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Aging is acomplex biological process and represents the largest risk

factor for neurodegenerative disorders. The risk for neurodegenerative
disordersisalsoincreased in individuals with psychiatric disorders. Here, we
characterized age-related transcriptomic changes in the brain by profiling
~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and
without psychiatric diagnoses and replicated findings in anindependent
cohort with 32 individuals. Aging affects all cell types, with LAMPS'LHX6"
interneurons, a cell-type abundant in primates, by far the most affected.
Disrupted synaptic transmission emerged as a convergently affected
pathway in aged tissue. Age-related transcriptomic changes overlapped
with changes observed in Alzheimer’s disease across multiple cell types.
We find evidence for accelerated transcriptomic aging in individuals with
psychiatric disorders and demonstrate a converging signature of aging

and psychopathology across multiple cell types. Our findings shed light on
cell-type-specific effects and biological pathways underlying age-related
changes and their convergence with effects driven by psychiatric diagnosis.

Agingisacomplex, notyet fully understood biological process, where
changes at the level of molecules, cells and organslead to alterationsin
function and physiology. The aging brainis characterized by structural
and functional remodeling, especially in the prefrontal cortex and
white matter tracts, ultimately affecting cognition and memory". At the
cellularlevel, reductionin spine density, axonal transport and synapse
number, changes in neurotransmitter levels and mitochondrial dys-
function and oxidative damage have been described in the aging brain®.

Age represents the strongest risk factor for neurodegenerative
disorders, suggesting that certain age-related changes could be

directly involved in disease etiology. Given the increasing life expec-
tancy of current societies, accompanied by arise in the prevalence
of neurodegenerative disorders, it is of great importance to better
characterize underlying mechanisms of normal and pathological
aging. Moreover, studies indicate common biological pathways
affected by aging and psychiatric disorders’, another disease group
with increasing prevalence and substantial socioeconomic burden.
Transcriptomic and neuroimaging studies suggest that psychiatric
disorders, such as schizophrenia (SCZ), are associated with acceler-
ated brain age*’.
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Our current knowledge of the transcriptomic changesinvolvedin
brain agingis mainly limited to studies in other species, such as mice®
and nonhuman primates’, and to bulk human postmortem tissue®’.
Some studies'®" inmodel organisms have implemented single-cell RNA
sequencing to decipher cell-type-specific age-associated changes in
gene expression. Inhumans, arecent single-nucleus RNA-sequencing
(snRNA-seq) study™ examined changes in gene expression latent fac-
tors with aging, including in the context of SCZ. Understanding the
unique transcriptomic effects of age for specific genesinindividual cell
typesinthe humanbrain and mapping shared or divergent alterations
and affected molecular pathways and which cell types are most affected
areimportant steps toward the development of potential therapeutic
interventions to prevent or treat age-associated pathologies.

In this study, we profiled single-nucleus transcriptomes of the
orbitofrontal cortex (OFC) of a cohort of 87 individuals ranging from
26 to 84 years of age. We focused on the OFC as it has an important
role in cognitive functions®, suffers structural and functional decline
during aging' and is implicated in the pathophysiology of neuropsy-
chiatric diseases"¢. The cohort contained neurotypical individuals
and individuals diagnosed with a psychiatric disorder, mainly SCZ.
With ~800,000 nuclei profiled, we provide a comprehensive dataset
ofage-associated genes, pathways and affected cell types that allowed
us to analyze possible convergence with neurodegenerative and
psychiatric diseases.

Results

Single-nucleus profiling of the human OFC

To investigate the gene expression changes that occur throughout
aging in individual cell types, we examined nuclei extracted from
the OFC. We generated snRNA-seq data from a total of 87 individuals
(meanage = 54.85years; range, 26-84 years; 32 women and 55 men; 54
individuals with a psychiatric disorder and 33 neurotypical individu-
als; Supplementary Tables 1and 2 and Extended Data Fig. 1a), totaling
around 800,000 nuclei. Neuropathological examination of the brain
tissue confirmed the absence of macro- or microscopic changes, except
for one individual, although cortical areas were unaffected. The two
groups did not differinage, sex, RNA integrity number (RIN) and post-
mortem interval (PMI) (Extended DataFig.1b). The median number of
genes and counts per nucleus were 2,210 and 3,900, respectively. There
was no difference in median number of genes and counts per nucleus
between individuals with a psychiatric disease and neurotypical indi-
viduals (Extended Data Fig. 1b) and no correlation between age and
PMIorbetween age and median number of genes or median number of
counts (Extended Data Fig. 1c). However, we found amodest negative
correlation between age and RIN (Extended Data Fig. 1c), which has
previously beenreported”. We applied Leiden clustering using highly
variable genes toidentify cell-type clusters (Fig. 1a-c; see Extended Data
Fig.2a-dforadditional quality control). We identified 7 major cell types
and 21 distinct cell types, including endothelial cells, glial cell types
(oligodendrocytes, oligodendrocyte precursor cells (OPCs), microglia
and two astrocyte subtypes (fibrous and protoplasmic) and subtypes
ofbothexcitatory and inhibitory neurons (Fig.1a-d and Extended Data
Fig. 3a-c). There was no difference in mean number of nuclei per cell
type betweenindividuals with apsychiatric disorder and neurotypical
individuals (Supplementary Table 3).

Cellular composition changes with age

We first investigated changes in cell composition during aging by
calculating the proportions of each cell type per individual. Most
cell types did not change in abundance, only the proportion of OPCs
significantly decreased with age (false discovery rate (FDR)-adjusted
P=0.002), going along with a trend-line increase in oligodendro-
cytes (FDR-adjusted P=0.05) and decrease in VIP inhibitory neurons
(In_VIP, FDR-adjusted P= 0.05; Extended Data Fig. 4a and Supplemen-
tary Table 4).

Aging affects the transcriptomes of all cell types

Using single-nucleus RNA transcriptomes, we generated pseudobulk
countsforeachcelltype perindividual to characterize cell-type-specific
gene expression aging trajectories. Allanalyses were adjusted for covar-
iates (disease status, sex, pH, RIN, PMI, library preparation batch and
principal component 1 (PC1; for hidden confounders inferred froma
batch-corrected expression matrix)) and corrected for multiple testing
using the Benjamini-Hochberg (FDR) method'® (Methods). In total, we
observed 3,299 unique differentially expressed (DE) genes with age
(FDR-adjusted P< 0.05) across all cell types. Changes in gene expression
were detected in all identified cell types, with the largest number of DE
genes in upper-layer excitatory neurons (Exc_L2-L3) neurons (Sup-
plementary Tables 5 and 6). In all cell types except oligodendrocytes,
microgliaand Exc_L5-L6_2 neurons, more than half of the DE genes
were downregulated withincreasing age (Fig. 2a), an effect previously
reported in bulk brain tissue of rhesus macaques and humans'". The
distribution of fold change values over a period of 10 years per cell
type is shownin Extended Data Fig. 4b with great symmetry between
the up- and downregulated genes in their effect size distributions.
Overall, age-related gene expression direction effects were similar
between neurotypical individuals and individuals with psychiatric dis-
ease across celltypes asrevealed by rank-rank hypergeometric overlap
(RRHO; Extended Data Fig. 5). Differences in the number of DE genes
among celltypes arerelated to the statistical power to detect DE genes
ina given cell type, driven by factors including the number of nuclei
and sequencing reads per cell type®. To estimate how strongly gene
expression was affected by age in each cell type, we downsampled our
datasetto 5,000 nuclei per cell type, followed by differential expression
analysis. This analysis showed thatIn_LAMP5_2 neurons, aninhibitory
neuronsubtype characterized by the coexpression of LAMPS and LHX6
(Extended DataFig.3b), showed by far the most relative DE genes with
age, followed by the deep-layer neuron cluster Exc_L4-L6_2 (Fig.2band
Supplementary Table 7), afinding supported by variance partitioning
analysis (Extended Data Fig. 4c and Supplementary Table 8). Interest-
ingly, LAMPS'LHX6" interneurons have become enriched in the cortex
of primates during evolution®.

Shared and unique signatures of aging across all cell types

Next, we compared DE genes (FDR-adjusted P < 0.05) across cell types.
The vast majority of DE genes were unique to a single cell type, fol-
lowed by shared DE genes between groups of two to three cell types
(Extended Data Fig. 6a,b). NRGN was the only gene shared across all
major cell types at this cutoff (Fig. 2c and Supplementary Table 9),
whereas no common DE genes across all 21 cell types were identified
(Extended Data Fig. 6a,b). Examination of the proportions of shared
DE genes between celltypesrevealed an overall higher overlap among
downregulated than among upregulated DE genes, especially across
excitatory neurons (Fig. 2d). Of the DE genes at an FDR of <0.05 shared
across multiple cell types, several have been previously associated
with aging, such as calcium/calmodulin-dependent protein kinase IV
(CAMK4; Fig.3a) and FKBP prolylisomerase 5 (FKBPS; Fig. 3b). CAMK4
encodes animportant transcriptional regulator previously reported
to be regulated with age across several species’. FKBPS is one of the
genes with the highest log,-transformed fold change (log,FC; 0.027
to 0.045 per year) value overall and with the highest upregulation
with age in upper-layer excitatory neurons, as previously reported®.
Single-nucleotide polymorphisms (SNPs) in FKBP5 are associated with
anincreased risk for several psychiatric disorders, and FKBPShasbeen
implicated in Alzheimer’s disease (AD) by interfering with tau process-
ing?**, Shared effects were also seen for genes relevant for neuronal
differentiation and regeneration of axons—for example, NREP (Fig. 3c),
and NPTX2 (Fig.3d). Microglia have a high fraction of unique DE genes
(Extended DataFig. 6a,b), including MS4A6A, the gene with the highest
log,FC value of all DE genes (log,FC: 0.063 per year; Fig. 3e). MS4A6A has
important roles inimmunity, and SNPs within this gene are associated
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Fig.1|Identification of cell types. a,b, Uniform manifold approximation and
projection (UMAP) showing ~800,000 nuclei from the OFC from 87 donors
colored by major cell-type cluster (a) and individual cell-type cluster (b).
Cell-type annotation was performed using a label transfer algorithm, followed
by manual curation based on marker genes described in the literature. ¢, Bar
plot depicting the number of nuclei per individual cell-type cluster. d, Left, dot
plot showing the expression of representative marker genes, which are grouped

by major cell types. The size of the dot represents the percentage of nuclei
expressing the gene, and the color indicates the mean expression level. Right,
dendrogram showing the relationship between identified cell-type clusters
based on similarity in gene expression; Astro_FB, fibrous astrocytes; Astro_PP,
protoplasmic astrocytes; Exc, excitatory; In, inhibitory; L, cortical layer; Ba,
basket; Ch, chandelier; PVALB, parvalbumin.

