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INTRODUCTION

Phytochemicals, also referred to as secondary or special-
ized metabolites, are crucial for shaping interactions
between plants and their environment (Fraenkel, 1959;
Hartmann, 2007). Individual compounds can be consid-
ered functional traits that impact the physiology, interac-
tions, and fitness of plants (Miiller & Junker, 2022;
Walker et al., 2022). Together, a mixture of phytochemi-
cals in a plant forms a complex phenotype that may vary
along multiple dimensions (Marion et al., 2015). These
dimensions include the total number of phytochemicals,
quantitative variation in the abundance of those com-
pounds, and qualitative variation given by their biosyn-
thetic origins and molecular structures. Traditionally,
most studies on the function of phytochemicals have,
however, focused on the effect of individual compounds
in interactions between a plant and specific organisms
(Richards et al., 2010). Only more recently have studies
aiming to comprehensively measure the phytochemical
phenotype found that other aspects of it, such as the
number and relative abundances of compounds, are
important for different functions, and ultimately plant fit-
ness (e.g., Dyer et al., 2018; Junker et al., 2018). However,
due to its complex nature, we lack a more complete
understanding of which of these aspects are important
for different functions in various ecological interactions.
An increasingly common way of characterizing the
phytochemical phenotype is to quantify its diversity
(Wetzel & Whitehead, 2020). By using diversity indices, a
complex multivariate phenotype can be condensed into a
simpler univariate measure of diversity, reflecting a par-
ticular aspect of it (Marion et al, 2015; Petrén
et al.,, 2023). Such a measure of chemodiversity, also

of variability in diversity across different levels of biological organization, and
investigate the functional role of this diversity in interactions between plants
and other organisms. Overall, the reviewed literature suggests that high
chemodiversity is often beneficial for plants, although a heterogeneity of meth-
odological approaches partly limits what general conclusions can be drawn.
Importantly, to support future research on this topic, we provide a framework
with a decision tree facilitating choices on which measures of chemodiversity
are best used in different contexts and outline key questions and avenues for
future research. A more thorough understanding of chemodiversity will pro-
vide insights into its evolution and functional role in ecological interactions
between plants and their environment.

chemical ecology, chemodiversity, metabolite biosynthesis, metabolome, phytochemical
phenotype, phytochemicals, plant defense, plant-insect interactions, secondary metabolites

called phytochemical diversity (see Box 1 for a glossary),
may be useful if it encompasses a biologically relevant
variation that is associated with fitness-related functions
of a plant. In this article, we review chemodiversity,
examine how it has been measured in published studies,
and provide recommendations for how to analyze
it. Although primary metabolites are certainly also rele-
vant in ecological interactions (e.g., Forister et al., 2020),
here, we focus on specialized metabolites only, as these
have been the focus of chemodiversity studies.

THE PHYTOCHEMICAL
PHENOTYPE

At least 200,000 phytochemicals have been described,
and many more are presumed to exist (Kessler &
Kalske, 2018; Wang et al., 2019). Depending on the plant
species, which part of the plant is examined, and the
method by which compounds are extracted and identi-
fied, anything from just a few to several thousand com-
pounds may be found in a single sample (Li &
Gaquerel, 2021; Uthe et al., 2021). Regardless of the con-
text, phytochemicals typically occur in mixtures of multi-
ple compounds, where each compound is present at a
certain abundance, originates from a specific biosynthetic
pathway, and has a particular molecular structure.
Useful measures of quantifying and summarizing this
multivariate phenotype are needed (Petrén et al., 2023).
Any such measure of the phenotype should, ideally, be
linked to its function, so that it may be associated with
plant performance or fitness. Unraveling which dimen-
sions of the phenotype are most important for function
will increase our understanding of how phytochemicals
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BOX 1 Glossary of central terms

Chemodiversity (phytochemical diversity)—the diversity of a set of phytochemicals, which (if the set is from an
individual plant) represents an aspect of the phytochemical phenotype. Diversity itself is a multifaceted con-
cept, and in this study, we regard diversity as some combination of richness, evenness, and disparity.

Diversity index—a quantitative measure of diversity. There are many different diversity indices, which in
different ways quantify diversity as a function of richness, evenness, and/or disparity.

Functional diversity—although a term with varying meanings, we use the following definition: for species
diversity, functional diversity describes the diversity of functional traits of species in a community. For
chemodiversity, it describes the diversity of (functional) properties of compounds in a sample. In practice, here
we regard a diversity index to quantify functional diversity if it includes a disparity component in the measure,
where disparity is based on the structural or biosynthetic properties of compounds. Assuming a link between
dissimilarity in structure/biosynthesis and dissimilarity in function, such a measure then quantifies the diver-
sity of functions of the compounds in a sample.

Hill diversity—also called Hill numbers or effective number of species. A type of diversity indices, expressed
in units of effective numbers (the number of equally abundant species/compounds that are needed to give the
same value of diversity). Hill diversity represents a more generalized version of traditionally constructed indices
such as Shannon’s entropy or the Simpson index (also often referred to as diversities), and has multiple advan-
tages over them, including the use of a parameter, g, which controls its sensitivity to the relative abundances of
compounds. With the use of (functional) Hill diversity, each of the three components of diversity can be quanti-
fied separately, as well as combined.

Phytochemical phenotype—the combined set of phytochemicals found in, or emitted by (part of) a plant,
with each compound representing a “trait” making up the complete multivariate phenotype.

Phytochemical richness—a measure of the number of compounds in a sample.

Phytochemical evenness—a measure of the equitability of the relative abundances of compounds in a sam-
ple. Evenness is high when all compounds have equal abundances, and low when one compound has a high
abundance and others have a low abundance.

Phytochemical disparity—a measure of how dissimilar the compounds in a sample are. We also refer to this
as compound dissimilarity, and this can be quantified based on, among others, the biosynthetic classification or
structural properties of the compounds. A pair of compounds has a pairwise dissimilarity, and all the pairwise
dissimilarities for a set of compounds can be used to construct a compound dissimilarity matrix.

Phytochemicals—also referred to as plant secondary or specialized metabolites. These are compounds pro-
duced by plants, which function predominantly in interactions between plants and their (a)biotic environment,
rather than being part of primary metabolic functions.

shape interactions between plants and their biotic and
abiotic environment.

Many studies have shown that various aspects of the
phytochemical phenotype are important for plant func-
tion. Often, such studies focus on a univariate dimension
of the phenotype. Most commonly, this is the presence or
abundance of specific compounds. For example, single
compounds have been shown to limit bacterial growth,
reduce herbivory, or increase pollination success (Burdon
et al., 2018; Lankau, 2007; Zhou et al., 2017). In other
cases, function is linked to the total abundance of com-
pounds, or derives from combinations of compounds
(Calf et al., 2018; Duffey & Stout, 1996; Gershenzon
et al., 2012). For example, a combination of several com-
pounds may be necessary for optimal herbivore defense

or pollinator attraction (Berenbaum et al., 1991; Byers
et al., 2014). Other studies have linked function to princi-
pal components of mixtures of phytochemicals (Poelman
et al.,, 2009) or observed that, for example, toxicity or
information content of volatiles may depend on com-
pounds occurring in specific ratios (Berenbaum & Neal,
1985; Ghirardo et al., 2012; Junker et al., 2018; Orlando
et al., 2022). In the past decade, interest in summarizing
the phytochemical phenotype by using measures of
chemodiversity has increased (Dyer et al., 2014;
Hilker, 2014; Kessler & Kalske, 2018; Marion et al., 2015;
Moore et al., 2014; Miiller et al., 2020; Petrén et al., 2023;
Wetzel & Whitehead, 2020). In this way, chemodiversity,
measured for phytochemicals found in plants (most often
leaves), has been linked to ecological function in a

