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Background

Genome-wide association studies for glycemic traits have identified 
hundreds of loci associated with these biomarkers of glucose 
homeostasis. Despite this success, the challenge remains to link 
variant associations to genes, and underlying biological pathways.

Methods

To identify coding variant associations which may pinpoint effector 
genes at both novel and previously established genome-wide 
association loci, we performed meta-analyses of exome-array studies 
for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 
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participants), fasting glucose (FG, up to 129,665 participants), fasting 
insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge 
(2hGlu, up to 57,878). In addition, we performed network and pathway 
analyses.

Results

Single-variant and gene-based association analyses identified coding 
variant associations at more than 60 genes, which when combined 
with other datasets may be useful to nominate effector genes. 
Network and pathway analyses identified pathways related to insulin 
secretion, zinc transport and fatty acid metabolism. HbA1c 
associations were strongly enriched in pathways related to blood cell 
biology.

Conclusions

Our results provided novel glycemic trait associations and highlighted 
pathways implicated in glycemic regulation. Exome-array summary 
statistic results are being made available to the scientific community 
to enable further discoveries.

Keywords 
exome chip, glycaemic traits, genetic discovery, effector genes, 
summary statistics resources
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Introduction
Genome-wide association studies (GWAS) have identified 
hundreds of loci associated with glycemic traits and type  
2 diabetes (T2D) risk1–3. Despite this tremendous success, the 
challenge remains to link the often lead non-coding variants  
with effector genes and mechanism of action. To complement 
these approaches, exome array studies4,5 and more recently,  
whole-exome sequencing approaches have focused on cod-
ing variant associations6–9. These can be helpful to pinpoint 
potential effector genes for downstream functional studies. 
Here, we provide exome-array GWAS meta-analysis results 
for glycated hemoglobin (HbA1c, up to 144,060 participants),  
fasting glucose (FG, up to 129,665 participants), fasting insu-
lin (FI, up to 104,140) and 2hr glucose post-oral glucose  
challenge (2hGlu, up to 57,878). Most of the data are from 
self-reported and genetically clustered European ancestry  
individuals (85%), with the remaining participants being of  
African American (6%), South Asian (5%), East Asian (2%) 
and Hispanic ancestry (2%). We identify single coding variant 
and gene-based associations to prioritize likely effector genes, 
and additionally perform pathway analyses to highlight relevant  
gene sets regulating each glycemic trait. Summary statistics 
from these analyses are publicly available through our website  
(www.magicinvestigators.org), as well as through the GWAS  
catalog (https://www.ebi.ac.uk/gwas/summary-statistics, study 
accessions GCST90256400 - GCST90256420)10.

Methods
Study design, cohorts, phenotypes and genotypes
MAGIC (Meta-Analysis of Glucose and Insulin-related traits  
Consortium) was established to focus on the genetic analysis 
of glycemic traits in individuals without diabetes. In this 
MAGIC effort, individuals without diabetes of self-reported 
and genetically clustered European (85%), African American 
(6%), South Asian (5%), East Asian (2%) and Hispanic (2%)  
ancestry from up to 64 cohorts participated. Sample sizes were 
up to 144,060 for HbA1c, 129,665 for FG, 104,140 for FI and  
57,878 for 2hGlu. Participating cohorts and their characteristics 
are detailed in Supplementary Table S111. Each cohort obtained  
ethical approval and written informed consent.

Phenotypes
Studied outcomes were FG (mmol/L), Ln-transformed FI 
(pmol/L), 2hGlu (mmol/L) and HbA1c (% of hemoglobin).  
Glycemic measurements are described in detail for each  
contributing cohort in Supplementary Table S111. Individuals 
with diagnosed or treated diabetes, or those with diabetes based 
on FG (≥7 mmol/L), 2hGlu (≥11.1 mmol/L) and/or HbA1c  
(≥6.5%) were excluded from analyses.

Genotyping and QC
The Illumina HumanExome BeadChip is a genotyping array 
containing variants that have been observed in sequencing  
data of ~12,000 individuals. Non-synonymous variants seen 
at least three times across at least two datasets were included  
on the exome chip. More lenient criteria were used for splice  
and nonsense variants. Besides the core content of protein- 
altering variants, the exome chip contains additional variants  

including common variants identified in GWAS, ancestry  
informative markers, mitochondrial variants, randomly selected 
synonymous variants, HLA tag variants and Y chromosome 
variants. In this study we analyzed association with glycemic  
traits of 247,470 autosomal and X chromosome variants present 
on the exome chip. Genotype calling and quality control were 
performed following protocols developed by the UK Exome  
Chip or CHARGE consortium12. The exact genotyping array, 
calling algorithm and QC procedure used by each cohort are  
depicted in Supplementary Table S111.

Annotation and functional prediction of variants
Annotation of the exome chip variants was performed using 
the Ensembl Variant Effect Predictor v78 with plugin dbNSFP 
v2.9 to add in silico functional prediction from Polyphen  
HumDiv, Polyphen HumVar, LRT, Mutation Taster and SIFT 
(ensembl66 version)13,14.

Statistical analyses
Single variant analyses. Individual cohorts ran linear mixed 
models using the raremetalworker (v 4.13.2) or rvtests  
(v20140723) software (Supplementary Table S111). For each 
glycemic outcome, analyses were performed using an additive  
model for the raw and the inverse normal transformed trait.  
In the manuscript and in all tables and figures effect estimates 
and standard errors are for the raw trait, while the p-values are  
from the inverse normal transformed trait analyses. Analyses 
were adjusted for age, sex, BMI, study-specific number of PCs  
and other study-specific covariates (Supplementary Table S111). 
Raremetal (v4.13.7 or higher) was used to combine results  
within and across ancestries by fixed-effect meta-analyses. 
Variants with P <10-4 for deviation from Hardy-Weinberg  
equilibrium or with call rate <0.99 in individual cohorts  
were excluded from meta-analyses. In single variant analyses, 
the threshold for significance was P <2.2×10-7 for coding variants  
(stop-gained, stop lost, frameshift, splice donor, splice accep-
tor, initiator codon, missense, in-frame indel and splice region 
variants). This P-value threshold was based on a Bonferroni  
correction weighted by the enrichment for complex trait  
associations among the functional annotation categories15,16. We  
performed so called distance-based clumping; significant  
association signals located more than 500 kb apart were con-
sidered to represent distinct loci. Significantly associated  
variants located more than 500 kb from any variant already 
found to be associated in published large-scale glycemic 
trait and T2D GWAS analyses1,3,17,18 were considered novel  
glycemic trait associations. Gene-based and single-variant  
analyses results presented in the paper are for the meta-analyses  
of all ancestries combined, unless mentioned otherwise.

Gene-based analyses. Raremetal (v4.13.7 or higher) was used 
to perform gene-based burden and sequence kernel association  
(SKAT) tests. For both burden and SKAT tests, two in silico 
masks for inclusion of variants in the test were used: NSstrict 
and NSbroad. The NSstrict mask includes predicted protein  
truncating variants (PTVs, splice donor, splice acceptor, stop 
gained, frameshift, stop lost or initiator codon variant) OR  
variants that are missense and predicted to be damaging by five  
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prediction algorithms (SIFT, Polyphen HumDiv, Polyphen 
HumVar, LRT, MutationTaster). The NSbroad mask addi-
tionally includes missense variants predicted to be damaging 
by at least one of the five prediction algorithms AND that 
have a MAF <1% in each ancestry group. These MAFs were  
derived from our single variant HbA1c meta-analyses results 
(N up to 144,060). Gene-based analyses were performed on 
genes containing at least two variants fulfilling the mask cri-
teria. The P-value threshold for significance in gene-based  
analyses was 2.5 x 10-6 (Bonferroni correction for 20,000 genes).