with AD*?. HLA-DRBI, another unique DE gene in microglia, is signifi-
cantly upregulated in expression with age and has reported genetic
associations with aging (longevity”’) and AD*® (Fig. 3f).

However, because statistical power influences the ability to detect
significant DE genes and thus shared effects, we performed multi-
variate adaptive shrinkage (mash) analysis® to leverage information
sharing across genes and cell types. The mash analysis revealed atotal

of 256 shared DE genes across all 21 cell types (108 up- and 148 down-
regulated) at a local false sign rate of <0.05. These include, ARPP19
(whichis involved in the regulation of mitosis and is regulated with
age in the brains of both humans and rhesus macaques®"), CAMK2N1
(which encodes a calcium-dependent protein kinase inhibitor with
arole in synaptic long-term potentiation, a process altered during
aging) and SRRM2 (which encodes a component of the spliceosome
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Fig. 2| Differential gene expression analysis. a, Bar plot depicting the
percentage of up- and downregulated DE genes (at FDR-adjusted P < 0.05) for the
respective cell types. b, Box plot of the numbers of DE genes identified from the
differential gene expression analysis of downsampled data (5,000 nuclei from
each cell type were randomly selected ten times (that is, N=10)). Pvalues were
calculated by comparing the numbers of DE genes between cell types (two-sided
Mann-Whitney U-test), followed by multiple testing correction (FDR). For clarity,
only the Pvalue for the comparison between In_LAMP5_2 neurons and all other
cell types is shown (***P < 0.001); exact Pvalues are shown in Supplementary
Table 7. The box plot shows the median (center) and interquartile range

(IQR; bounds of the boxes), and whiskers extend to either the maxima/minima or
to the median +1.5% IQR, whichever is nearest. Triangles indicate outliers.
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andisimplicated in neurodegenerative disorders where it mislocalizes
to tau aggregates in the cytoplasm®**) (Fig. 3g). This provides evi-
dencethat thelarge number of nuclei sequenced in our dataset allows
mapping of age-related changes to individual cell types, with specific
and overlapping effects, enabling insights into the cellular effects of
age-related genes.

Enrichment of biological pathways and disease

Tobetter understand the shared and cell-type-specific biological pro-
cesses affected by age, we performed over-representation analysis for
biological pathways of the up- and downregulated genes, respectively.

We started with the 256 shared genes from the mash analysis and used
semantic similarity analysis to reduce redundancies in the list of sig-
nificant Gene Ontology (GO) terms (Fig. 3h). Common upregulated
genesare involved in processes such as mRNA splicing, which has been
previously described as being affected by aging across tissues and spe-
cies®. Downregulated genes mapped to synaptic signaling at various
levels, including neurotransmitter secretion, axo-dendritic transport
and (post)synapse organization, consistent with studies in human
bulk brain®*, Cell-type-specific biological processes (Extended Data
Fig.7)in microgliaincluded humoral response, positive regulation of
immuneresponse and cellular response to reactive oxygen species for
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Fig.3|Examples of shared and cell-type-specific age-regulated genes and
enriched pathways. a-f, Scatter plots showing log normalized gene expression
corrected for covariates across aging of significantly DE genes in respective
celltypes, including CAMK4 (a), FKBP5 (b), NREP (c), NPTX2 (d), MS4A6A (e)

and HLA-DRBI (f). Error bands represent the 95% confidence interval. g, Forest
plots showing effect sizes (posterior log,FC) across cell types for ARPP19,
CAMK2N1 and SRRM2. Data are represented as posterior mean + posterior

s.d.; mashR analysis was performed across all cell types (N = 21). h, Biological
pathway enrichment results for up- and downregulated genes (mash analysis).
Significance was determined using a one-sided Fisher’s exact test, followed

by multiple testing correction (FDR). Semantic similarity analysis was used to
group related GO terms. The size of each circle corresponds to the number of GO
terms within the group, and the color represents the lowest Pvalue among the
summarized GO terms.

upregulated DE genes (Extended Data Fig. 7a), consistent with previous
findings ofincreased immune functionin the aged brainin both humans
and mice***. Downregulated DE genes in microglia were enriched for
termsrelated to theregulation of amyloid-p formation (Extended Data
Fig. 7b). Within endothelial cells, downregulated DE genes showed
enrichment for termsincluding transportacross the blood-brain bar-
rier, supporting potential disruption of the blood-brain barrier as pre-
viously showninaged humans and mice***. Moreover, downregulation

of DE genes involved in cellular ion homeostasis was observed in
excitatory and inhibitory neurons. Downregulated DE genes in several
inhibitory neuron subtypes mapped to metabolic processes, such as
nucleotide metabolic process, and oxidative phosphorylation was seen
specifically inseveral inhibitory neuron subtypes. In_LAMP5_2 neurons
(the cell type identified as most severely affected by aging) showed
enrichment for macroautophagy and regulation of apoptotic process
withinits downregulated DE genes. These findings show that although
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there are cell-type-specific pathways, there is convergence not only
atthe gene level but also at the pathway level (Extended Data Fig. 7).
Disease enrichmentanalysis revealed that downregulated DE genes
(FDR < 0.05) were enriched for genes associated with brain-related
diseases, including neurodegenerative diseases (for example, AD),
across variousinhibitory neuron subtypes, one deep-layer excitatory
neuron cell type and microglia and oligodendrocytes (Fig. 4a and
Extended DataFig. 8a). Additionally, enrichment for psychiatric disor-
ders (for example, SCZ) was found across several excitatory, inhibitory
and glial cell types. Enrichment for brain-related disorders within the
upregulated DE genes included demyelinating disease (in microglia),
mood disorders (in VIP inhibitory neurons) and substance abuse
(inoligodendrocytes) (Fig. 4b and Extended Data Fig. 8b).

Validation of transcriptomic changes across datasets

To compare our aging-related gene signature with previously published
bulk datasets in the human postmortem brain, we summed all sequenc-
ing reads to a ‘full pseudobulk’ dataset and performed differential
expression analysis. Theidentified DE genes (Supplementary Table 10)
showed significant overlap with those previously reported in (pre)
frontal cortex bulk data®*** (Supplementary Table 11), emphasizing the
validity of our analysis. To validate our cell-type-specific findings, we
compared our identified DE genes in microglia and astrocytes (major
cell-type cluster) to datasets that have identified gene expression
changes over the course of aging in purified microglia®* and astro-
cytes® from the cerebral cortex, respectively. Moreover, we leveraged
ansnRNA-seq dataset from Chatzinakos and colleagues® derived from
dorsolateral prefrontal cortex samples from 32 individuals with an age
range of 26-60 years as a replication dataset. Within this snRNA-seq
dataset, excitatory and inhibitory neuron subtypes showed sufficient
power and were used for validation (see Methods for statistics). For all
investigated cell types except In_PVALB_Ch neurons, Fisher’s exact test
revealed asignificant overlap inupregulated age-associated genes with
the highest odds ratio in microglia and Exc_L4-L6_1 neurons (Fig. 5a
and Supplementary Table 12). Downregulated age-associated genes
significantly overlapped across all cell types, with the highest odds
ratio in astrocytes, In_.LAMPS5_2 neurons and microglia (Fig. 5a and
Supplementary Table 12). Moreover, the directionality of expression
changes (log,FC) was highly congruent, with high correlations of the
effect sizes between the overlapping DE genes (Spearman correla-
tion coefficient (p) ranging from 0.58 in In_PVALB_Ch neurons to 0.92
in microglia) (Fig. 5a,b and Supplementary Table 12). These analyses
underscore the comparability across datasets from different cohorts
and cortical regions and generated using both snRNA-seq and sequenc-
inginsorted cell populations.

