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Abstract: Background: Adenosine triphosphate-citrate lyase (ACLY) inhibition has proven clinically
efficacious for low-density lipoprotein cholesterol (LDL-c) lowering and cardiovascular disease
(CVD) risk reduction. Clinical and genetic evidence suggests that some LDL-c lowering strategies,
such as 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibition with statin therapy
increase body weight and the risk of developing type 2 diabetes mellitus (T2DM). However, whether
ACLY inhibition affects metabolic risk factors is currently unknown. We aimed to investigate the
effects of ACLY inhibition on glycaemic and anthropometric traits using Mendelian randomization
(MR). Methods: As genetic instruments for ACLY inhibition, we selected weakly correlated single-
nucleotide polymorphisms at the ACLY gene associated with lower ACLY gene expression in the
eQTLGen study (N = 31,684) and lower LDL-c levels in the Global Lipid Genetic Consortium study
(N = 1.65 million). Two-sample Mendelian randomization was employed to investigate the effects
of ACLY inhibition on T2DM risk, and glycaemic and anthropometric traits using summary data
from large consortia, with sample sizes ranging from 151,013 to 806,834 individuals. Findings for
genetically predicted ACLY inhibition were compared to those obtained for genetically predicted
HMGCR inhibition using the same instrument selection strategy and outcome data. Results: Primary
MR analyses showed that genetically predicted ACLY inhibition was associated with lower waist-
to-hip ratio (β per 1 standard deviation lower LDL-c: −1.17; 95% confidence interval (CI): −1.61 to
−0.73; p < 0.001) but not with risk of T2DM (odds ratio (OR) per standard deviation lower LDL-c: 0.74,
95% CI = 0.25 to 2.19, p = 0.59). In contrast, genetically predicted HMGCR inhibition was associated
with higher waist-to-hip ratio (β = 0.15; 95%CI = 0.04 to 0.26; p = 0.008) and T2DM risk (OR = 1.73,
95% CI = 1.27 to 2.36, p < 0.001). The MR analyses considering secondary outcomes showed that
genetically predicted ACLY inhibition was associated with a lower waist-to-hip ratio adjusted for
body mass index (BMI) (β = −1.41; 95%CI = −1.81 to −1.02; p < 0.001). In contrast, genetically
predicted HMGCR inhibition was associated with higher HbA1c (β = 0.19; 95%CI = 0.23 to 0.49;
p < 0.001) and BMI (β = 0.36; 95%CI = 0.23 to 0.49; p < 0.001). Conclusions: Human genetic evidence
supports the metabolically favourable effects of ACLY inhibition on body weight distribution, in
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contrast to HMGCR inhibition. These findings should be used to guide and prioritize ongoing clinical
development efforts.

Keywords: ACLY; metabolic disease; type 2 diabetes mellitus; Mendelian randomization

1. Introduction

Metabolic dysfunction is characterized by a cluster of shared risk factors that include
obesity, insulin resistance, type 2 diabetes mellitus (T2DM), dyslipidaemia and atheroscle-
rosis [1]. This is a growing concern as it significantly contributes to cardiovascular disease
(CVD) morbidity and mortality worldwide [1]. Individuals with T2DM are at an increased
risk of developing various vascular complications [2], and it is estimated that the number of
people affected by T2DM will rise to 629 million by 2045 [3]. One of the primary drivers of
CVD in individuals with metabolic dysfunction is atherogenic dyslipidaemia—a condition
for which several lipid-lowering therapies have been developed, with statins being the
most widely prescribed. While statins have been shown to be effective in the prevention of
CVD events [4], their use is associated with adverse effects that include increased fasting
glucose levels and glycosylated haemoglobin A1c (HbA1c), which can lead to a higher risk
of developing T2DM [5,6]. In fact, both clinical trial and genetic data have supported that
LDL-c lowering, particularly through HMGCR inhibition, may increase body weight and
T2DM risk [7,8]. Despite existing efforts to combat atherosclerosis through lipid-lowering
therapies, there is still a pressing need to develop more effective therapies that can reduce
atherogenic CVD risk while minimizing potential adverse metabolic effects.