GeneMANIA network analysis
For network analyses, we used GeneMANIA (v3.5.1), a net-
work approach that searches many large, publicly available 
biological datasets to find related genes. These include protein-
protein, protein-DNA and genetic interactions, pathways,  

reactions, gene and protein expression data, protein domains 
and phenotypic screening profiles. GeneMANIA uses a label 
propagation algorithm for predicting gene function given the  
composite functional association network (calculated from the 
databases selected). The weights needed for the label propagation  
method to work are selected at the beginning of the process. 
In our case, and according to the defaults, we weighted the net-
work using linear regression, to make genes in the input list 
interact as much as possible with each other. We analyzed  
all loci that had at least one non-synonymous variant with  
P <1 x 10-5 with any trait, and then mapped the most significant 
non-synonymous variant at each locus to the gene (input genes). 
We performed four network analyses: (1) HbA1c-associated  
variants only, (2) FI-associated variants only, (3) FG-associated 
variants only, and (4) 2hGlu-associated variants only  
(Figure 1, Supplementary Figure S111). We selected the 50 

Figure 1. Network and pathway analyses identify relevant gene sets regulating glycemia using two different methods for 
variant associations with P <1 × 10-5. (A–B) The networks represent composite networks for (A) HbA1c and (B) FG, from the GeneMANIA 
analysis using genes with variant associations at P <1 × 10-5 for each trait as input. Nodes outlined in red correspond to genes from the input 
list. Other nodes correspond to related genes based on 50 default databases. Based on the network, GO terms and Reactome pathways 
that were significantly enriched are depicted. To summarize these results, the most significant term of all calculated terms within the same 
group is represented. Barplots with the Bonferroni-adjusted -log10(p-values) of the most significant terms within each group are are shown. 
Each group was assigned a specific color; if a gene is present in more than one term, it is displayed in more than one color. (C–D) Heatmaps 
showing EC-DEPICT results from analysis of (C) all traits except HbA1c and (D) FG. The columns represent the input genes for the analysis. 
In (C), these are genes with variant associations of P <1 × 10-5 for FG, FI, and/or 2hGlu, and in (D) these are genes with variant associations 
of P <1 × 10-5 for FG. Rows in the heatmap represent significant meta-gene sets (FDR <0.05). The color of each square indicates DEPICT’s 
z-score for membership of that gene in that gene set, where dark red means “very likely a member” and dark blue means “very unlikely a 
member.” The gene set annotations indicate whether that meta-gene set was significant at FDR <0.05 or not significant (n.s.) for each of the 
other EC-DEPICT analyses. For heatmap intensity and EC-DEPICT P-values, the meta-gene set values are taken from the most significantly 
enriched member gene set. The gene variant annotations are as follows: (1) the European minor allele frequency (MAF) of the input variant, 
where rare is MAF <1%, low-frequency is MAF 1–5%, and common is MAF >5%, 2) whether the gene has an Online Mendelian Inheritance in 
Man (OMIM) annotation as causal for a diabetes/glycemic-relevant syndrome or blood disorder, 3) to 6) whether each variant was significant 
(P <2 × 10-7), suggestively significant (P <1 × 10-5), or not significant in Europeans for each of the four traits, and 7) whether each variant was 
included in the analysis or excluded by filters (see Methods). AWS: array-wide significant.
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default databases to create the composite network, and we  
allowed the method to find at most 50 genes that are  
related to our query input list. The resultant networks were 
investigated to find enriched Gene Ontology (GO) terms and  
Reactome Pathways. Gene Set Enrichment (GSE) of networks 
and sub-networks were assessed with ClueGO19 using GO 
terms and Reactome gene sets20. The enrichment results were 
grouped using a Cohen’s Kappa score of 0.4, and terms were  
considered significant with a Bonferroni-adjusted p-value <0.05, 
provided that there was an overlap of at least three network 
genes in the relevant GO gene set when calculating GO enrich-
ment. For the pathway selection (Reactome), we set a thresh-
old that the network genes should represent at least 4% of the 
pathway. These values were applied given the recommended 
defaults when running ClueGO19. Cohen’s Kappa statistic was 
used to measure the gene-set similarity of GO terms and Reac-
tome pathways and allowed us to group enriched terms into  
functional groups to improve visualization of enriched path-
ways. We used all genes with GO annotations and at least one  
interaction in our network database as the background set.

Gene set enrichment analysis (GSEA)
An extension of the GWAS GSEA method DEPICT21,  
EC-DEPICT22,23, was used for GSEA. The key feature of  
EC-DEPICT is the use of “reconstituted” gene sets, which 
are gene sets collected from many different databases (e.g.  
canonical pathways, protein-protein interaction networks, 
and mouse phenotypes) that have been extended based on  
large-scale microarray co-expression data21,24.

Six groups of variants were analyzed: (1) HbA1c-associated 
variants only, (2) FI-associated variants only, (3) FG-associated 
variants only, (4) 2hGlu-associated variants only, (5) all 
trait-associated variants, and (6) all trait-associated variants 
except for HbA1c. For each trait, the associated variants 
based on the European summary statistics were identified and 
clumped using a +/- 500 kb window. Then, the most significant  
nonsynonymous variant for each locus was included in the 
analysis, with a cut-off of P <10-5. Annotations from the 
CHARGE consortium were used to assign variants to genes 
(see URL). After GSEA, highly correlated gene sets were 
grouped by affinity propagation clustering of all 14,462 gene  
sets25 into “meta-gene sets” using SciKitLearn.clustering.
AffinityPropagation version 0.1726. For all visualizations, 
the gene set within a meta-gene set with the best  
enrichment P-value was used; heat maps were created with the  
ComplexHeatmap package in R27.

URL: CHARGE Consortium ExomeChip annotation file (v6).

Method and choice of data for permutations: We performed 
the EC-DEPICT analysis as described elsewhere22,23. All analy-
ses are based on a group of 14,462 “reconstituted” gene sets, 
which contains a z-score for probability of gene set membership  
for each gene (for details, see21,24).

The basic EC-DEPICT method is as follows. We first obtain 
a list of significant input variants (the most significant non-
synonymous variant per locus) and then map variants to genes 

based on annotations from the CHARGE consortium (see URL). 
For each gene set, we obtain the gene set membership z-scores 
for all trait-associated input genes and sum them to generate a 
test statistic. We then take 2,000 permuted ExomeChip asso-
ciation studies (described in more detail below) and calculate the  
average permuted test statistic for that gene set, as well as 
the permuted standard deviation. For each permutation, the 
number of top genes we take as “input genes” is matched to 
the actual observed number of input genes. We then calcu-
late (observed test statistic – average permuted test statistic)/
(permuted standard deviation) to generate a z-score, which  
is converted to a p-value via the normal distribution. False  
discovery rates were calculated by comparing the observed  
p-values to a permuted P-value distribution generated with an  
additional set of 50 permuted association studies.

The permuted ExomeChip association studies are conducted 
by (1) generating 2,200 sets of normally distributed pheno-
types and (2) using these randomly generated phenotypes to 
conduct 2,200 association studies with real ExomeChip data. 
Using these permutations to adjust the observed test statistics  
corrects for any inherent structure in the data (e.g. that path-
ways made up of longer genes may be more likely to come up  
as significant by chance).

For these analyses, we first generated permutations based on 
ExomeChip data we had used previously for this purpose: 
11,899 samples drawn from three cohorts (Malmö Diet and 
Cancer [MDC], All New Diabetics in Scania [ANDIS], and  
Scania Diabetes Registry [SDR]). For simplicity, we refer to  
these cohorts as the “Swedish permutations.”

As part of our GSEA pipeline, we remove input trait-associ-
ated variants that are not present in the permuted data to ensure 
that all variants are appropriately modeled. When using the 
Swedish permutations, this generally results in removing a 
substantial fraction of the variants, especially of the very rar-
est variants (due to the smaller sample size of the Swedish 
data relative to the data being analyzed). We have previously 
observed that this filtering can actually improve the GSEA signal,  
possibly due to more heterogeneous biology or a higher 
false-positive rate in these very rare variants23. However, in 
this case, we observed that in performing this filtering, we 
excluded variants in several known monogenic disease genes, 
such as HNF1A and SLC2A2. Therefore, we wished to repeat 
the analysis with a set of permutations which would allow  
us to retain these variants. We thus repeated the analysis with a 
second set of permutations consisting of 152,249 samples from 
the UK Biobank (referred to as the “UKBB permutations”). 
The larger sample size in the UKBB permutations means 
more variants are present and can therefore be included in  
the analysis.