85UB0 1 SUOWWIOD aA a1 9|ded!jdde sy Aq pausenob aJe seole O 8Sh JO SN Joj ARig 1 8UIIUO 43I UO (SUONIPUOD-PpUe-SLLB) W0 A3 | 1M AJe.d1 Ul uo//:Sdny) SUONIPUOD pue swie | 841 88S *[yZ0z/0T/TZ] o ARiq1auljuo A1 ‘wniuezsBunydsiod ssyosined Ueyousn | WNNUSZ Z1joyw pH AQ SE9T WI8/Z00T OT/I0p/Woo’ A8 1M Alelq 1jpuluo's feuno fess//:sdny wiouy pepeoumoq ‘0 ‘STOLLSST



40f23 |

PETREN ET AL.

number of studies. For example, a higher diversity of
phytoalexins was associated with a lower risk of fungal
infection in Phaseolus seedlings (Lindig-Cisneros
et al., 2002). Together, these examples illustrate that there
is substantial variation with regard to which aspects of
the phytochemical phenotype are associated with func-
tion, and how these influence ecological interactions.
Overall, an increasing number of studies suggest that
chemodiversity is often a key part of the phytochemical
phenotype (Appendix S1: Table S1). However, most
studies have not considered that this diversity can be
measured in different ways, which impedes efforts
linking phytochemical variation to biological function.
Therefore, a closer evaluation of what different mea-
sures of diversity actually quantify, and their useful-
ness in different contexts is needed. In the following
sections, we compare and contextualize methods of quan-
tifying the diversity of the phytochemical phenotype; sys-
tematically review the literature on chemodiversity,
elucidating general patterns on its importance for differ-
ent ecological interactions; provide a framework with
recommendations for how to optimally measure chemo-
diversity in different ecological contexts; and propose
avenues for future research on the subject.

USE OF DIVERSITY INDICES IN
CHEMICAL ECOLOGY

Diversity indices have a long tradition in community
ecology where they are used to quantify species diversity,
which is subsequently associated with community and
ecosystem functions (Magurran, 2004; Box 2). Recently,
these measures have become more widely applied in
biology to quantify the diversity of, for example, ele-
ments, molecules, genes, transcriptomes, phenotypes,
and soundscapes (Ferndndez-Martinez, 2022; Kellerman
et al, 2014; Luypaert et al., 2022; Marion et al., 2015;
Martinez & Reyes-Valdés, 2008; Sherwin et al., 2017). In
chemical ecology, measuring chemodiversity is becoming
increasingly popular, but with a few exceptions (Bakhtiari
et al., 2021; Petrén et al., 2023; Ramos et al., 2023; Wetzel &
Whitehead, 2020), little attention has been paid to how it is
actually quantified, and how this is relevant to its function
in various ecological contexts.

What diversity is and how it can best be measured is
a much-discussed topic (Chao et al., 2014; Jost, 2006;
Morris et al., 2014; Tuomisto, 2010). In this review, we
focus on measures of a-diversity, which, in the case of
chemodiversity, is the diversity of a single sampling
unit, most often an individual plant. This contrasts
with y-diversity, which is the total diversity at the scale
of a group of sampling units, and p-diversity, which is

derived from the other two measures and represents
the variation, turnover, or dissimilarity between sampling
units (Anderson et al., 2011; Ellison, 2010). On a funda-
mental level, this a-diversity can be deconstructed into
three components: richness, evenness, and disparity
(Daly et al., 2018; Purvis & Hector, 2000) (Figure 1a). In a
(phyto)chemical context, richness simply represents the
number of compounds found in a sample. The second
component, evenness, is a function of relative abun-
dances of the compounds present in a sample. For a set
of compounds, evenness is maximized when all com-
pounds are equally abundant, and decreases as some
compounds become more abundant than others. The
third component, disparity, describes how different
objects in a sample are to each other for some defined
property. For chemical compounds, disparity, which we
will also refer to as compound dissimilarity, can be based
on a property of the compounds that is considered relevant,
such as their molecular structure or the biosynthetic path-
ways by which they are produced (Junker, 2018; Junker
et al.,, 2018; Petrén et al., 2023; Sedio, 2017; Whitehead
et al., 2021). In practice, direct measures of disparity have
only rarely been used in chemodiversity studies.

Chemodiversity can be quantified in a number of dif-
ferent ways (Figure 1b). Each of the three components
can be quantified individually, with richness being the
most straightforward measure. The most common
approach, however, is to use an index that combines rich-
ness and evenness, such as Shannon’s diversity or the
inverse Simpson diversity. Functional diversity indices,
which include the disparity component (in the form of a
compound dissimilarity matrix), have only rarely been
used. Such indices include mean pairwise dissimilarity
(MPD; the mean of values in the dissimilarity matrix),
which constitutes only the disparity component and indi-
ces such as Rao’s Q (Rao, 1982), which is dependent on
all three components of diversity. A more detailed mathe-
matical description of these indices in the context of
chemodiversity is available in Petrén et al. (2023).

An underestimated problem in many studies is that
different diversity indices measure different things
(Wetzel & Whitehead, 2020). An index necessarily empha-
sizes some components of diversity while de-emphasizing
others, which may affect results (Steel et al.,, 2013;
Tuomisto, 2010). For example, Bakhtiari et al. (2021)
found that only some measures of chemodiversity of
glucosinolates in Cardamine species were associated with
herbivore performance, and this also depended on the
type of herbivore studied. This, the authors argue, indi-
cates that only some aspects of the diversity might be pre-
dictive of ecological effects in specific cases. Most studies
however calculate only a single index, often without justi-
fying the choice. This is not ideal, since a certain index
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BOX 2 Similarities of, and links between, species diversity and chemodiversity

In this paper, we review the application of the concept of diversity, most often used to measure the diversity of
species, to instead measure the diversity of phytochemicals. There are several conceptual similarities between
these applications.

The diversity of species is of interest both as a measure in itself, and because of the effect of biodiversity on
ecosystem functioning. A large body of literature has demonstrated positive effects of biodiversity, mostly in
plants, on a wide range of ecosystem functions in a wide range of systems (Cardinale et al., 2012; Loreau
et al., 2001; van der Plas, 2019). These studies indicate that different components of species diversity, including
the richness, evenness, and disparity, can be important for ecosystem function in different contexts (Tilman
et al., 2014). Generally, functional diversity is often found to be more important for ecosystem functioning than
species diversity (Tilman et al., 1997; van der Plas, 2019). Mechanistically, diversity might have positive effects
on ecosystem functions in different ways, including “complementarity effects” where the functioning of individ-
ual species is higher when grown in communities rather than monocultures, and “selection effects,” where
communities with high species richness are more likely to include (high abundances of) species that provide
high function levels (Loreau & Hector, 2001). Additionally, the functional composition of species, that is the
presence of certain functional groups, is also often a major factor affecting ecosystem function (van der
Plas, 2019).

The diversity of phytochemicals, and its effects on plant function, works in analogous ways. We have dem-
onstrated (see Section “Systematic literature review””) how different components of diversity can influence plant
functioning, and argued that measures of functional diversity, which include a disparity component, might be
more predictive of function than measures based on only richness and/or evenness. Mechanistically, there are
connections as well. The “synergy hypothesis” (synergistic effects between compounds, see
Section “Phytochemical richness”) is comparable to the “complementarity effects.” The “screening hypothesis”
(only few compounds are functional) is related to the “selection effects.” The “interaction diversity hypothesis”
(different compounds are effective against different interacting organisms), is related to the concept of ecosys-
tem multifunctionality, where different species affect different ecosystem processes (Hector & Bagchi, 2007).
Similarly, in addition to the diversity, also the composition of compounds is likely often important for function
as well. The similarities between effects of species diversity and chemodiversity demonstrate an interesting gen-
erality of diversity-function relationships.

