
REVIEW ARTICLE 

Metabolomics          (2024) 20:103 
https://doi.org/10.1007/s11306-024-02167-2

holds great promise as metabolism is closely linked to the 
observed phenotype, and metabolomics has shown a tre-
mendous increase in applications over the last few years. 
Data obtained from the ever-improving analytical methods 
used in metabolomics are becoming increasingly complex 
and require the development of more sophisticated data 
analysis approaches.

Metabolomics works at the interface between biochem-
istry, analytical chemistry, and bioinformatics and chemoin-
formatics. Many novel tools for processing and analyzing 
metabolomics data are published yearly, and there is an 
increasing demand for scientists capable of understanding 
and using them. However, metabolites exhibit features dis-
tinct from other biological molecules such as DNA, RNA, 
and proteins. Nowadays, education and training in bioinfor-
matics are mostly centered around these molecules and often 
overlook the requirements for analyzing small molecules. 

1 Introduction

Metabolomics, the systematic measurement of small mol-
ecules (< 1500 Da) in a given biological system, represents 
the newest addition to omics technologies. This approach 
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Abstract
Background Metabolomics, the systematic analysis of small molecules in a given biological system, emerged as a powerful 
tool for different research questions. Newer, better, and faster methods have increased the coverage of metabolites that can 
be detected and identified in a shorter amount of time, generating highly dense datasets. While technology for metabolomics 
is still advancing, another rapidly growing field is metabolomics data analysis including metabolite identification. Within the 
next years, there will be a high demand for bioinformaticians and data scientists capable of analyzing metabolomics data as 
well as chemists capable of using in-silico tools for metabolite identification. However, metabolomics is often not included 
in bioinformatics curricula, nor does analytical chemistry address the challenges associated with advanced in-silico tools.
Aim of review In this educational review, we briefly summarize some key concepts and pitfalls we have encountered in a 
collaboration between a bioinformatician (originally not trained for metabolomics) and an analytical chemist. We identified 
that many misunderstandings arise from differences in knowledge about metabolite annotation and identification, and the 
proper use of bioinformatics approaches for these tasks. We hope that this article helps other bioinformaticians (as well as 
other scientists) entering the field of metabolomics bioinformatics, especially for metabolite identification, to quickly learn 
the necessary concepts for a successful collaboration with analytical chemists.
Key scientific concepts of review We summarize important concepts related to LC-MS/MS based non-targeted metabolomics 
and compare them with other data types bioinformaticians are potentially familiar with. Drawing these parallels will help 
foster the learning of key aspects of metabolomics.
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Different courses try to close this gap, but structured pro-
grams are still missing. Therefore, bioinformaticians aiming 
to enter the field are often overwhelmed by the differences 
in data structures, requirements, etc.… Individual examples 
and attempts to close these gaps are created, e.g., the pub-
licly available script “Algorithmic Mass Spectrometry” by 
Sebastian Böcker (Böcker, 2019). As highlighted in the title 
of the 2015 review by Johnson et al., “Bioinformatics: The 
Next Frontier of Metabolomics”(Johnson et al., 2015).

In this article, we do not aim to cover all possible topics 
of bioinformatics in metabolomics or to comprehensively 
review available tools; for this, we would like to refer to 
the excellent reviews conducted by Misra and colleagues 
(Misra, 2021). Instead, we will discuss the issues and pit-
falls we encountered while working together within the 
framework of the MetClassNet project from 2021 to 2023. 
In aiming to develop new network-based approaches for 
analyzing metabolomics data, we began working together 
and had to learn the scientific terminology of each other’s 
disciplines. Here, we summarize some pitfalls and concepts 
that need to be addressed for successful collaboration. We 
hope that by giving some examples and advice, we can help 
other bioinformaticians enter the field.

2 What can go wrong? Can’t be that hard…

Working with metabolomics data means exposure to dif-
ferent data formats, structures, and problems. We point 
out four explicit examples that we came across that con-
fused our daily collaboration. Since our project focused 
on non-targeted metabolomics data obtained by Liquid 
Chromatography-Mass Spectrometry, including tandem 
mass spectrometry for generation of fragmentation patterns, 
(LC-MS/MS), we will also focus on this technique. We 
suggest several excellent articles and reviews for an over-
view of LC-MS/MS in metabolomics (Alseekh et al., 2021; 
Zhou et al., 2012). Here, we focus on a concise description 
of the data structure. Different software tools for process-
ing LC-MS/MS raw data exist, e.g., xcms, MZmine, MS-
DIAL, or commercial solutions from LC-MS/MS vendors 
or independent suppliers (Benton et al., 2008; Schmid et al., 
2023; Tsugawa et al., 2020). Depending on the entry point 
into a project, a bioinformatician has to deal with raw data 
and its preprocessing, which includes steps like calibration 
of the mass-to-charge ratio (m/z) axis, peak detection, and 
chromatographic alignment. Joint work between the authors 
was based on a so-called feature table and corresponding 
fragmentation spectra obtained from different LC-MS/MS 
experiments. This data type was our project entry point and 
will be the starting point for the following discussion.

