45). This discrepancy may be
explained by the multi-center nature of the TCGA cohort which increases
heterogeneity in the applied therapeutic and follow-up schemes. More
specific clinical endpoints beyond OS, such as RFS or LR-RFS, were not
available for the TCGA cohort. In multivariable modeling, including pre-
viously reported clinical prognostic factors in HNSCC, addition of MPS
classification into themodelingapproach improved themodel forRFS in the
LMU-KKG data set as indicated by concordance-index (C-index) and HR.
Multivariable modeling approaches for OS and LR-RFS showed nearly
similar performance with and without inclusion of MPS classification
(Table 1a).

A remarkable improvement in clinical risk group stratification was
demonstratedwhenMPS classificationwas combinedwith lymphovascular
invasion (LVI), TNM N-stage, extracapsular extension (ECE), and peri-
neural invasion (PNI), respectively, resulting in sub-stratificationof four risk
groups. All four-group Cox PH models exhibited significantly improved
performance compared to the two-group Cox PH models based on single
risk factors for OS and RFS (as determined by chi-square testing; Fig. 2c, d,
Supplementary Figs. 6-7). The MPS sub-stratification of LVI, ECE, and
N-stage identified high-risk groups with significantly elevated HRs when
compared to the corresponding low-risk groups.

Molecular characterization of the MPS1 phenotype
Formolecular characterization ofMPS1we employed the consensus results
derived from all four clinical cohorts and from available single-cell RNAseq
(scRNAseq) data. In all data sets, MPS1 revealed a clear enrichment of
several pathways from the glycan biosynthesis and metabolism category
(P adj.<0.001 for all four data sets), including glycosaminoglycan biosynthesis
– chondroitin/dermatan sulfate (CS/DS), glycosphingolipid biosynthesis –

Fig. 1 | Metabolic pathway-based subtypes identified in four independent gene
expression cohorts. Transcriptomic data from clinical cohorts were used for KEGG
metabolic pathway enrichment quantification by GSVA. GSVA metabolic enrich-
ment matrices were subjected to k-means clustering (with optimal k = 2) for
unsupervised metabolic subtype identification (a). Heatmaps of KEGG metabolic
pathways enrichment scores, according to the k-means clustering (k = 2) for the
LMU-KKG (n = 145), TCGA-HNSC (n = 241), GSE41613 (n = 96), and GSE65858
(n = 176) cohorts, respectively (HPV-neg. only). MPS1 and MPS2 were indepen-
dently delineated in the four cohorts. 52 metabolic pathways with significant
(P adj.<0.05) differences in at least three cohorts between MPS1 and MPS2 are

visualized (b). Correlation plot including Pearson’s coefficients of MPS-specific
centroids between the four cohorts (c). MPS1 vs. MPS2 log2 fold changes (LFC) of
GSVA enrichment scores for the 52 metabolic pathways in the four cohorts (d).
Comparison of gene sets used forMPS and “Keck classification”, respectively.MPS1/
2with significantly different Keck subtype frequencies (consistent in LMU-KKGand
TCGA) (e). MPS1 is enriched in IMS and BA cases, while CL cases are over-
represented in MPS2. Fisher’s exact test P-value on MPS and Keck subtype <0.001
for both cohorts. BA basal, CL classical, IMS inflamed/mesenchymal, NT matched
normal, TP primary tumor, NS non-significant.
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Fig. 2 | MPS is associated with radio(chemo)therapy response. Kaplan-Meier
(KM) plots of the LMU-KKG cohort (HPV-negative) for overall survival (OS), and
recurrence-free survival (RFS), respectively (a). MPS1 with significantly adverse OS,
RFS, and locoregional recurrence-free survival (LR-RFS) compared to MPS2 (LR-
RFS, and additional endpoints in Supplementary Figure 4a). Independent validation
of MPS1 with adverse OS in two HPV-negative HNSCC data sets (GSE65858 and
GSE41613) (b). Risk-group stratification and comparative KM analysis based on

established clinical prognostic factors and MPS: lymphovascular invasion (LVI/L
stage, c) and N stage (d) for endpoint OS. Clinical variables only (left) and in
combination with MPS (right). The two models were compared by chi-square
testing, and P-values are shown. Reference groups in pairwise comparisons are L1
MPS1 (c), and N2-3 MPS1 (d), HRs with 95% CI are indicated (additional clinical
factors/endpoints in Supplementary Figure 6).

https://doi.org/10.1038/s41698-024-00602-0 Article

npj Precision Oncology |           (2024) 8:116 5



ganglio series, glycosaminoglycan biosynthesis – heparan sulfate/heparin (P
adj. = 0.015, <0.001, 0.001, <0.001 for LMU-KKG, TCGA, GSE6558, and
GSE41613), and other glycan degradation (all results in Supplementary
Tables 2–5). These results were independently validated on the protein level
of the CPTAC cohort (Supplementary Fig. 3e). Accordingly, multiple genes
involved in the CS/DS pathway exhibited differential expression between
MPS1 andMPS2 (Supplementary Fig. 8b, Supplementary Tables 6–8). The
previously reported role of GAGs in cell-cell (including tumor cell-CAF)
and cell-extracellular matrix (ECM) interactions16,17 prompted us to
examine CAF subtype signatures, disclosing a clear enrichment of several
CAF subtypes in the high-riskMPS1 tumors (consensus in all four data sets,
Fig. 3c). This finding was well in line with CIBERSORTx analysis results
pointing to elevated abundance of fibroblasts in the MPS1 subtype (Sup-
plementary Fig. 9).

Taking advantage of scRNAseq data from Puram et al.18, we observed
that the reported metabolic profiles of MPS1 and MPS2 predominantly
originated from malignant cells and not from fibroblasts (CAFs) which
represent the secondmost prevalent cell type in the bulk RNAseq data used
for MPS classification (Fig. 3d, Supplementary Fig. 2c-f).

To achieve a comprehensive overview of transcriptomic landscape
differences between MPS1 and MPS2, we independently applied gene set
enrichment/variation analysis (GSEA/GSVA) using the Molecular Sig-
natures Database (MSigDB) hallmarks gene set collection in the four
cohorts and the scRNAseq data set. As expected, multiple metabolism-
related hallmark gene sets were among the most prominently enriched in
MPS2 (Fig. 3a, f). Furthermore, hallmark gene sets associated with immune
mechanisms, including inflammatory response, interferon-alpha response,
interferon-gamma response, and coagulation (Fig. 3a, f) were consistently
enriched in MPS1, both on the bulk and (malignant) single-cell levels (Fig.
3a, f) (all results in Supplementary Tables 9-13). Similarly, the immune-
related tumor inflammation signature (TIS) was upregulated in MPS1,
paralleled by enhanced expression of the PD-1 signaling signature (Fig. 3c).
These findings suggest an increased infiltration and/or activation of
immune cells and inflammatory signaling pathways in the MPS1 subtype,
potentially counteracted by immunosuppressive mechanisms. MPS1

(compared to MPS2) also showed enrichment of the developmental hall-
mark gene setsangiogenesis andmyogenesis in the bulk (P adj.<0.001 all data
sets) but not in the scRNAseq data of malignant cells only (Fig. 3a, f),
implying that bothmight preferentially originate from fibroblasts and other
stromal cell types with higher abundance in the MPS1 subtype (Supple-
mentary Fig. 9, Fig. 3c). Epithelial-mesenchymal transition (EMT) was
another developmental hallmark gene set with strong enrichment in MPS1
and in agreement with upregulation of the related partial EMT (p-EMT)
signature (Fig. 3c, e). Both are known to contribute to cancer progression
and treatment resistance and have been linked to cancer stemness and
angiogenesis via the secretion of vascular endothelial growth factor (VEGF)
or direct differentiation of cancer stem cells into endothelial-like cells,
respectively18. This encouraged us to investigate theHNSCC cancer stem cell
signature which similarly showed significant upregulation in MPS1 (bulk
and scRNAseq data) (Fig. 3c, e). Interested in the potential upstream reg-
ulators responsible for the observed MPS1-specific gene expression pat-
terns, we performed PROGENy analysis and identified TNF and TGF-β
signaling to be positively associated with MPS1 gene expression, whereas
p53 signaling showed negative association (Fig. 3b, Supplementary Table
14).TNF is recognized for its ability tomediate cytotoxicity of radio- and/or
chemotherapy in HNSCC19–21. TGF-β is involved in several processes, such
as tumor progression promotion, EMT, and the formation of an immu-
nosuppressive TME. It is feasible to assume that both cytokine signaling
pathways contribute to the regulation of the observed tumor-promoting
processes and treatment failure in high-risk MPS1 tumors.