Concordance of results from two different sets of permuted dis-
tributions across phenotypes: For completeness, we report 
the results from the use of both sets of permutations. We note 
that the results are strongly concordant. The larger number of 
significant gene sets reported based on the UK Biobank per-
mutations is generally a combination of 1) overall improved 
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power (i.e. more variants are included) and 2) the inclusion of  
variants in key driver genes absent in the Swedish permuta-
tions, encompassing both the monogenic genes mentioned 
above (e.g. SLC2A2) and additional genes with clearly relevant  
biology (e.g. SLC30A8). The results from both sets of permu-
tations are summarized below. For all analyses, “significance”  
refers to a false discovery rate of <0.05.

All-trait analysis: After filtering, 78 input genes were included 
for the analysis with the UKBB permutations and 60 for the 
analysis with the Swedish permutations. (Note that the differ-
ence in the number of input genes is due to the presence of a 
larger number of input variants in the UKBB permutations – see 
above). We found 234 significant gene sets in 86 meta-gene 
sets based on the UKBB permutations (Supplementary 
Figure S211) and 133 gene sets in 51 meta-gene sets based 
on the Swedish permutations (Supplementary Figure S311). 
The correlation between the UKBB and Swedish analyses  
was r = 0.902, P <10-300.

All-traits-except-HbA1c analysis: After filtering, 45 input 
genes were included for the analysis with the UKBB permuta-
tions and 33 for the analysis with the Swedish permutations. We  
found 128 significant gene sets in 53 meta-gene sets based 
on the UKBB permutations (Supplementary Figure S211) 
and 45 significant gene sets in 18 meta-gene sets based on 
the Swedish permutations (Supplementary Figure S311). The 
correlation between the UKBB and Swedish analyses was  
r = 0.882, P <10-300.

HbA1c-only analysis: After filtering, 41 input genes were 
included for the analysis with the UKBB permutations and 
33 for the analysis with the Swedish permutations. We found 
191 significant gene sets in 73 meta-gene sets based on the 
UKBB permutations (Supplementary Figure S211) and 120 gene 
sets in 41 meta-gene sets based on the Swedish permutations.  
(Supplementary Figure S311). The correlation between the  
UKBB and Swedish analyses was r = 0.936, P <10-300.

FG-only analysis: After filtering, 26 input genes were included 
for the analysis with the UKBB permutations and 22 for the 
analysis with the Swedish permutations. We found 106 sig-
nificant gene sets in 39 meta-gene sets based on the UKBB 
permutations (Supplementary Figure S211) and 48 signifi-
cant gene sets in 15 meta-gene sets based on the Swedish  
permutations (Supplementary Figure S311). The correlation 
between the UKBB and Swedish analyses was r = 0.939,  
P <10-300.

2hGlu-only analysis: After filtering, 12 input genes were 
included for the analysis with the UKBB permutations and 
seven for the analysis based on the Swedish permutations. We 
found 56 significant gene sets in 17 meta-gene sets based on 
the UKBB permutations (Supplementary Figure S211), with 
no significant gene sets based on the Swedish permutations. 
The correlation between the UKBB and Swedish analyses  
was r = 0.787, P <10-300.

FI-only analysis: After filtering, 11 input genes were included 
for the analysis with the UKBB permutations and eight for the 
analysis with the Swedish permutations. There were no sig-
nificant gene sets from either analysis. The correlation between  
the UKBB and Swedish analyses was r = 0.860, P <10-300.

Visualization: As in previous work22,23, we have included all 
trait-associated variants in the heat maps, even if they were 
excluded from the analysis (e.g. because they were absent 
in the permutations or did not have a nonsynonymous anno-
tation in the CHARGE annotation file). This is because we 
assume that if the genes harboring those variants have strong  
predicted membership in significantly trait-associated gene 
sets, they are still good candidates for prioritization. In fact, 
this may be even stronger evidence in favor of these genes 
because they did not contribute to the enrichment analysis and 
therefore their prioritization is independently derived (and  
provides even more support to the implicated biology).

Results
Study design overview
We performed single-variant and gene-based association analy-
ses with FG, FI, HbA1c, and 2hGlu levels on exome-array  
coding variants in up to 144,060 individuals without diabetes  
(to exclude any consequence of diabetes treatments or 
related interventions on these quantitative traits) of European 
(85%), African-American (6%), South Asian (5%), East Asian 
(2%), and Hispanic (2%) ancestry from up to 64 cohorts  
(Supplementary Table S111, Methods). We used a linear mixed 
model to test single-variant associations in each individual 
cohort and combined results by fixed-effect meta-analyses  
within and across ancestries. As body mass index (BMI) is 
a major risk factor for T2D and is correlated with glycemic 
traits, all analyses were adjusted for BMI to identify loci influ-
encing glycemia independently from their effects on overall  
adiposity. We have previously demonstrated that collider bias  
did not significantly affect results with BMI adjustment1. We 
used distance-based clumping to define distinct loci and con-
sidered signals to be novel if they were located more than 
500 kb from a variant with an established association with 
any of the glycemic traits or T2D in large published GWAS  
(Methods). We considered a coding variant to meet exome-
wide significance for association if P <2.2 × 10-715,16 (Table 1, 
Methods). To increase power to detect rare variant associa-
tions, we additionally performed gene-burden and sequence ker-
nel association (SKAT) tests for gene-level analyses to identify 
genes with significant evidence of association (P <2.5 × 10-6)  
(Table 2, Methods). Finally, to identify relevant biological 
pathways enriched in associations with glycemic traits we  
conducted pathway and network analyses.

Identification of single-variant associations
Our single variant analyses identified 62 distinct coding  
variant associations at 58 genes associated with at least one  
of the glycemic traits at exome-wide significance (P <2.2 × 10-7)  
(Table 1). Of these, four variants at three genes represented 
novel associations. These included a missense (rs1983210, 
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Table 1. Single-point coding variant associations meeting the significance threshold for coding variants of P <2.2 × 10-7. 
This table includes all coding variants meeting this threshold, irrespective of whether they fall in completely new loci or in previously-
established loci, provided that the association at the established locus was not shown to be due to a non-coding variant (Table S2) or 
another coding variant at the same locus. Novel loci are highlighted in bold. HbA1c: glycated haemoglobin; FG: fasting glucose; FI: 
fasting insulin; 2hGlu: 2h glucose; Alleles E/O: effect allele/other allele; EAF: effect allele frequency; Effect (SE): effect size (standard error); 
P: p-value; N: number of samples in the analysis; Novel/previous glycemic trait association: Novel corresponds to a new association result 
in this study; Locus name of previous association – name used for previously reported locus. 1Significant in the European-only analysis in 
our study. Genes in this table are listed in order of chromosomal position.

Trait SNP Gene Protein 
Consequence

Alleles 
E/O EAF Effect (SE) P N

Previous 
glycemic 

trait 
association 

(if any)

Locus name 
of previous 
association

FG rs1886686 WDR78 p.G12A G/C 0.739 0.014 (0.002) 2.24×10-11 123558 Novel

HbA1c rs267738 CERS2 p.E106A G/T 0.186 -0.01 (0.002) 6.96×10-10 144043 HbA1c CERS2

HbA1c rs863362 OR10X1 p.W66X T/C 0.465 0.011 (0.001) 6.76×10-15 114945 HbA1c SPTA1

HbA1c rs857725 SPTA1 p.K1693Q G/T 0.262 0.022 (0.001) 1.56×10-50 143956 HbA1c SPTA1

HbA1c rs11887523 MFSD2B p.A60T A/G 0.007 -0.072 (0.01) 1.44×10-12 122060 HbA1c ATAD2B

FG rs1260326 GCKR p.L446P C/T 0.631 0.029 (0.002) 6.36×10-48 129588 FG, FI, 2hGlu GCKR

FI rs1260326 GCKR p.L446P C/T 0.626 0.024 (0.002) 5.55×10-32 104076 FG, FI, 2hGlu GCKR