Adenosine triphosphate-citrate lyase (ACLY) is an enzyme in the cholesterol biosynthe-
sis pathway that functions upstream of 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMGCR), the enzyme targeted by statins. More specifically, ACLY catalyses the conver-
sion of citrate into acetyl-coenzyme A—a key metabolite that functions in de novo fatty
acids, cholesterol and coenzyme Q biosynthesis, all of which carry out essential cellular
functions [9,10]. ACLY is expressed ubiquitously in human tissues and exhibits particularly
greater expression levels in lipogenic tissues, including adipose and liver tissue [11]. Given
the central role of ACLY in glucose and lipid metabolism, ACLY inhibition has emerged
as a therapeutic strategy that is being pursued for cardiovascular and metabolic diseases.
In fact, clinical trial data have shown that bempedoic acid, an ACLY inhibitor, reduces
low-density lipoprotein cholesterol (LDL-c) levels and subsequently lowers cardiovascular
disease (CVD) risk [12,13]. Interestingly, and in contrast to statins, preliminary evidence
from observational and clinical trial data for bempedoic acid suggests that ACLY inhibi-
tion might have favourable metabolic effects [14,15]. The potential for ACLY inhibitors to
provide metabolic benefits whilst lowering LDL-c levels when compared to its therapeutic
counterparts is particularly important considering the rising incidence of metabolic dis-
eases. Considering the effect of metabolic and glycaemic traits on CVD risk, it is essential
to explore the potential discrepancies between different lipid-lowering drug targets with
regard to their effects on metabolic disease risk [16].

Genetic variants predicting the perturbation of pharmacological targets can be used in
the Mendelian randomization (MR) paradigm to rapidly and cost-effectively investigate
on-target drug effects [17,18]. The random allocation of genetic variants at conception
means that this approach is less vulnerable to bias from environmental confounding and
reverse causation that can hinder causal inference in traditional epidemiological studies.
Notably, previous MR analyses investigating the effects of ACLY inhibition used a genetic
instrument that was not robustly associated with LDL-c and further considered T2DM risk
as an outcome but not other related glycaemic or anthropometric traits [19–21]. Recent
work has identified more robust genetic instruments for the effect of ACLY inhibition
using variants related to ACLY gene expression and lower LDL-c levels [22]. Well-powered
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genetic data are also available for glycaemic traits and anthropometric traits, including
body weight and body fat distribution [23,24].

In this study, we aimed to leverage genetic instruments that proxy ACLY inhibition
in the MR paradigm to investigate the effects on metabolic and anthropometric outcomes.
The insights gained from this study will inform the future clinical development of ACLY
inhibitors and provide human causal evidence regarding the efficacy of this strategy for
metabolic and anthropometric outcomes.

2. Materials and Methods

Mendelian randomization is used to study the causal effect of an exposure on an
outcome of interest by leveraging human genetic variation. This approach helps overcome
the limitations of traditional epidemiological studies and can provide useful insights that
inform randomized controlled trials. In this study, we used a two-sample MR approach
to investigate potential anthropometric and metabolic effects of ACLY inhibition. We
first identified genetic variants to proxy the effects of ACLY inhibition. Next, in primary
analyses, we investigated the associations of genetically predicted ACLY inhibition with
the primary outcomes of waist-to-hip ratio and T2DM risk. In secondary analyses, we
extended our list of outcomes to include fasting glucose, 2 h post-prandial glucose, fasting
insulin, glycated haemoglobin (HbA1c), waist-to-hip ratio adjusted for body mass index
(BMI) and BMI. We conducted the same analyses for genetically predicted HMGCR, to
serve as a comparator. An overview of the study design is schematically presented in
Figure 1.
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2.1. Selection of Genetic Instruments

As instruments for ACLY inhibition, we selected weakly correlated (pairwise r2 < 0.2
using the 1000G European Reference Panel) genetic variants within ±100 kB of the ACLY
gene region (chr17:41,866,917-41,930,545; GRCh38/hg38) associated with lower ACLY
gene expression at p < 5 × 10−8 in blood samples from 31,684 individuals (eQTLGen,
N = 31,684) [25] and also associated with lower circulating LDL-c at p < 0.01 in 1.65 million
individuals using data from the Global Lipids Genetics Consortium (GLGC) [26]. As instru-
ments for HMGCR inhibition, we considered variants from ±100 kB of the HMGCR gene
region (chr5:75,336,329-75,364,001; GRCh38/hg38) using the same strategy as for ACLY.