Finally, a pre-ranked GSEA with the more detailed (compared to the
hallmarks collection) Gene Ontology Biological Process (GO-BP) gene set
compilation was performed using amean-ranked gene list derived from the
differential gene expression results ofMPS1 vs.MPS2 in the four individual
cohorts. Subsequent EnrichmentMap22 network visualization essentially
confirmed and complemented the molecular characterization of the MPS
phenotypes. Motifs of biological processes enriched in MPS1 are pre-
dominantly associated with TME organization and oncogenic signaling
processes, while metabolic processes predominantly shape the biological
process landscape of MPS2 (Fig. 4).

Table 1 | Risk modeling of clinical response using MPS class and CS/DS metabolism pathway enrichment scores

a

Endpoint Model with MPS Model without MPS

Final variables Risk score P-value, HR
(95% CI)

C-index (95%,85%CI) Final variables Risk score P-value, HR
(95% CI)

C-index (95%, 85% CI)

OS MPS,ECE, Resectionmargin
status, LVI

0.001, 2.565
(1.443–4.560)

0.741 (0.603-0.878,
0.640-0.842)

ECE, Resection margin
status, LVI

0.032, 1.698
(1.048–2.751)

0.761 (0.632–0.890,
0.666-0.855)

RFS MPS, ECE, LVI <0.001, 2.542
(1.530–4.222)

0.815 (0.714-0.916,
0.741-0.889)

ECE, LVI 0.024, 2.182
(1.630–2.489)

0.738 (0.598–0.879,
0.635-0.842)

LR-RFS MPS, ECE, LVI 0.227, 1.382
(0.818–2.337)

0.597 (0.403-0.790,
0.454-0.739)

ECE, LVI 0.744, 1.086
(0.661–1.786)

0.585 (0.377–0.792,
0.432–0.737)

b

Endpoint P-value Adj. P-value HR (95% CI)

OS 0.014 0.016 2.867 (1.240–6.625)

RFS 0.006 0.014 3.121 (1.395–6.981)

LR-RFS 0.009 0.014 3.023 (1.326–6.894)

DSS 0.005 0.014 7.136 (1.825–27.91)

FFR 0.009 0.014 4.646 (1.459–14.79)

LRC 0.159 0.159 3.180 (0.636–15.910)

OS (GSE65858) 0.004 – 3.427 (1.476–7.957)

OS (GSE41613) 0.005 – 2.782 (1.367–5.665)

Multivariable Cox Proportional-Hazards (Cox PH) analysis results assessment with MPS and modeling without the inclusion of MPS on the LMU-KKG HPV-negative cohort (n = 145) (a) Prognostic
association of CS/DSmetabolism enrichment scores in univariable Cox PH analysis for the LMU-KKGHPV-negative (n = 145), andGSE65858 (n = 176) andGSE41613 (n = 96) cohorts as validation (b)OS
overall survival, RFS recurrence-free survival, LR-RFS locoregional recurrence-free survival, DSS disease-specific survival, FFR freedom from recurrence, LRC locoregional control, HR hazard ratio,
C-index concordance-index, CSPG chondroitin sulfate proteoglycan, IHC immunohistochemistry.
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Inclusion of HPV-positive HNSCC in MPS classification
In consideration of the fundamentally different etiology, pathogenesis, and
prognosis of HPV-positive HNSCCs, they were deliberately excluded from
our initial investigation ofmetabolic heterogeneity and the determination of
metabolic subtypes. Now, to test if/how they integrate into the proposed

MPS classification system, HPV-positive cases of the LMU-KKG (n = 204,
comprising145HPV-negative and59HPV-positive cases), TCGA(n = 277,
comprising 241 HPV-negative and 36 HPV-positive cases), and GSE65858
cohorts (n = 211, 176 HPV-negative and 35 HPV-positive cases) were
included. GSVA and subsequent k-means clustering with k = 3 delineated
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an additionalMPS3 subgroup, significantly enriched in HPV-positive cases
in the LMU-KKG and TCGA cohorts (Fisher’s exact test P < 0.001 for
TCGA and LMU-KKG, and P = 0.138 for GSE65858). MPS3 showed the
lowest overall metabolic GSVA enrichment scores (Fig. 5a). Identical
metabolic profiles across the three MPS phenotypes were obtained byMPS
subtyping analysis of the comprehensive TCGA data set comprising 500
cases2, and accordingly MPS3 was significantly enriched in HPV-positive
cases (P < 0.001, Supplementary Fig. 10, including MSigDB hallmarks
analysis). Since Chakravarthy et al.23 determined the HPV-status of the
comprehensiveTCGAcohort fromRNAseqdata exclusively, we focused on
theharmonizedTCGAcollection forwhich theHPV-statuswasdetermined
based on p16 immunohistochemistry in combination with HPV-specific
DNA analysis, similar to the LMU-KKG cohort.

A random forest classifier trained on the gene expression data of the
LMU-KKG cohort and tested on the TCGA cohort achieved prediction
accuracy of 0.685 (95% CI 0.602-0.761). When applied to the exclusively
HPV-positive LHSC OPC cohort (n = 43)24, it assigned n = 30 to MPS3,
n = 12 to MPS2, and only one case to MPS1. This distribution mirrored
findings in the LMU-KKGandTCGAcohorts (HPV-positive cases LMU-
KKG: n = 31,n = 16,n = 12; TCGA:n = 13,n = 5, n = 3 classified asMPS3,
MPS2, or MPS1, respectively). Accordingly, the LHSC OPC MPS3 sub-
group exhibited consistently lower metabolic enrichment scores com-
pared to MPS2 (Supplementary Fig. 11). These results independently
confirmfindings fromLMU-KKG, TCGA, andGSE65858 cohorts (Fig. 5)
and demonstrate the feasibility ofMPS classification of individual tumors.

Upon inclusion of HPV-positive HNSCCs, associations with clin-
ical parameters and molecular characteristics of MPS1 and MPS2
remained virtually unchanged (Fig. 5b, Supplementary Fig. 12). How-
ever, the delineation of the MPS3 phenotype complemented the picture
of metabolic heterogeneity in HNSCC and contributed to a refined
definition of the high-risk MPS1 phenotype (Fig. 5b). In terms of
metabolic gene expression based on the KEGG metabolic pathways
collection, MPS3 was highly similar toMPS1, with the clear exception of
GAG metabolism. Specifically, CS/DS biosynthesis was detected as the
only major difference between MPS1 and MPS3, suggesting that – from
the metabolic perspective – CS/DS biosynthesis may contribute to the
clear impaired clinical response ofMPS1 vs.MPS3 andMPS2 (Fig. 5a, b).
In contrast, the full transcriptomic landscape of MPS3 as assessed by
GSVA with the MSigDB hallmarks collection and the gene expression
signatures associated with the composition of the TME (see Fig. 3c) was
more similar to MPS2 (Fig. 5c, d) with the exception of TIS and PD-1
signaling signatures. These results allow the conclusion that elevated
GAG metabolism and specifically CS/DS biosynthesis are strongly
associated with the establishment of an immunosuppressive TME in
association with enrichment of CAFs, cancer cell stemness, and ECM
remodeling, and might therefore contribute to explain the significantly
impaired survival and therapy-induced tumor control of MPS1
HNSCCs. The recently published HPV-related tumor-specific NFκB-
signature was not associatedwith theMPS classification (Supplementary
Fig. 10c).
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Fig. 4 | Integratednetwork visualization of enriched biological processes inMPS1
and MPS2 HPV-negative tumors. Integrated network visualization of MPS1 and
MPS2 enriched biological processes was carried out using enrichmentMap.MPS1 vs.
MPS2 differential gene expression results of the four cohorts were used to derive a

mean-ranked list of genes and pre-ranked gene set enrichment analysis (GSEA)with
the gene set collection Gene Ontology Biological Process (GO-BP) was performed
and visualized using enrichmentMap. Yellow indicates MPS1-specific, and blue
color indicates MPS2-specific terms.