2hGlu rs1260326 GCKR p.L446P C/T 0.618 -0.069 (0.009) 4.48×10-15 57813 FG, FI, 2hGlu GCKR

FG rs35720761 THADA p.C845Y T/C 0.108 -0.018 (0.003) 4.35×10-9 129622 T2D, FG THADA

HbA1c rs35720761 THADA p.C845Y C/T 0.113 0.014 (0.002) 2.58×10-12 144001 T2D, FG THADA

FG rs7578597 THADA p.T897A C/T 0.106 -0.019 (0.003) 1.99×10-8 113162 T2D, FG THADA

FI rs7607980 COBLL1 p.N901D C/T 0.128 -0.032 (0.003) 1.30×10-24 97817 FI COBLL1

FG rs2232323 G6PC2 p.Y207S C/A 0.006 -0.129 (0.012) 1.05×10-28 123981 FG, HbA1c G6PC2

HbA1c rs2232323 G6PC2 p.Y207S C/A 0.007 -0.053 (0.007) 3.25×10-13 144038 FG, HbA1c G6PC2

FG rs146779637 G6PC2 p.R283X T/C 0.002 -0.138 (0.02) 1.78×10-12 127278 FG, HbA1c G6PC2

HbA1c rs146779637 G6PC2 p.R283X T/C 0.002 -0.074 (0.012) 4.58×10-10 141728 FG, HbA1c G6PC2

FI rs1983210 OBSL1 p.E1365D G/C 0.729 0.016 (0.003) 8.48×10-10 79767 Novel

FI rs3183099 OBSL1 splice region 
variant A/G 0.226 -0.013 (0.002) 4.70×10-8 100713 Novel

FI rs1801282 PPARG p.P12A G/C 0.117 -0.031 (0.003) 3.50×10-23 98631 FI PPARG

HbA1c rs35726701 RNF123 p.K596E G/A 0.019 0.025 (0.005) 4.19×10-8 131203 HbA1c USP4

FG rs5400 SLC2A2 p.T110I A/G 0.161 -0.022 (0.003) 2.14×10-17 129591 FG, HbA1c SLC2A2

HbA1c rs5400 SLC2A2 p.T110I A/G 0.153 -0.013 (0.002) 2.27×10-13 144012 FG, HbA1c SLC2A2

HbA1c1 rs2237051 EGF p.M708I A/G 0.374 -0.007 (0.001) 2.11×10-7 121204 HbA1c EGF

HbA1c rs7683365 GYPB p.T48M A/G 0.312 0.012 (0.002) 1.61×10-8 45191 HbA1c FREM3

FG rs146886108 ANKH p.R187Q T/C 0.004 -0.088 (0.014) 5.67×10-10 129647 T2D ANKH

HbA1c rs31244 SV2C p.D543N A/G 0.083 0.012 (0.002) 6.05×10-8 144000 Novel

FG rs6235 PCSK1 p.S690T G/C 0.264 -0.022 (0.002) 9.22×10-24 123560 FG PCSK1

2hGlu rs2549782 ERAP2 p.K392N T/G 0.519 -0.055 (0.009) 6.81×10-10 57836 2hGlu ERAP2

HbA1c rs35742417 RREB1 p.S1499Y A/C 0.173 -0.01 (0.002) 3.76×10-9 143967 FG, T2D RREB1

FG rs35742417 RREB1 p.S1499Y A/C 0.183 -0.019 (0.002) 1.27×10-16 129577 FG, T2D RREB1
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Trait SNP Gene Protein 
Consequence

Alleles 
E/O EAF Effect (SE) P N

Previous 
glycemic 

trait 
association 

(if any)

Locus name 
of previous 
association

HbA1c rs1799945 HFE p.H63D G/C 0.129 -0.023 (0.002) 1.20×10-30 128354 HbA1c HFE, HIST1H4A

HbA1c rs1800562 HFE p.C279Y A/G 0.051 -0.042 (0.003) 3.30×10-47 138093 HbA1c HFE, HIST1H4A

FG rs10305492 GLP1R p.A316T A/G 0.014 -0.08 (0.008) 2.37×10-25 129601 FG GLP1R

HbA1c rs35332062 MLXIPL p.A358V A/G 0.117 0.011 (0.002) 6.18×10-9 144042 HbA1c MLXIPL

HbA1c rs3812316 MLXIPL p.Q241H G/C 0.112 0.012 (0.002) 2.15×10-8 108605 HbA1c MLXIPL

FG rs194524 STEAP2 p.R456Q A/G 0.523 0.01 (0.002) 7.65×10-8 129629 FG, T2D, RG STEAP2-AS1

HbA1c rs34664882 ANK1 p.A1503V A/G 0.026 -0.049 (0.004) 2.43×10-39 144034 HbA1c ANK1

FG rs13266634 SLC30A8 p.R276W T/C 0.305 -0.029 (0.002) 1.63×10-46 129614 FG, HbA1c, 
T2D SLC30A8

HbA1c rs13266634 SLC30A8 p.R276W T/C 0.300 -0.015 (0.001) 8.50×10-28 143982 FG, HbA1c, 
T2D SLC30A8

HbA1c rs11557154 DCAF12 p.R113Q T/C 0.138 -0.009 (0.002) 1.70×10-7 144045 T2D, HbA1c Mahajan 2022 
from CMD KP

FG rs17853166 IKBKAP p.S251G C/T 0.026 -0.037 (0.006) 4.82×10-11 129640 FG IKBKAP

HbA1c rs60980157 GPSM1 p.S391L T/C 0.246 -0.013 (0.002) 6.71×10-17 118824 FG, T2D GPSM1

FG rs60980157 GPSM1 p.S391L T/C 0.254 -0.014 (0.002) 2.35×10-9 110915 FG, T2D GPSM1

HbA1c rs906220 HK1 p.H7R G/A 0.916 0.025 (0.003) 2.16×10-21 94970 HbA1c HK1

FG rs701865 PDE6C p.S270T A/T 0.366 -0.01 (0.002) 1.14×10-7 118580 FG, RG PDE6C

HbA1c rs61732434 OR51V1 p.S161N T/C 0.008 -0.052 (0.009) 1.75×10-8 127507 HbA1c HBB

HbA1c rs415895 SWAP70 p.Q447E G/C 0.641 -0.013 (0.001) 1.15×10-21 138028 HbA1c SWAP70

HbA1c rs117706710 AMPD3 p.V311L T/G 0.009 0.037 (0.006) 2.32×10-10 144048 HbA1c AMPD3

FG rs2167079 ACP2 p.R29Q T/C 0.340 0.016 (0.002) 7.99×10-15 129580 FG MADD

HbA1c rs35233100 MADD p.R766X T/C 0.055 -0.015 (0.003) 1.13×10-8 144034 FG MADD

FG rs35233100 MADD p.R766X T/C 0.054 -0.029 (0.004) 1.46×10-12 126231 FG MADD

FG rs56200889 ARAP1 p.Q802E C/G 0.270 -0.016 (0.002) 1.79×10-14 122674 FG ARAP1

HbA1c rs643788 DPAGT1 p.I393V C/T 0.425 -0.006 (0.001) 1.77×10-7 144009 HbA1c C2CD2L

FI1 rs145878042 RAPGEF3 p.L300P G/A 0.011 -0.054 (0.01) 1.15×10-7 91485 FI/HbA1c HDAC7/ PFKM

HbA1c rs2732481 ZNF641 p.Q363P G/T 0.315 -0.009 (0.001) 2.07×10-11 142280 HbA1c SENP1

HbA1c rs3184504 SH2B3 p.W262R C/T 0.567 0.007 (0.001) 5.98×10-8 138551 HbA1c ATXN2

2hGlu rs1169288 HNF1A p.I75L C/A 0.345 0.06 (0.011) 7.90×10-9 44278 T2D, 2hGlu HNF1A

HbA1c COSM147717 ATP11A p.M317V G/A 0.748 0.009 (0.001) 3.77×10-12 144022 HbA1c ATP11A,TUBGCP3

HbA1c rs229587 SPTB p.S439N T/C 0.357 0.007 (0.001) 2.60×10-8 134780 HbA1c SPTB

HbA1c rs35097172 SLC25A47
splice region 

variant, 5’ UTR 
variant

T/C 0.216 -0.008 (0.002) 5.67×10-8 144028 FG SLC25A47

Page 19 of 33

Wellcome Open Research 2023, 8:483 Last updated: 30 SEP 2024



Table 2. Gene-based results from broad (NSbroad mask) and strict (NSstrict 
mask) analyses. Genes in bold are newly discovered from this effort. N var: total 
number of variants in that gene-based analysis; Pburden: p-value from burden test which 
assumes all variants have the same direction of effect; PSKAT: p-value from SKAT test 
which allows for different directions of effect between variants. The lowest p-value is 
highlighted in bold.