2.2. Outcome Data Sources

Details prevailing to the genome-wide association study (GWAS) data sources used
in primary and secondary MR analyses are presented in Table 1. Our primary outcomes
included T2DM risk (Ncases = 180,834, Ncontrols = 1,159,055) using summary statistics from
DIAMANTE [27] and waist-to-hip ratio using summary statistics from the Genetic Investi-
gation of Anthropometric Traits (GIANT) Consortium (N = 694,649, standard deviation
units). Outcomes selected for secondary analyses included fasting glucose (mmol/L), 2 h
post-prandial glucose following an oral glucose tolerance test (mmol/L), fasting insulin
(log-transformed pmol/L), glycated haemoglobin (HbA1c, %) from the Meta-Analyses of
Glucose and Insulin-related traits Consortium (MAGIC, N = 200,622) [23], waist-to-hip
ratio adjusted for BMI (GIANT, N = 694,649, standard deviation units) and BMI (GIANT,
N = 806,834, standard deviation units).

Table 1. Data sources and genome-wide association studies used for exposures, primary and sec-
ondary outcomes.

Trait and
Ascertainment N Units Reference

Exposure

ACLY gene expression
in blood 31,684 Standard deviation Nature Genetics. 2021

Sep; 53(9), 1300–1310 [25]

Low-density
lipoprotein cholesterol 1,231,289 Standard deviation Nature. 2021 Dec;

600(7890):675–679 [26]

Primary outcomes

Type 2 diabetes
mellitus risk

Ncases = 180,834
Ncontrols = 1,159,055

Natural
log-transformed OR

Nat Genet. 2022 May;
54(5):560–572 [27]

Waist-to-hip ratio 697,734 Standard deviation Hum Mol Genet. 2019
Jan; 28(1):166–174 [24]

Secondary outcomes

Fasting
glucose—individuals

without diabetes
200,622 mmol/L Nat Genet. 2021 Jun;

53(6):840–860 [23]

2-h post-prandial
glucose—individuals

without diabetes
63,396 mmol/L Nat Genet. 2021 Jun;

53(6):840–860 [23]

Fasting
insulin—individuals

without diabetes
151,013

Natural
log-transformed

pmol/L

Nat Genet. 2021 Jun;
53(6):840–860 [23]

HbA1c 344,182 Standard deviation UK Biobank—Neale
Lab [28]

Waist-to-hip ratio
adjusted for body mass

index
694,649 Standard deviation Hum Mol Genet. 2019

Jan 1; 28(1):166–174 [24]

Body mass index 806,834 Standard deviation
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2.3. Statistical Analyses

We conducted two-sample random-effects inverse-variance-weighted MR [29] as the
main analysis to estimate the association of genetically predicted ACLY inhibition on our
selected outcomes. MR is a statistical approach that uses genetic variants as instrumental
variables to investigate the causal effects of an exposure on an outcome of interest. There
are three main assumptions underlying the robust utilization of genetic instruments to
facilitate MR. Firstly, the genetic instrument(s) must be associated with the exposure of
interest (i.e., the relevance assumption). Secondly, no confounding factors influence the
association between the genetic instrument(s) and outcomes of interest (i.e., the indepen-
dence assumption). Thirdly, the genetic instrument is only related to the outcome via the
exposure, ensuring the absence of pleiotropic effects that may bias MR estimates (i.e., the
exclusion restriction assumption) [30]. For sensitivity analyses, we used the MR-Egger [31]
and weighted median methods [32], as they make different assumptions about the presence
of invalid instruments and pleiotropy [30]. As a sensitivity analysis to explore that any
observed associations for genetically predicted ACLY inhibition are not attributable to
correlation between the variants employed as instruments, we also tested the association
of the lead variant in the ACLY inhibition instrument (based on association with gene
expression) with the considered outcomes.

2.4. Reporting

For continuous outcomes, we report estimated β and 95% confidence intervals (CI) for
the putative effects of ACLY and HMGCR inhibition on primary and secondary outcomes
of interest. β values represent the changes in the corresponding unit change described in
Table 1 per standard deviation decrease in genetically predicted LDL-c levels. For binary
outcomes, we report natural log odds ratios (ORs) and 95% CI per standard deviation
decrease in genetically predicted LDL-c levels. A Bonferroni correction was made in
ascertaining the statistical significance of the two primary outcomes. A separate Bonferroni
correction was made in ascertaining statistical significance for the six secondary outcomes,
which were considered exploratory in the context of at least one positive primary outcome.