Age-associated genes enriched in genes dysregulatedin AD

To understand the extent to which cell-type-specific DE genes
associated with aging could have a role in AD, we overlapped the
age-dependent DE genes with DE genes identified by snRNA-seqin the
prefrontal cortex of two AD datasets***, For both datasets, we found
thatgenesupregulatedinastrocytes and oligodendrocytesinindividu-
als with AD showed significant overlap with the age-upregulated DE
genesin the corresponding major cell types in our dataset (Fig. 6a,b).
Genes downregulated in excitatory and inhibitory neurons and astro-
cytes inindividuals with AD also showed significant overlap with the
age-downregulated DE genes in the corresponding cell types in our
dataset (Fig. 6a,b and Supplementary Table 13). Additionally, the effect
sizes (log,FC values) were highly correlated in astrocytes and excita-
tory neurons (Fig. 6a,b). Examples of genes with concordant changes
with age and AD include GRM3 in astrocytes and RPH3A in excitatory
neurons (Fig. 6¢,d). SNPs in GRM3, which is downregulated both with
age and in AD, have been associated with increased risk for SCZ and
worse cognitive function*’. RPH3A, which is involved in neurotrans-
mitter release, is downregulated in excitatory neurons withage andin
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Fig. 4 | Disease enrichment for brain-related diseases of age-regulated genes.
a,b, Heat maps depicting disease enrichment of age-regulated DE genes

(at FDR-adjusted P< 0.05) across cell types for downregulated (a) and
upregulated (b) DE genes. Only cell types with a minimum of one disease
ontology term were included. Colors represent the number of genes (count)
contributing to the disease ontology term. Significance was determined

using aone-sided Fisher’s exact test, followed by multiple testing correction
(FDR). Asterisks (*) indicate an FDR-adjusted P < 0.05. Gray values indicate not
applicable. Only enrichment for brain-related diseases is shown.

AD. Higher gene expressionin excitatory neurons** and higher protein
levels in the prefrontal cortex have been associated with cognitive
resilience™, whereas lower protein levels have been associated with
higher amyloid- burden®. This supports that gradual age-related
changes in these cell types could contribute to the development of
AD, possibly when reaching a certain threshold level in the context of
other risk factors.

Importantly, we alsoinvestigatedif there are genes that are oppo-
sitely regulated between age and AD. We identified two genes with
opposite cell-type-specific regulation with age versus AD that were
consistentinboth AD datasets. LINGO1 and KCTD17 decrease with age
in excitatory neurons (Fig. 6e), whereas these genes are regulated in
the opposite direction in AD (Fig. 6f) within the same cell type. These
may represent protective factors of interest for drug targeting.

Accelerated transcriptomic aging in psychopathology

Psychiatric disorders, transdiagnostically, are associated with lower
life expectancy*® and an increased risk for neurodegenerative disor-
ders*, whichin turn is associated with an increased mortality rate*s.
Various proxies have been used to estimate biological age, such as
structural magnetic resonance imaging*, transcriptomic data* and
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Fig. 5| Validation of age-related genes across cell types. a, Heat map depicting
the odds ratio of overlapping upregulated (yellow) and downregulated (green)
DE genes and Spearman correlation (p; two sided) of their log,FC values across
discovery and replication cell types. The significance of overlap was determined
using aone-sided Fisher’s exact test, followed by multiple testing correction
(FDR). Asterisks (*) indicate FDR-adjusted P< 0.05. Exact Pvalues are shownin
Supplementary Table 12. The replication datasets include Krawczyk et al.** for
astrocytes, Galatro et al.** for microglia and Chatzinakos et al.”” for excitatory and
inhibitory neurons. b, Scatter plots showing the log,FC values of overlapping DE
genes in microglia (left) between this study (x axis) and a study by Galatro et al.>*
(yaxis) and the log,FC of overlapping DE genes in astrocytes (right) between

this study (xaxis) and a study by Krawczyk et al.> (y axis). Genes are labeled.
Orange color represents upregulated genes, whereas blue color represents
downregulated genes. Significant positive correlations are indicated by
Spearman’s correlation (two-sided) coefficients. Error bands represent the 95%
confidence interval.

DNA methylation (DNAm; epigenetic clocks)***'. Some studies have
suggested that biological agingis accelerated with psychiatric disease
based on DNAm in the blood**™**, gene expression in the brain* and
magnetic resonance imaging of the brain’. To investigate biological
age acceleration within our cohort, we calculated both epigenetic and
transcriptomic age acceleration.

We profiled bulk DNAm from the same OFC tissue using EPIC arrays
and calculated DNAm age and DNAm age acceleration using Horvath’s
multitissue clock®® and a recently developed cortical clock® derived
from the cortex. For both epigenetic clocks, DNAm age correlated
highly with chronological age (Horvath, r=0.94, P<2.2 x10™*; cortical
clock,r=0.96,P<2.2 x107'; Extended DataFig. 9a,b). However, we did
notobserve accelerated epigenetic aging inindividuals with psychiatric
diseases (Supplementary Table 14).

Next, we used a transcriptomic brain age predictor developed
by Lin et al.* to construct a transcriptomic brain age estimate and
calculate transcriptomic age acceleration using our ‘full pseudobulk’
dataset. The transcriptomic brain age estimate was highly correlated
with chronological age (r=0.83, P <2.2 x107%; Fig. 7a). Multiple linear
regression confirmed a significant transcriptomic age accelerationin
individuals with psychiatric disease comparedto neurotypicalindividu-
als (P=0.02; Supplementary Table 15).

Giventheaccelerated transcriptomic age and the disease enrich-
ment of age-regulated genes for mental disorders reported above,
we wanted to further explore how psychopathology affects aging
trajectories. We therefore tested for interactive effects of age and
disease status. We identified only three genes with interactive effects.
Theseincluded SLC25A37in fibrous astrocytes, OXCT1in a deep-layer
neuronal cluster (Exc_L4-L6_2) and AC007402.1in OPCs (Extended
DataFig. 9c).

We next wanted to compare age-regulated genes to genes associ-
ated with disease status. We performed differential gene expression
analysis within our datasets toidentify disease-associated genes (Sup-
plementary Table 16). Disease-associated genes were identified in
four excitatory neuron cell types, of which three cell types showed
a significant overlap with age-regulated genes (Fisher’s exact test;
FDR-adjusted P < 0.05; Exc_L2-L3, Exc_L4-L6_1 and Exc_L4-L6_3;
Supplementary Table 17). Moreover, in all four cell types, more than
75% of overlapping genes showed concordance of expression change
between age and disease (Extended Data Fig. 9d). Given that, within
our dataset, we likely lacked power to detect gene expression changes
associated with disease, we leveraged results from an snRNA-seq
meta-analysis comparing neurotypical individuals to individuals
diagnosed with SCZ*. Across 16 cell types, we could show that age-
and SCZ-associated genes significantly overlap, and more than 80%
of overlapping genes are regulated in a concordant direction (Fig. 7b
and Supplementary Table 18). This supports aconvergence of the sig-
nature of aging and psychopathology indicative of accelerated aging
across multiple cell types. Within our dataset, genes with shifted aging
trajectoriesin psychiatric diseaseinclude APLF (in Exc_L2-L3, Exc_L4-
L6 1and Exc_L4-L6 2neurons), EXPHS (inExc L2-L3andExc L4-L6 3
neurons)and RHBDL3 (in Exc_L4-L6_2 neurons; Fig.7c-e). APLFis one
of the genes with the strongest decrease with age and reduction in
individuals with psychiatric disease across cell types. APLF encodes
a histone chaperone involved in DNA repair, a mechanism that has
been associated with aging® but so far has not been linked with psy-
chiatric disease. EXPH5and RHBDL3 have been previously associated
with aging®®.

Risk for psychiatric disorders is conveyed by environmental and
genetic factors, with notable heritability. To understand whether the
convergent effects of aging and psychopathology are in part driven
by genetic liability, we first calculated polygenic risk scores (PRSs)
for SCZ” and cross-disorder psychiatric disease® (Supplementary
Table 19) in our cohort. The cross-disorders PRS was significantly
higher (P=0.0056) inindividuals with psychiatric disease,and the SCZ
PRS only trend-line (P=0.054), consistent with the mixed diagnosis
withinour cohort (Extended Data Fig.10a). We next examined whether
age-related DE genes are also identified in genome-wide association
studies (GWASs) for these disorders using H-MAGMA®, For this, we
quantified the enrichment of genes associated with several GWAS
traits (bipolar disorder, major depressive disorder (MDD), SCZ, AD
and hypertension (as a nonbrain-related trait)) among age-related
DE genes. This analysis revealed that genes implicated by GWASs for
AD are enriched in age-associated genes in microglia but not other
celltypes (Fig. 7f). However, we did not find enrichment for any of the
other tested GWAS traitsin any cell type. This suggests that age-related
transcriptomic changes are not strongly influenced by genetic risk
for psychiatric disorders and that the convergence of expression sig-
natures likely reflects additional factors such as socioeconomic and
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throughout aging of RPH3A and GRM3 in respective major cell types (c), which
show a congruent change in AD*°. A bar plot showing the mean expression levels
and log,FC values between neurotypical individuals and individuals with AD*’ is
alsoshown (d). e, Normalized (log-transformed) gene expression corrected for
covariates throughout aging of KCTD17 and LINGOI in excitatory neurons that
show opposite directionality in AD*.f, Mean expression levels of KCTD17 and
LINGO1 and log,FC values between neurotypical individuals and individuals
with AD*’ is also shown (f). Error bands in scatter plots represent the 95%
confidence interval.

behavioral changes associated with living with the disease, environ-
mental exposures and medication.

Discussion

Inthis study, snRNA-seqwas performed to investigate cell-type-specific
gene expression changes throughout aging in the human OFC. Our
cohort comprised 87 individuals aged 26-84 years, including both
neurotypical individuals and those diagnosed with a psychiatric dis-
ease (mainly SCZ), which enabled us to also investigate the effect of
disease status on aging. Our study revealed that cell-type-specific
gene expression changes of aging converge onto dysregulation of
synaptic transmission and mRNA splicing across cell types. Nota-
bly, LAMPS'LHX6" interneurons were identified as the cell type most
strongly affected by aging. Moreover, age-associated gene expres-
sion changes across cell types were successfully replicated in inde-
pendent datasets. The study also demonstrated overlapping gene
expression changes between aging and AD, particularly in astrocytes
and oligodendrocytes. Additionally, we observed a convergence of
the transcriptomic effects of aging and psychopathology, especially

SCZ, supporting findings of accelerated brain aging with psychiatric
diagnoses across most cell types.