Trait Gene

NSbroad mask NSstrict mask

N var Pburden PSKAT N var Pburden PSKAT

FG G6PC 9 1.41×10-6 1.32×10-5 3 1.41×10-3 7.43×10-4

FI G6PC 8 1.62×10-6 8.58×10-6 3 1.85×10-3 7.80×10-3

HbA1c TF 10 2.15×10-6 5.98×10-3 3 5.48×10-2 5.48×10-2

FG MAP3K15 18 1.86×10-25 1.07×10-18 7 1.34×10-14 4.01×10-11

HbA1c MAP3K15 18 1.27×10-7 1.53×10-04 7 2.65×10-4 9.46×10-3

FG G6PC2 18 4.09×10-67 5.38×10-58 7 7.8×10-69 3.83×10-56

HbA1c G6PC2 18 6.18×10-30 4.65×10-27 7 1.04×10-31 1.92×10-26

FG SLC30A8 13 5.69×10-4 6.42×10-11 7 6.55×10-11 3.74×10-10

HbA1c SLC30A8 12 7.20×10-8 2.18×10-5 6 5.66×10-8 3.22×10-6

FG VPS13C 52 9.66×10-6 3.73×10-7 26 1.27×10-5 1.44×10-5

Trait SNP Gene Protein 
Consequence

Alleles 
E/O EAF Effect (SE) P N

Previous 
glycemic 

trait 
association 

(if any)

Locus name 
of previous 
association

2hGlu rs3784634 VPS13C p.R974K T/C 0.540 -0.069 (0.011) 6.40×10-10 37217 2hGlu
VPS13C/ 
C2CD4A/ 
C2CD4B

HbA1c1 rs3747481 PRR14 p.P359L T/C 0.261 0.009 (0.002) 3.30×10-8 103338 HbA1c ITGAD

HbA1c rs201226914 PIEZO1 p.L939M T/G 0.002 -0.159 (0.015) 4.42×10-26 144024 HbA1c CDT1,CYBA

2hGlu rs72839768 DVL2 p.T529I A/G 0.020 0.197 (0.03) 4.10×10-11 57866 T2D, 2hGlu SLC16A13

HbA1c rs2748427 TMC6 p.W125R G/A 0.233 0.027 (0.002) 8.56×10-70 132326 HbA1c TMC6

HbA1c rs7225887 B3GNTL1 p.A163T T/C 0.211 -0.015 (0.002) 5.73×10-22 125749 HbA1c FN3KRP, FN3K

HbA1c rs35413309 RGS9BP p.A223V T/C 0.030 -0.02 (0.004) 1.42×10-8 141598 HbA1c PDCD5

2hGlu rs1800437 GIPR p.E318Q C/G 0.217 0.103 (0.011) 2.59×10-23 56252 2hGlu GIPR

FG rs17265513 ZHX3 p.N310S C/T 0.188 0.016 (0.002) 2.59×10-10 126253 FG ZHX3

HbA1c rs855791 TMPRSS6 V727A G/A 0.577 -0.019 (0.001) 9.46×10-51 143907 HbA1c TMPRSS6

FG rs15943 MAP3K15 p.Q1083E C/G 0.005 -0.084 (0.014) 2.83×10-9 67004 glucose PDHA1/MAP3K15

FG rs56381411 MAP3K15 p.G670S T/C 0.005 -0.085 (0.013) 1.51×10-11 62319 glucose PDHA1/MAP3K15

HbA1c rs2229241 RENBP
splice 

acceptor 
variant

C/T 0.012 -0.123 (0.007) 1.14×10-62 95622 HbA1c G6PD

HbA1c rs1050828 G6PD p.V68M T/C 0.007 -0.334 (0.008) 7.41×10-

322 112209 HbA1c G6PD
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p.E1365D) and a splice region variant (rs3183099) in OBSL1  
associated with FI, another missense variant (rs1886686, 
p.G12A) in WDR78 associated with FG, and a missense vari-
ant (rs31244, p.D543N) in SV2C associated with HbA1c 
(Table 1). In addition, the missense variant (rs146886108,  
p.R187Q) in ANKH which was previously associated with T2D  
was associated for the first time with FG.

Identification of gene-based associations
Our gene-based analyses identified six genes associated with 
glycemic traits, including G6PC and TF that had not been asso-
ciated with glycemic traits before (Table 2 and Supplementary 
Table S211). These findings provide new hypotheses for  
downstream follow-up studies in the context of glycemic trait 
biology. G6PC, encoding glucose-6-phosphatase, is associated  
with FG and FI and is a homolog of G6PC2. G6PC2 is an  
established effector gene at a GWAS locus which contains  
multiple coding variants known to influence FG and HbA1c 
but not FI levels4,5,28–30. Loss-of-function variants at SLC30A8 
have been previously associated with reduced risk of T2D31–33,  
while VPS13C maps to the VPS13C/C2CD4A/C2CD4B T2D risk 
locus. Follow-up studies at this locus have with varying levels 
of evidence suggested C2CD4A, encoding a calcium-dependent 
nuclear protein, as the causal gene for T2D through its poten-
tial role in the pancreatic islets34–37. We found evidence of asso-
ciation at MAP3K15 with reduced levels of FG and HbA1c 
(Table 2 and Supplementary Table S211), which is consistent 
with recent reports of the gene’s association with reduced lev-
els of HbA1c and glucose, and reduced T2D risk6,38. Our analy-
ses also detected TF (encoding transferrin) as a novel gene-based  
association signal associated with HbA1c but not any of the 
other glycemic traits, consistent with the role of the protein as 
the main iron carrier in the blood (Table 2 and Supplementary  
Table S211).

Pathway analyses identify relevant gene sets regulating 
glycemia
Next, we used our coding variant association results to  
identify pathways enriched for glycemic trait associations, 
and to subsequently determine the extent to which different  
associations within the same trait implicate the same or similar  
pathways (as indicated by the functional connectivity of the  
network). To do this we used GeneMANIA network analysis39,  
which takes a query list of genes and finds functionally simi-
lar genes based on large, publicly available biological datasets, 
that include protein-protein, protein-DNA and genetic interac-
tions, pathways, protein domains, protein and gene expression 
data. GeneMANIA taps on updated versions of these databases 
for its core and network analyses, to identify related genes of 
known functions based on our input list of genes. To increase  
power to connect genes in a network, we considered all genes  
harboring non-synonymous variants that reached P <1 × 10-5  
(Supplementary Table S311) for any of the four glycemic 
traits in our study and mapped the most significant non- 
synonymous variant at each locus to the respective gene (totaling  
121 associations across all traits) (Methods). A high degree of 
connectivity was observed within the HbA1c network, with  
enrichment of processes related to blood cell biology such 

as porphyrin metabolism, erythrocyte homeostasis and iron  
transport (Figure 1A and Supplementary Table S411). In  
comparison, the network generated from FG-associated genes  
captured several processes known to contribute to glucose 
regulation and islet function, including insulin secretion, 
zinc transport and fatty acid metabolism (Figure 1B and  
Supplementary Table S411). Given that there were fewer genes 
associated with FI and 2hGlu, we were less powered to draw 
meaningful insights from the enriched pathways in those traits  
(Supplementary Figure S1 and Supplementary Table S411).