While we have considered species diversity and chemodiversity separately so far, the concepts can also be
linked to each other. Phytochemicals can, similar to morphological traits, be regarded as (functional) traits
(Miiller & Junker, 2022; Walker et al., 2022). For measures of chemodiversity, these traits collectively make up
the phenotype, which can be quantified as a measure of its diversity. In contrast, for calculations of the func-
tional diversity of species in a community, these traits are, instead, included in calculations of the functional
(chemo)diversity of species. Studies utilizing phytochemicals as functional traits to study the functional diver-
sity of species, or studies simply quantifying chemodiversity on a community rather than individual plant level,
have found effects of this diversity on plant functions such as herbivore resistance, which itself can be regarded
as an ecosystem function (Fernandez-Conradi et al., 2022; Ristok et al., 2023; Salazar et al., 2016; Schuldt
et al., 2018). In this way, the diversity of the phytochemicals that plants produce constitutes a part of the mech-
anistic link between plant diversity and ecosystem function.

might emphasize an aspect of the phenotype that
happens to be less ecologically relevant (Wetzel &
Whitehead, 2020). Instead, we argue, it is more mean-
ingful to quantify diversity using measures where it is
clear which component(s) of diversity is(are) actually
measured.

In community ecology, many agree that diversity is
optimally quantified using Hill diversity (Ellison, 2010).

Hill diversity, also called Hill numbers or effective num-
bers, is closely related to traditional diversity indices such
as Shannon’s diversity, but offers several advantages
(Chao et al., 2014; Hill, 1973; Jost, 2006). This includes
intuitive units, easy partitioning into a-, p-, and
y-diversity, and options to quantify functional diversity
(Chao et al., 2014; Chiu & Chao, 2014). Additionally,
Hill diversity includes a parameter, q, called the diversity
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An illustration of (a) different components of diversity, and (b) indices used to measure diversity that are mentioned in the

main text. (a) Diversity can be deconstructed into components of richness, evenness, and disparity. Here, individual phytochemical
molecules are illustrated as shapes of different color. Those of the same color and shape are the same type of compound. Bar plots next to
groups of shapes indicate the relative abundances of each type. The top group contains two different compounds with uneven abundances.
Richness increases if the number of different phytochemicals increases. Evenness increases if the relative abundances of the phytochemicals
become more equal. Disparity increases if the phytochemicals present in a mixture are more dissimilar, for example in regard to molecular
structure or biosynthesis, here represented as replacing the light blue squares with the more dissimilar orange triangles. (b) Diversity can be
measured by quantifying its components, or combinations thereof. Each circle represents one component of diversity. Indices in overlapping
areas measure combinations of these components. There exists a multitude of diversity indices, and we have only included those that are
considered in the main text. HD,_,. Hill diversity at g = 0, which is equal to the richness; HD.,, Hill diversity at g > 0, which is a function
of richness and evenness; FHD,_,, Functional Hill diversity at g = 0, which is a function of richness and disparity; FHD, Functional Hill
diversity at ¢ > 0, which is a function of all three components of diversity.

order, which controls its sensitivity to the relative abun-
dances of compounds. By selecting the type of Hill diversity
and its g value(s), one can calculate measures of diversity
that focus on any combination of its three components.
This enables easier and more extensive analyses of diversity
compared with using a single traditional index.

While chemodiversity has primarily been measured
using traditional indices, Hill diversity has been increas-
ingly used in recent years. Marion et al. (2015) introduced
the concept to characterize phenotypic complexity, and
other studies followed in measuring chemodiversity in
this way (Cosmo et al., 2021; Glassmire et al., 2016;
Harrison et al., 2016, 2018; Philbin et al., 2021, 2022).
Functional Hill diversity, which includes compound dis-
similarities in diversity calculations, has only very
recently been used to quantify chemodiversity (Forrister
et al., 2022). Petrén et al. (2023) developed the R-package
chemodiv, which provides functions to aid chemical ecol-
ogists to more comprehensively quantify chemodiversity

for a wide range of datasets. This includes functional Hill
diversity, where compound dissimilarities calculated
based on molecular and/or biosynthetic properties of
the compounds, are included in diversity calculations.
Since chemodiversity is increasingly often quantified
(Figure 2a), there is a need to more closely examine
what components of this diversity are most ecologically
relevant, and consider the mechanisms by which they
are important for function (Bakhtiari et al., 2021;
Wetzel & Whitehead, 2020).

SYSTEMATIC LITERATURE
REVIEW

To compile information on the use of diversity indices in
quantifying chemodiversity, we conducted a systematic
search of literature on the subject. In February 2023, we
searched Web of Science for studies on chemodiversity
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FIGURE 2 Some general patterns of studies on chemodiversity in plants. (a) A total of 89 studies were found in the systematic

literature search, with an increased number of studies published in recent years. Studies conducted before the year 2000 are merged in the
“<2000” bar. For 2023 the line around the bar is dashed, as only studies published up until February were included because that is when the
literature search was done. (b) Number of studies using different measures of chemodiversity. “Richness,” “Evenness” and “Disparity” are
the components of diversity as described in the main text; “Diversity” includes Shannon’s, Simpson and Hill diversity; “Functional
Diversity” includes Rao’s Q and functional Hill diversity; “Other” includes other measures of diversity, and diversity measured on the level
of populations or communities rather than individuals. (c) Number of studies done on different types of plants. (d) Number of studies that
tested effects of chemodiversity on different types of interacting organisms. Numbers above bars in (b), (c), and (d) indicate the number of
studies. Individual studies, all of which are included in Appendix S1: Table S1, may occur in multiple or no categories in these plots. Images
of organisms were obtained from PhyloPic (https://www.phylopic.org/) under the CCO0 1.0 Universal Public Domain Dedication license.

with four separate searches of “*chemical diversity” AND
plant*, chemodiversity AND plant*, “secondary compound”
OR “secondary metabolite” AND diversity AND plant*, and
“voc diversity” OR “scent diversity” OR ‘“volatile diversity”
AND plant*. This returned a total of 2106 scientific articles.
These were screened by title and abstract, and potentially
relevant papers were examined in detail for the use of
diversity indices quantifying mixtures of phytochemicals.
In addition, we also screened all papers cited by, and all
papers that cited a number of key papers in the field
(Bakhtiari et al., 2021; Cosmo et al., 2021; Hilker, 2014;
Kessler & Kalske, 2018; Marion et al., 2015; Moore
et al, 2014; Philbin et al, 2022; Wetzel &
Whitehead, 2020; Whitehead et al., 2021), and included a

small number of additional papers and preprints known
to the authors but not found in our systematic search. We
included studies quantifying a-diversity or some compo-
nent (richness, evenness, disparity) of it. Most often, this
represents the chemodiversity of individual plants, and
is, therefore, a measure of their phenotype. In a few
cases, this included lower (within-plant) or higher (popu-
lation or community) level variation, and such studies
were included if this level was considered as the sampling
unit by the authors. Studies quantifying only p-diversity
or dissimilarity were not included, as that was beyond
the scope of this study. Although we believe our search to
be exhaustive with regard to finding studies that use
diversity indices, it should be noted that many studies