The feature table contains multiple columns: m/z, reten-
tion time (RT), and peak intensities or areas at a minimum. 
Still, it can also include additional columns, depending on 
the LC-MS/MS and processing software used, e.g., Colli-
sional Cross Sections (CCS) or peak quality parameters used 
and exported by the different software tools. The m/z and RT 
pair is typically unique to a feature. Peak intensities or areas 
represent the quantification value. The higher this value, the 
higher the concentration of a metabolite. However, these 
values cannot be directly transferred to concentration values 
and need calibration to establish a relationship between the 
concentration and peak intensities/areas. Additionally, this 
calibration is unique to each metabolite.

The peak intensities/areas are typically used for biologi-
cal analysis using uni- or multi-variate statistics. In the case 
of data-dependent (DDA) or data-independent acquisition 
(DIA) modes, features are often associated with fragmenta-
tion spectra (see Fig. 1), which are essential for identify-
ing metabolites. It should be noted that not every feature 
will have a fragmentation spectrum and coverage for cur-
rent LC-MS/MS instrumentation is somewhere between 
30% and 60%. In several cases, laboratories might perform 
full-scan analysis, meaning only MS1 data will be collected 
during profiling of samples and targeted MS2 data will be 
collected afterwards for features found to be statistically 
significant.

To facilitate the explanations dedicated to bioinforma-
ticians, we will try to compare metabolomics data to data 
obtained from, for example, RNA-seq or proteomics (if 
possible). Additionally, we would like to mention that while 
LC-MS/MS raw data often uses a standard open data format 
(.mzML), peak tables from different software tools might 
look very different. Recent initiatives promoting standard-
ized tabular formats, such as .mzTab, need to be taken up by 
the software community but are highly welcome (Griss et 
al., 2014; Hoffmann et al., 2019).

3 One metabolite, many, many signals

LC-MS/MS data is complex. A single metabolite can pro-
duce multiple signals dependent on its chemical formula 
and structure. In the ion source of the MS, ions are formed 
from metabolites and transferred to the gas phase for analy-
sis. Depending on whether the positive or negative ioniza-
tion mode is used, cationic or ionic pseudo-molecular ions 
are generated. Certain metabolites will only ionize in one 
ionization mode, while others can be ionized in both modes. 
Main adducts are [M + H]+ and [M-H]− yielded by adding or 
subtracting a proton to a neutral molecule M. Though exper-
imentalists aim to generate only a single adduct type, in real 
life, multiple adducts are formed (Mahieu & Patti, 2017; 
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Nash et al., 2024). Other examples of adducts are [M + Na]+, 
[M + K]+, [M + NH4]+ in positive or [M + FA-H]−, 
[M + HAc-H]− in negative ionization mode. The extent to 
which the different adducts are observed depends on the 
structure of the molecule and the experimental conditions, 
such as the geometry of the ion source, ionization voltages, 
and the mobile phase composition. The quality of solvents is 
another critical factor. Water in mass spectrometry quality, 
stored over a longer period in glass bottles, shows a higher 
Na and K ions content, which can lead to higher intensities 
of [M + H]+ and [M + K]+ adducts (personal observation). 
On the other hand, ions like [M + NH4]+ can only be formed 
if NH4

+ is present in the mobile phase. Certain metabolites 
require this for ionization, e.g., species from the lipid class 
triacylglycerols mostly ionize as [M + NH4]+. Tools are cur-
rently being developed to predict adductation and ion spe-
cies but are far from being used.

In addition to adducts, in-source fragments can also be 
observed. These happen if conditions in the ion source or 
any other part of MS before the collision cell lead to frag-
mentation, primarily due to too high ionization voltages, 

temperatures, or high voltage drops in ion optics. However, 
this effect is also dependent on the chemical structure of 
the metabolite and, consequently, its stability. Therefore, 
in-source fragmentation is a phenomenon that is not con-
sistent across all metabolites. An example of an in-source 
fragment is [M-H2O + H]+ or [M-H2O-H]−, which can be 
seen for molecules containing hydroxyl groups. Besides 
losses of small molecule parts such as hydroxyl, amino, 
phosphate, or sulfate groups, larger parts can also be lost 
in in-source fragmentation, e.g., sugar moieties. No gen-
eral rules for in-source fragments can be stated since they 
depend on the individual metabolite structures. Sometimes, 
in-source fragmentation can be so extensive that no intact 
ion species is observed. For example, the amino acid tryp-
tophan has a very prominent loss of the amino group, lead-
ing to an ion with the same m/z as indole acrylic acid (m/z 
188.0706). Under certain conditions, only this ion and no 
intact [M + H]+ are observed.

Additionally, for each observed ion species or adduct, 
isotopic peaks can be observed, depending on the intensity 
of the individual adduct, further complicating the spectrum. 