First, we examined age-related changes in cell-type proportions
and found no significant changes, except for a significant decrease
in OPCs, changes previously reported in animals'®". However, future
studies with larger sample sizes may uncover additional changes in
cell-type proportions, and brain region-specific differences may exist.

Differential gene expression analysis within the identified 21 cell
types indicated that all cell types are affected by aging and that the
majority of age-associated transcriptional changes are cell-type spe-
cific. However, a specific cell type (inhibitory LAMP5'LHX6" neurons
(In_LAMP5_2)) seems to be most strongly affected by aging. Interest-
ingly, this LAMPS'LHX6" subtype has been reported to increase in
abundanceinthe primate cortex and to most closely resembleivy cells
of the mouse hippocampus?. Ivy cells belong to the neuroglia-form
family of cells characterized by slow spiking patterns and are involved
in both feedforward and feedback inhibition®.

GO analysis of age-regulated genes identified disrupted synap-
tic signaling and mRNA splicing as converging pathways affected
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Fig.7|Evidence for accelerated transcriptomic age in psychopathology.

a, Scatter plot showing the Pearson’s correlation (R; two sided) between
chronological age (x axis) and transcriptomic age (transcriptomic brain age
estimate;y axis). The error band represents the 95% confidence interval.

b, Number of genes associated with both age and SCZ. The size of the circle

is proportional to the number of overlapping genes, and color indicates

the percentage of genes regulated in the same (common) direction across
respective cell types. c-e, Normalized expression (log-transformed) across
aging (corrected for covariates) of genes associated with both aging and disease

status in respective cell types (APLF (c), EXPHS (d) and RHBLD3 (e)). Error bands
represent the 95% confidence interval. f, Heat map depicting the enrichment

of genesimplicated by GWAS for several traits in age-associated genes across

cell types. Enrichment was tested using H-MAGMA's two-sided gene property
analysis (linear regression model), followed by multiple testing correction (FDR).
Colorindicates the FDR-adjusted Pvalue. Asterisks (*) indicate an FDR-adjusted
P<0.05 (for microglia, FDR-adjusted P = 0.033); BPD, bipolar disorder; HTN,
hypertension.
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across cell types. This supports and extends recent findings™ of
age-related alterations in transcriptomic latent factors enriched for
genes relevant for synaptic functions across neurons and astrocytes.
Severalinhibitory neuron subtypes displayed dysregulationin diverse
metabolic pathways and oxidative phosphorylation, indicating mito-
chondrial dysfunction, which has been previously described in aging
and neurodegeneration®. Particularly, LAMPS*LHX6" inhibitory neu-
rons specifically exhibited dysregulation in macroautophagy and
apoptosis. A recent study®” described reduced numbers of inhibitory
LAMP5" neurons in mouse models of AD and in human brains of indi-
viduals with AD, potentially driven by the here-described effects of
age-associated cellular disruptions. Microglia exhibited age-related
upregulation inimmune pathways, consistent with previous studies
of primed microglia with aging in different species™******, Intrigu-
ingly, despite microglialimmune activation, there was no evidence of
reactive astrocytesin aging, contrasting results fromKrawczyk et al.*®
whoreported an upregulationin cytokine signalinginaged astrocytes.

We validated our findings at the bulk and single-cell level. Indeed,
our dataset replicated age-related changes from bulk sequencing;
however, as expected, certain cell-type changes were diluted in bulk
differential gene expression. We also used two studies, which had
previously identified age-related genes in sorted cell populations
of astrocytes®® and microglia** by RNA-seq and another snRNA-seq
dataset®, to replicate identified cell-type-specific DE genes and to
show a significant correlation of the effect sizes (log,FC values) for
most cell types, demonstrating comparability between methodological
approaches across cohorts and cortical regions.

Torelate age-associated transcriptional changes to those observed
in AD, we compared our data to twoindependent AD snRNA-seq data-
sets*>*, This analysis revealed a convergence of age-regulated genes
and genes dysregulated in AD, suggesting threshold effects contribute
to disease. The most pronounced convergence occurred with upregu-
lated genes in astrocytes and oligodendrocytes and downregulated
genesinastrocytes. The overlap between age-related genes and those
dysregulated in AD in astrocytes did not stem from immune-related
pathways, as there was no evidence of reactive astrocytes in aging.
Instead, itindicated ashared deficitin neuronal supportasacommon
affected mechanism. Notably, two genes, KCTD17 and LINGO1, exhib-
ited oppositeregulation between aging and AD in excitatory neurons.
KCTDI17 encodes amember of the potassium channel tetramerization
domain-containing protein family, which has been associated with
neurodegeneration and psychiatric diseases®. LINGOI encodes a regu-
lator of myelination®® that interacts with amyloid-p precursor protein,
affecting its cleavage®”. Interestingly, administration of anti-LINGO1
antibodies has been shown to decrease amyloid-f3 deposition and
improve cognitive impairment in a transgenic mouse model of AD%,
This directionality would fit to upregulation with AD and downregu-
lation in aging not accompanied by neurodegeneration (Fig. 6e,f).
LINGO1and KCTD17 could thus represent interesting targets for thera-
peuticinterventions.

Disease enrichment analyses of age-associated genes revealed
enrichment of genes associated with psychiatric disorders, including
SCZ,across several neuronal and glial cell types. This observation aligns
with findings in bulk brain tissue of rhesus macaques". Furthermore,
we confirmed previously described accelerated transcriptomic age
in individuals diagnosed with psychiatric disorders* and identified
convergent regulation of genes associated with both age and psychi-
atric disease using data from an snRNA-seq meta-analysis in SCZ*.
The overlap in directionality between age- and disease-associated
genes supports that aging trajectories could be shifted in psychiatric
disorders, and neurodegenerating disease-relevant thresholds may
be reached earlier. This could explain accelerated aging observed
in individuals with psychiatric disorders and the increased risk for
neurodegenerative disease in this group of individuals. Importantly,
these convergent changes do not seemto be driven by genetic risk for

psychiatric disease but rather reflect exposure to additional risk factors
that are associated with having lived with the disease.

Certain limitations of the study should be noted. Although nuclei
have been demonstrated to be comparable to whole-cell transcrip-
tomes®”’°, certain aspects such as mitochondrial transcription, an
important pathway affected in aging and neurodegeneration, cannot
be profiled. Moreover, the applied three-prime sequencing does not
allow for investigation of differential splicing, another process affected
inaging, neurodegeneration’’*and psychiatric disorders””*. Addition-
ally, not all cells of the brain vasculature, such as pericytes or vascular
smooth muscle cells, were detected, prohibiting the investigation of
their transcriptomes. Although all brains were free from macro- and
microscopic changesin cortical areas, contributions from pathological
aging cannot be completely ruled out. The lack of evidence of accel-
erated epigenetic aging in psychiatric disease might be attributed to
the EPIC array’s inability to capture specific age- and disease-related
methylation changes. Given the high non-CpG methylationin neurons,
alternative profiling methods for non-CpG methylation and epigenetic
clocks may prove necessary. Inaddition, we were not sufficiently pow-
ered to investigate diagnosis- or sex-specific effects, both important
research questions.

In summary, we provide a comprehensive dataset of cell-type-
specific age-associated genes and pathways in the human OFC. We
identify inhibitory LAMPS'LHX6" neurons as transcriptionally most
affected by aging. Notably, numerous gradual age-related changes
overlap on the cell-type level with changes observed in AD. Addition-
ally, we pinpoint genes with opposite regulation as potential targets for
therapeuticinterventions. Moreover, we also find evidence for accel-
erated transcriptomic aging in individuals with psychiatric disorders
at the single-cell level, with a converging signature across multiple
celltypes. We envision that these data will provide a starting point for
furthering our understanding of the aging process and development
of new therapeutic targets for aging-associated pathologies.
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Methods

Postmortem brain cohort

The study was approved by the Ethikkommissionbei der LMU Miinchen
(Ludwig Maximilians-Universitdt Munich Ethics Committee, 22-0523)
and the Human Research Ethics Committees at the University of Wol-
longong (HE2018/351). Informed consent for brain autopsy was pro-
vided by the donors or their next of kin. No compensation was provided
for donors or their next of kin. Donors were classified as neurotypical
controls based on the absence of any psychiatric diagnosis, whereas
individuals with psychiatric disease had been diagnosed with SCZ,
schizoaffective disorder, bipolar disorder or MDD. None of the brain
donors in this study were diagnosed with a neurodegenerative dis-
order. All included brains were neuropathologically examined, and
Braak stage was determined. Only one individual (an individual with
psychiatric disease) showed macro- and microscopic changes (Braak
NFT stage Ill) but not in cortical areas. Fresh-frozen postmortem tis-
sue of the OFC was obtained from the New South Wales Brain Tissue
Resource Centre in Sydney, Australia, and was used for snRNA-seq.
Only gray matter was sampled. BAll was dissected from the third 8-to
10-mm coronalslice. Thelevel was chosen based on visual inspection of
neuroanatomical landmarks (primarily the straight and medial orbital
gyri) inaslice anterior to the corpus callosum for comparability across
donors. Sampling was performed using a straight edge razor blade.
Supplementary Table 1provides asummary of sample characteristics,
and Supplementary Table 2 provides detailed information onall donor
characteristics. Sample size was not predefined based on statistical
power analysis but is comparable to (or even larger than) previous
snRNA-seq studies in human postmortem brain*®*">* and was based
ontissue availability.