We also performed gene set enrichment analysis (GSEA) using 
EC-DEPICT22,23 (Methods). The primary innovation of EC-
DEPICT is the use of 14,462 gene sets extended based on large-
scale co-expression data21,24. These gene sets take the form of 
z-scores, where higher z-scores indicate a stronger prediction 
that a given gene is a member of a gene set. To reduce some of 
the redundancy in the gene sets (many of which are strongly 
correlated with one another), we clustered them into 1,396  
“meta-gene sets” using affinity propagation clustering25. These 
meta-gene sets are used to simplify visualizations and aid inter-
pretation of results. As before, we considered all loci with 
variants that reached P <1 × 10-5 (Supplementary Table S311) 
for any of the four glycemic traits for defining input genes  
(Methods). When looking across all traits combined, we found  
234 significant gene sets in 86 meta-gene sets with false  
discovery rate (FDR) of <0.05 (Supplementary Table S5A,  
Supplementary Figure S2A11). As expected, we observed a 
strong enrichment of insulin- and glucose-related gene sets, as 
well as hormone secretion and cytoplasmic vesicle gene sets 
(in keeping with pancreatic beta cell insulin vesicle release). In  
agreement with the GeneMANIA network analyses, we also 
noted a particularly strong enrichment for blood-related path-
ways represented by gene sets such as erythrocyte differentia-
tion and heme metabolic process, which was primarily driven by 
HbA1c-associated variants. This was likely because HbA1c 
levels are influenced not only by glycation but also by blood 
cell turnover rate1,40,41. To disentangle blood cell turnover from 
effects due to glycation, we repeated the analysis excluding 
variants that were significantly associated with HbA1c only  
and found 128 significant gene sets in 53 meta-gene sets (FDR 
<0.05) (Figure 1C, Supplementary Table S5B, Supplementary  
Figure S2B11). Indeed, we noted that majority of the gene sets 
now implicated pathways relevant to the pancreatic islets and  
metabolic tissues, such as “abnormal glucose homeostasis”,  
“peptide hormone secretion”, “Maturity Onset Diabetes of the 
Young”, and multiple pathways involved in the regulation of  
glycogen, incretins, and carbohydrate metabolism, that were 
also seen in the FG only analysis (Figure 1D, Supplementary  
Table S5D, Supplementary Figure S2D11).

We also analyzed each of the four traits separately, to reveal 
trait-specific enriched gene sets (Supplementary Table S5, Sup-
plementary Figure S2C-E, Supplementary Figure S3C-D11, 
Methods). Overall, our network and pathway enrichment analy-
ses provide insight into the biology underlying each glycemic 
trait and may facilitate the prioritization of specific genes or  
pathways across multiple different phenotypes.
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Discussion
Here we have described large scale meta-analyses results for 
coding variant and gene-based associations for four glycemic 
traits, FG, FI, HbA1c and 2Glu, and the downstream pathways 
and networks that are regulated by the associated genes. 
Our results identified three genes with novel single-variant  
associations with glycemic traits OBSL1 (FI), WDR78 (FG) and  
SVC2 (HbA1c). OBSL1 encodes a cytoskeletal protein related 
to obscurin, mutations in which have been shown to lead to 
an autosomal recessive primordial growth disorder (OMIM: 
612921). Loss of OBSL1 leads to downregulation of CUL7, 
a protein known to interact with IRS-1, downstream of the 
insulin receptor signaling pathway42. WDR78 encodes a WD  
repeat-containing protein 78, the same variant rs1886686-C 
has been previously associated with a decrease in systolic 
blood pressure43. However, none of the OBSL1 (rs1983210, 
b = -0.018, p = 1.20 x 10-4, N = 144,114; rs3183099, b = -
0.019, p = 1.36 x 10-4, N = 125,397) or WDR78 (rs1886686,  
b = -0.017, p = 3.83 x 10-5, N = 164,878) variants we detected 
here reached exome-wide significance in our recent large 
multi-ancestry study1. This, despite larger sample sizes and 
good genotype quality (info >0.8 for each of the variants  
for the majority of cohorts), suggesting caution in the inter-
pretation of these findings, and the need for additional data-
sets testing these associations. The final variant, p.D543N in 
SV2C, was associated with HbA1c with p = 5.5 x 10-5 in the 
European meta-analysis1, and with p = 1.37 x 10-12 in UK  
biobank44. A second missense variant at this gene, p.T482S, 
is also strongly associated with HbA1c (p = 1.9 x 10-16) 
and with red blood cell distribution width in UK biobank  
(p = 3.3 x 10-11)44, and with mean corpuscular volume  
(p = 3 x 10-11)45. Given that variation in red blood cell traits  
can influence HbA1c levels1,41, associations between these  
missense variants suggest SV2C as the likely effector gene at 
this locus. Also, the absence of evidence for association between  
this gene and other glycemic traits suggests its effect on HbA1c  
is independent of glycemia.

The novel gene-based association of G6PC with FG and FI was 
notable. Homozygous inactivating alleles in G6PC, includ-
ing both p.R83C and p.Q347X which are contained in our 
gene-based association (Table S2), are known to give rise to 
glycogen storage disease type 1a (GSD1a). GSD1a is a rare 
autosomal recessive metabolic disorder46,47, but this is the first 
time that rare coding variants in G6PC have been shown to  
influence FG and FI levels in normoglycemic individuals. 
The other novel gene-based association was between TF and 
HbA1c. TF encodes transferrin, an iron-binding transport protein 
that circulates at high levels in blood plasma as an important 
biological carrier of iron. Dysregulation of iron concentra-
tions due to reduced transferrin levels or function could affect 
the measurement of HbA1c independently of glycemia48. The  
presence of multiple coding variants within TF associated with 
red blood cell traits in UK biobank44 lends additional support to  
this hypothesis.

Overall, our network and pathway analyses were highly concord-
ant with each other and with other published data identifying 
processes related to glucose regulation and islet function,  

including insulin secretion and zinc transport associated with FG 
loci, and red blood cell biology processes amongst HbA1c asso-
ciated loci1. The FG network revealed linking nodes (that are 
not among the association signals) with known links to glucose 
homeostasis and diabetes, such as GCK (encoding the beta cell  
glucose sensor glucokinase), GCG (encoding the peptide hor-
mone glucagon secreted by the alpha cells of the pancreas) and 
GIP (encoding the incretin hormone gastric inhibitory polypep-
tide). Notably, lipid related pathways associated with fasting 
glucose. One gene within the FG cluster for lipid-related path-
ways is CERS2, which encodes ceramide synthase 2, an enzyme 
known to be associated with the sphingolipid biosynthetic  
process (Figure 1B, Supplementary Table S311). Although 
CERS2 is only nominally associated with FG and is signifi-
cantly associated with HbA1c (rs267738: P

FG
 = 3.54 × 10-7; 

P
HbA1c

 = 6.96 × 10-10), it does not cluster together with any  
HbA1c-enriched pathway, suggesting that CERS2 is regulating  
FG and HbA1c indirectly through its role in lipid metabolism.

Conclusions
In conclusion, our results provided novel glycemic trait asso-
ciations and highlighted pathways implicated in glycemic  
regulation. The summary statistics results are being made pub-
licly available through various platforms so they can be harnessed  
with other data to aid effector gene identification.

Data availability
Underlying data
Open Science Framework (OSF): Underlying data for ‘Large-
scale exome array summary statistics resources for glycemic  
traits to aid effector gene prioritization’, https://doi.org/10.17605/
OSF.IO/K6W3B11

This project contains the following underlying data:
•   �Table S1: Supplementary Table S1 – Cohort character-

istics, genotyping and quality control (QC), glucose,  
insulin, 2hGlu and HbA1c analyses and covariates.