85UB0 1 SUOWWIOD aA a1 9|ded!jdde sy Aq pausenob aJe seole O 8Sh JO SN Joj ARig 1 8UIIUO 43I UO (SUONIPUOD-PpUe-SLLB) W0 A3 | 1M AJe.d1 Ul uo//:Sdny) SUONIPUOD pue swie | 841 88S *[yZ0z/0T/TZ] o ARiq1auljuo A1 ‘wniuezsBunydsiod ssyosined Ueyousn | WNNUSZ Z1joyw pH AQ SE9T WI8/Z00T OT/I0p/Woo’ A8 1M Alelq 1jpuluo's feuno fess//:sdny wiouy pepeoumoq ‘0 ‘STOLLSST


https://www.phylopic.org/

8 of 23 |

PETREN ET AL.

reporting only phytochemical richness were likely not
included. Richness is often not framed in the context of
diversity, but is frequently reported in result sections sim-
ply noting how many compounds were found in total in
a set of samples. We only included studies quantifying
richness if they did so in the context of diversity. Our collec-
tion of studies includes both those examining variation in
chemodiversity (using it as a response variable in compar-
ing, e.g., populations, species or treatments) and studies
examining function through the effect of chemodiversity on
interacting organisms (using it as a predictor variable to test
effects on, e.g., herbivore performance or fungal growth).
In total, we found 89 studies in our systematic search that
fit the criteria, many of which were published in recent
years (Figure 2a). Appendix S1: Table S1 lists these stud-
ies, including the study system, type of phytochemicals
measured, analytical method, type of measures calcu-
lated, type of plant, type of interacting organism, and
whether variation in or an effect of the diversity was
found. Below, we review these studies, and consider theo-
retical aspects of each diversity component separately
and combined.

Phytochemical richness

Richness, the number of compounds, is the most straight-
forward component of chemodiversity. It is a frequently
reported measure, and was used in 42% of the compiled
studies (Figure 2b). Variation in richness has been
documented on all levels of biological organization,
including among tissues/organs (Elser et al., 2023;
Whitehead et al., 2013), individuals (Ziaja & Miiller,
2023), populations (Eisen et al., 2022; Zeng et al., 2022),
species (Macel et al., 2014; Schweiger et al., 2021; Ziist
et al., 2020), orders (Courtois et al., 2009), and communi-
ties (Peguero et al., 2021), as well as across herbivory
treatments (Agrawal, 2000), phylogenies (Becerra
et al., 2009; Cacho et al., 2015) and landscapes (Defossez
et al., 2021). Here, richness varies from a handful of com-
pounds of a specific biosynthetic class, to several thou-
sand metabolic features that are assumed to represent
unidentified individual compounds. Whereas some stud-
ies solely document variation in phytochemical richness,
others go a step further and investigate the functional
importance of this variation. For example, a higher phy-
tochemical richness has been shown to reduce preference
and/or performance of specific herbivores in a number of
study systems (Adams & Bernays, 1978; Agrawal, 2000;
Castellanos & Espinosa-Garcia, 1997). In natural environ-
ments, phytochemical richness, both on the level of indi-
vidual plants and whole communities, has been found to
shape ecological interactions, with effects such as

reducing species richness of herbivores (Salazar et al.,
2018), decreasing arthropod abundances (Defossez
et al,, 2021) and reducing levels of herbivore damage
(Whitehead et al., 2013). Hence, phytochemical richness
may be important for plants in both single interactions
and contexts in which plants experience pressures from
whole herbivore communities.

From an ecological perspective, producing a high
number of phytochemicals may benefit a plant through
various mechanisms. These mechanisms are linked to
hypotheses explaining how chemodiversity is maintained
by natural selection (Thon et al., 2024; Wetzel &
Whitehead, 2020; Whitehead et al., 2021), and we present
three major hypotheses here. According to the “interac-
tion diversity hypothesis”, for a plant experiencing a mul-
titude of interactions, for example, being attacked by
multiple herbivores, producing more compounds is use-
ful if different compounds are effective against different
herbivores. This would then result in selection toward
increased phytochemical richness (Berenbaum & Zangerl,
1996; Iason et al., 2011; Junker, 2016). If, as suggested by
the “screening hypothesis,” most compounds are instead
nonfunctional, a high richness may increase the probability
that at least some compounds in a mixture are functional
(Jones & Firn, 1991, Firn & Jones, 2003, but see Pichersky
et al., 2006). For this, and especially the interaction diversity
hypothesis, a higher richness may benefit plants experienc-
ing multiple interactions. Importantly, function still origi-
nates from effects of individual compounds. In contrast,
according to the “synergy hypothesis,” phytochemical rich-
ness, per se, may be mechanistically important in single
interactions. Synergistic effects, where the effect of a mix-
ture of compounds is greater than the combined effects of
individual compounds, have been documented in a number
of systems, and may emerge via several different mecha-
nisms (Richards et al., 2016). The probability of synergistic
effects occurring may increase with the number of com-
pounds present in a mixture, thereby creating selection for
increased phytochemical richness. Similarly, these hypothe-
ses can also explain selection for increased evenness or dis-
parity (see below), thereby explaining why chemodiversity
may be functionally important.

The main advantage of quantifying chemodiversity
as compound richness is that it is easy to measure.
However, there are some disadvantages. First, levels of
measured richness may vary widely depending on which
methods are used for extraction and detection (e.g.,
targeted or untargeted analyses) of compounds, and be
further affected by post-analytical choices such as
signal-to-noise cut-offs (Li & Gaquerel, 2021; Uthe
et al., 2021). Additionally, levels of detected richness may
increase with the total amount of plant material used
and the total abundance of phytochemicals in a plant for
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both technical and biological reasons (Wetzel &
Whitehead, 2020). This can restrict comparisons of phyto-
chemical richness to situations where similar analytical
methods and data-processing routines have been used.
Second, measures of richness disregard the relative abun-
dances of compounds. This means that compounds
occurring at low abundances, which may be functionally
less important in some contexts, contribute as much to
the measure of richness as highly abundant compounds.

Phytochemical evenness

Evenness is dependent on the relative abundances of
compounds. Compared with richness, measures of
evenness are rarer in the literature. Among the studies
that have quantified it (11% of the compiled studies;
Figure 2b), there is evidence of variation in evenness
between bryophyte species (Peters et al., 2019, 2021), wild
type and mutant Erysimum cheiranthoides (Mirzaei
et al., 2020), and types of maize (Bernal et al., 2023). Pais
et al. (2018) found that an increased evenness of leaf
metabolites in Cornus florida was associated with a
higher probability of plants being diseased. In contrast,
Feng et al. (2021) noted a positive association between
evenness and antibacterial activity for Juniperus rigida
essential oils, and Whitehead et al. (2021) found that
increasing the evenness of phenolics in the diet of different
insect and fungi consumers increased how many of them
were negatively affected by the phenolics. Measuring covari-
ation in the diversity of plants, fungi, and arthropods, as
well as chemical and genetic diversity associated with
Plantago lanceolata individuals, Morris et al. (2014) found
that evenness showed different patterns compared with
richness and, for example, Shannon’s diversity, suggesting
that it represents different information not captured by
other diversity indices.

Mechanistically, evenness might be important for
function in different ways. If function is dependent on
synergies between compounds occurring in similar abun-
dances, a set of compounds with high evenness might
enable more or stronger synergies than a set of com-
pounds with low evenness. On the other hand, if function
comes from only a few specific compounds, a high even-
ness may be disadvantageous if it reflects a lower abun-
dance of those compounds (Pais et al., 2018; Wetzel &
Whitehead, 2020).