Fig. 1 Metabolomics LC-MS/MS data structure. Typical LC-MS/MS data in non-targeted metabolomics consist of a retention time and mass-to-
charge dimension (MS1) and the associated peak intensity. Additionally, one or multiple MS2 spectra might be associated with the detected feature
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difference is that in Orbitraps, the CID is performed in the 
ion trap, while HCD is performed in the C-Trap. Notably, on 
Orbitraps, the CID resembles a tandem-in-time configura-
tion type, and the HCD is a tandem-in-space configuration. 
Each metabolite behaves differently during fragmentation, 
and the optimal collision energy to obtain the most infor-
mative spectrum also changes. However, generic settings 
are often used since the molecule’s identity is unknown 
in non-targeted metabolomics. Such generic settings can 
be suboptimal, leading to under- or over-fragmentation of 
metabolites that either have too little or too strong frag-
mentation to be informative. Therefore, multiple collision 
energies or stepped or ramped collision energies are often 
used. Figure 2C shows three different fragmentation spec-
tra of the [M + H] + adduct of tryptophan with 10, 20, and 
40 eV obtained on a Bruker maXis UHR-ToF-MS. De novo 
identification can often be improved by combining informa-
tion from multiple collision energies or using ramp spectra 
(Hoffmann et al., 2022). Different adducts (e.g., [M + H]+, 
[M + Na]+ or [M + NH4]+) will lead to different fragmenta-
tion spectra. Besides HCD and CID for Orbitraps and CID 
for QTOFs as “standard” fragmentation modes, more novel 
fragmentation methods are on the rise for potential deeper 
structural insights and enhanced metabolite identifica-
tion, e.g., Electron Activated Dissociation (EAD), Oxygen 
Attachment Dissociation (OAD) or Ultraviolet Photodisso-
ciation (UVPD).

3.1 Practical implications for the metabolomics 
bioinformatician

Based on the data and degree of processing performed, the 
feature table will vary depending on the processing stage. 
The features can be either ungrouped or grouped only by 
isotope or by isotope and adduct. It is essential to know the 
state of the feature table, as specific steps in data process-
ing can be skipped or have to be performed. As a summary 
for a bioinformatician, each feature in the feature table (i.e., 
potential metabolite) will be represented as multiple rows, 
as when various sequences match the same gene during the 
alignment process of RNA-Seq analysis. Typically, isotopes 
are first grouped as they are the easiest to detect based on 
constant mass differences. Most software tools will perform 
this, or add-on packages exist (e.g., CAMERA for xcms 
(Kuhl et al., 2011)). Depending on the software or program 
used, the table either contains rows for isotopes, with a 
notation denoting them as such, or does not contain isotopic 
peaks. Further grouping, e.g., of adducts, depends on the 
software used. Though this adduct grouping is an impor-
tant step, tools often perform sub-optimally using certain 
assumptions, e.g., the main adduct is [M + H]+, and other 
adducts can be identified as seed. While this might hold true 

Most elements have isotopes, which have the same number 
of protons but different neutrons. Metabolites are often built 
from carbon (C), hydrogen (H), oxygen (O), nitrogen (N), 
sulfur (S) and phosphor (P). In nature, the isotope 13C is 
present at 1.1% natural abundance. Therefore, at least one 
isotopic peak can be observed in most cases. Other isotopes 
metabolomics are 15N (0.4% natural abundance), 18O (0.2% 
natural abundance), and 34S (4,37% natural abundance). 
Beside these, isotopes of chlorine and bromine, potentially 
found in secondary metabolites or xenobiotics, are of high 
abundance (37Cl (24% natural abundance) and 81Br (49.4% 
natural abundance)).

Since isotopes behave chemically (almost) the same and 
adducts and in-source fragments are formed after the chro-
matographic separation step in the MS, they will all have the 
same RT, a fact that can be used for grouping signals. Fur-
thermore, their chromatographic peak shape should be very 
similar (showing a high correlation across the chromato-
graphic profile). While for isotopes and adducts, defined 
rules can be used for their identification (e.g., constant dis-
tance of [M + H]+ and [M + Na]+ adducts), this is hardly 
possible for in-source fragments. Data processing pipelines 
such as xcms, MZmine, MS-DIAL, or commercial software 
solutions ideally deal with different adducts, isotopes, and 
in-source fragments. However, especially in the case of 
in-source fragments, it cannot be clear if it is an in-source 
fragment or a molecule with a similar mass and retention 
time (Domingo-Almenara et al., 2019; Guo et al., 2021). To 
resolve this ambiguity, metabolite standards are measured 
to confirm ion species. For example, Fig. 2 shows the MS1 
spectrum of a tryptophan standard, illustrating different ion 
species that can be observed. Data were obtained from a 
Bruker maXis UHR-ToF-MS. For other MS, this spectrum 
will look different.

While different peaks in the MS1 spectrum are informa-
tive and allow calculation of the sum formula, they do not 
allow for derivation of the identity of the metabolite. More 
detailed information is required in the form of fragmentation 
spectra to do so. Here, the MS fragments a pseudo-molec-
ular ion into smaller pieces, which might be diagnostic to 
identify metabolites unequivocally. Differences in the exact 
MS setup and settings can cause major differences. To lead 
to fragmentation, external energy must be applied to the 
ions in the collision cell. This energy is typically referred 
to as collision energy. Besides collision energy, the actual 
geometry of the collision cell and the adduct type of the pre-
cursor, which shall be fragmented, influence the resulting 
fragmentation spectrum.