•   �Table S2: Supplementary Table S2 - Full gene-based results 
including all variants included in the masks, for both  
novel and previously-established genes

•   �Table S3: Supplementary Table S3 - All variants associ-
ated with FG, FI, HbA1c and/or 2hGlu in our analyses with 
P<10-5

•   �Table S4: Supplementary Table S4 - Gene Set Enrichment 
Analysis by GeneMANIA network analysis showing 
enriched GO terms and Reactome pathways in the network 
for (A) HbA1c; (B) FG; (C) FI; (D) 2hGlu

•   �Table S5: Supplementary Table S5 - EC-DEPICT results

•   �Figure S1: Supplementary Figure S1 – GeneMANIA  
network analysis results

•   �Figure S2: Supplementary Figure S2 – EC-DEPICT  
results (UKBB permutations)

•   �Figure S3: Supplementary Figure S3 - EC-DEPICT  
results (Swedish permutations)
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Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0)

Accession numbers
GWAS Catalog: meta-analysis summary statistics of 2-hour  
glucose in African American ancestry. MAGICExome_
2hGlu_AFR.tsv.gz, study accession number GCST90256400.  
https://identifiers.org/gcst:GCST90256400

GWAS Catalog: meta-analysis summary statistics of 2-hour  
glucose in European ancestry. MAGICExome_2hGlu_EUR.tsv.gz, 
study accession number GCST90256401. https://identifiers.org/
gcst:GCST90256401

GWAS Catalog: multi-ancestry meta-analysis summary statistics  
of 2 hour glucose. MAGICExome_2hGlu_ALL.tsv.gz, study 
accession number GCST90256402. https://identifiers.org/gcst:
GCST90256402

GWAS Catalog: meta-analysis summary statistics of fasting  
glucose in African American ancestry. MAGICExome_FG_AFR.
tsv.gz, study accession number GCST90256403. https://identifiers.
org/gcst:GCST90256403

GWAS Catalog: meta-analysis summary statistics of fasting  
glucose in East Asian ancestry. MAGICExome_FG_EAS.tsv.gz, 
study accession number GCST90256404. https://identifiers.org/
gcst:GCST90256404

GWAS Catalog: meta-analysis summary statistics of fasting  
glucose in European ancestry. MAGICExome_FG_EUR.tsv.gz, 
study accession number GCST90256405. https://identifiers.org/
gcst:GCST90256405

GWAS Catalog: meta-analysis summary statistics of fasting  
glucose in Hispanic ancestry. MAGICExome_FG_HISP.tsv.gz, 
study accession number GCST90256406. https://identifiers.org/
gcst:GCST90256406

GWAS Catalog: meta-analysis summary statistics of fasting  
glucose in South Asian ancestry. MAGICExome_FG_SAS.tsv.gz, 
study accession number GCST90256407. https://identifiers.org/
gcst:GCST90256407

GWAS Catalog: multi-ancestry meta-analysis summary  
statistics of fasting glucose. MAGICExome_FG_ALL.tsv.gz, study 
accession number GCST90256408. https://identifiers.org/gcst:
GCST90256408

GWAS Catalog: meta-analysis summary statistics of fasting  
insulin in African American ancestry. MAGICExome_FI_ 
AFR.tsv.gz, study accession number GCST90256409. https:// 
identifiers.org/gcst:GCST90256409

GWAS Catalog: meta-analysis summary statistics of fasting  
insulin in East Asian ancestry. MAGICExome_FI_EAS.tsv.gz, 
study accession number GCST90256410. https://identifiers.org/
gcst:GCST90256410

GWAS Catalog: meta-analysis summary statistics of fasting  
insulin in European ancestry. MAGICExome_FI_EUR.tsv.gz, 
study accession number GCST90256411. https://identifiers.org/
gcst:GCST90256411

GWAS Catalog: meta-analysis summary statistics of fasting  
insulin in Hispanic ancestry. MAGICExome_FI_HISP.tsv.gz, study 
accession number GCST90256412. https://identifiers.org/gcst:
GCST90256412

GWAS Catalog: meta-analysis summary statistics of fasting  
insulin in South Asian ancestry. MAGICExome_FI_SAS.tsv.gz, 
study accession number GCST90256413. https://identifiers.org/
gcst:GCST90256413

GWAS Catalog: multi-ancestry meta-analysis summary  
statistics of fasting insulin. MAGICExome_FI_ALL.tsv.gz,  
study accession number GCST90256414. https://identifiers.org/
gcst:GCST90256414

GWAS Catalog: meta-analysis summary statistics of HbA1c  
in African American ancestry. MAGICExome_HbA1c_AFR.tsv.
gz, study accession number GCST90256415. https://identifiers.org/
gcst:GCST90256415

GWAS Catalog: meta-analysis summary statistics of HbA1c 
in East Asian ancestry. MAGICExome_HbA1c_EAS.tsv.gz,  
study accession number GCST90256416. https://identifiers.org/
gcst:GCST90256416

GWAS Catalog: meta-analysis summary statistics of HbA1c 
in European ancestry. MAGICExome_HbA1c_EUR.tsv.gz,  
study accession number GCST90256417. https://identifiers.org/
gcst:GCST90256417

GWAS Catalog: meta-analysis summary statistics of HbA1c 
in Hispanic ancestry. MAGICExome_HbA1c_HISP.tsv.gz,  
study accession number GCST90256418. https://identifiers.org/
gcst:GCST90256418

GWAS Catalog: meta-analysis summary statistics of HbA1c 
in South Asian ancestry. MAGICExome_HbA1c_SAS.tsv.gz,  
study accession number GCST90256419. https://identifiers.org/
gcst:GCST90256419

GWAS Catalog: multi-ancestry meta-analysis summary sta-
tistics of HbA1c. MAGICExome_HbA1c_ALL.tsv.gz, study 
accession number GCST90256420. https://identifiers.org/gcst:
GCST90256420

These data are also available from https://magicinvestigators.org/
downloads/
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I have completed the review of the research paper titled “Large-scale exome array summary 
statistics resources for glycemic traits to aid effector gene prioritization” by Dr. Willems et al. 
Below are my comments: 
  
-Overall, the paper is well-written and provides a clear presentation of the background, methods, 
results, and conclusions. However, there are several points that I would like to address: 
  
-The main conclusions are clear, but their reproducibility might be questionable. The authors 
could strengthen their findings by validating the results using alternative approaches, preferably 
not relying solely on in silico methods but incorporating real experiments, such as molecular and 
cellular biology techniques. 
  
-There are too many authors listed, and it is unclear “who did what.” Authorship could be 
perceived as casual, with individuals included without clear contributions. However, I do not 
intend to intervene on this matter. 
  
-Are there any potential biases or confounding factors that could have influenced the results? The 
inclusion and exclusion criteria might introduce selection bias, especially given the narrowly 
defined population. 
  
-While the study includes participants from various ancestral groups, it is unclear how these 
individuals were selected or why the study predominantly focuses on certain ethnic groups (85% 
European). This could introduce bias and raises questions about the robustness of the findings in 
non-European populations. Will certain associations be more detectable in one group over 
another? What challenges arise from the smaller representation of other ethnicities? The 
generalizability of the findings is thus questionable, especially regarding whether ancestry might 
affect the genetic associations. 
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-The justification for using exome arrays is unclear. Are there specific advantages of exome arrays 
compared to whole-exome sequencing? This method is not considered cutting-edge technology. 
  
-The descriptions of phenotypes are somewhat vague. While the metrics for FG, FI, 2hGlu, and 
HbA1c are provided, there is little detail on how these were measured across different cohorts. 
Was there any standardization across cohorts? 
  
-The distance-based clumping method for defining loci (500 kb apart) lacks explanation. Why was 
this particular threshold chosen? Could it exclude significant associations that are closer together? 
  
-What are the clinical interpretations and implications of these results? This aspect seems to be 
missing. The paper heavily emphasizes in silico data (statistical and computational findings), but 
more context is needed regarding the physiological and biological significance of the identified 
gene sets for glycemic traits. For instance, the results mention variants associated with traits but 
do not thoroughly discuss the clinical relevance or potential functional implications of these 
variants. How might the novel missense variant rs146886108 in ANKH, for example, influence FG 
or T2DM risk? 
  
-The exclusion of individuals with diabetes is mentioned, but the rationale could be elaborated 
upon. Could this exclusion introduce bias? Does it ensure that the identified associations are 
specific to glycemic traits in non-diabetic individuals? 
  
-The authors report identifying 62 distinct coding variant associations at 58 genes with exome-
wide significance. However, there is little detail on the methods used to control for false positives 
beyond the Bonferroni correction threshold of P<2.2×10−7. 
  