Nuclei extraction

Nucleiwere extracted from 50-60 mg of frozen tissue following a modi-
fied version of a published protocol”. In brief, nuclei were obtained
using Dounce homogenization on ice in 1 ml of nucleus extraction
buffer (10 mM Tris-HCI (pH 8.1), 0.1 mM EDTA, 0.32 M sucrose, 3 mM
magnesium acetate, 5 mM CaCl,, 0.1% IGEPAL CA-630 and 40 U mi™*
RiboLock RNase-Inhibitor (Thermo Scientific)). Samples were layered
onto 1.8 mlof sucrose cushion (10 mM Tris-HCI (pH 8.1), 1.8 M sucrose
and 3 mM magnesium acetate), followed by ultracentrifugation at
107,200g at 4 °C for 2.5 h (Thermo Scientific Sorvall WX+ ultracentri-
fuge). The supernatant was discarded using vacuumsuction, and nuclei
were diluted in 80 pl of resuspension buffer (1x PBS, 3 mM magnesium
acetate, 5 mM CaCl,, 1% bovine serum albuminand 40 U ml RiboLock
RNase-Inhibitor). Nuclei were filtered through a preseparation filter
(20 um; Miltenyi Biotec), stained with DAPI (1:1,000) and quantified
onahemocytometer.

Library preparation

snRNA-seq libraries were prepared following the manufacturer’s
instructions in the 10x Genomics user guide (Chromium Single Cell
3’Reagents kit v3.1). We targeted arecovery of 10,000 nuclei per sam-
ple. Equimolar amounts of each library were pooled, subsequently
treated with Illumina Free Adapter Blocking Reagent and sequenced
intwo batches onaNovaSeq 6000 System (Illumina).

Sequence alignment, filtering, normalization and clustering

Sequence reads were demultiplexed using the sample index and
aligned to a pre-mRNA reference, and unique molecular identifiers
were counted after demultiplexing of nucleibarcodes using Cell Ranger
v6.0.1 (10x Genomics). Reads were downsampled per nucleus to the
75% quartile of reads per cell (14,786 reads). Count matrices of allindi-
viduals were combined and further processed using Scanpy (v1.7.1)7%.
Nuclei were filtered according to counts, minimum genes expressed
and percentage of mitochondrial genes (nuclei with <500 counts,
<300 genes or a mitochondrial percentage of >15 were removed).

Genes expressed in <500 nuclei were removed. Doublets were fil-
tered out using DoubletDetection v3.0 (https://zenodo.org/
records/6349517#.ZHdK4-xBxAc). Data were normalized using
sctransform (v0.3.2)”. Leiden clustering using highly variable genes
was applied for clustering. One cluster was removed because three indi-
viduals contributed >25% of the nuclei of that cluster, which resulted
inafinal dataset with 787,685 nuclei.

Cell-type assignment

A label transfer algorithm (scarches v0.4.0 (ref. 80)) was used for
an initial cell-type assignment. Cell-type labels from the Allen
Brain Atlas (Human Multiple Cortical Areas SMART-seq, available
at https://portal.brain-map.org/atlases-and-data/rnaseq/human-
multiple-cortical-areas-smart-seq) were taken as a reference for our
dataset. These initial assignments were refined by a manual curation
based on marker gene expression””**!,

Known marker genes for major cell types included astrocytes
(AQP4, GFAP and GJAI), endothelial cells (CLDNS, FLTI and SYNE2),
excitatory neurons (SLCI7A7,SLC17A6 and SATB2), inhibitory neurons
(GAD1, GAD2and NXPH1), microglia (APBBI1IP,C3and P2RY12), oligoden-
drocytes (MPB, MOBP and PLPI) and OPCs (OLIG1, PDGFRA and VCAN).

Two subtypes of astrocytes were identified based on higher GFAP
and ARHGEF4 expression in fibrous astrocytes and higher expression
of ATPIA2, GJA1 and SGCD in protoplasmic astrocytes”. Subtypes of
excitatory neurons were assigned based on the expression of corti-
cal layer-specific marker genes (layers 2-3: CUX2 and RFX3; layer 4:
ILIRAPL2, CRIMI and RORB; layers 5-6: RXFP1, TOX, DLCI and TLE4
(refs. 75,76)). Subtypes of inhibitory neurons were assigned based
on the expression of interneuron markers LAMPS, PVALB, RELN, SST
and VIP. For PVALB inhibitory neurons, two subtypes (basket cells
(In_PVALB _Ba) and chandelier cells (In_PVALB_Ch)) could be identi-
fied (based onthe high expression of RORA, TRPS1, NFIBand UNC5Bin
chandelier cells as described by Bakken et al.*"). For the identification
of subtypes within the In_LAMPS5 cluster, Leiden clustering restricted
to this cluster was performed, resulting in two subtypes (In_LAMP5_1
and In_LAMPS 2).

Selection of covariates for differential expression analysis
Given that technical covariates are assumed to be the same across all
celltypes, we created a full pseudobulk count matrix by summing the
gene-wise counts over all cell types and applied a stringent filter to
obtain only genes of a minimum of ten counts in 90% of the individu-
als. Variance stabilizing transformation (vsd, DESeq2, v1.42.0)%* was
applied, and PC analysis (PCAtools v2.14.0)** was performed. Sig-
nificant correlation of continuous variables with PCs was observed for
RIN, PMI, pHand age. Canonical correlation analysis further identified
library preparation batch (lib_batch) asa covariate. Sex and disease sta-
tus (0 = controland 1= psychiatric case) were included as covariates. To
account for hidden confounders, we performed PC analysis after hav-
ing calculated the normfactors, performed voom transformation and
removed batch effects of all covariates using removeBatchEffect® to
obtainabatch-corrected expression matrix. The first PC wasincluded
asanadditional covariate, resulting in the final model: (-age + disease
status + sex + pH + RIN + PMI + lib_batch + PC1). Variance partitioning®
(variancePartition v1.33.0) was applied to obtain the variance explained
by each of the covariates (Extended Data Fig. 10c). The RIN was not
available for one individual and thus was set to the median.

Differential expression analysis

We performed differential gene expression analysis using the R pack-
age dreamlet (v1.1.1)*®, which uses a pseudobulk approach summing
the gene-wise counts within the 21 identified cell types and the 7
major cell-type clusters, respectively. Additionally, we generated a
‘full pseudobulk’ count matrix by summing the gene-wise counts over
all cell types for comparison with previously published bulk datasets.
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Normalization was performed using the processAssays function
with genes and nuclei being filtered based on the following cutoffs:
min.count =10, min.prop = 0.8, min.cells =5 and min.samples = 61.
Using dreamlet’s function dreamlet, we performed differential gene
expression analysis including the selected covariates. To identify
age-regulated genes, we modeled library preparation batch (lib_batch),
sexand disease status as random effects. Pvalues were adjusted for mul-
tiple testing using the FDR method considering all tested genes across
allcelltypes. Age-regulated DE genes with an adjusted P value of <0.05
were considered for downstream analysis unless otherwise specified.
For easier readability, genes more highly expressed in older individuals
willbe referredto as ‘upregulated’, whereas genes more lowly expressed
inolder individuals will be referred to as ‘downregulated’.

To examine shared age-related gene expression changes across
all cell types, we performed mash analysis (mashR v.0.2.79)* to lever-
age information sharing across genes and cell types using dreamlet’s
run_mash function. Genes were considered significant at a local false
signrate of <0.05.

To identify disease-associated genes, we modeled lib_batch and
sex as random effects. Pvalues were adjusted for multiple testing using
the FDR method considering all tested genes within the respective cell
type. DE genes with an adjusted P value of <0.1 were considered for
downstream analysis.

To identify genes with an interactive effect between age and dis-
ease status, the interaction term age:disease status was included.
P values were adjusted for multiple testing using the FDR method
considering all tested genes within the respective cell type, and differ-
ences were considered significant at an FDR-adjusted P<0.1.

As a similarity measure of the DE genes between two cell types
(A and B), the overlap index (O) was calculated using the following
formula and then visualized using qgraph (v1.9.8)%":

[AnBl  |AnB
+

048 = IBI

)2

This overlap indexis similar to the Jaccard index but differs, however,
inthe fact that the overlap proportionis considered in comparisonto
each of the two cell types separately and not the union (as for the Jac-
card index), giving equal weight to each of the cell types (which may
have large differences in the number of DE genes).

Downsampling to determine the most strongly affected cell
type by aging

To calculate the number of age-associated DE genes across cell types
normalized to the number of nucleiineach celltype, 5,000 nucleifrom
each cell type were randomly selected ten times. Differential expres-
sionanalysis was then performed for each of the tenrandomly selected
subsets. Next, the average number of DE genes for each cell type was
calculated. To assess whether there were differences in the number of
DE genes per cell type in the downsampling analyses, we compared the
number of DE genes across cell types using a Mann-Whitney U-test.
Pvalues were adjusted for multiple testing using the FDR method.

RRHO analysis to compare age-related gene expression
patterns between neurotypical individuals and individuals
with psychiatric disease

To compare overall gene expression patterns between neurotypi-
cal individuals and individuals with psychiatric disease, we split
the snRNA-seq dataset and performed differential gene expression
analysis (as described above) to identify age-regulated genes in
the two groups, respectively. We next performed rank-rank hyper-
geometric overlap analysis using the RRHO2 package (v1.0)%%%° by
ranking the genes according to the log,FC value multiplied by the
negative base 10 logarithm of the uncorrected Pvalue from differential
expression analysis.