Although a potentially interesting measure, evenness
has a number of disadvantages. First, accurately quantify-
ing the relative abundances of structurally different mole-
cules in a chromatogram can be difficult (Walker
et al., 2022), making comparisons across different sets of
compounds and different studies challenging. Second, if

the bioactivity of compounds varies widely, such that also
compounds present in low abundance are important for
function, measuring evenness is less relevant (Clavijo
McCormick et al., 2014). Third, although it seems like a
straightforward measure, there is no consensus on how
to best quantify evenness (Chao & Ricotta, 2019; Jost, 2010;
Smith & Wilson, 1996; Tuomisto, 2012). The most popular
measure is likely Pielou’s evenness (Pielou, 1966), but even-
ness can also be calculated in the Hill diversity framework
(Hill, 1973). The behavior of these two indices can differ,
with the former measure not being truly independent of
richness (Alatalo, 1981; DeBenedictis, 1973), and there is no
agreement on which method is most suitable (Jost, 2010;
Tuomisto, 2012). Overall, the limited evidence so far sug-
gests that the effects of phytochemical evenness differ
between study systems. Since basically any change in the
phytochemical phenotype will affect evenness, more
research is needed to investigate its ecological relevance
and potential mechanisms. Notably, four different even-
ness indices were used in the studies cited above.
Consequently, measured effects of evenness could differ
depending on the index used. This illustrates the chal-
lenges of measuring this aspect of the phytochemical

phenotype.

Phytochemical disparity

Disparity (compound dissimilarity) is rarely quantified in
studies of chemodiversity, but may often be an important
component of it. We are aware of two studies (2% of the
compiled studies; Figure 2b) that have specifically quanti-
fied the disparity of sets of phytochemicals as a measure
of their structural diversity. Similar to results on even-
ness, Whitehead et al. (2021) found that an increased
structural diversity of phenolics, quantified as the MPD
of all compounds in a mixture, increased the proportion
of consumers that were negatively affected by the com-
pounds. Studying different Salix species along elevational
gradients, Volf et al. (2022) found an increase in the MPD
of salicinoids with altitude, but a decrease in the MPD of
flavonoids, which may result from variation in abiotic
factors. Although evidence is limited, these studies sug-
gest that the level of disparity can be an important aspect
of the phytochemical phenotype that affects function and
varies with environmental conditions.

To quantify disparity, dissimilarities between iden-
tified chemical compounds may be calculated in differ-
ent ways based on, for example, their molecular
substructures (Cao et al., 2008), physicochemical prop-
erties (Dowell & Mason, 2020), molecular fingerprints
(Cereto-Massagué et al., 2015) or what biosynthetic
pathways or enzymes produce them (Junker, 2018;
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Petrén et al., 2023). Additionally, recently developed
methods in the web-based GNPS mass spectrometry
platform (Wang et al., 2016) enable calculations of
compound dissimilarities for unidentified compounds
for which mass spectral data are available. Here, cosine
dissimilarities are calculated based on comparisons of
mass spectra (Aksenov et al., 2021; Wang et al., 2016).
Such dissimilarity measures have been used in chemi-
cal ecology (Sedio, 2017), also in combination with
other methods that incorporate molecular substruc-
tures (Ernst et al., 2019). Notably, the question of
whether a compound is identified or not may often be
a matter of probability rather than a binary decision
(Hoffmann et al.,, 2023; Uthe et al., 2021), and
researchers will have to make judgments on which
methods are most suitable in different cases.

In an ecological context, a crucial assumption for why
compound dissimilarities are relevant is that there is an
association between the structure/biosynthetic origin of a
compound and its function. Generally, molecules with
a similar chemical structure can be expected to, on aver-
age, have a more similar biological activity/function com-
pared with molecules with a more different structure
(Berenbaum & Zangerl, 1996; Martin et al., 2002).
Dissimilarity in chemical structures may, however, not
always be associated with dissimilarity in biological func-
tion, as exceptions to this assumption exist (e.g., He
et al., 2019). Instead, associations between structure and
function may be more prevalent at the level of mixtures
containing multiple compounds. More dissimilar com-
pounds may also be more likely to function synergisti-
cally than less dissimilar compounds (Liu & Zhao, 2016).
Therefore, a structurally diverse set of phytochemicals
may be more functionally diverse (in line with the interac-
tion diversity hypothesis) and/or potent (in line with the
synergy hypothesis) (Philbin et al., 2022). Biosynthetically
based compound dissimilarities may also be useful
(although structural and biosynthetic similarity are often
correlated) because different classes of compounds may,
on a general level, have partly different functions
in plant-insect interactions (Glassmire et al., 2019;
Junker & Bliithgen, 2010; Kantsa et al., 2019; Schiestl,
2010). Therefore, a set of biosynthetically dissimilar com-
pounds could be more multifunctional than a set of com-
pounds produced in the same biosynthetic pathway.
Biosynthetically based dissimilarities may also be rele-
vant in evolutionary studies. In this case, if a plant spe-
cies produces a set of compounds with a high average
compound dissimilarity, this indicates that these are pro-
duced in multiple biosynthetic pathways, indicating that
the species has an extensive metabolic machinery for pro-
ducing phytochemicals. Comparing such compound dis-
similarities across phylogenies may generate insights into

the evolution of phytochemicals, as has previously been
done in similar ways (Becerra et al., 2009).

We believe that including compound dissimilarities
in measures of chemodiversity can be meaningful.
However, there are also a number of challenges associ-
ated with it. First, as mentioned, the ecological usefulness
of including compound dissimilarities rests on the
assumption of a link between structure and function,
such that two compounds that are structurally dissimilar
are also functionally dissimilar. Although this may not be
the case for all pairs of phytochemicals in a set of com-
pounds, an association between the structural diversity
(level of disparity) for the whole set of compounds and its
diversity in function may be more likely. Second, com-
pound dissimilarity can be quantified in many different
ways. We have made a distinction between methods
based on biosynthesis and molecular structure, but there
are also different ways of quantifying compound dissimi-
larities based on their structures (Cao et al.,, 2008;
Cereto-Massagué et al., 2015). Overall, more research is
needed to examine links between (different measures of)
the structure and function of phytochemicals, and to
determine the most appropriate measure of disparity for
a given research question.

In addition to using compound dissimilarities to
examine structural diversity, it should be noted that other
studies have quantified dissimilarities or properties of
phytochemicals in other ways. Sternberg et al. (2012) and
Rasmann (2014) examined the effects of the polarity of
phytochemicals on herbivore resistance, finding that
nonpolar cardenolides may be more toxic to herbivores
than polar cardenolides. Cosine dissimilarities between
MS/MS spectra of compounds have been included in
measures that integrate structural and compositional dis-
similarities of sets of phytochemicals, in order to quantify
such differences within and between species at different
scales (Endara et al., 2022; Ernst et al., 2019; Forrister
et al, 2022; Sedio et al., 2017, 2018, 2020, 2021).
Although these examples regard dissimilarity between,
rather than diversity within, sets of phytochemicals, they
similarly point to the importance of structural variation
of phytochemicals at different levels.

Phytochemical diversity—Measures of
combined components

While each of the three components of diversity may be
measured separately, many diversity indices combine two
or more components (Figure 1b). Shannon’s, Simpson
and Hill diversity combine richness and evenness into a
single measure. Richness and disparity may be combined
as the sum of all the pairwise dissimilarities in a
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dissimilarity matrix (Walker et al., 1999). Richness,
evenness and disparity can be combined with the use
of functional diversity indices such as functional Hill
diversity.