3. Results

We conducted two-sample MR analyses to estimate associations between genetically
predicted ACLY inhibition and anthropometric and metabolic traits. We compared the
estimates with those for genetically proxied HMGCR inhibition, a clinically validated
comparator.

We leveraged five weakly correlated genetic instruments within the ACLY gene locus
that were significantly associated with ACLY gene expression and LDL-c levels. Following
the same rationale for the selection of genetic instruments, four genetic variants were
identified as instruments for HMGCR inhibition. Genetic instruments and their associations
with their respective gene expression and LDL-c levels are presented in Tables 2 and 3.

Table 2. Genetic variants selected as instruments for ACLY inhibition and their associations with
gene expression and low-density lipoprotein cholesterol.

ACLY Gene Expression
Associations LDL-c Associations

Variant Chromosome Position
(hg19)

Effect
Allele

Other
Allele Z-Score p Value β

Standard
Error p Value

rs6503666 17 39954291 G A −7.663 1.80 × 10−14 −0.005 0.002 0.003
rs4796707 17 39964930 C T −11.142 7.80 × 10−29 −0.008 0.001 9.93 × 10−08

rs34200091 17 40014216 A G −17.964 3.70 × 10−72 −0.010 0.002 9.91 × 10−07

rs76162894 17 40085165 A C −6.452 1.10 × 10−10 −0.022 0.008 0.005
rs2070106 17 40125864 G A −6.442 1.18 × 10−10 −0.004 0.002 0.009
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Table 3. Genetic variants selected as instruments for HMGCR inhibition and their associations with
gene expression and low-density lipoprotein cholesterol.

HMGCR Gene Expression
Associations LDL-c Associations

Variant Chromosome Position
(hg19)

Effect
Allele

Other
Allele Z-Score p Value β

Standard
Error p Value

rs13356603 5 74569357 C T −6.909 4.90 × 10−12 −0.068 0.002 <1.00 × 10−300

rs114760090 5 74622241 G A −7.840 4.50 × 10−15 −0.017 0.003 7.53 × 10−09

rs6453133 5 74692776 A G −14.967 1.21 × 10−50 −0.050 0.002 4.24 × 10−229

rs151000110 5 74725216 G A −8.659 4.77 × 10−18 −0.067 0.003 1.65 × 10−103

The main results from MR analyses are shown in Figure 2. In our primary MR analyses,
we found that genetically predicted ACLY inhibition was associated with a lower waist-
to-hip ratio (β = −1.17 per standard deviation lower LDL-c, 95% confidence intervals
(CI) = −1.61 to −0.73), p < 0.001) but not with risk of T2DM (odds ratio (OR): 0.74, 95%
confidence interval: 0.25 to 2.19, p = 0.593) (Table S1). In contrast, genetically predicted
HMGCR inhibition was associated with a higher waist-to-hip ratio (β = 0.15; 95%CI = 0.04
to 0.26; p = 0.008) and T2DM risk (OR = 1.73, 95% CI = 1.27 to 2.36, p < 0.001). Consistent
findings were generally obtained in statistical sensitivity analyses using the MR-Egger and
weighted median methods, although with larger confidence intervals likely attributable to
lower statistical power (Tables S1 and S2).
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HMGCR inhibition on primary and secondary outcomes.

In secondary MR analyses, we found that genetically predicted ACLY inhibition was
associated with a lower waist-to-hip ratio adjusted for BMI (β = −1.41; 95%CI = −1.81 to
−1.02; p < 0.001). No strong association was found for genetically predicted ACLY and the
other considered secondary outcomes (Table S1). In contrast, genetically predicted HMGCR
inhibition was associated with higher HbA1c (β = 0.19; 95%CI = 0.23 to 0.49; p < 0.001) and
BMI (β = 0.36; 95%CI = 0.23 to 0.49; p < 0.001) (Table S2).

Considering only the lead variant in the ACLY inhibition instrument (rs34200091
C allele), robust associations were observed with a lower waist-to-hip ratio (−0.011;
95%CI = −0.017 to −0.006; p < 0.001) and waist-to-hip ratio adjusted for BMI (−0.013;
95%CI = −0.018 to −0.008; p < 0.001) but not any of the other considered primary or
secondary outcomes (Table S3).