Fig. 3 | Functional characterization of the MPS in bulk and single-cell data.
DifferentialMPS1 vs.MPS2hallmarks analysis (GSVA scores) in four individual data
sets (LMU-KKG, TCGA, GSE41613, and GSE65858, HPV-negative only) (a). Hall-
marks with P adj.<0.05 in at least three cohorts are visualized. PROGENy differential
analysis was performed and showed consistent results for eleven cancer-related
signaling pathways in the four data sets (b). Gauge charts of LFC values of MPS1 vs.
MPS2 with selected gene signatures (GSVA scores, Wilcoxon test, four data sets
individually) (c). Correlation plot with Spearman correlation coefficients of the data

set-specific MPS/cluster groups (based on KEGG metabolic GSVA enrichment
scores) between Puram et al. malignant cells or fibroblast cells, and LMU-KKG or
TCGAMPS classes (d). Gene signature comparisons between MPS1 and MPS2
malignant cells of the Puram et al. scRNAseq data (generalized linear mixed models)
(e). Enrichment analysis results of MPS1 and MPS2 malignant cell clusters of the
Puram et al. data set using the hallmarks signatures (dashed red line P adj.=0.05) (f).
Significant upregulation of CS/DSmetabolism enrichment scores inMPS1 compared
to MPS2 malignant cells (generalized linear mixed models) (g). Cl cluster.
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Chondroitin/dermatan sulfate metabolism of malignant cells is
associated with unfavorable outcome in HPV-negative HNSCC
Motivated by the finding that CS/DS metabolism was the most pro-
minently upregulated metabolic pathway in MPS1 compared to MPS2
and MPS3 (Fig. 1b, d, Fig. 5a), we assessed its prognostic value by

univariable Cox PH modeling. Elevated CS/DS pathway enrichment
was strongly associated with an unfavorable adjuvant treatment
response in HPV-negative cases of the LMU-KKG cohort (P.adj<0.05
for OS, RFS, LR-RFS, DSS, and FFR, Table 1b). The prognostic asso-
ciation of the CS/DS pathway enrichment and OS could be
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independently validated in the GSE65858 and GSE41613 HNSCC data
sets (P = 0.004 and P = 0.005, respectively, Table 1b).

In addition, we investigated the tumor cell-specificity of the CS/DS
metabolism in the scRNAseq data sets of Puram et al. and Kürten et al.18,25.
The GSVA enrichment scores of the CS/DS pathway were significantly
elevated in malignant cells of MPS1 compared to MPS2 malignant cells
(P < 0.001, generalized linear mixed model) (Fig. 3g). An alternative com-
putational approach identified MPS1 malignant cell clusters (Supplemen-
tary Fig. 13a)witha significant enrichment of theCS/DSpathway compared
toMPS2malignant cell clusters (Supplementary Fig. 13b), thus serving as an
independent confirmation. Accordingly, MPS1-specific upregulation of the
CS/DS pathway occurs in malignant cells and appears to be of prognostic
relevance.

Association of MPS phenotypes with histology and chondroitin
sulfate proteoglycan (CSPG) immunostaining in HPV-
negative HNSCC
Histopathologic evaluation of hematoxylin and eosin (HE)-stained tissue
sections of HPV-negative tumors from the LMU-KKG and TCGA cohorts
was carried out to compare MPS1- and MPS2-classified tumors. Two dis-
tincthistological tumorphenotypeswere observed.HEsectionsof tenMPS1
tumors with the highest and ten MPS2 tumors with the lowest CS/DS
metabolism pathway enrichment scores were examined (Supplementary
Figs. HE slides). Representative examples of the histological phenotype of
MPS1 tumors (CS/DSpathway enrichment scores high) showedan elevated
degree of ECM remodeling and CAF activation as indicated by spindle-
shaped fibroblasts (CAFs) with random orientation and a prominent cell
nucleus (Fig. 6a, c). Furthermore, MPS1 was characterized by highly
intermixed populations of malignant and stromal cells. In contrast, MPS2
(CS/DS pathway enrichment scores low) displayed well-separated popula-
tions of malignant and stromal cells with seemingly little interaction
between malignant cells and fibroblasts. MPS2 tumors showed a clearly
reduceddegreeofECMremodeling, accompaniedby amature small spindle
cell fibroblast morphology with a thin body structure and a symmetric and/
or parallel orientation (Fig. 6b, d). These observations provided a histo-
pathologic visualization of the RNA level-definedMPS1/MPS2 phenotypes
and strengthened our transcriptome-based notion of changes in the TME
contexture.

Our pilot MALDI-MSI experiments provided proof-of-concept data
illustrating fundamental differences in the metabolite spectra of MPS1 and
MPS2 HNSCCs (Supplementary Fig. MALDI-MSI HE). Given the specific
enrichment of the CS/DS pathway inMPS1, its conceivable implications for
clinical prognosis, and its accessibility for systematic immunohistochemical
analyses on the basis of chondroitin sulfate proteoglycan (CSPG) staining,
automated quantification of CSPG-positive malignant and non-malignant
cell fractions was performed in the LMU-KKG cohort (n = 115) with
QuPath26. The analysis revealed a significant correlation between CSPG-
positive malignant cell fractions and GSVA CS/DS pathway enrichment
scores (Fig. 6g, Spearman r = 0.337, P < 0.001). CSPG-positive malignant
cell fractionswere significantly elevated inMPS1 compared toMPS2 tumors
(P = 0.023) (Fig. 6h) and strongly associated with clinical endpoints
including RFS, LR-RFS, DSS, and FFR (P adj.<0.1) (Supplementary Table
15), thus, validating the association of CD/DS pathway expression with
CSPG metabolite abundance and clinical outcome. KM analysis revealed
significantly elevated risks when comparing the top 1/6 vs. bottom 1/6 of

cases for the endpoints OS, RFS, LR-RFS, DSS, FFR (P < 0.05,
HR > 3.3) and a strong tendency for LRC (P = 0.066) (Fig. 6j, Supplemen-
tary Fig. 14b). The inner 2/3 of the cases collectively exhibited an inter-
mediate risk compared to the top and bottom 1/6 of the cases. Sliding
threshold analysis for the selection of top and bottom fraction of the cases
(based on CSPG-positivity) delineated a significant difference in clinical
outcome between top and bottom groups in the range of 15–25% fractions
of thedata set (Fig. 6i, SupplementaryFig. 14a).These results complemented
and validated the initially observed association between CS/DS pathway
expression in malignant cells and unfavorable therapy outcome as derived
from transcriptomic data (bulk RNAseq and scRNAseq) at the metabolite
level and demonstrated a potential clinical relevance of CSPG-positive
malignant cell fractions in HNSCC.

Replication of MPS phenotypes in established HNSCC cell lines
and orthotopic xenotransplants
To enable future functional and mechanistic analyses, preclinical MPS
models are needed. We therefore analyzed metabolic gene expression in
established HNSCC cell lines and orthotopic xenotransplants derived
thereof, and successfully identified the MPS1 and MPS2 phenotypes in
UPCI-SCC-131 and Cal33, respectively. Cell lines and xenotransplants
exhibited the corresponding KEGG metabolic pathways profiles with
similar characteristics as described for clinical tumor samples, including the
MPS1-specific upregulation of GAG metabolism pathways (Fig. 7a).
Transcriptomic profiles (MSigDB hallmarks and other gene signatures Fig.
7c–f) recapitulated patient-derived observations, most prominently the
elevated enrichment scores of EMT/p-EMT, angiogenesis, cancer stemness
signatures.

Additionally, the attenuated energy metabolism of the MPS1 pheno-
type as found in clinical cohorts could be validated via real-time functional
measurement of bioenergetic pathways using a Seahorse Bioanalyzer.
UPCI-SCC-131 cells exhibited significantly reduced basal/compensatory
glycolytic potential and ATP production rates of mitochondrial origin
(oxidative phosphorylation) and via glycolysis (Fig. 7b). Furthermore, the
altered mitotic/glycolytic ATP production ratio (Fig. 7b) and different
capacities/dependencies to oxidize varying fuels, including glucose, gluta-
mine, and fatty acids (Supplementary Fig. Fuel Flex Test), support the
interpretationof a reduced/decelerated energymetabolism in favorofGAG-
related metabolic processes.