In non-targeted metabolomics, two types of instrumenta-
tion are used: Orbitraps and QTOFs. The Orbitrap instru-
mentation offers two types of fragmentation: CID and HCD, 
while QTOFs typically offer only CID fragmentation. The 
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Fig. 2 (A) Extracted Ion Chromatograms of different m/z derived 
from tryptophan. m/z 205.0982, 206.1011 and 207.1034 are derived 
from the [M + H] + adduct and represent the monoisotopic and the 
first to isotopic peaks. m/z 188.0714 represents an in-source fragment 

and m/z 409.1874 the [2 M + H]+ adduct. (B) MS1 spectrum of all 
peaks detected in A. (C) MS2 spectra of tryptophan collected at dif-
ferent collision energies. All data was generated on a Bruker maXis 
UHR-TOF-MS
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energies. Lower levels of identification or annotation are 
achieved by comparing the feature signals against those 
from public databases, such as GNPS, MassBank, Metlin, 
etc. Here, the best results are achieved when fragmentation 
spectra are matched against public spectra from the same 
instrument and the same or similar collision energies. How-
ever, it might be unlikely that precisely the metabolites of 
interest are available on the employed LC-MS/MS system. 
Therefore, matching against any available library gives 
potential ideas about the metabolite identity.

Matching is often limited to MS1 data since RTs are com-
monly not shared or differ too much. Different approaches 
have been developed to make RT sharing possible and to 
make it compatible between different laboratories (Aal-
izadeh et al., 2022; Hao et al., 2023; Renaud et al., 2021; 
Stoffel et al., 2022). However, coverage of publicly avail-
able spectral libraries is limited (Frainay et al., 2018). 
Fortunately, besides matching against various databases (in-
house or public), in silico approaches have been developed 
to increase the coverage of metabolites. In such approaches, 
structural databases are used instead of spectral libraries. 
One of the first in silico methods developed was MetFrag, 
which uses combinatorial bond-breaking to find poten-
tial fragment structures matching peaks in the fragmenta-
tion spectra (Ruttkies et al., 2016). CSI: FingerID, another 
tool, uses machine learning techniques to learn from frag-
mentation trees, sum formulas, and molecular fingerprints 
computed from the fragmentation spectrum to annotate 
potential compounds (Böcker & Dührkop, 2016; Dührkop 
et al., 2015). Besides these two, multiple other in silico tools 
exist (Djoumbou-Feunang et al., 2019; Ridder et al., 2014). 
It is essential to mention that these tools are likely always to 
give a result, especially if large structural databases such as 
PubChem are used as input. Therefore, great care needs to 
be taken when evaluating the results of these tools. The per-
formance of such tools is evaluated in contests like CASMI 
(CASMI, 2024; Kasama et al., 2014; Schymanski & Neu-
mann, 2013; Shen et al., 2013), for example. However, high 
scores from in silico annotations do not reflect high confi-
dence. A recent method has been established to estimate the 
confidence of CSI: FingerID results, and it turns out that 
the performance is similar to library matching (Hoffmann 
et al., 2022). Though this is a significant step forward, these 
approaches are still very limited. The use of false discovery 
rates (FDRs), similar to transcriptomics and proteomics, is 
still very limited in metabolomics.

Despite the growth of mass spectral libraries and the 
existence of all these in silico tools, annotation and iden-
tification often do not achieve the full structural detail as 
found in metabolite or pathway databases. This is especially 
true for the position and stereochemistry of double bonds in 
acyl chains, the position of functional groups (e.g., hydroxyl 

for many metabolites and grouping might work, unusual 
adducts or extensive in-source fragmentation might lead to 
incorrect grouping. In fact, correct adduct annotation can 
often only be established through metabolite identification 
(see below). Further software tools for feature table analysis 
might be based on similar assumptions. To become aware 
of these, carefully reading the documentation or vignettes 
associated with software tools will be necessary. Thus, the 
resulting feature table will need further annotation (i.e., to 
identify which metabolites you have) to interpret your data. 
However, as we will explain in the next section, annotation 
is quite complex.

Apart from the actual feature table, you will likely work 
with fragmentation spectra and further downstream analy-
sis, such as metabolite identification. It is therefore impor-
tant to familiarize yourself with software tools or packages 
that can handle this type of data, e.g., the R package Spectra 
(Rainer et al., 2022) or the Python package matchms (Huber 
et al., 2020).

Lastly, remember that the same metabolite measured in 
different machines and/or using different parameters (e.g., 
collision energy) will lead to different adducts, in-source 
fragments, and fragmentation spectra. Therefore, differ-
ent datasets from different LC-MS/MS instruments will 
need different parameter settings for processing and feature 
grouping.