4. Discussion

In this study, we identified genetic instruments to proxy ACLY inhibition and lever-
aged these in a two-sample MR design to investigate the effects of ACLY inhibition on
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metabolic and anthropometric outcomes. Our findings indicate that genetically predicted
ACLY inhibition, which was used as a proxy for investigating pharmacological ACLY inhi-
bition, is associated with a lower waist-to-hip ratio in our primary analyses and consistently
with waist-to-hip ratio adjusted for BMI in our secondary analyses. No strong associations
were found with any of the other considered metabolic traits. These findings contrast
those for genetically predicted HMGCR inhibition, which corroborated clinical trial data
to support the effects of statins on increasing T2DM risk, waist-to-hip ratio, HbA1c and
BMI. These findings offer valuable insights for guiding and prioritizing ongoing clinical
development efforts for lipid-lowering therapies.

Previous animal studies have shown that ACLY inhibition leads to improved metabolic
health and physical strength in wild-type mice fed with a high-fat diet [14,33]. Bempedoic
acid was also shown to reduce fasting glucose, fasting insulin and glucose intolerance in
mouse models, suggesting improvements in insulin sensitivity [34]. There is suggestive
evidence from clinical trials that these effects may translate to humans, as a meta-analysis of
randomized trials suggests that bempedoic acid may reduce the incidence and progression
of diabetes [35]. However, this was not replicated in the latest published Cholesterol
Lowering via Bempedoic Acid, and ACL-Inhibiting Regimen (CLEAR) Outcomes trial,
which showed that treatment with bempedoic acid for patients without diabetes had no
effect on the risk of new-onset T2DM or HbA1c levels [15], in line with our findings.
In contrast, preclinical studies have highlighted potential associations between ACLY
inhibitors, including bempedoic acid and BMS-303141, and weight loss independently of
alterations in food intake [12,34,36]. This is consistent with sub-analyses of clinical trials
that have identified a link between ACLY inhibition and weight loss [37] and with our
findings that support effects on body weight distribution.

MR can overcome the limitations of traditional epidemiological studies and animal
studies, in that the paradigm uses human data to infer causal effects. However, previous
MR studies on ACLY inhibition have had major limitations related to the selection of genetic
instruments. For instance, Ference et al. selected genetic instruments on the basis of a
wide genomic window of 500 kB and a very liberal p-value threshold of p < 0.05 that likely
results in the incorporation of irrelevant instruments [19]. The genetic variants they selected
additionally did not explain variability in any ACLY gene product and did not associate
with LDL-c levels upon attempted replication and validation [20,21,38]. In this study, we
selected genetic variants used as instrumental variables based on associations with lower
ACLY gene expression at a genome-wide significance level and, additionally, with LDL-c at
a nominal significance level. This step establishes the biological and clinical plausibility of
our selected instruments and thereby strengthens the evidence from our subsequent MR
findings. This approach has been adopted by other MR studies but with different outcomes
under investigation. For instance, using this approach of selecting genetic instruments,
Mohammadi-Shemirani showed that a genetically predicted reduction in ACLY expression
was associated with reduced risk of chronic kidney disease but was not associated with
estimated glomerular filtration rate and albumin-to-creatinine ratio [22].

There is significant interest in the potential adverse effects of different lipid-lowering
therapies [39]. Our current MR findings shed further light on the differential effects of LDL-c
lowering through HMGCR and ACLY inhibition, highlighted by the opposing directionality
of their MR associations with some anthropometric traits and T2DM risk. ACLY inhibitors,
that function at the intersection of fatty acid, cholesterol and carbohydrate metabolism,
modulate lipid and glucose metabolism pathways, potentially leading to decreased waist-
to-hip ratio. Conversely, our findings, together with prior clinical evidence, suggest that
statins lead to increased T2DM liability via the modulation of glucose metabolism [8].
Recent data from randomized controlled trials supported that statin therapy increases
blood glucose, which translates into an increased risk of T2DM and worsening glycaemic
control among those with T2DM [39]. Despite this, the beneficial effects of statins on major
vascular events are generally considered to outweigh the detrimental effects on glucose
and energy metabolism. However, better lipid-lowering strategies, reducing major vascular



Genes 2024, 15, 1059 8 of 11

events as well as improving glucose and energy metabolism have been lacking so far. Our
current data together with those from clinical trials suggest that ACLY inhibition may be
such a strategy [13].