Visualization of DE genes

For visualization (ggplot2 (v3.4.4)°° and ggpubr v0.6.0 (ref. 91) of
DE genes (Figs. 2¢, 3a-f, 6¢,e and 7c-e and Extended Data Fig. 9¢),
cell-type-specific pseudobulk matrices (filtered for genes with a mini-
mum of ten counts in 60% of the individuals) were normalized using
the calcNormFactors function (edgeR, v4.0.1)°* followed by voom
transformation (limma, v3.58.1)%*. To visualize age-related genes,
batch effects (disease status + sex + pH + RIN + PMI + lib_batch + PC1)
were then removed using the function removeBatchEffect (limma,
v3.58.1)%*. To visualize age- and disease-related genes, batch effects
(sex + pH + RIN + PMI + lib_batch + PC1) were removed using the func-
tion removeBatchEffect (limma, v3.58.1)%4.

Cell-type composition analysis

For each individual, we calculated cell-type proportions of each cell
type by dividing the number of nucleiin a specific cell type by the total
number of nuclei of the respective individual. We then used multiple
linear regression to test for associations between age and cell-type
composition foreach cell type controlling for covariates (sex, disease
status, pH, RIN, PMI and lib_batch). Associations were considered
significant at an FDR-adjusted P< 0.05.

Comparison of gene expression changes to previously
published data

For all datasets, the significance of overlap was determined using a
Fisher’s exact test (R package GeneOverlap)®.

Validation of age-regulated genes from bulk datasets. For compari-
son with previously identified age-related genes in bulk brain tissue
(cortex), three datasets (Gonzalez-Velasco et al.”?, Kumar et al. (frontal
cortex)®and Lu etal. (frontal pole)’) were used. DE genes from the vali-
dation datasets not tested (expressed) in the ‘full pseudobulk’ count
matrix were removed. Gonzalez-Velasco et al.* identified age-regulated
genesinameta-analysis across three datasets of the cortex. DE genes
were split into up- and downregulated genes, respectively, and were
tested for significant overlap. The DE genes in the Kumar et al.® dataset
were filtered for the significant genes in both the discovery and rep-
lication datasets in the frontal cortex. Gene symbols were mapped to
EnsemblIDs. Because the directionality of gene expression change was
notavailableinthe supplementary data, overlap was tested independ-
ent of directionality of expression change. The DE probes identified
using Affymetrix HG-U95Av2 by Lu et al.” were mapped to Ensembl IDs.
DE genes were split into up- and downregulated genes, respectively,
and were tested for significant overlap.

Cell-type-specific validation of age-regulated genes. To validate
our cell-type specific findings, we compared our identified DE genes
(FDR-adjusted P < 0.05) in microglia and astrocytes (major cell-type
cluster) to datasets that identified gene expression changes over the
course of aging in purified microglia from the parietal cortex (Galatro
etal.**, FDR-adjusted P < 0.05) and astrocytes derived from the cerebral
cortex obtained during brain surgery (Krawczyk et al.”®, FDR-adjusted
P <0.05), respectively. Ensembl IDs not tested (expressed) in the micro-
glia/astrocyte (major cell-type cluster) pseudoexpression matrix were
removed. Furthermore, we leveraged an snRNA-seq dataset of the
dorsolateral prefrontal cortex®. Differential expression analysis to
identify age-regulated genes was performed on the summed pseu-
dobulk expression matrix that was filtered and voom normalized.
Differential expression analysis for age was performed with limma®*
adjusting for age, sex, PMI, genetic PC1, primary psychiatric diagnosis
(thatis, neurotypical, MDD and post-traumatic stress disorder), lifetime
antipsychotic use, day of the experiment, percentage of cells in the
cell cluster over the total number of cells and batch. Given the smaller
samplesize (N=32) of this replication dataset and thus reduced power
to detect age-regulated genes, we examined the Pvalue distribution of
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age-regulated genes. Cell typesin which the 15th percentile of nominal
Pvalues was <0.1were chosen for validation, and genes with anominal
Pvalue of <0.05were considered. Of these DE genes, genes not tested
(expressed) in the pseudoexpression matrix were removed. DE genes
were split into up- and downregulated genes and were tested for sig-
nificant overlap with our respective DE genes inthe corresponding cell
type. We also conducted a Spearman correlation of the fold change val-
ues. Pvalues were adjusted for multiple testing using the FDR method'®.

Cell-type-specific comparison of age-regulated genes to AD-
associated genes. To compare DE genes associated with aging (age DE
genes) to genes dysregulated in AD, we used two studies that had identi-
fied cell-type-specific DE genesin AD in the prefrontal cortex***. Both
single-nucleus AD studies had only assigned major cell types (excita-
tory neurons, inhibitory neurons, astrocytes, endothelial cells, micro-
glia, oligodendrocytes and OPCs (only in Mathys et al.*°)). We used the
cell-type-specific up- and downregulated AD-associated DE genes
and overlapped themwith the up-and downregulated age-associated
DE genes (at an FDR-adjusted P< 0.1) of the corresponding major cell
types after removing the AD-associated DE genes not expressed in
the respective cell-type cluster. Moreover, we calculated a Spearman
correlation of the fold change values.

Cell-type-specific comparison of age-associated genes with
psychopathology-associated genes. To compare DE genes associated
with aging (age DE genes) to genes associated with psychiatric disease,
we overlapped age-associated genes and disease status-associated
genes identified using our differential expression analysis as
detailed above.

Moreover, to test for enrichment of DE genes associated with aging
(age DE genes) with genes associated with SCZ, we leveraged results
from an snRNA-seq meta-analysis comparing healthy controlindividu-
alstoindividuals diagnosed with SCZ>. We used the cell-type-specific
SCZ-associated DE genes (FDR-adjusted P< 0.05 and absolute log,FC
of>0.1) and overlapped them with the age-associated DE genes (at an
FDR-adjusted P < 0.1) of the corresponding cell types after removing
the SCZ-associated DE genes not expressed in the respective cell-
type cluster.

GO and disease enrichment analysis

We performed over-representation analysis of biological processes
using clusterProfiler (v4.10.0)°* and over-representation analysis of dis-
eases using DOSE (v3.28.0)* for up-and downregulated age-associated
DE genes. For shared genes across cell types (mash results), all genes
expressed in at least one cell type were considered background. For
cell-type-specific enrichment, all genes tested in the respective cell
type were considered background. We accounted for the differencesin
the number of DE genes for the different cell types by only considering
GO/disease terms with aminimum of 5% of DE genes overlapping with
the termgenes and at least two genes per term. GO terms were consid-
ered significant at an FDR-adjusted P< 0.05. We then used GO-Figure!
(v1.0.1)*° to reduce the redundancy of the list of GO terms.

DNA extraction

Genomic DNA was extracted from ~10 mg of frozen OFC tissue using a
QIAamp DNA mini kit (Qiagen) following the manufacturer’s instruc-
tions (‘Protocol: DNA Purification from Tissues’) without performing
the RNase A treatment. DNA samples were concentrated using a DNA
Clean & Concentrator-5 kit (Zymo Research).

DNAm measurement and calculation of epigenetic clocks
Bisulfite conversion of 400 ng of DNA was performed using an EZ-96
DNA Methylation kit (Zymo Research). Epigenome-wide DNAm analysis
was performed with an Illumina Infinium MethylationEPIC BeadChip
(Illlumina) according to the manufacturer’s guidelines.

DNAm data were processed differently for both DNAm clocks fol-
lowing the original pipeline of each clock as suggested by the authors.
For Horvath’s multitissue clock®, raw intensity values were trans-
formed into B-values, and quality control was performed with the
minfiR package (v1.36.0)°7°. DNAm data were then normalized with
stratified quantile normalization® and subsequent B-mixture quantile
normalization'®.

For the cortical DNAm clock®, raw intensity values were preproc-
essed using the watermelon (v1.34.0) and bigmelon (v1.16.0) R packages
asdescribedin detailin Shireby et al. (DNAmClockCortical preprocess-
ing pipeline)*1°12,

Inboth pipelines, no samples needed to be excluded due to quality
controlissues (mean detection Pvalue of > 0.05, distribution artifacts
inraw B-values or sex mismatches). In both pipelines, PC analysis was
performed separately after transformation of 3-values to M values
to check for outlier samples (>3 s.d. on the two first PCs; none were
excluded). We then corrected technical batch effects sequentially
with ComBat within the sva R package (v3.38.0)'** for the strongest
associations with the PCs (array and row). Batch-corrected M values
were transformed into -values. Further, brain tissue-related variables,
which significantly correlated with the first five PCs (brain pH and stor-
agetime), wereincluded as a covariate in all analyses.

DNAm datawere used to calculate epigenetic age and epigenetic
age acceleration (that is, residuals from a regression of estimated
epigenetic age on chronological age adjusting for brain pH and stor-
age time) for postmortem brain samples for the following estimators:
Horvaths’ multitissue clock (with the methylclock R package®*'%*;
v0.7.7) and cortical clock available code from Shireby et al.” (https://
github.com/gemmashireby/CorticalClock). Proportions of neuronal
cells were calculated from the epigenome-wide DNAm data as sug-
gested by Guintivano et al.'®. Next, we used multiple linear regression
to examine the association between disease status and epigenetic age
acceleration, controlling for covariates (sex, smoking status and pro-
portions of neuronal cells). Because one individual could not be run on
the EPIC due tolow DNAYyield, and seven individuals had an unknown
smokingstatus, the final cohort for multiple linear regression analysis
consisted of 79 individuals (neurotypicalindividuals, n = 27,individuals
with psychiatric disease, n=52).