4 Metabolite identification is hard!

To correctly identify metabolites, a plethora of informa-
tion is required, which includes MS1 and MS2, as well as 
complementary information, such as retention time (RT) 
and/or collisional cross sections (CCS). The major prob-
lem is that no common unifying physicochemical principle 
for metabolites (and lipids) can be found in DNA, RNA, or 
proteins. There is no sequence to which metabolite signals 
can be mapped. However, the measured features need to be 
converted to metabolites to correctly interpret non-targeted 
metabolomics data in a biochemical context.

Different levels of metabolite identification can be 
achieved (Sumner et al., 2007). One has to differentiate 
between identification and annotation. While the first one 
is used when the identity of a metabolite is certain, annota-
tion still gives room for uncertainty. The highest level of 
identification is achieved by comparing signals from mea-
sured biological features against an in-house reference data-
base obtained from chemical reference standards; therefore, 
identification is limited to the standards available in the lab-
oratory. Matching should be performed based on the exact 
m/z, fragmentation pattern, and RT. For the highest accu-
racy, matching must be performed using the same collision 
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chemist, ideally using a chemical reference standard. But 
even with all the tools and databases available, don’t get 
your hopes up and think that you will annotate every single 
feature or even most of them, as in RNA-Seq; in most cases, 
annotation rates in metabolomics are way below 10%, and 
the remaining 90% are often referred to as the “dark matter” 
in metabolomics (da Silva et al., 2015).

5 Metabolite naming and identifiers are not 
always unique

The chemical structure of a metabolite is its most unique 
identifier. Different ways to store the structure electroni-
cally exist, e.g., .sdf (structures data file). However, this for-
mat is hard to use when working with tabular data. String 
representations of structures are used in bio- and chemin-
formatics, e.g., the Simplified Molecular Input Line Entry 
System (SMILES) or IUPAC International Chemical Identi-
fier (InChI). A hashed version of the InChI, the InChIKey, 
exists, which is a fixed-length digital representation. Theo-
retically, the InChIKey is collision-free and, therefore, can 
serve as a unique identifier. InChIs and InChIKeys can 
only be generated for molecules with completely known 
atom connectivity, while SMILES allows for some degree 
of uncertainty (e.g., exact acyl side chain in a lipid struc-
ture). To work with metabolomics and lipidomics results, it 
is essential to familiarize yourself with the concepts behind 
SMILES, InChI, and InChIKey, as they are often used in 
reports. InChIKey can be used to map chemical structures 
in different datasets, e.g., using only the first of three layers 
(atom connectivity) with certain restrictions (e.g., all hex-
oses, such as glucose, fructose, etc…, will have the same 
first layer). To avoid mismatching due to different represen-
tation, it is advised to normalize chemical structures before 
generating InChIs and InChIKeys, e.g., using the PubChem 
normalization (Hähnke et al., 2018).

From the structure, the name and chemical formula can 
be derived. Different names for the same chemicals exist. 
For example, the chemical IUPAC name of L-Tryptophan 
is (2 S)-2-amino-3-(1 H-indol-3-yl)propanoic acid. Pub-
Chem lists close to 250 synonyms for this single metabo-
lite. Different metabolite databases exist, with the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Sakurai et 
al.), Chemical Entities of Biological Interest (ChEBI) (Hast-
ings et al., 2016), Human Metabolome Database (HMDB) 
(Wishart et al., 2021) and Lipid Maps (Liebisch et al., 
2020) representing the most used ones. Apart from these, 
specialized databases that are specific to some organisms 
exist. For example, SMID-DB stores information on sec-
ondary metabolites from the nematode Caenorhabditis ele-
gans (Artyukhin et al., 2018). Furthermore, genome-scale 

groups), or stereochemistry in general. For instance, typical 
RP- or HILIC-MS/MS methods which are employed in non-
targeted metabolomics, cannot differentiate between D- or 
L-Tryptophan, but would require dedicated chiral separa-
tion methods (Müller et al., 2014). Fragmentation spectra 
of both stereoisomers are identical, and retention time can-
not be differentiated unless specific chiral chromatography 
is used. In such cases, one form is often assumed (e.g., the 
L-form) to be the canonical version in mammals. However, 
this usually does not hold true when working with bacteria 
or gut microbiome samples. In the future, pathway analysis 
tools need to cope with this uncertainty.

4.1 Practical implications for the metabolomics 
bioinformatician

Best identifications and annotations are obtained using ref-
erence libraries measured on the same instrument under the 
same conditions as the samples of interest. However, the 
availability of reference standards is limited, and a labo-
ratory is unlikely to hold standards for all metabolites of 
interest. Significant efforts have been made to increase 
the number of structures covered in public databases, but 
directly using a public database would be too easy. In real-
ity, although fragmentation spectra of the same metabolite 
measured in different machines and/or with different param-
eters (e.g., collision energy) will generally exhibit an overall 
similar pattern, they will not be identical. This means that, 
for the identification to be reliable, the standards should be 
measured in the same machine (not only one of the same 
brand and model but literally the same machine) and with 
the same parameters used to process the samples you are 
analyzing.