From our analyses in HNSCC tumor cohorts, we deduced an MPS-
specific and tumor cell-driven TME assembly. Along these lines, the
deconvolution of the mouse genome-aligned xenograft RNAseq data
(reflecting the mouse TME) confirmed a tumor cell-driven, MPS-specific
TME contexture. Our data indicated differential abundance of specific cell
types within the TME of orthotopic MPS1 and MPS2 xenografts with a
particular enrichment of different fibroblast subsets in MPS1 (Fig. 7g, cell
type marker genes in Supplementary Table 16). Concordantly, the MPS-
specific tumormorphology, whichwe observed in the patient-derived tissue
sections (Fig. 6a, Supplementary Figs. HE slides), was present in the
respective xenograft MPS phenotype model (Supplementary Figure Xeno-
graft HE). These findings encourage the conclusion that MPS1 malignant
cells with elevated GAG metabolism and associated signaling promote the
recruitment, proliferation, and/or differentiation of specific fibroblast sub-
sets needed for the TME reorganization and MPS1-specific tumor-stroma
interactions.

Fig. 5 | Inclusion of HPV-positive HNSCC in MPS classification. K-means
clustering was performedwith k = 3 on theHPV-negative andHPV-positive cases of
the LMU-KKG, TCGA, and GSE65858 cohorts. Heatmaps of KEGG metabolic
pathways GSVA enrichment scores, according to the classes obtained by k-means
clustering (k = 3) for the LMU-KKG (n = 204), TCGA-HNSC (n = 277), and
GSE65858 (n = 211) cohorts, respectively. 68 intersecting metabolic pathways are
visualized. On the right-hand side, LFC values of GSVA scores per pathway for
MPS1 vs. MPS2, gray color indicates P adj.>0.05 (a). KM plots of MPS1, MPS2, and

MPS3 of the LMU-KKG and GSE65858 cohorts for OS and RFS (LMU-KKG only).
Pairwise HRs with 95% CI. ***P-value < 0.001, **P-value >= 0.001 and < 0.01, *P-
value >= 0.01 and < 0.05, ns: P-value >= 0.05. Global P: global logrank P-value (b).
LFC values of hallmarks GSVA scores comparing the three MPS groups of the three
data sets (LMU-KKG, TCGA, and GSE65858), gray color indicates P adj.>0.05 (c).
Boxplots and differential testing of gene signatures (GSVA scores) compared
between the three MPS of the three data sets, adjusted P-values are indicated (d).
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Discussion
Metabolic dysregulation contributes to molecular heterogeneity and
diverging therapy responses and therefore represents a major challenge in
tumor therapy. For various cancer types, alterations in tumor metabolism
and specific metabolic phenotypes have been linked to clinical

prognosis8,27,28. Although measurement of metabolite abundance is classi-
cally considered to constitute the gold-standard for metabolic profiling,
metabolic phenotypes can be determined on the basis of transcriptomic
data, rendering this approach particularly attractive and advantageous for
application in large cohorts of clinical samples where metabolite level data
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are limited or not available8. We provide a reproducible and systematic
workflow to perform this approach within a publicly available R library
(MetabolicExpressR).

In the present study,wemade use of bulkRNAseq andmicroarray data
from four independent clinical HNSCC cohorts and two independent
single-cell RNAseq data sets and identified metabolic pathway-based sub-
types (MPS) in HNSCC: two MPS subtypes of HPV-negative cases (MPS1
andMPS2) and one MPS subtype that was enriched in HPV-positive cases
(MPS3). Compared to MPS2, MPS1 showed broad-range downregulation
of metabolism-associated gene expression – except for pathways of glycan
metabolism – and was consistently associated with impaired prognosis in
terms of various clinical endpoints. Interestingly, MPS3, the subtype enri-
ched in HPV-positive cases, despite being of very different etiology,
pathogenesis, and prognosis29, on the level ofmetabolic gene expressionwas
highly similar to MPS1 – again except for pathways of glycan metabolism.
Accordingly, increased expression of glycanmetabolismgeneswas uniquely
associated with MPS1 and compromised clinical outcome.

In relation to the established molecular “Keck classification”10, the
MPS subgroups showed significantly different compositions and
enrichment of specific Keck subtypes. However, for the “Keck classifi-
cation”, no significant prognostic relevance was observed for any clinical
endpoint tested, neither in the herein analyzed LMU-KKG cohort nor in
the cohort of Keck et al.10. Thus, MPS phenotypes have superior prog-
nostic power compared to Keck subtypes regarding clinical outcome
after adjuvant radio(chemo)therapy.

The clinically most interesting, because prognostically most challen-
ging phenotype MPS1 was uniquely and consistently associated with
increased expression of GAGmetabolism genes across all tested cohorts, in
particular genes of the CS/DS metabolism pathway. GAGs are long, linear
polysaccharides that form proteoglycan molecules16, which along with
glycolipids and glycoproteins, are components of the cellular glycocalyx and
the ECM. ECM and glycocalyx together form a complex network that
impacts various biological processes, including regulation of cell adhesion,
cell migration, and cell signaling in physiological and pathological condi-
tions, such as metabolic and neurodegenerative diseases, infections, and
cancer16. Glycobiology research has gained increasing attention in transla-
tional oncology, and several studies highlighted its importance in biological
processes related to tumor control and therapy success30. However, the
functional implications and the corresponding association with clinical
outcome appear to vary between different tumor entities. In the present
study, the upregulated expression of CS/DS metabolism pathway showed a
clear and coherent association in continuous Cox PHmodels with different
clinical endpoints for survival and loco-regional control in various clinical
HNSCC cohorts. Moreover, our findings derived from the mRNA level
could be validated and related to cellular structures within the histological
context on the metabolite level by immunohistochemistry of chondroitin
sulfate proteoglycans (CSPGs) and pilot MALDI-MSI analyses of chon-
droitin sulfate-related m/z species in the LMU-KKG cohort. The histolo-
gical analysis revealed that higher abundance of CSPG-positive malignant
cells within a tumor was associated with adverse clinical outcome upon

adjuvant radio(chemo)therapy. Furthermore, our IHC findings suggested a
potential use of CSPG as a prognostic marker and pointed to a potential
impact on the tumor microenvironment (TME). Previous studies have
associated the CS/DS metabolism with tumorigenic properties, ECM
remodeling, and immune exclusion in esophageal squamous cell carcinoma,
pancreatic adenocarcinoma, and colon carcinoma15,31,32. While in those
studies it remained unclear whether CS/DS proteoglycans derive from
malignant cells or CAFs, our results clearly showed a tumor cell-specific
synthesis of chondroitin sulfate and CSPG expression in HPV-
negative HNSCC.

Regarding its global transcriptomic landscape in comparison toMPS2
and MPS3, the MPS1 phenotype exhibited several distinct molecular
individualities that are indicative of tumor progression and increased
aggressiveness. Although detailed mechanisms and interplay of metabolic
dysregulation and other tumor-specific processes are not fully understood,
the presented molecular characterization, including the hypothesis-driven
quantification of several specific gene signatures and the exploratory GSEA
enrichmentMap analysis (GO Biological Processes compilation) (Fig. 4),
supports the assumption of a close relationship between changes in the
TMEandMPS1-associatedmolecular processes. This assumption is further
strengthened by the differences in TME contexture of MPS1 vs. MPS2
observed in patient tumors and the xenograftmodels (Fig. 7).Our xenograft
observations suggest that the MPS phenotype of the tumor cells plays a
driving role in shaping the TME. The upregulation of TGF-β signaling in
MPS1 tumors points towards activation of CAFs, ECM remodeling, and
immunosuppression, as previously reported in several cancer types
including HNSCC33. Elevated expression of the HNSCC-specific stemness
signature indicates increased abundance of stem-like cancer cells which
have been shown to promote metastasis formation and to contribute to
increased resistance to radio(chemo)therapy and tumor relapse34. Despite
elevated expression of immune-related hallmark gene sets and the tumor-
inflammation-signature (TIS), the higher level of PD-1 signaling potentially
indicates immunosuppressive processes inMPS1 tumors and promotes the
exhaustion of activated T-cells35.

For a more detailed understanding of an altered TME composition we
focused on CAF subtype analysis based on the specific signatures proposed
by Galbo et al.36, which showed an association of MPS1 tumors – with
elevated andmalignant cell-specific GAGmetabolism – and increased CAF
activities across all CAF subtypes examined. CAFs have varying promoting
or suppressing roles in tumor development depending on the specific CAF
subtype and cancer type36,37. InHNSCC, specificCAFsubtypes play a crucial
role in ECM remodeling, which is reflected by their morphological features
and has been linked to compromised therapy responses37. Histologically, we
observed this characteristic fibroblast and tumor stroma morphology pre-
dominantly in MPS1-classified tumors of the LMU-KKG and TCGA
cohorts as well as in the MPS1 xenograft model (Supplementary Figure
Xenograft HE). The immature, plump, and spindle-shaped CAFs with
randomorientation and prominent nuclei that were found inMPS1 tumors
are considered to contribute to increased microvessel density and (p-)
EMT38,39.