Several mechanisms have been put forward to explain the role of statins in the im-
pairment of insulin sensitivity, secretion, and subsequent development of T2DM. Previous
genetic and trial data indicated that the elevated risk of diabetes associated with statin
therapy may be, in part, attributable to an increase in body weight, which, in turn, increases
the risk of developing diabetes [8]. Growing evidence supports that body fat distribution,
rather than body weight per se, may be a mediating risk of developing T2DM [40,41]. The
waist-to-hip ratio is used to clinically estimate visceral obesity [40,42], which in turn may
induce insulin resistance [40,43] and also vascular disease [43,44]. We recently showed in
the Diabetes Prevention Program and the Prediabetes Lifestyle Intervention Study that the
weight-loss-induced remission of prediabetes to normal glucose tolerance was mediated by
a reduction in visceral adipose tissue, with an associated reduction in the risk of developing
T2DM [40,45,46]. In the context of data from our current study that supported favourable
effects of ACLY inhibition on the waist-to-hip ratio, we hypothesize that by beneficially
impacting body fat distribution, ACLY inhibition may contribute to reduced T2DM risk
in clinical practice. Our current human genetic data also support that HMGCR inhibition,
in contrast to ACLY inhibition, increases BMI, waist-to-hip ratio and T2DM risk. Similar
results have been reported with statin treatment [39]. A potential explanation for this
finding is that the inhibition of HMGCR in the liver results in the downregulation of the
mevalonate pathway, increased LDL receptor (LDLR) expression and a reduction in LDL-c
concentrations. This may lead to impaired insulin secretion in the pancreas and increased
T2DM risk [47,48].

This work has several strengths. Firstly, and as previously discussed, we employed
a robust approach to select genetic instruments that are biologically plausible proxies for
ACLY inhibition, supporting the validity of our MR findings. Secondly, we harnessed data
from large-scale GWAS datasets and extended our outcomes to include additional markers
of metabolic function than previously studied. Thirdly, we contrasted with a clinically
validated comparator, the statin drug target HMGCR.

Our results should also be interpreted in the context of their limitations. Firstly, the
majority of publicly available GWAS used in this study pertains to populations of Euro-
pean ancestry, thereby limiting the generalizability of our results to populations of other
ancestries. Caution should, therefore, be taken when interpreting these findings in the
context of populations of diverse genetic ancestry. This also highlights the need to generate
genetic association studies in diverse population groups to allow for investigation into
whether these findings extrapolate to the broader global population. Secondly, MR analyses
consider the associations of genetic variants predicting small lifelong changes of drug target
inhibition, which differ from discrete clinical interventions of larger magnitude in later
life. Therefore, MR estimates should not be extrapolated to infer the magnitude of effect
association with a clinical intervention but, rather, should be used to shed light on the
presence and direction of any effects. Moreover, some of the null observed associations
may be false-negative findings due to inadequate statistical power. MR analyses can also
be subject to bias from pleiotropic associations of the genetic variants, a possibility that
cannot be entirely excluded despite our incorporation of statistical sensitivity analyses
that are more robust to this. Finally, our study’s reliance on publicly available GWAS
data may introduce biases. These limitations highlight the need for further investigations
using large independent genetic association datasets, along with clinical studies, to validate
our findings.

5. Conclusions

In conclusion, this human genetic evidence supports the metabolically favourable
effects of ACLY inhibition on body weight distribution, in contrast to those observed for
HMGCR inhibition. These findings should be used to inform and prioritize ongoing clinical
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development efforts and facilitate a discussion about which therapies to favour for the
treatment of hypercholesterolemia in certain patient groups, such as those at high risk of
developing T2DM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15081059/s1, Table S1: Mendelian randomization statistical
sensitivity analyses for ACLY inhibition. Beta values represent the change per standard deviation
increase in genetically predicted LDL-c levels (with units as per the main Table 1), and for binary
outcomes, we report natural log odds ratios. Table S2: Mendelian randomization statistical sensitivity
analyses for HMGCR inhibition. Beta values represent the change per standard deviation increase
in genetically predicted LDL-c levels (with units as per the main Table 1), and for binary outcomes,
we report natural log odds ratios (ORs). Table S3: Associations of the lead variant in the ACLY
inhibition instrument (rs34200091) with the considered primary and secondary outcomes. Beta values
represent the association per LDL-c decreasing allele (with units as per the main Table 1), and for
binary outcomes, we report natural log odds ratios.
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