Depending on the organism you are studying, the cor-
responding metabolites will be known (as when you have 
a genome of reference in transcriptomics) or not (as in 
de-novo transcriptome assembly). Even if a metabolite is 
known, it must have corresponding fragmentation spectra 
deposited. In the case of databases for metabolite identifica-
tion and annotation, one needs to differentiate between mass 
spectral databases holding information on metabolite struc-
tures and corresponding tandem MS spectra and metabolite 
or structural databases containing only structure informa-
tion. Examples of MS databases are MassBank or GNPS, 
while KEGG, HMDB, and ChEBI are primary structural 
databases (though HMDB also contains many spectra from 
MS and NMR).

Different in silico tools such as MetFrag or CSI: FingerID 
allow the search with MS/MS data in structural databases. 
Although these tools are improving, their results represent 
only annotations and not identifications. They need to be 
treated with care and have to be confirmed by an analytical 
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for overrepresentation analysis (see below). In order to 
generate reproducible results, it is important to work with 
accurate lists of metabolites present in organisms (e.g., from 
genome-scale metabolic models) and prepare tables with 
identifiers, names, etc., in advance. Likewise, similar tables 
shall be provided by the analytical scientists for the metabo-
lites identified to avoid tedious formatting and conversion. 
In case of ambiguities, a biochemist and/or an analytical 
chemist can help identify the most probable match.

Mapping between databases or datasets can be performed 
using the InChIKey or at least the first block (atom connec-
tivity) to account for potential differences in stereochemis-
try and charge states. Furthermore, the ontology established 
by ChEBI can be used for mapping (Poupin et al., 2020). 
This mapping approach can account for certain ambiguities 
and was used for example, to map lipids to genome-scale 
metabolic models. A distance measure is reported based on 
the distance in the ChEBI ontology. However, this approach 
is only suitable for entries well established in the ontology, 
and mapping distances can only be partially used as a quan-
titative metric.

6 Metabolite coverage is low

Typical non-targeted metabolomics can detect several 
hundred to thousands of features, but only a few hundred 
metabolites or fewer can be annotated or identified, and 
even fewer can be detected at the highest confidence level 
(confirmed by a chemical reference standard). Metabo-
lites span an extensive range of polarity and concentra-
tions. Currently, no single analytical method can cover the 
entire metabolome. For example, reversed-phase LC-MS/
MS (RP-MS/MS) can cover non-polar metabolites such as 
fatty acids, acyl-carnitines, or bile acids, or even complex 
lipids, Hydrophilic Liquid Interaction Chromatography 
(HILIC-MS/MS covers polar metabolites such as amino 
acids, amines, sugars, and others. Therefore, depending on 
the employed methodology, only a small subfraction might 
be sampled and analyzed. To achieve greater coverage, mul-
tiple methods need to be combined.

In many cases, positive and negative ionization modes 
must be combined to detect sufficient metabolites. For 
example, single reactions can change the properties quite 
substantially. For example, the metabolites glutamine, glu-
tamic acid, and 2-oxo-glutaric acid are connected by a linear 
chain of reactions that feeds into the TCA cycle. However, 
their physicochemical properties differ. While all of them 
can be detected in negative ionization mode, only glutamic 
acid and glutamine are typically detected in positive ioniza-
tion mode (see Fig. 3A).

metabolic models represent knowledge bases for the metab-
olism of a given organism. Different tools for analyzing 
metabolomics results might use different metabolite data-
bases and, therefore, require specific database identifiers. 
No unified metabolite database as a de-facto standard (simi-
lar to UniProt for proteins, for example) currently exists.

Furthermore, the structural details of the identified 
metabolites might differ from those in the respective data-
bases. For example, while based on standard metabolomics 
approaches, only tryptophan can be identified (no stereo-
chemistry, see above), the database may contain L- and 
D-Tryptophan. Additionally, in genome-scale metabolic 
networks, metabolites might be present at a different charge 
state, as these models are typically mass- and charge-bal-
anced for microspecies at pH 7.3. ChEBI, for example, 
stores different versions of metabolites, such as with or 
without defined stereochemistry or different charge states as 
separate entities. These individual entities are linked to each 
other by a rich ontology, and entries in different databases 
might be connected to each other via cross-references. For 
example, the KEGG compound C16434, called isoleucine, 
is linked to ChEBI:38,264, called 2-amino-3-methylpenta-
noic acid. Though this is correct, as isoleucine is a 2-amino-
3-methylpentanoic acid, there also exists a ChEBI:24,898 
called isoleucine, which would be the correct link.