Fig. 6 | ECM remodeling, activated tumor stroma, and elevated chondroitin
sulfate proteoglycan (CSPG) level in MPS1. HE sections of MPS1 (CS/DS meta-
bolism high) and MPS2 (CS/DS metabolism low) tumors in the LMU-KKG cohort
(6x magnification, 200 µm scale bar) (a, d). MPS1 (high CS/DS metabolism): acti-
vated stroma/ECM rearrangement (a). MPS2 (low CS/DS metabolism): lower level
of malignant cells-TME interaction (d). CSPG staining in FFPE tissue sections of
MPS1 and MPS2 tumors, respectively, from the LMU-KKG cohort (3x magnifica-
tion, 100 µm scale bar) (b, c, e, f, additional examples in Supplementary Figs. IHC
slides). Elevated fractions of CSPG-positivemalignant cells inMPS1 (b, c) compared
toMPS2malignant cells (e, f). Annotation color: red=pos. malignant cell, blue=neg.
malignant cell, dark yellow=pos. non-malignant cell, light yellow=neg. non-
malignant cell. Scatterplot with GSVA enrichment scores of CS/DS metabolism vs.
CSPG-positive malignant cell % of 115 HPV-negative cases from LMU-KKG

(Spearman r = 0.337, P < 0.001) (g). The gray interval area indicates the inner 2/3 of
the data set. CSPG-positive cell fractions were calculated using QuPath. CSPG-
positive malignant cell % difference of MPS1 and MPS2 of the same 115 cases
(Wilcoxon P = 0.023) (h). Sliding threshold analysis for definition of top and bottom
fraction of cases (based on mean CSPG-positive malignant cell %). Cox models’HR
(dot size), -log10(P-value) (y-axis) for the top vs bottom groups are plotted for
varying thresholds (x-axis) (i). Dashed red lines indicate P = 0.05. Dashed black lines
indicate the 1/6 fraction threshold for top vs. bottom, as visualized in panels g and in
the KM plots in panel j. KM analysis of 114 HPV-negative cases from LMU-KKG
(one patient did not have survival data), highlighting the top and bottom 1/6 of
tumors (based onCSPG-positivemalignant cell %) Coxmodels’HR,CI, and P-value
for top vs bottom groups (j). HR, 95%CI, and P indicate the comparison of theCSPG
high and CSPG low groups.

https://doi.org/10.1038/s41698-024-00602-0 Article

npj Precision Oncology |           (2024) 8:116 12



Beyond their potential role in prognosis, glycan metabolism and its
GAG products offer promising avenues to new therapeutic approaches due
to their favorable physicochemical properties and tumor-specific sulfation
patterns40. Direct targeting and/or utilization of GAGs in drug deliverymay
hold great potential for therapy of HPV-negative MPS1 HNSCCs30, where

combinatorial treatment regimes, including immuno- andchemotherapy so
far failed to improve therapy success for the majority of patients41.

While this study marks the initial exploration of metabolic pathway-
based subtypes in HNSCC, it has certain limitations. Firstly, clinical end-
points were not consistently available for all analyzed cohorts, for instance,
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the TCGA cohort only provided overall survival (OS) data. Secondly, the
availability of single-cell RNAseq data was limited to a specific set of pub-
lished cases, restricting cell type-specific analyses. Thirdly, the conclusions
drawn from proof-of-concept experiments, such as xenograft models and
metabolite measurements, necessitate comprehensive follow-up studies for
a more thorough understanding. Nevertheless, this study dedicated sub-
stantial efforts to validate the identified MPS phenotypes and thoroughly
describe their molecular landscapes.

In conclusion, we identified metabolic pathway-based subtypes in
HNSCC of whichMPS1 turned out to be the clinically most interesting and
challenging phenotype due its adverse clinical outcome and its distinct
transcriptomics landscape, histology, and TME composition, signifying a
noteworthy subgroupwithinHPV-negativeHNSCC for the investigation of
alternative therapeutic approaches. Elevated expression levels of glycosa-
minoglycan metabolism and increased abundance of metabolites derived
thereof were associated with impaired prognosis and may represent
potential clinical prognosticators and/or future therapeutic targets in HPV-
negative HNSCC upon further investigation, for instance with the herein
presented model systems.

Methods
Patient specimens and study design
In this study,weutilized our “in-house” collected clinical cohortwith head
and neck squamous cell carcinoma (HNSCC) patients who underwent
surgery followed by additional radio(chemo)therapy. These groups are
known as the LMU-KKG 08-13 and LMU-KKG 13-16 cohorts, which
were collected by the Ludwig-Maximilians-University ofMunich, Clinical
Cooperation Group “Personalized Radiotherapy in Head and Neck
Cancer”. The LMU-KKG 08-13 cohort’s patient specimens and study
design were previously described by Hess et al.42. The LMU-KKG 13-16
cohort involved the retrospective collection of clinical data and treatment-
naive patient tissue specimens. All patients in both cohorts were diag-
nosed with HNSCC in the hypopharynx, oropharynx, or oral cavity,
confirmed through histological examination. The retrospective study was
conducted in accordance with the Declaration of Helsinki and received
ethical approval from the LMU’s ethics committee (EA 312-12, 448-13,
17-116). A written informed consent was obtained from all human par-
ticipants. The tumor stagewas determined using theAJCC7th edition43 of
the Union for International Cancer Control Tumor-Node-Metastasis
(UICC TNM) Classification of Malignant Tumors43. Human papilloma-
virus (HPV) status was assessed using p16INK4a immunohistochemistry in
combination with HPV DNA detection, following a previously described
method44. The LMU-KKG 13-16 study, conducted at a single center,
initially included HNSCC patients with at least UICC TNM stage III or
close/positivemicroscopic resectionmargins. Closemargins were defined
as R0 but less than 5mmaccording to the local pathologist. These patients
received adjuvant radiotherapy between 2013 and 2016 at the LMU
Department of Radiation Oncology. The treatment duration had a
median of 45 days (interquartile range [IQR]: 43–47 days) with five
treatment fractions per week. The median radiation dose applied was
64 Gy (median dose of 2 Gy per fraction) to the former tumor site or
regions with extracapsular extension (ECE). Additionally, elective lymph
node regionswere irradiatedwith amedian dose of 50 Gy (median dose of

2 Gy per fraction), and involved lymph node regions received a median
dose of 56 Gy (median dose of 2 Gy per fraction), based on tumor stage
and location. Patients with close/positive microscopic resection margins
and/or ECE received concurrent chemotherapy. Among the total 134
patients, 49% received chemotherapy: 42% receivedCDDP/5-fluorouracil
(CDDP: 20 mg/m2 BSA on days 1-5/29-33; 5-FU: 600mg/m2 BSA on
days 1-5/29-33), and for 9% of the patients, Mitomycin C (MMC) or 5-
FU/MMC replaced platinum-based chemotherapy. After reviewing
hematoxylin and eosin-stained tissue sections from available blocks with
formalin-fixed and paraffin-embedded (FFPE) tumor tissue, a pathologist
(A. Walch) annotated the tumor area. If necessary, microdissection was
performed prior to nucleic acid extraction to ensure a minimum tumor
cellularity of 60% (median 70%, IQR: 70%-80%). Definitions of clinical
endpoints for LMU-KKG as previously published byHess et al.42. In brief,
recurrence-free survival (RFS) and locoregional recurrence-free survival
were defined as the time (days) from radiotherapy start to the first
observation of a distant or locoregional recurrence, respectively, or death
of the patient. Freedom from recurrence (FFR) was defined as the time
(days) from the start of radiotherapy to the first locoregional or distant
recurrence. Additionally, overall survival (OS), disease-specific survival
(DSS), and locoregional control (LRC)were calculated as the time in days.

Full-length and 3’mRNA sequencing
Processing of tumor specimens was performed as outlined in Hess et al.42.
Transcriptomic quantification of clinical tumor samples was carried out by
mRNA sequencing. Nucleic acid extraction, mRNAseq library preparation,
whole RNA sequencing, and data preprocessing of the LMU-KKG 08-13
cohort (n = 70) was executed as described previously9.