Using diversity indices that are a function of richness
and evenness is the most common way to quantify
chemodiversity (76% of the compiled studies; Figure 2b,
Appendix S1: Table S1). Similar to richness, variation in
diversity has been documented at different levels of
biological organization, including different plant tis-
sues (Eilers, 2021; Elser et al., 2023), populations
(Bravo-Monzén et al., 2014, 2018) and species (Ortiz
et al., 2019; Peguero et al., 2021). There is also variation
along altitudinal gradients (Glassmire et al., 2016;
Philbin et al., 2021; Volf et al., 2020) and for different
levels/types of herbivory (Li et al., 2020; Philbin
et al., 2022). Among studies that have examined func-
tional effects, results indicate that an increased chemo-
diversity can decrease levels of herbivory (Glassmire
et al., 2019; Richards et al., 2015), decrease herbivore
performance (Tewes et al., 2018; Whitehead &
Poveda, 2019) and increase resistance to fungi and bac-
teria (De-la-Cruz-Chacén et al., 2019; Feng et al., 2021,
Lindig-Cisneros et al., 1997, 2002). It can also affect the
diversity or structure of the community of herbivores
feeding on host plants (Cosmo et al., 2021; Harrison
et al., 2018; Richards et al., 2015; Volf et al., 2018),
affect tri-trophic interactions (Slinn et al., 2018; Wan
et al., 2017), and shape the diversity of the surrounding
plant and microbe communities (Iason et al., 2005;
Zhang et al., 2024). Other studies have instead found that
intermediate or high levels of chemodiversity might be dis-
advantageous (Pais et al., 2018; Sternberg et al., 2012) or
found no/limited effects on herbivory (Espinosa-Garcia
et al., 2021; Schuldt et al., 2012; Torres-Gurrola et al., 2011).
Taken together, results from these studies suggest that an
increased chemodiversity is often, but not always, beneficial
for plants (Appendix S1: Table S1). Given the limited num-
ber of studies, the very diverse set of contexts and measured
ecological effects, and the potential for publication bias, it is
difficult to make more general conclusions about exactly
what factors may affect whether chemodiversity is benefi-
cial or not.

Only two studies (2% of the compiled studies;
Figure 2b, Appendix S1: Table S1) have measured
chemodiversity with indices that directly include also the
disparity component. Bakhtiari et al. (2021) measured
chemodiversity of glucosinolates in Cardamine plants
with the Rao’s Q index, where compound dissimilarities
were quantified based on chemical classes and molecular
weights. They found variation in this measure of diversity
among groups of Cardamine species, but no association
between chemodiversity and the level of resistance to

different herbivores. Investigating leaf metabolites from
around 100 Inga species, Forrister et al. (2022) measured
functional Hill diversity and compared it to a null model,
concluding that plants invested in producing structurally
diverse sets of compounds. It should also be noted that
some studies (e.g., Cosmo et al., 2021; Philbin et al., 2022;
Richards et al., 2015) have measured chemodiversity in a
way that indirectly takes compound structure into
account by calculating diversity from 'H-NMR spectra,
instead of the more commonly used mass spectrometry
data. This has the advantage that the measures partly
depend on both the intra- and intermolecular complexity
of compounds in a sample, compared with mass
spectrometry-based measures of disparity, which only
consider differences between molecules. A disadvantage
of NMR-based measures is that the different components
of diversity cannot be as easily separated. Combining
both methods in the same study could be fruitful in quan-
tifying chemodiversity more fully (Philbin et al., 2022).

By combining multiple components of diversity, indi-
ces are advantageous because they summarize different
aspects of the phytochemical phenotype in a single mea-
sure, which can be associated with function. This can be
especially useful if the function of a mixture of phyto-
chemicals depend on a combination of richness, even-
ness, and/or disparity. For example, a higher number of
compounds could increase herbivore resistance, but only
if the compounds occur at similar abundances, and/or
are structurally dissimilar. In such a scenario, richness
alone may not, or only weakly, correlate with herbivore
resistance, while an index that also includes evenness
and/or disparity will. There are also potential disadvan-
tages of using indices. By combining multiple com-
ponents of diversity, they may conceal independent
variation in single components. Additionally, the relative
weights of different components in different indices can
vary. For example, Simpson diversity puts less weight on
low-abundance compounds than Shannon’s diversity,
and a choice has to be made about which index is most
appropriate. This is made easier by using Hill diversity,
where the selection of the diversity order (q) controls the
index’s sensitivity to the relative abundances of com-
pounds. More than anything, understanding the proper-
ties of the calculated indices is crucial.

FRAMEWORK FOR MEASURING
CHEMODIVERSITY IN DIFFERENT
CONTEXTS

There is often a lack of justification as to why diversity is
measured in a certain way in a particular study. This
limits our understanding of what aspects of the
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phytochemical phenotype are most important for function.
Although the issue of how to best measure chemodiversity
is complex, some general practices should be considered.
Therefore, we provide a guide and recommendations on
how to appropriately measure chemodiversity for different
types of datasets.

An overview of our recommendations for measuring
chemodiversity is presented in Figure 3. We believe that,
although diversity may be measured with an appropriate
index, it should also be deconstructed into separate mea-
sures of each component. Which components this
includes depends on the dataset, and the data collected
will depend on the research question considered. Data
may consist of presence/absence data or quantitative data
with compound abundances. Setting aside disparity for

now, in the former case the only applicable measure of
chemodiversity is the richness component. In the latter
case, the evenness of the compounds can also be consid-
ered if their relative abundances have been adequately
quantified. In this case, the chemodiversity may be quan-
tified as Hill diversity, and the diversity order parameter
(g) can be adjusted to control the measure’s sensitivity to
the relative abundance of compounds. Although any
value of g > 0 can be used to include evenness as a com-
ponent, we recommend using g =1 by default, as
compounds are then weighted in proportion to their
abundances. In addition, diversity profile plots, where
diversity is plotted as a function of different g values
(e.g., in the range of ¢ =0 to g = 3 or higher), can be
constructed to illustrate how diversity varies depending
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FIGURE 3 Decision tree for quantifying chemodiversity. The choice of measure depends on whether compound dissimilarity for the
measured phytochemicals should be considered, and if abundance data, or only presence/absence data, is available. Gray boxes mark steps
in the decision tree. Blue boxes represent measures of diversity in the Hill diversity framework. Dashed green boxes mark components into
which measures of (functional) Hill diversity can be deconstructed. R, compound richness; HD,_o, Hill diversity at g = 0; HD ¢, Hill
diversity at g > 0; FHD,_,, functional Hill diversity at g = 0; FHD,, functional Hill diversity at g > 0; MPD, mean pairwise dissimilarity.
For measuring HD or FHD at g > 0, we recommend using g = 1 by default. All steps in the decision tree, except generating a compound
dissimilarity matrix with GNPS, can be done with the chemodiv R package (Petrén et al., 2023).
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on the sensitivity of the index to the relative abundances
of compounds. Such profiles then allow for further
insights into relative levels of chemodiversity of different
groups and how that might depend on the extent to
which compound abundance is taken into account
(Chao & Jost, 2015; Wetzel & Whitehead, 2020). Since
indices may conceal independent variation in their com-
ponents, we recommend also quantifying richness and
evenness separately to examine variation in or effects of
each component.

In line with the increasing evidence for the impor-
tance of compound structure for function, we recom-
mend that the disparity (compound dissimilarity) should
be considered if possible. This can be done in multiple
ways. For datasets where most or all compounds are
unidentified, compound dissimilarities can be calculated,
for example, as cosine scores based directly on mass spec-
tra, by use of the GNPS platform (Aksenov et al., 2021;
Wang et al, 2016), although the suitability of such
methods for quantifying biologically relevant variation
needs further investigation. For datasets where most or
all compounds have been identified, we have previously
developed the chemodiv R package (Petrén et al., 2023),
which can be used to calculate compound dissimilarities
based on either their structure or biosynthetic classifica-
tion. Once a dissimilarity matrix of the compounds has
been constructed, we recommend calculating functional
Hill diversity (with ¢ = 1 by default) to generate an over-
all measure of chemodiversity. Thereafter, this may be
deconstructed into the three components. Richness and
evenness are calculated as before, while disparity may be
quantified as the MPD. Additionally, diversity profiles
may be constructed. The chemodiv package provides
functions for these calculations.