Calculation of transcriptomic age

We generated a ‘full pseudobulk’ count matrix by summing the gene-
wise counts over all cell types and filtered for genes with a minimum
often countsin 60% of the individuals for the calculation of transcrip-
tomic brain age. Counts were normalized using the calcNormFac-
tors function (edgeR"?), followed by voom transformation (limma,
v3.58.1,%%). Lin et al.* had identified 76 genes predictive of age in the
postmortem brain (BA11). Gene symbols were mapped to Ensembl IDs.
Ensembl IDs not expressed in the full bulk dataset were removed. Of
the 76 genes, 73 were expressed. The three missing genes were APLNR,
KCNA6and MIR29C. To obtain the transcriptomic age estimate, the gene
expressionvalue was multiplied by its provided coefficient (weight) and
summed forall 73 genes. A linear regression was fit between chronologi-
calage and transcriptomic age to rescale the unit of the transcriptomic
agebacktothe unit of chronological age by year. To calculate age accel-
eration, we regressed transcriptomic age estimates on chronological
age adjusting for the library preparation batch (lib_batch; the strong-
est batch effect). We then used multiple linear regression to examine
disease status in association with transcriptomic age acceleration,
controlling for covariates (sex, pH, RIN, PMl and PC1).

SNP genotyping

Genome-wide SNP genotyping was performed on Illumina GSA-24v3-0_
Alarraysaccording to the manufacturer’s guidelines (Illumina). Geno-
typic quality control was performed using PLINK (v1.90b4.1)'%°, SNPs
with a callrate of <98%, minor allele frequency of <1% or a P value for
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deviation from Hardy-Weinberg equilibrium of <1 x 10~ were removed.
Furthermore, individuals with a callrate of <98% were excluded. If a
pair of individuals presented with a relatedness (pihat) of >0.125, the
individual with the higher callrate was keptin the analysis. Individuals
who were genetic outliers (more than 4 s.d. on the first three multidi-
mensional scaling components of the identity-by-state (IBS) matrix
after linkage disequilibrium (LD) pruning) were also excluded. After
quality control, genotypes were subjected toimputation. Imputation
was performed using shapeit2 (v2.r837)'” and impute2 (v2.3.2)®® using
the1000 Genomes Phaselll reference sample. After imputation, SNPs
with an info score below 0.6, with a minor allele frequency below 1%
or that deviated from Hardy-Weinberg equilibrium (P<1x 107%) were
excluded from further analysis, resulting in 9,652,209 SNPs.

Calculation of PRSs

PRSs were calculated based on GWASs for a cross-disorder pheno-
type*®and SCZ¥.The PRS-CS (v1.0.0) package'*’ was applied in Python
(v3.6.8) for the inference of posterior effect sizes of SNPs in the GWAS
summary statistics. The linkage disequilibrium reference panel was set
tothe one constructed using the 1000 Genomes Project phase 3 Euro-
peansamples, whichisalso linked on the PRS-CS GitHub page (https://
github.com/getian107/PRScs). Phi, the global shrinkage parameter of
PRS-CS, wassetto1 x 102 for SCZ, the recommended setting for highly
polygenic traits. For cross-disorder, no phi parameter was specified,
asthe sample size of the GWASsis sufficient to learn phifrom the data.
PLINK" (v2.00a2.3LM, https://www.cog-genomics.org/plink/1.9/) was
applied with the score parameter to calculate the PRS per sample based
onthe posterior effect sizes previously inferred.

GWAS enrichment analysis

A GWAS enrichment analysis was conducted with H-MAGMA (v1.10)*°.
Significant GWAS hits were mapped to genes based on GWAS sum-
mary statistics for AD', SCZ%, bipolar disorder?, MDD and
hypertension (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-
thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank)
and the European1,000 genomes reference panel (available at https://
github.com/thewonlab/H-MAGMA). A gene-level analysisin the form
of a gene property analysis was performed on the mapped results
with the ‘~gene-covar’ argument in MAGMA. With this approach, the
gene-level regression framework was used to examine if differential
expression related to age is associated with GWAS results. Here, dif-
ferential expression results were entered as a continuous variable,
represented as -log,,(P value) x log,FC.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

DNAm data (EPIC arrays) have been deposited into the Gene Expres-
sion Omnibus (GEO) database under accession number GSE254293.
snRNA-seq data (raw data and anndata object) have been deposited
into the GEO database under the accession number GSE254569. For
cell-type assignments of the snRNA-seq data, cell-type labels from
the Allen Brain Atlas (Human Multiple Cortical Areas SMART-seq,
available at https://portal.brain-map.org/atlases-and-data/rnaseq/
human-multiple-cortical-areas-smart-seq) were taken as a reference
for our dataset. The snRNA-seq replication dataset from Chatzinakos
etal.” isavailable at https://www.synapse.org/Synapse:syn33235943
(raw data) and https://www.synapse.org/Synapse:syn39718968 (meta-
data).For PRS calculation, GWAS summary statistics for SCZ*’ (available
athttps://figshare.com/articles/dataset/scz2022/19426775) and a psy-
chiatric cross-disorder phenotype® (available at https://figshare.com/
articles/dataset/cdg2019/14672034) were used. For the GWAS enrich-
mentanalysis using H-MAGMA, significant GWAS hits were mapped to

genes based on GWAS summary statistics for AD™ (available at https://
vu.data.surfsara.nl/index.php/s/I7aiRrlUEgdo)fZ),SCZ" (available at
https://figshare.com/articles/dataset/scz2022/19426775), bipolar dis-
order™ (available at https://figshare.com/articles/dataset/PGC3_bipo-
lar_disorder GWAS_summary statistics/14102594), MDD (available
at https://datashare.ed.ac.uk/handle/10283/3203) and hyperten-
sion (http://www.nealelab.is/uk-biobank, ‘GWAS round 2 results can
be found here’; available at https://broad-ukb-sumstats-us-east-1.
s3.amazonaws.com/round2/additive-tsvs/I9_HYPERTENSION.gwas.
imputed_v3.both_sexes.tsv.bgz) and the European1,000 genomes ref-
erence panel (available at https://github.com/thewonlab/H-MAGMA).

Code availability
All analysis scripts are accessible in the following GitHub repository:
https://github.com/AnnaSophieFroehlich/single_cell_aging.
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Extended Data Fig. 3 | Cell type makers. a-c, Dotplot showing the expression of representative marker genes of cell subtypes for astrocyte subtypes (a), inhibitory
neuron subtypes (b) and excitatory neuron subtypes (c). The size of the dot represents the fraction (%) of nuclei expressing the gene and the color indicates the mean
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Extended Data Fig. 4 | Cellular composition changes along aging, effect

size distribution of differentially expressed genes, and comparison of
variance in gene expression explained by age across cell types. a, Stacked
area chart depicting cellular composition changes across age bins of 10 years.
Raw proportions (uncorrected for covariates) are shown. b, Violin plots showing
distribution of the FC per 10 years of differentially expressed genes (at FDR-
adjusted p-value < 0.05) for up- (left) and downregulated (right) genes for

each of the 21 cell types respectively. The number of DE genes (at FDR-adj.
p-value < 0.05; N) per cell type is shown in Supplementary Table 5. Boxplot shows
the median (center), IQR (bounds of box), and whiskers extending to either the

maxima/minima or to the median +1.5x IQR, whichever is nearest. ¢, Boxplot of
variance in gene expression explained by age across 21 cell types. P values were
calculated by comparing variance explained by age across genes between cell
types (two-sided Mann-Whitney U test) followed by multiple testing correction
(fdr). For clarity only p-value for comparison between In_LAMP5_2 and all other
cell typesis shownand only outliers (triangles) are depicted as individual

data points. Exact p-values and N (that is genes) per cell type are shown in
Supplementary Table 8. Boxplot shows the median (center), IQR (bounds of box),
and whiskers extending to either the maxima/minima or to the median + 1.5x IQR,
whichever is nearest.
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Extended DataFig. 5| Rank-rank hypergeometric overlap of age-relatedgene  left and bottom right quadrants signify overlaps in genes with opposing effects

expression patternin controls and cases. RRHO2 plots for correspondence between neurotypical individuals and individuals with a psychiatric disease.
between differential expression results for age in neurotypical individuals Genes were ranked based on the logarithm of the fold change multiplied by the
(x-axis) and individuals with a pyschiatric disease (y-axis) for the respective cell negative base 10 logarithm of the uncorrected p-value from the differential
type. The bottom left and top right quadrants indicate concordant overlap in expression analysis. RRHO2 employs one-sided hypergeometric tests; the color
genes withincreased or decreased expression, respectively. In contrast, the top scale represents unadjusted p-values.
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Extended Data Fig. 7 | Biological pathway enrichment of age-regulated
genes. a-b, Biological pathway enrichment results for up- (a) and downregulated
DE genes (b) for each cell type. Significance was determined using the

one-sided Fisher’s exact test followed by multiple testing correction (fdr).