5.1 Practical implications for the metabolomics 
bioinformatician

Individual metabolites might be named by different chemi-
cal names or identifiers, which often refer to the same or 
very similar structure. As a bioinformatician, be aware that 
not every metabolite database will contain all metabolites; 
IDs will differ, and direct mapping to databases and meta-
bolic pathways might not be possible due to discrepancies 
between the level of detail of the identified metabolite and 
the metabolite in the database/pathway. Different tools for 
the conversion of identifiers exist and can be incorporated 
into data analysis pipelines. Depending on the downstream 
tool used to interpret the results, different identifiers might 
be required. Therefore, mapping between different data-
bases will be required depending on the results obtained 
from metabolite identification. Due to the large number of 
possible names, it is very hard to create automatic work-
flows to map chemical names. It is advisable to use dic-
tionaries, established databases, and mapping tools. Such 
mapping can be done with different tools, such as the 
Chemical Translation Service (CTS) (Wohlgemuth et al., 
2010), RefMet (Fahy & Subramaniam, 2020), BridgeDB 
(van Iersel et al., 2010), and UniChem (Chambers et al., 
2013). However, not all metabolites might be present in all 
databases, which has particular implications, for example, 
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either not produced under the given biological conditions or 
metabolized too fast. Specific metabolites have very high 
turnover rates and might not be detected when the overall 
turnover in the reaction cascade is very high. However, the 

Additionally, the metabolome is highly dynamic. Even 
if metabolites are known and in theory, can be detected by 
the employed methods (e.g., by measuring a chemical refer-
ence standard), they might not be detected because they are 

Fig. 3 (A) Detection of metabolite depends on their physicochemi-
cal properties. Certain metabolites can be only detected in negative 
mode (blue), while other are preferentially detected in positive ioniza-
tion mode. However, even if a metabolite is theoretically detectable, 
it might be not present in samples. The example shows relative levels 
of pyruvic acid in Bacillus subtilis and can be only detected if the 

downstream consuming enzyme is mutated. (B) Metabolite coverage 
is important for analysis methods such as overrepresentation analysis. 
The entire metabolome cannot be covered and typically only a sub-
set N is detectable by a specific method. This subset represents the 
background set for overrepresentation analysis. Figure adopted from 
Wiederer et al
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metabolomics. Recently, Wieder et al. published recommen-
dations for the overrepresentation analysis in metabolomics 
(Wieder et al., 2021). These recommendations included 
selecting the background dataset, pathway database, and 
addressing potential misidentifications. To overcome this 
limitation in coverage, methods for integrating multiple 
datasets from different methods will be required. While this 
integration can be achieved for targeted metabolomics and 
known metabolites, e.g., by metrics established by Boccard 
et al., similar integrations of multiple datasets of unknown 
metabolites remain complicated (Boccard & Rudaz, 2018).

Since the coverage of metabolic pathways is often limited 
by the number of identified metabolites, alternative analysis 
methods are required. Network analysis has emerged as a 
suitable alternative to overcome the limitations of path-
way analysis. Different types of networks provide different 
views of biological aspects and can even be integrated with 
each other (Amara et al., 2022; Salzer et al., 2023).

7 Conclusion

Compared to genomics, transcriptomics, and proteomics, 
metabolomics, and lipidomics are missing one common 
part: sequences that can be matched against each other. 
These sequences make it possible to map reads in RNA-seq 
to the respective genes or lead to specific fragmentation of 
peptide backbones in peptides, allowing for their sequenc-
ing. Furthermore, false discovery rates can be calculated for 
them, allowing one to judge the goodness of the sequencing 
result and mapping. Metabolites have no common charac-
teristics that can be used in a similar fashion, making metab-
olite analysis seemingly complicated from a bioinformatic 
point of view.

There is a strong need for improved data analytical and 
bioinformatic tools in metabolomics. These include steps 
such as raw data processing, metabolite identification, and 
data interpretation. Though we highlighted several pitfalls 
and problems in this review, there is great progress in the 
development of new tools.

In our opinion, teaching in bioinformatics is mostly 
sequence-based and covers genomics, transcriptomics, and 
proteomics. Small molecules such as metabolites and lipids, 
are often not covered or are covered only superficially. Since 
this is an upcoming topic and more and more metabolomics 
data will be generated, structured training is required. In this 
article, only the view of the bioinformatician on specific 
aspects are covered. However, the other side also needs to 
adapt. Training for analytical chemists or biochemists needs 
to involve more basic data science and bioinformatics skills. 
Data generated by the latest state-of-the-art instrumentation 
is very dense and requires advanced skills. Despite major 

exact flux and turnover are dependent on many different fac-
tors, such as growth conditions and nutrient availability. For 
example, pyruvic acid, an important intermediate between 
glycolysis and the TCA cycle, can only be detected in Bacil-
lus subtilis if the downstream-consuming enzyme (pyruvate 
dehydrogenase) is mutated, since the flux into further down-
stream pathways is disturbed and the metabolite accumu-
lates (see Fig. 3A). Furthermore, specific metabolites might 
not be stable enough to be detected or yield reliable read-
outs, including central metabolites such as ATP, NADH or 
NADPH. Similarly, some metabolites may be present at 
very low concentrations. The metabolome can span several 
orders of magnitude in concentration (Bennett et al., 2009). 
For very low-concentration metabolites, specialized assays 
with dedicated sample preparation (e.g., solid-phase extrac-
tion) and targeted analysis using triple quadrupole MS are 
often required, rendering them undetectable in non-targeted 
metabolomics settings. Lastly, for almost all organisms, 
the complete metabolome remains unknown, so the actual 
coverage of a method cannot be precisely calculated, which 
also has implications for the downstream interpretation of 
results.