Data generation for the LMU-KKG 13-16 (n = 134) cohort was
realized from FFPE tissue sections. Total RNA has been extracted and
quality checked as for whole RNAseq. 3’ tag libraries were generated
from 100 ng input using the QuantSeq 3’-RNA-Seq Library Prep Kit
FWD for Illumina with i5 6 nt Dual Indexing (Lexogen GmbH, Vienna,
Austria) according to the manufacturer’s instructions for dual-indexing
and low quantity samples. For library amplification, PCR cycles were
determined using the PCRAdd-on Kit for Illumina (Lexogen). Quantity
and quality of sequencing libraries were assessed using the Quanti-iT
PicoGreen dsDNA Assay Kit (ThermoScientific) and the Bioanalyzer
High Sensitivity DNA Analysis Kit (Agilent Technologies). An equi-
molar pool of libraries has been prepared and sequenced in 150 bp
paired-end mode at Novogene.

KEGG metabolic pathways collection
The KEGG metabolic pathways collection with 95 pathways was obtained
from the official KEGG website using a custom R script (accessed on
12.10.2021, Supplementary Table 17)45,46. Thesemetabolic pathways consist
of 1659 unique genes that can be grouped into 12 main categories. These
categories are amino acid metabolism, biosynthesis of other secondary
metabolites, carbohydrate metabolism, energy metabolism, glycan bio-
synthesis and metabolism, lipid metabolism, metabolism of cofactors and
vitamins, metabolism of other amino acids, metabolism of terpenoids and
polyketides, not included in regular maps, nucleotide metabolism, xeno-
biotics biodegradation, and metabolism.

Fig. 7 | In vitro and orthotopic xenograft models support MPS-specific TME
assembly.KEGGmetabolic GSVA scores of UPCI-SCC-131 and Cal33 HNSCC cell
lines (each n = 4 replicates) were used for MPS-classification using NSC trained/
tested on the LMU-KKG/TCGAHPV-negative cohort (a). Proton EffluxRate (PER)
representing glycolytic rate in Cal33 and UPCI-SCC131 cells determined with a
Glycolysis Rate Assay using a Seahorse XFe96 Analyzer and basal glycolysis by
Glycolytic rate assay (n = 7wells each). TotalATP rate, ATPby glycolysis (glyco) and
mitochondrial (mito) production in Cal33 by ATP Rate Assay. ATP rate index
representing the ratio of ATP production by mitochondria and glycolysis for Cal33
and UPCI-SCC131 (b). LFC values of GSVAMSigDB hallmarks scores of MPS1 vs.

MPS2 (c). Gene signatures (p-EMT, HNSCC cancer stem cell signature) were
quantified likewise and compared betweenMPS1 vs. MPS2 (e). UPCI-SCC-131 and
Cal33 xenografts were MPS classified (using RNAseq data thereof and NSC), and
human-aligned data (tumor cells) KEGG metabolic GSVA scores were visualized
(a). Using human and mouse genome-aligned (host cells, TME) data, hallmarks
GSVA scores were compared MPS1 vs. MPS2 (d), and accordingly, human-aligned
gene signatures were compared between MPSs (f). Mouse genome-aligned gene
expression data were utilized in cell type deconvolution of the TME using the SSMD
tool, and relative proportions of cell types were compared betweenMPS1 andMPS2
(g). LFC log2 fold change, HSC hematopoietic stem cell.
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Bulk RNA sequencing data analysis
RNAseq data of LMU-KKG 13-16 cohort were pre-processed by adapter
trimming (BBDuk), alignment to human GRCh38.93 reference genome
(STAR47), gene expression quantification (HTSeq-count48), and imported
into R (DESeq249). Differential gene expression analyses are based on count
data and the DESeq2 workflow. Processed, DESeq2 normalized count data
of 43 HPV-positive oropharyngeal cancer (OPC) cases were provided by
Anthony C. Nichols (Western University, London, Ontario, Canada) and
processed as described previously24.

Transcriptomic data of n = 277 primaryHNSCC tumors (including 77
adjuvantly treated tumors) and 37matched normal tissues from the TCGA
cohort (harmonized collection, accessed on 11.07.2022) were obtained
through the TCGAbiolinks R library50–52.

Publicly available gene and protein expression data
Processed andnormalized gene andprotein (z-scores) expressiondata of the
CPTAC-HNSCCcohort13 consisting of 108 primary tumors and 53 (and 62
for protein expression data) matched adjacent normal cases were down-
loaded from the LinkedOmics website (http://linkedomics.org/data_
download/CPTAC-HNSCC/, accessed on 17.05.2023). Publicly available,
processed and normalized gene expression data sets from two independent
HNSCC cohorts were obtained from Gene Expression Onmibus (GEO,
GSE65858 and GSE41613)53,54. GSE65858 HPV-negative (n = 176) and
HPV-positive (n = 35), and GSE41613 HPV-negative (n = 96) primary
tumors were considered in the downstream analysis.

Differential gene expression analysis between groups of the GSE65858
and GSE41613 data sets was performed following the standard limma
pipeline55.

Single-cell RNAseq analysis
Processed single-cell RNAseq (scRNAseq) expression data (log2(TPM/
10+ 1) expression values) from Puram et al.18 were obtained from GEO
(GSE103322). For all analyses,weused cells fromtenHPV-negativepatients
with sufficiently high cell numbers (patients HNSCC5, HNSCC6,
HNSCC16, HNSCC17, HNSCC18, HNSCC20, HNSCC22, HNSCC28,
HNSCC26, HNSCC25, based on Puram et al.18). Primary tumor malignant
(n = 1313) and fibroblast cells (n = 678)were considered in the downstream
analysis. Processed expression data of fibroblast and malignant cells were
loaded separately into R and further analyzed using the R library Seurat56,
and aneighborhoodgraphwas constructed to identify related groups of cells
using the first ten dimensions of reduction to use as input. Louvain clus-
tering was then performed on the neighborhood graph with the resolution
parameter set to 0.5 and data visualization by t-SNE plots using the first ten
dimensions (Supplementary Fig. 15, 16). Cell types (cancer-associated
fibroblast (CAF), myofibroblast, and normal fibroblast) were assigned to
fibroblast clusters based on the expressed marker genes from Puram et al.

Processed genebarcodesof theKürtenet al.25 data setwere downloaded
from GEO (GSE164690). Data of CD45-negative cells (n = 21735) from 9
HPV-negative patients were loaded into R using Seurat. Quality control,
filtering, normalization, and dimensionality reduction of data were done as
in Kürten et al.25. Clustering of all CD45-negative cells was done as outlined
above, andmajor cell typeswere assigned to clusters based on top-expressed
known marker genes, such as epithelial cells (KRT6A, KRT14, KRT15,
KRT17, S100A2), fibroblasts (COL1A1, COL3A1, LUM, DCN, MMP1),
endothelial cells (VWF, ACKR1, SPARCL1), or immune cells (GNLY,
GZMA, CXCR4, CD3D,NKG7, LST1,AIF1, LYZ). Similarly, sub-clustering
of epithelial (n = 4190) and fibroblast (n = 4130) cells was performed.
Fibroblast cell clusters were annotated based on marker genes from Kürten
et al., annotating clusters as CAFs, myofibroblasts, or normal fibroblasts.
The data were visualized as t-SNE plots (Supplementary Fig. 16).
InferCNV57 was used to differentiate between malignant and non-
malignant epithelial cells. Expression data of the sub-clustered epithelial
cells, and peripheral blood leukocytes (PBL) as reference cells were used to
infer copy number variation (CNV) from scRNAseq data. Patterns of the
epithelial cells were compared to the baseline signal (PBL) to determine if

the epithelial cell clusters are malignant or non-malignant (Supplementary
Fig. 17).

Gene SetVariationAnalysis (GSVA)of selectedKyotoEncyclopedia of
Genes and Genomes (KEGG)45,46 metabolic pathways and gene signatures
enrichment scores were compared between groups of the Puram et al. data
set using generalized linear mixed models (GLMM) with patient-specific
mixed effects. The lmer function from the R libraries lme4 and lmerTest58,59

were used for the calculations, setting the GSVA enrichment score as the
response variable, group as the independent variable, and setting the mixed
effect on the patient variable.

Differential gene set enrichment analysis (GSEA) was performed
between theMPS1 andMPS2malignant cell clusters of the Puramet al. data
set using the Seurat function DEenrichRPlot with the MSigDB hallmarks.