Semantic similarity analysis was employed to group related GO terms. The size
of each circle corresponds to the number of GO terms within the group, and the
color represents the lowest p-value among the summarized GO terms.
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Extended Data Fig. 9 | Epigenetic age, genes withinteractive effects and
overlap of age-regulated and disease-associated genes. a-b, Scatterplots
showing the Pearson’s correlation (R, two-sided) between chronological age
(x-axis) and DNA methylation age (DNAmAge; y-axis) as estimated using the
CorticalClock (a) and Horvath’s multi-tissue clock (b). ¢, Scatterplots showing
log normalized gene expression, corrected for covariates, across aging for genes
showing aninteractive effect between aging and disease status; SLC25437in

Astro_FB (left), OXCTIin Exc_L4-6_2 (middle),and AC0O07402.1in OPC (right).
Error bands represent the 95% confidence interval. d, Plot depicting the number
of genes associated with both age and psychiatric disease. Size of the circle

is proportional to the number of overlapping genes and color indicates the
percentage of genes regulated in the same (common) direction across respective
celltypes.
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Extended Data Fig.10 | Polygenic risk for cross-disorder psychiatric
phenotype and schizophrenia and variance partitioning of covariates.

a-b, Boxplots showing polygenicrisk score (PRS) for CrossDisorder (a) and
Schizophrenia (b) between individuals with a pyschiatric disease (N = 54) and
neurotypical individuals (N = 33). P-value of one-sided t-test is shown. Boxplot
shows the median (center), IQR (bounds of box), and whiskers extending to either
the maxima/minima or to the median +1.5x IQR, whichever is nearest. Triangles

0\5365 -

represent outliers. ¢, Violin plot of variance fractions of ‘full pseudobulk’ dataset
(N =87biologically independent samples) for different experimental variables
and covariates adjusted for in the differential expression analysis. Library
preparation batch (lib_batch) explained the biggest proportion of variance in
gene expression, followed by brain pH and PC1 (hidden noise). Boxplot shows
the median (center), IQR (bounds of box), and whiskers extending to either the
maxima/minima or to the median +1.5xIQR, whichever is nearest.
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Data collection  Next-generation sequencing data were all generated on Illumina platforms, and demultiplexed at the sequencing facility.

Data analysis Sequencing alignment of snRNA-seq data was performed using CellRanger v6.0.1.
Pre-processing, filtering, normalization was performed in python v3.6.8 using scanpy v1.7.1, DoubletDetection v3.0, normalization using
sctransform v0.3.2, label transfer algorithm using scarches v0.4.0.
After cell type assignment, summed pseudobulk count per cell type were calculated and all further analyses were conducted in R v4.3.1,
DESeq?2 (v1.42.0), PCAtools (v2.14.0), variancePartition (v1.33.0), dreamlet (v1.1.1), mashR (v.0.2.79), qgraph (v1.9.8), RRHO2 (v1.0) , edgeR
(v4.0.1), limma (v3.58.1), ggplot2 (v3.4.4), ggpubr (v0.6.0), GeneOverlap (v1.38.0), clusterProfiler (v4.10.0), DOSE (v3.28.0)
GO-Figure! (v1.0.1)
Preprocessing and normalization of DNA methylation data: minfi v1.36.0, watermelon v1.34.0, bigmelon (v1.16.0), sva v3.38.0, methylclock
v0.7.7
For genotyping analysis: Plink(v1.90b4.1, shapeit2 (v2.r837), IMPUTE2 (v2.3.2)
For PRS calculation: PLINK v2.00a2.3LM, PRS-CS v1.0.0
For GWAS enrichment analysis: H-MAGMA v1.10
All analysis scripts are accessible in the following github repository: https://github.com/AnnaSophieFroehlich/single_cell_aging

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

DNA methylation data (EPIC arrays) have been deposited into the Gene Expression Omnibus (GEO) database under accession number GSE254293; snRNA-seq data
(raw data as well as anndata object) have been deposited into the GEO database under the accession number GSE254569. For cell type assignment of snRNA-seq
data cell type labels from the Allen Brain Atlas (Human Multiple Cortical Areas SMART-seq, available at: https://portal.brain-map.org/atlases-and-data/rnaseq/
human-multiple-cortical-areas-smart-seq) were taken as a reference for our dataset. The snRNA-seq replication dataset from Chatzinakos, C., et al. Am J Psychiatry
2023 (https://doi.org/10.1176/appi.ajp.20220478) is available at https://www.synapse.org/Synapse:syn33235943 (raw data) and at https://www.synapse.org/
Synapse:syn39718968 (meta data). For PRS calculation, GWAS summary statistics for schizophrenia (10.1038/s41586-022-04434-5; available at https://
figshare.com/articles/dataset/scz2022/19426775) and a psychiatric cross-disorder phenotype (10.1016/j.cell.2019.11.020; available at https://figshare.com/
articles/dataset/cdg2019/14672034) were used. For the GWAS enrichment analysis using H-MAGMA, significant GWAS hits were mapped to genes based on GWAS
summary statistics for Alzheimer’s disease (10.1038/s41588-018-0311-9; available at https://vu.data.surfsara.nl/index.php/s/I7aiRr1UEgdolfZ), schizophrenia
(10.1038/s41586-022-04434-5; available at https://figshare.com/articles/dataset/scz2022/19426775), bipolar disorder (10.1038/s41588-021-00857-4; available at
https://figshare.com/articles/dataset/PGC3_bipolar_disorder GWAS_summary_statistics/14102594), MDD (10.1038/s41593-018-0326-7; available at https://
datashare.ed.ac.uk/handle/10283/3203) and hypertension ( http://www.nealelab.is/uk-biobank, “GWAS round 2 results can be found here”; available at https://
broad-ukb-sumstats-us-east-1.s3.amazonaws.com/round2/additive-tsvs/I9_HYPERTENSION.gwas.imputed_v3.both_sexes.tsv.bgz) and the European 1,000
genomes reference panel (available at https://github.com/thewonlab/H-MAGMA).

Research involving human participants, their data, or biological material
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Reporting on sex and gender While the information from the NSW brain bank likely also included information on reported gender, we used biological sex
in our analyses, as assessed from genotype information. Out of the 87 post-mortem brain samples 32 were female and 55
were male.

Reporting on race, ethnicity, or The 87 post-mortem brain samples were derived from individuals with European ancestry confirmed by whole-genome
other socially relevant genotyping analysis. The choice of a ‘homogenous sample’ of individuals from European ancestry is based on the fact that
groupings gene expression has been shown to be influenced by the genetic make-up (ethnic background) and this was the ethnic group
in the brain bank with the most samples.

Population characteristics The 87 post-mortem brain samples were derived from a cohort of individuals between 26 and 84 years of age. 32 were
female and 55 were male (biological sex). 33 were grouped as healthy controls based on the absence of a psychiatric
diagnosis, whereas 54 formed part of the psychiatric cases (detailed diagnosis: N=5 with bipolar disorder, N=6 with major
depression, N= 36 with schizophrenia, and N=7 with schizoaffective disorder). Supplementary Table 1 provides a summary of
sample characteristics and Supplementary Table 2 provides detailed information on all donor characteristics.

Recruitment The total number of human post-mortem tissue samples obtained from NSW Brain Tissue Resource Centre was based on
tissue availability maximizing for individuals with psychiatric disorders and matched controls.

Ethics oversight The study was approved by the Ethikkommission bei der LMU Munchen (Ludwig Maximilians-Universitat Munich Ethics
Committee; 22-0523) and the Human Research Ethics Committees at the University of Wollongong (HE2018/351). Informed
consent for brain autopsy was provided by the donors or their next of kin. No compensation was provided for donors or their
next of kin.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was not pre-defined based on statistical power analysis but is comparable to (or even larger than) previous snRNA-seq studies in
human postmortem brain and was based on tissue availability.

Data exclusions  Originally, 92 post-mortem brain samples were used for this study, 4 samples were excluded however due to a clog during snRNAseq library
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Data exclusions preparation and one sample was excluded due to bad data quality (too low RIN).

Lowly expressed genes were excluded from the analysis: Within the dreamlet pipeline the function processAssays() was used for
normalization and included the following filter settings: min.count=10, min.prop=0.8, min.cells=5.

Replication Using previously published data sets we replicated our findings: We used the results (age-associated genes) of 3 published gene expression
datasets derived from bulk human brain tissue (Gonzalez-Velasco et al. 10.1016/j.bbagrm.2020.194491, Kumar et al. 10.1016/
j.neurobiolaging.2012.10.021, and Lu et al. 10.1038/nature02661) to show significant overlap of age-associated genes with the results (age-
associated genes) derived from our ‘full pseudobulk’ dataset. To validate our cell-type specific findings, we compared our identified age-
associated DE genes in microglia and astrocytes (major cell type cluster) with data sets having identified gene expression changes over the
course of aging in purified microglia from the parietal cortex (Galatro et al. 10.1038/nn.4597) and astrocytes derived from the cerebral cortex
obtained during brain surgery (Krawczyk et al. https://doi.org/10.1523/JNEUROSCI.0407-21.2021) respectively and showed significant overlap
in age-associated genes. Moreover, we used inhibitory and excitatory neuron clusters from a snRNA-seq data set from the dorsolateral
prefrontal cortex (Chatzinakos et al. 10.1176/appi.ajp.20220478) to identify age-associated genes and showed significant overlap with age-
associated genes in excitatory and inhibtory clusters identified in our snRNA-seq dataset.

Randomization  For a balanced experimental design not confounded by our variables of interest, batches for snRNA seq library prep and lllumina Infinium
MethylationEPIC BeadChips were assigned using the r package OSAT (Yan et al. 2012, https://doi.org/10.1186/1471-2164-13-689).

Blinding Investigators were not fully blinded to group allocation during data collection and analysis. Yet, samples had been assigned into balanced

batches using the r package OSAT. During experimental procedures, samples were labeled only with 3-digit subject identifier, which did not
reflect any information on age, sex or group allocation that could bias results.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
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