6.1 Practical implications for the metabolomics 
bioinformatician

While transcriptomics or proteomics often produce a single 
data table for analysis with sufficient coverage of several 
hundred to thousands of transcripts or proteins, metabolo-
mics often yields multiple feature tables. Depending on the 
study, these feature tables might need to be joined or ana-
lyzed separately. One example is the same chromatographic 
method’s positive and negative ionization mode. Running 
multiple methods may be necessary to achieve sufficient 
coverage of metabolites. Often, this approach is also the case 
in targeted metabolomics. For example, even though only a 
single data table is reported, the actual measurement for the 
commercial Biocrates MxP Quant 500 kit utilizes four dif-
ferent methods. The quality and coverage of metabolomics 
measurements significantly influence the downstream data 
analysis and interpretation.

Pathway analysis is one of the major data analysis tech-
niques for the interpretation of metabolomics data, mainly 
in the form of enrichment or overrepresentation analysis. In 
contrast to such analyses used in transcriptomics and pro-
teomics, pathway analysis in metabolomics requires great 
care. The detection of metabolites can be highly biased by 
the employed analytical method. Therefore, selecting the 
correct background dataset is important. While the number 
of detected features is typically very large for transcrip-
tomics and proteomics, and the entire genome or proteome 
can be used as a background set, this often is not the case in 
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6. Familiarize yourself with the type of data you’ll need 
to process (for instance, the feature table and the frag-
mentation spectra of some or all of the features) and 
the tools you will need to process it, for example, R 
packages such as xcms and Spectra are very likely to be 
useful.

7. By this point, you should already be used to dealing with 
challenges and uncertainty. Things won’t get any easier 
for the interpretation step (e.g., via enrichment or over-
representation analysis). Still, you can take into account 
the recommendations from Wieder et al. [35] and the 
metrics established by Bocard et al. [36]. Finally, you 
can also consider a network approach to interpret your 
results. As we explored in the MetClassNet project, dif-
ferent networks can be integrated to provide various 
biological perspectives on the same dataset.

Last but not least, metabolomics data analysis is fun and 
can be very rewarding once you accept the points above. 
Increasing the coverage by combining methods, creating 
better and faster methods, and improving metabolite identi-
fication rates are current fields of research in the metabolo-
mics community and are expected to improve significantly 
in the coming years. There are still many pitfalls, but so far 
it has been successful, and the field is growing with new 
solutions and tools being released and published every year.
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challenges still existing, there are many useful resources, pro-
tocol papers and guides (Amara et al., 2022; Aron et al., 2020; 
Heuckeroth et al., 2024; Pakkir et al., 2023). It is important to 
note that many of these articles and tutorials have been writ-
ten by analytical chemists and bioinformaticians in collabora-
tion with exactly the goal of bringing together the two fields. 
Though it seems from this review that often there are more 
problems than solutions, the authors always found a way to 
improve their collaboration and overcome all hurdles.

Here are some necessary steps as a summary for (future) 
metabolomics bioinformaticians to avoid the same pitfalls 
as the authors:

1. Team up with the (bio)chemist who generated the data 
as early as possible (best before the data has been gener-
ated); it will make your life much easier. Ask if you can 
join/watch the measurements. Ask many, many ques-
tions about the data.

2. Start by figuring out the stage the feature table is in 
because the steps to follow will depend on this. Exam-
ples of useful questions to ask are “Is the feature table 
grouped or ungrouped?” If it is grouped, “What was 
used for the grouping: only isotopes or isotopes and 
adducts?“.

3. Remember that it is common to have multiple rows 
representing the same feature, and even if your feature 
table is grouped, the grouping might be incorrect (e.g., 
due to extensive in-source fragmentation). Additionally, 
when working with multiple datasets, keep in mind that 
measurements performed in different machines and/or 
using different sets of parameters lead to different fea-
tures. This is relevant for processing and feature group-
ing (your parameter settings should be adapted for each 
dataset) and for the annotation/identification step.

4. When annotating your features, keep in mind the dif-
ference between identification (knowing the metabolite 
with certainty) and annotation (finding the metabolite 
that is likely to represent the feature). You might as well 
check out some MS databases, such as MassBank and 
GNPS, as well as tools like MetFrag or CSI: FingerID 
for in silico annotation. Please remember that ~ 90% 
of the features are expected to remain “unknown”; i.e., 
you’ll be able to annotate less than 10% of the features.

5. Be aware that the metabolite databases are likely to 
be incomplete. To complicate things further, the same 
metabolite can have different names and/or identifiers 
depending on the database, which does not exactly 
help when mapping between databases. We, therefore, 
recommend using predefined dictionaries, established 
databases, and mapping tools (such as CTS, RefMet, 
BridgeDB, and UniChem). Candidates to perform such 
mapping are the InChiKey and the ChEBI.
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