To performGSEA on the Kürten et al. scRNAseq data set, we used the
R library singleseqgset60 and theKEGGmetabolic pathways.Weapplied this
analysis to the epithelial andCAF cell clusters of the Kürten et al. expression
data. Scaledand log-normalizeddatawereused as input, and log fold change
was calculated between cell clusters (one cluster versus the rest in the case of
the epithelial cells, or one cluster versus another cluster in the case of the
malignant and CAF group comparisons). Then, enrichment scores and P-
values were calculated quantifying the enrichment of metabolic pathways
per cluster. P-values of enrichment scores were adjusted formultiple testing
(Benjamini-Hochberg correction). The metabolic pathway-based subtype
(MPS) class of malignant cell clusters of the Kürten et al. data were defined
based on the Spearman correlation test of enrichment scores to TCGA and
LMU-KKGMPSclassGSVAcentroids (correlation testP adj.<0.05 for both
cohorts).

Quantification of metabolic pathways and prognostic gene
signatures
To quantify the enrichment of the KEGGmetabolic pathways collection45,46

at sample-level separately in each data set, we applied GSVA using the
GSVAR library61. For all data sets, DESeq2 normalized counts were used as
input for GSVA with the ‘kcdf = “Poisson”’ parameter, setting the minimal
gene set size to 9 and maximal gene set size to 300. For the Puram et al.
scRNAseq data set, the original processed data was used andGSVAwas run
with the kcdf = “Gaussian” parameter. Selected and published prognostic
gene signatures include partial epithelial-mesenchymal transition
(p-EMT)18, tumor inflammation signature (TIS)62, CAF signatures36, PD-1
signaling from the Reactome collection35,63,64, and HNSCC cancer stem cell
(CSC) signature65. p-EMT, TIS, HNSCC CSC, CAF signatures, and PD-1
signalingwere quantified using GSVA from gene expression data. Likewise,
the HPV-related tumor-specific NFκB-signature (“skyblue1 module”) was
quantified using GSVA in HPV-positive tumors analyzed in this study4.

PROGENy (Pathway RespOnsive GENes for activity inference)66 was
used for sample-level quantification of eleven signaling pathways relevant in
cancer. VST (Variance Stabilized Transformation) or log2 (GSE65858 and
GSE41613) normalized expression values were used as input and the
resulting matrix was mean-centered and scaled. Differential pathway
activity between the two sample groups (MPS) was calculated by setting up
linear models for each pathway with pathway activity as the independent
variable and MPS class as the response variable.

Pooling of the LMU-KKG 08-13 and LMU-KKG 13-16 data sets
GSVA data
We merged the GSVA matrices of the LMU-KKG 08-13 (n = 70) and
LMU 13-16 (n = 134) data sets due to their identical origin, treatment
plans, and clinical follow-up data/endpoints andbased onour observation
that there is no data set-related batch effect when performing the PCA on
the two cohorts’ metabolic pathways GSVA enrichment scores (Supple-
mentary Fig. 18).We refer to thismergeddata set as theLMU-KKGcohort
(n = 204). In any other analysis when gene expression data were used
directly (CIBERSORTx, differential gene expression analysis, Keck tran-
scriptional subtyping) the two LMU-KKG data sets were handled
separately.
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Identification of metabolic subtypes from RNAseq data of
HNSCC samples
GSVA enrichment scores of the KEGGmetabolic pathways were subjected
to k-means clustering, individually for each cohort. The optimal number of
clusters (k) was determined based on the consensus of 22 indices from the
NBClust R library67. These indices are: “kl”, “ch”, “hartigan”, “db”, “sil-
houette”, “duda”, “pseudot2”, “beale”, “ratkowsky”, “ball”, “ptbiserial”,
“gap”, “frey”, “mcclain”, “gamma”, “gplus”, “tau”, “dunn”, “hubert”,
“sdindex”, “dindex”, and “sdbw”. For NBClust, the minimum number of
clusters was set to 2 and the maximum number of clusters to 10, and the
cluster analysis method to “kmeans”. K-means clustering was performed
using the function kmeans from the R library stats68 with the optimal k
parameter defined as described above, with 100 iterations (iter.max para-
meter) and 100 random sets (nstart parameter). The MPS class for each
sample was defined by the obtained k-means cluster membership.

The nearest shrunken centroids (NSC)69 classification was used to a)
demonstrate the consistencyof theMPSclasses between theLMU-KKGand
TCGA HPV-negative cohorts, b) and to show the malignant cell-specific
metabolic enrichment of the MPSs. The patient-level GSVA metabolic
enrichment scores were used for building an NSC classifier using the
pamr.train function from the pamr R library70. The pamr.cv function was
used fromthe sameR library forfinding theoptimal threshold for predicting
the MPS class using the nearest shrunken centroid fit. For MPS class pre-
dictionon sample-levelGSVAmetabolic enrichment scoreswith the trained
NSC classifier, the pamr.predict function was used from the pamr R library
with the optimal threshold value described above. In the case of the NSC
classifications on the LMU-KKG, TCGA, and Puram et al. cohorts, theNSC
classifier-predicted MPS class was compared to the k-means clustering-
based MPS class and was visualized as confusion matrices. The consistent
classification rate was calculated as the sum of consistent classifications
divided by the total number of cases.

MPS subtyping of the Puram et al. malignant cells data on KEGG
metabolic pathways enrichment scores was carried out according to the
workflow of clinical cohorts presented in Fig. 1a.

Transcriptional subtype classification of the patients
Transcriptional subtyping according to Keck and colleagues (“Keck sub-
types”) of all HNSCC patients was performed on the HPV-negative and
HPV-positive cases together as reported by Weber et al.9.

Univariable and multivariable survival models, statistical data
analysis
Summary statistics of theHNSCCHPV-negative subsets of the LMU-KKG,
TCGA, GSE65858, and GSE41613 cohorts are shown in (Supplementary
Table 1).

Prognostic relevance of the MPS classification was assessed by Cox
Proportional-Hazards (CoxPH) andKaplan-Meier (KM) analysis using the
survival and survminer R libraries71–73. The proportional-hazards assump-
tion of Cox regression models was assessed using the R function cox.zph()
from the R library survival, which tests the independence of Schoenfeld
residuals of the model covariates and time. Overall survival (OS),
recurrence-free survival (RFS), freedom from recurrence (FFR), disease-
specific survival (DSS), locoregional control (LRC), and locoregional
recurrence-free survival (LR-RFS) endpoints were considered in the LMU-
KKG cohort, while only OS was available for TCGA. Nominal logrank test
P-value andHRwith upper/lower band of the 95% confidence interval (CI)
were reported. In the case of multivariable model comparisons, 85% CI of
concordance-index (C-index) was indicated additionally, since this CI level
reflects approximately a 5%error ratewhen comparingC-indiceswithCIs74.
For multivariable Cox PH modeling, 12 pre-selected clinically prognostic
factors in HNSCC in addition toMPS class were considered. These are sex,
tumor localization, smoking status, chemotherapy (yes or no), grading
(dichotomized), ECE, TNM T stage (dichotomized), TNM N stage
(dichotomized), UICC stage (dichotomized), Resection margin status, LVI
stage (lymphovascular invasion), PNI stage (perineural invasion).

For each survival endpoint (OS, DSS, RFS, FFR, LR-RFS, and LC) we
performed a balanced random 7:3 train-test split of the LMU-KKG HPV-
negative cohort using the createDataPartition function from the caret R
library75. Then we tested each of these variables in univariable Cox PH
models using the coxph function from the R library survival71 and kept
variables with P-value < 0.2 for backward selection. Backward variable
selection was done using the stepAIC function from the MASS R library76

with the k = 2 parameter.
A final multivariablemodel was built with the selected variables on the

train test, risk score prediction was done on the test set, and C-index was
reported using the concordance.index function from the R library
survcomp77,78. Patient-level predicted and standardized (scaled, centered)
risk scorewas used for setting up univariablemodels on the test set, andHR,
95% CI of the HR, and P-value were reported. These performance metrics
were compared to those obtained from the resulting models without
including the MPS class from the beginning of the modeling workflow.

The two-groupCoxPHmodels (based solely on adichotomous clinical
variable) vs. four-group Cox PH models (based on a dichotomous clinical
variable plus MPS) were tested by chi-square test.

Differential pathway enrichment between MPS classes for KEGG
metabolic pathways79,80, MSigDB hallmark gene sets81, and the selected gene
signatures were assessed byWilcoxon rank-sum test. Differential testing of
protein expression z-scores between groupswas performed using themetric
Cohen’s d82. Pre-ranked GSEA between groups of samples using proteins
sorted by Cohen’s d was performed with the R library fgsea83.