-The association with HbA1c is considered significant, but there is insufficient discussion about 
potential confounding factors, such as the influence of red blood cell (RBC) traits on HbA1c. I 
would suggest softening the interpretation of SV2C as an effector gene, given the complex 
relationship between RBC traits and HbA1c. Experienced clinicians in this field would likely agree 
that it is not appropriate to base conclusions about glycemic control solely on HbA1c levels.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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expertise to confirm that it is of an acceptable scientific standard.
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We would like to thank Dr. Kutoh very much for his time and effort! Below our answers to 
the points raised:   
 
- Our aim here was to generate exome array summary statistics resources to help effector 
gene prioritization for further (also other than in silico) research. Historically, large-scale 
meta-analyses results such as those we have shared here have stood the test of time and 
findings have been widely reproducible,  In addition, by making our results publicly 
available we are ensuring that others can use the data and test their reproducibility.   
 
- Since up to 66 cohorts where included in the meta-analyses presented in our study, many 
people have substantially contributed to collecting and analysing individual cohort data. 
More details of the contributions can be found under the tab ´Authors´.   
 
- In this study, we only asked the contributing cohorts to exclude individuals with diagnosed 
or treated diabetes from the analyses. We did this to exclude any consequence of diabetes 
treatments or related interventions on the quantitative gycaemic traits that we analysed. To 
controll for confounding by BMI, all analyses were adjusted for BMI. We have previously 
demonstrated that collider bias did not significantly affect results with BMI adjustment 
(Chen J, Spracklen CN, Marenne G, et al.: The trans-ancestral genomic architecture of 
glycemic traits. Nat Genet. 2021; 53(6): 840–860). Furthermore, gene discovery studies on 
glycaemic traits using the same inclusion / exclusion criteria and covariates as we did have 
proven valuable in discovering loci influencing glycaemic traits, a subset of which also 
influence risk of type 2 diabetes.    
 
- We asked all cohorts with the required data that we knew of at the time of this study to 
participate. We agree with the reviewer that this study still has over-representation of 
participants of recent European ancestry. Unfortunately this is a well recognised problem in 
the broader field of human genetics, and one we tried to mitigate by reaching out to studies 
that had data from participants on non-European ancestry. Because of different allele 
frequencies in different ancestries, statistical power for detection of associations can indeed 
be different in different ancestries. For more on this topic and the value of multiple ancestry 
analyses, please see our study Chen J, Spracklen CN, Marenne G, et al.: The trans-ancestral 
genomic architecture of glycemic traits. Nat Genet. 2021; 53(6): 840–860.    
 
- At the time of the study, this technology (exome array) was significantly cheaper and 
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easier to implement than whole-exome sequencing, which also made it possible to 
implement in studies that did not have the resources to undertake whole-exome 
sequencing. We found it really worthwhile to analyse these data, since it contains a very 
interesting collection of variants (see our Methods section).   
 
- We asked all cohorts to provide information on their collection method, assay and sample 
and for insulin additionally the assay sensitivity (see Supplementary Table S1). We asked 
cohorts to use plasma values for the analyses. If glucose measurement was made in blood, 
values were adjusted multiplying by 1.13, since plasma values are about 10-15% higher than 
blood values.   
 
- This (500 kb) is a common threshold in genetic association studies, since variants that are 
closer together are very likely to be in high LD and thus to represent the same genetic locus. 
To make sure we didn´t miss distinct variant associations that are closer together at novel 
loci, we used Raremetal v 4.12.8 to perform analyses conditioning on the most significant 
variant at the locus and then looked for other significantly associated variants at that locus. 
These analyses were repeated by including the next most significant and distinct associated 
variant until no exome- or genome-wide significantly-associated variants were left at the 
locus. Additionally, gene-based analyses were performed aggregating all variants fullfilling 
mask criteria (see our Methods section). This was done for all genes with at least 2 variants 
fulfilling these criteria.   
 
- Our main aim here was to generate exome array summary statistics resources to help 
effector gene prioritization for further (also other than in silico) research. However, to gain 
further biological insights, we also used the summary statistics to perform pathway 
analyses. These identified pathways related to processes like insulin secretion, zinc 
transport, fatty acid metabolism and, for HbA1c associations, a strong enrichment in 
pathways related to blood cell biology (for more details on these results, please see our 
results section).  Apart from gaining insight into the biology underlying each glycemic trait, 
these analyses may further help the prioritization of specific genes or pathways for further 
research on these important questions raised by the reviewer on clinical interpretations and 
implications of our results.   -The reviewer raises the point ´The exclusion of individuals with 
diabetes is mentioned, but the rationale could be elaborated upon. Could this exclusion 
introduce bias? Does it ensure that the identified associations are specific to glycemic traits 
in non-diabetic individuals?´. Here we refer to the answer regarding biases above, which 
also includes this point. 
  
- In GWAS analyses (mainly identifying common non-coding variant associations), 
replication studies have often been performed to additionally control for false positives. To 
increase power (also to detect potential rarer coding variant associations), we choose to 
make our discovery cohort as large as possible. In addition, historically, as mentioned 
above, large-scale meta-analyses results such as those we have shared here have stood the 
test of time and findings have been widely reproducible.  And by making our results publicly 
available we are ensuring that others can use the data and test their reproducibility.   
 
- We feel we sufficiently acknowledge the influence of red blood cell biology on HbA1c 
levels  and don´t base conclusions about glycemic control solely on HbA1c analyses. For 
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example in the pathway analyses, we describe the strong enrichment for blood-related 
pathways mainly driven by HbA1c-associated variants and, to disentangle blood cell 
turnover from effects due to glycation, repeated analyses excluding variants that were 
significantly associated with HbA1c only. Also regarding SV2C, we describe it´s associations 
with red blood cell traits and lack of association with other glycemic traits, suggesting its 
effect on HbA1c is independent of glycemia.  
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In the presented study, the authors have undertaken a comprehensive exome-wide association 
study (ExWAS) to identify genetic loci linked to glycemic traits. A characteristic aspect of this 
research is the utilization of ExWAS meta-analysis to examine variants in coding regions, an 
approach that complements previous studies emphasizing non-coding variants. By analyzing data 
from a large participant pool, predominantly of European ancestry, the study pinpoints single 
coding variants and gene-based associations that could act as potential effector genes for 
glycemic traits such as glycated hemoglobin (HbA1c), fasting glucose (FG), fasting insulin (FI), and 
2hr glucose post-oral glucose challenge (2hGlu). Additionally, the study extends to pathway 
analyses, offering insights into gene sets regulating these traits. The transparency and 
accessibility of the study are beneficial to the research community, with summary statistics made 
available on their website and through the GWAS catalog. 
 
The study's methodology, while not novel, adheres to established conventions in the field, 
ensuring a foundation for their analyses. The discovery of a modest number of new loci and genes 
associated with glycemic traits, though limited in quantity, is worth reporting. These findings 
include the identification of four variants in three genes that represent novel associations, 
underscoring the potential for uncovering new pathways in glycemic regulation. The gene-based 
analysis further highlights six genes, including G6PC and TF, previously unlinked to glycemic traits. 
 
The findings, while not groundbreaking, are biologically consistent. The study reveals a notable 
enrichment in blood-related pathways, especially those involving erythrocyte differentiation and 
heme metabolic processes. This enrichment, predominantly driven by HbA1c-associated variants, 
underscores the multifaceted influence on HbA1c levels, which are affected by both glycation and 
blood cell turnover. By excluding variants solely associated with HbA1c, the researchers effectively 
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isolated 128 significant gene sets within 53 meta-gene sets (FDR <0.05). This refinement of analysis 
illuminated pathways more directly related to pancreatic islet function and metabolic tissues. 
These pathways, including “abnormal glucose homeostasis”, “peptide hormone secretion”, and 
“Maturity Onset Diabetes of the Young”, as well as those involved in glycogen regulation, incretin 
function, and carbohydrate metabolism, align with findings from fasting glucose-only analyses. 
Such insights could enhance our understanding of the complex genetic and biological 
mechanisms underlying glycemic control.
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