ASPECTS OF THE FUNCTIONAL
ROLE OF CHEMODIVERSITY

The recommendations above represent a general way to
quantify chemodiversity. However, the importance and rel-
evance of this diversity may vary depending on the type of
compounds analyzed and the ecological context. Below, we
discuss some important but underappreciated aspects of the
potential importance of chemodiversity in ecological, evolu-
tionary, and phenotypic plasticity contexts.

Perspectives on chemodiversity and
ecological interactions

First, it is important to note that when phytochemicals
are analyzed, and calculations of chemodiversity are

made, this usually includes only a subset of the metab-
olites of a plant (Li & Gaquerel, 2021). Often, there are
biological reasons to suspect that a class of compounds,
for example, terpenoids or glucosinolates, are ecologi-
cally important in a given case. It may then be suitable
to base calculations of chemodiversity on such subsets
of compounds. On the other hand, other groups of
phytochemicals or primary metabolites (Walker
et al.,, 2023) that were not quantified may also be
important, potentially complicating the effects of the
measured chemodiversity. Choosing an appropriately
delimited set of compounds is an important first step
before quantifying chemodiversity.

In general, specialist herbivores are often less affected
by chemical defenses than generalist herbivores
(Hopkins et al., 2009; Mithofer & Boland, 2012). This
may be true also for chemodiversity (Dyer, 2018). Several
studies have found that chemodiversity can have a stron-
ger negative effect on generalists than on specialists
(Agrawal, 2000; Bakhtiari et al., 2021; Kozel et al., 2022;
Li et al., 2020; Volf et al., 2018). Chemodiversity might
also be more predictive of function in comparisons
within rather than between plant species (Schuldt et al.,
2012). Within species, there may be limited variation in
what compounds are found in different individuals, and
function might thereby be more dependent on diversity.
Across species, larger variation in which compounds are
present may be of greater importance for function than
the diversity itself. Phytochemical variation on the level
of whole plant communities may also be ecologically
important, including community-level similarity, diver-
sity, and uniqueness affecting herbivore diversity, levels
of herbivory, plant survival, and ecosystem functioning
(Lavandero et al., 2009; Massad et al., 2017; Salazar &
Marquis, 2022; Schuldt et al., 2018) (Box 2). From the
plant’s perspective, chemodiversity might be more predic-
tive of function under natural conditions, where plants
experience a multitude of interactions, compared with
single interactions. The value of chemodiversity for single
interactions rests on the assumption that diversity, per se,
is important for function, with synergistic effects of com-
binations of compounds. While such effects might be
common (Richards et al., 2016), there are also examples
where synergies are lacking (Liu et al., 2017; Whitehead
et al.,, 2021), or where instead antagonistic effects are
found (Heiling et al., 2022; Whitehead & Bowers, 2014).
In contrast, for multiple interactions, chemodiversity can
be predictive of function without direct synergistic
effects, if different compounds are effective against differ-
ent interacting organisms (Berenbaum & Zangerl, 1996;
Iason et al., 2011).

In interactions between plants and insects, a poten-
tially useful distinction between types of phytochemicals
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is between volatile and non-volatile compounds (Salazar
et al., 2016). Such a division is a simplification, but on a
general level, the role of chemodiversity might differ
between non-volatile compounds that, when consumed,
have direct negative physiological effects on consumers
(Wari et al., 2021), and volatile compounds acting as
information cues or signals to herbivores and pollinators
from a distance (Wilson et al., 2015). For example, phyto-
chemical richness might be more relevant than evenness
in the latter case, as volatiles present in low abundance
can still be highly attractive or repellent to insects
(Clavijo McCormick et al., 2014). A few chemodiversity
studies have been performed in the context of volatile
information (Appendix S1: Table S1), examining how the
diversity of volatiles can act to repel herbivores or attract
herbivore parasitoids (e.g., Doyle, 2009; Wan et al., 2017;
Zu et al., 2020, 2022). For phytochemicals functioning as
floral scent to attract pollinators, some studies have
examined variation in richness between, for example, dif-
ferent populations (Eisen et al., 2022; Zeng et al., 2022) or
between plants pollinated by different groups of pollina-
tors (Farré-Armengol et al.,, 2020). Sasidharan et al
(2023) found a positive correlation between pollinator
visitation and plot-level chemodiversity in Tanacetum
vulgare, but no clear effect of chemotype. To our knowl-
edge, no study has directly tested for a correlation
between the level of chemodiversity and pollinator attrac-
tion in individual plants.

Evolutionary patterns

From an ecological perspective, phytochemicals affect
the organisms interacting with plants. From an evolu-
tionary perspective, the interacting organisms are agents
of selection, affecting what phytochemicals plants pro-
duce. By examining macroevolutionary patterns and
microevolutionary processes, we can learn how natural
selection and other evolutionary forces generate
chemodiversity on different levels (Thon et al., 2024).
Assuming a coevolutionary escape-and-radiate pro-
cess between plants and herbivores (Ehrlich & Raven,
1964), the diversity of phytochemicals may increase over
time as new plant species evolve. A few studies have
found evidence of this. Becerra et al. (2009) found that
the chemodiversity in Bursera species escalated over mac-
roevolutionary timescales. Similarly, Volf et al. (2018)
found an increase in alkaloid diversity over time among
Ficus species, and Defossez et al. (2021) discovered an
increase in the richness of molecular families over time
in a large set of vascular plants. In contrast, Cacho et al.
(2015) found an evolutionary decline in glucosinolate
diversity in Streptanthus plants, suggesting potential

trade-offs with other kinds of defense (Agrawal &
Fishbein, 2008). These studies suggest that chemo-
diversity may often, but not always, increase over evolu-
tionary time. This may include new compounds in
existing biosynthetic pathways, or, potentially more effec-
tive but less common, compounds in new biosynthetic
pathways (Becerra et al., 2009). Overall, phylogenetic pat-
terns are often complex and might differ for different
aspects of the phytochemical phenotype or different clas-
ses of compounds (Courtois et al., 2016; Forrister
et al., 2022; Zhang et al., 2021; Ziist et al., 2020).
Therefore, the disparity component of chemodiversity,
based on biosynthetic classifications, should be consid-
ered in macroevolutionary studies.

Few studies have investigated chemodiversity on a
microevolutionary level. The two cases that have inves-
tigated associations between genetic diversity and
chemodiversity have found different results, with
Bravo-Monzo6n et al. (2018) finding no association
between the two, but Pais et al. (2018) finding a poten-
tial positive association. Multiple studies have exam-
ined selection on individual compounds, principal
components or total abundances of, for example, floral
scent or herbivore defense compounds (Chapurlat
et al., 2019; Joffard et al., 2020; Johnson et al., 2009).
There are also multiple examples of associations
between chemodiversity and various measures of plant
performance, such as levels of herbivory. However,
these do not take into account the potential costs for
plants to produce a diverse set of compounds. Such
costs, which are an important topic for future research,
could diminish or outweigh benefits (Cipollini
et al., 2017). Therefore, direct estimates of phenotypic
selection on chemodiversity are required to investigate
its potential to act on a composite trait such as
chemodiversity (c.f. Opedal et al., 2022). We are aware
of only one study that has done so (Wagner &
Mitchell-Olds, 2018), where authors found that the
direction of selection on glucosinolate diversity in
Boechera stricta varied geographically among different
sites. With additional studies, we may better under-
stand how different aspects of the phytochemical phe-
notype experience selection and evolve over time.