Single cell-level pathway or gene signature enrichment scores com-
parison between groups of the Puram et al. scRNAseq data set18 was done
using generalized linearmixedmodels with patient-specific random effects.
In the case of the Kürten et al. scRNAseq data set25, pathway enrichment
comparison between groups was performed using pre-ranked gene set
enrichment analysis.Association testswere performedby two-sidedFisher’s
exact test and multiple testing corrections by Benjamini-Hochberg P-value
adjustment.

Gene expression rule-based MPS classification of LHSC OPC
HPV-positive tumors
A single sample pair-based (rule-based) random forest classifier was built
using gene expression data of the LMU-KKG (n = 145) and TCGA
(n = 277) cohorts, and theR librarymulticlassPairs84. Thisway,wewere able
to perform accurate MPS classification of tumors from the LHSC OPC
cohort, consisting of only HPV-positive cases. Using the expression data of
the LMU-KKG and TCGA cohorts, a random train-test (0.7:0.3) split was
applied, genes were sorted using the sort_genes_RF function. Then, the
parameters of the random forest model were optimized using the optimi-
ze_RF function. Finally, the random forest classifier was trained using the
function train_RF on the training data set. MPS class was predicted on the
test set, andperformancewas assessedby comparingpredicted class labels to
GSVA and k-means clustering-based MPS classes. Using the trained ran-
dom forest classifier, theMPS class was predicted on the LHSCOPCHPV-
positive data set gene expression data.

CIBERSORTx cell type deconvolution
The latest version of CIBERSORTx fractions fromdocker (created on 2020-
04-04)85 was used to calculate individual-level cell type fractions using the
Puram et al. reference matrix (500 permutations in batch correction “B-
mode”). For CIBERSORTx analysis, TPM expression data in the case of the
LMU-KKG08-13andTCGAdata sets, andDESeq2normalized counts data
for the LMU-KKG 13-16 cohort were used.

Immunohistochemistry and image analysis
Immunohistochemical staining of FFPE tumor tissue sections (3 µm) was
performed using a primary antibody against the glycosaminoglycan (GAG)
portion of native chondroitin sulfate proteoglycan (CSPG) (Anti-Chon-
droitin Sulfate antibody [CS-56] (ab11570), Abcam, USA). The primary
antibody was used at a dilution of 1:200 and applied to the sample using the
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automated staining instrument Discovery XT (Roche, Ventana, Tucson,
AZ, USA). For detection, the secondary antibody Discovery-Universal
(Ventana) was used. Signal detection was performed using peroxidase-
DAB-(diaminobenzidine)-MAP chemistry (Roche, Ventana). The stained
tissue sections were fixed in an ethanol series and coated by a coverslip
before scanning at 20x objective magnification with a digital slide scanning
system (Axioscan 7, Carl Zeiss MicroImaging, Jena, Germany). The speci-
ficity and quality of the staining were reviewed and confirmed by a
pathologist (A. Walch).

The open-source software QuPath26 was used to quantify the fraction
of CSPG-positive malignant cells from IHC tissue microarray (TMA) core
images of the HPV-negative LMU-KKG cohort (n = 115).

Followingpositive cell detection and cell type annotation (malignant or
non-malignant) on two MPS1 (CS/DS GSVA enrichment high) and two
MPS2 (CS/DSGSVA enrichment low) cores, a random forest (RTrees) cell-
type classifierwas trainedon these fourmanually annotated cores and all the
remaining cores were annotated after positive cell detection. Positive cell
detection was done via the optical density sum detection image parameter,
all the other options were kept default. This way, CSPG positive cell % per
malignant and non-malignant cells were quantified in TMA cores of 115
tumors, each of which was represented by three cores on the TMA. For
further analysis, the average positive cell fraction [%] (malignant or non-
malignant) per tumor (three cores) was considered.

Cell line and xenograft data generation and processing
HNSCC cell lines were purchased from DSMZ (Braunschweig, Germany),
authenticated by short tandem repeat (STR) typing (service by DSMZ,
results in Supplementary Tables), and cultivated in DMEM supplemented
with 10% FCS, 100 U/ml penicillin and 100 µg/ml streptomycin (all from
Thermo Scientific, Schwerte, Germany) at 37 °C and 7.5% CO2 as
described86. Real-time functional assessmentof bioenergetic pathwaysof cell
lines was performed using a Seahorse Bioanalyzer (details in Supplementary
Figure Fuel Flex Test). Total RNA was extracted from exponentially
growing cultures usingNucleoSpinRNAIIKit (Macherey&Nagel,Dueren,
Germany). All animal experiments were performed according to the
FELASA guidelines and upon ethical approval by the Regierung von
Oberbayern. Athymic NU/NU (Crl:NU-Foxn1nu) mice were purchased
from Charles River Laboratories (Sulzfeld, Germany) and housed in indi-
vidually ventilated cages (GM500, Tecniplast, Hohenpeissenberg, Ger-
many) within a specified, pathogen-free animal facility and 12 h day/night
cycle. NU/NUmice feed (Ssniff, Soest, Germany) and water were provided
ad libitum. Animals were inspected daily.

For orthotopic inoculation of HNSCC tumors, exponentially growing
Cal33 and UPCI-SCC131 cells were harvested by TripLE Express (Thermo
Scientific) treatment,washed twice inPBS, andadjusted to 1×108 cells/ml in
PBS. 10 µl of the cell suspension were mixed 1+ 1 with growth factor-
reduced matrigel (Merck KGaA, Darmstadt, Germany). Mice were
analgized by intraperitoneal injection of 0.1 µg/g buprenorphin (Bayer,
Leverkusen, Germany) and anesthetized in 2-4% isoflurane dissolved in
0.8 l/min oxygen. When reaching surgical tolerance, a 2 × 2 mm2 Y-flap
incision was made on the ventral side of the neck, and cells were injected in
the region of the mylohyoid muscle. Skins were sealed with Ethibond Excel
5.0 suture thread (Johnson&Johnson GmbH, Norderstedt, Germany), and
anesthesia was discontinued. Tumor growth was monitored by weekly
contrast-enhanced conebeam computed tomography (CBCT) scans as
described87, starting from d7 after inoculation. Upon reaching tumor
volumes of ca. 100 mm3, animals were sacrificed by cardiac perfusion and
tumorswere explanted. 3’RNAseqdata ofHNSCC cell lines and orthotopic
xenograft data were generated and processed according to the workflow of
thepatient cohort data (LMU-KKG13-16).Additionally, readswere aligned
both to the human and mouse (Mus musculus GRCm38 reference) gen-
omes.GSVAwithKEGGmetabolic pathways,MSigDBhallmarks, andgene
signatures was performed analogously as for the clinical patient cohorts.
MPS classification of samples was carried out by NSC classification with
models trained on the LMU-KKG 13-16 and TCGA data sets. Mouse

genome-alignedgene expressiondatawereused for thedeconvolutionof the
host (mouse) TME (R package SSMD88, tissue type: “Inflammatory”).
Recovered cell type marker genes are shown in Supplementary Table 16.

MALDI-MSI data generation and analysis
MALDI mass spectrometry imaging measurements of fresh-frozen tumor
tissue sections were performed as previously described89. Metabolite
annotation was performed using the Human Metabolome Database
(HMDB, http://www.hmdb.ca/)90 and METASPACE (https://
metaspace2020.eu/)91.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Bulk RNA sequencing data of the LMU-KKG cohort used in this study
have been deposited at GEO under GSE205308, and GSE235223. Gene
and protein expression data of the CPTAC-HNSCC cohort are publicly
available (www.linkedomics.org/data_download/CPTAC-HNSCC/).
RNA sequencing data of the TCGA cohort (harmonized collection,
accessed on 11.07.2022) were obtained through the TCGAbiolinks R
library. Transcriptomic data of theLHSCOPCcohort are confidential and
were obtained through personal communication and permission by A.
Nichols. Processed scRNAseq data of the Puram et al. and raw scRNAseq
data of the Kürten et al. data sets were obtained from GEO under
GSE103322, and GSE164690, respectively. Microarray gene expression
data sets of the two HNSCC cohorts are available from GEO (GSE65858
and GSE41613).

Code availability
All code for data preprocessing and analysis associated with the current
submission is available upon request. The standard pipeline used for MPS
subtyping of tumors was implemented as an R library MetabolicExpressR
and is available at https://github.com/dBenedek/MetabolicExpressR.
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