Phenotypic plasticity

Chemodiversity may additionally be affected by the
plant’s surrounding environment. The phenotypic plas-
ticity of phytochemicals has been examined in a broad
set of contexts (Majetic et al., 2009; Metlen et al., 2009).
Any phenotypic change is likely to have an effect on
chemodiversity, but direct studies on this aspect are rare.
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Agrawal (2000) found an increase in glucosinolate rich-
ness in Lepidium virginicum following herbivory, which
was associated with a decreased performance in a gener-
alist but not a specialist herbivore. In contrast, Li et al.
(2020) and Bai et al. (2022) found that herbivory in
Nicotiana attenuata had no or a negative effect on the
diversity of leaf metabolomes. Instead, induced changes
may act to increase metabolomic specialization if there is
an increased production of certain groups of compounds
that increase plant resistance. Changes to the abiotic
environment could also affect levels of chemodiversity
(Ramos et al., 2021), although Tewes and Miiller (2018)
found no effect of fertilization on glucosinolate diversity
in Bunias orientalis. Overall, we still know comparatively
little about which aspects of the phytochemical pheno-
type are most plastic. If plasticity involves changes in the
relative abundances of compounds, this will affect even-
ness. But if it involves the production of novel sets of
compounds, richness or disparity components may
change. More studies are needed to examine the (adap-
tive value of) plasticity of the phenotype in the context of
chemodiversity and better distinguish between genetic
and environmental sources of variation.

UNANSWERED QUESTIONS AND
FUTURE RESEARCH DIRECTIONS

Several aspects of chemodiversity and related topics raise
questions that should be more closely investigated. First,
chemodiversity is only one aspect of a multivariate phyto-
chemical phenotype, and other aspects of this phenotype
are clearly key to function in many cases. To what extent
the chemodiversity, in contrast with individual com-
pounds, specific ratios/compositions of compounds, ste-
reochemistry of isomeric compounds, classes/modules of
compounds, or the total abundance of compounds, is
mechanistically important for or predictive of function
will be a fundamental question to answer (Junker, 2016;
Marion et al., 2015; Oduor, 2022; Torres-Gurrola et al.,
2011; Yarnes et al., 2006). Studies that combine the com-
mon approach of focusing on individual compounds with
diversity measures are ideally suited to answer such ques-
tions. Additionally, it will be crucial to better understand
the links between molecular structure and ecological
function, further examine the role of synergistic effects
(Corning, 2012), and test if structurally diverse sets of
compounds also have a broader function or more potent
effects (Berenbaum & Zangerl, 1996; Liu & Zhao, 2016;
Philbin et al., 2022). Understanding this, in turn, requires
knowledge on how phytochemicals function mechanisti-
cally on molecular and physiological levels (Mithofer &
Boland, 2012; Wari et al., 2021). Furthermore, the relative

importance of, and potential synergies between, chemical
and morphological traits should also be studied in more
detail (Edwards et al., 2022).

A second important aspect is the calculation of diver-
sity itself. As diversity is a composite measure, we have
argued for first quantifying it and then deconstructing it
into its components of richness, evenness, and disparity.
Many alternative ways of quantifying diversity exist,
which may also provide relevant measures of the phyto-
chemical phenotype (Chao et al, 2019; Magneville
et al., 2021; Mouchet et al., 2010), although more com-
plex measures may be more difficult to interpret.
Additionally, different types and components of diversity
may be mathematically correlated, and care should be
taken not to confuse such mathematical associations for
biological ones, as discussed by Loiseau and Gaertner
(2015). Other related quantities, such as specialization
and dominance, may also be important (Berger &
Parker, 1970; Martinez & Reyes-Valdés, 2008), as may
measures of intramolecular complexity, which are not
quantified by measures of compound dissimilarity
(Méndez-Lucio & Medina-Franco, 2017; Philbin et al.,
2022; Richards et al., 2015). In addition to
chemodiversity at the level of individual plants, also
B-diversity or diversity at the within-plant, population,
or community level is ecologically relevant (Glassmire
et al., 2020; Robinson et al., 2022; Wetzel & Whitehead,
2020). Studies that simultaneously quantify multiple
types/components of diversity are needed to examine
which of these quantities are most relevant in different
contexts.

Third, research on chemodiversity remains somewhat
limited in scope with regard to the types of plants studied
and experimental methods used. The vast majority of
studies have been conducted on flowering plants, with
few examples including gymnosperms or bryophytes
(Figure 2c) (Feng et al., 2021; Iason et al., 2005; Peters
et al., 2018, 2019, 2021; Schweiger et al., 2021; Zhang
et al.,, 2024). Most studies are observational, comparing
chemodiversity across different groups and associating
this with ecological function. Experimental studies
manipulating levels of diversity are rare (Fernandez-Conradi
et al, 2022; Ojeda-Prieto et al., 2024; Salazar &
Marquis, 2022; Sasidharan et al, 2023; Whitehead
et al, 2021; Ziaja & Miiller, 2023), but useful for
disentangling which components of diversity are most
relevant for function. Additionally, most research on the
effects of chemodiversity examines effects of chemo-
diversity in leaves on the performance of insect herbi-
vores or levels of herbivory (Figure 2d). Studies including
other plant tissues such as roots, flowers, fruits, and
seeds, and other types of interactions such as those
involving fungi, bacteria, and parasitoids, have only
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recently become more common (De-la-Cruz-Chacén
et al., 2019; Doyle, 2009; Feng et al., 2021; Lindig-Cisneros
et al., 1997, 2002; Sasidharan et al., 2023; Wan et al., 2017,
Whitehead et al., 2021; Zhang et al., 2024). Additionally,
recent technical advances in plant metabolomics enable the
use of new analytical methods (Uthe et al., 2021). These will
increase the number of plant metabolites detected and iden-
tified and enable novel insights. However, it is important to
acknowledge that methodological steps upstream those
of diversity calculations, such as sample collection and
chemical analyses, and post-analytical steps like com-
pound identification, data processing and compound
quantification, can influence results, and further work is
needed to standardize these steps across studies (Walker
et al., 2022). Finally, most research so far has aimed to
answer fundamental ecological questions. Only a few
studies have been carried out in more applied contexts,
examining chemodiversity of crop species, and its poten-
tial importance for protection against pest insects (Bernal
et al., 2023; Espinosa-Garcia et al.,, 2021; Robinson
et al., 2022; Whitehead & Poveda, 2019). Further research
on this topic will increase our understanding of how
chemodiversity may be utilized in agroecosystems
(Espinosa-Garcia, 2022; Silva et al., 2018).

Sixty-five years have passed since Fraenkel’s (1959)
seminal paper on the raison d’étre of phytochemicals.
Today, studying the mechanisms by which these phyto-
chemicals function, in order to explain patterns or
effects observed in nature, is central to chemical ecol-
ogy (Raguso et al., 2015). However, we still have a lim-
ited knowledge of how these compounds function,
alone and in mixtures, in different interactions
between plants and their environment. Our literature
review demonstrates that considering mixtures of phy-
tochemicals as a complex phenotype, where aspects of
its multivariate nature can be summarized into mea-
sures of diversity, may be a fruitful way to a better under-
standing of phytochemical function. Our framework and
recommendations of how to measure chemodiversity in dif-
ferent contexts will allow researchers to more easily study
the relevant aspects of phytochemical variation, and con-
tribute to an increased understanding of the functional
importance of the diversity of phytochemicals produced by
plants.
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