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Highlights Impact and implications
� HBV1.3 transgenic mice developed HCC in the absence
of inflammation.

� HBV-RNAs, HBx-protein, and pregenomic RNA were
detected in HCC tissue.

� HBVxfs mice, expressing all HBV proteins but a truncated
HBx, display significantly reduced HCC incidence.

� Hepatocyte-specific STAT3-knockout abrogated HCC
development.
https://doi.org/10.1016/j.jhepr.2024.101128
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Although most HCC cases in patients with chronic HBV
infection occur after a sequence of liver damage and fibrosis, a
subset of patients develops HCC without any signs of
advanced liver damage. We demonstrate that the expression of
all viral transcripts in HBV-transgenic mice suffices to induce
HCC development independent of inflammation and fibrosis.
These data indicate the direct oncogenic effects of HBV and
emphasize the idea of early antiviral treatment in the ‘immune-
tolerant’ phase (HBeAg-positive chronic HBV infection).
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HBV-related HCC development in mice is STAT3 dependent
and indicates an oncogenic effect of HBx
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JHEP Reports 2024. vol. 6 j 1–15
Background & Aims: Although most hepatocellular carcinoma (HCC) cases are driven by hepatitis and cirrhosis, a subset of
patients with chronic hepatitis B develop HCC in the absence of advanced liver disease, indicating the oncogenic potential of
hepatitis B virus (HBV). We investigated the role of HBV transcripts and proteins on HCC development in the absence of
inflammation in HBV-transgenic mice.

Methods: HBV-transgenic mice replicating HBV and expressing all HBV proteins from a single integrated 1.3-fold HBV genome in
the presence or absence of wild-type HBx (HBV1.3/HBVxfs) were analyzed. Flow cytometry, molecular, histological and in vitro
analyses using human cell lines were performed. Hepatocyte-specific Stat3- and Socs3-knockout was analyzed in HBV1.3 mice.

Results: Approximately 38% of HBV1.3 mice developed liver tumors. Protein expression patterns, histology, and mutational
landscape analyses indicated that tumors resembled human HCC. HBV1.3 mice showed no signs of active hepatitis, except
STAT3 activation, up to the time point of HCC development. HBV-RNAs covering HBx sequence, 3.5-kb HBV RNA and HBx-
protein were detected in HCC tissue. Interestingly, HBVxfs mice expressing all HBV proteins except a C-terminally truncated
HBx (without the ability to bind DNA damage binding protein 1) showed reduced signs of DNA damage response and had a
significantly reduced HCC incidence. Importantly, intercrossing HBV1.3 mice with a hepatocyte-specific STAT3-knockout
abrogated HCC development.

Conclusions: Expression of HBV-proteins is sufficient to cause HCC in the absence of detectable inflammation. This indicates the
oncogenic potential of HBV and in particular HBx. In our model, HBV-driven HCC was STAT3 dependent. Our study highlights the
immediate oncogenic potential of HBV, challenging the idea of a benign highly replicative phase of HBV infection and indicating
the necessity for an HBV ‘cure’.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Hepatitis B virus (HBV) infection, with an estimated 296 million
chronic carriers worldwide, is one of the most common chronic
infections despite screening programs and the availability of a
prophylactic vaccine.1–4 Chronic HBV infection is often
asymptomatic until symptoms of late-stage liver disease are
evident.2 Chronic hepatitis B (CHB) includes signs of active
hepatitis and subsequent risk for liver cirrhosis and is the
leading cause of hepatocellular carcinoma (HCC),1,3–5 resulting
in an estimated 820,000 deaths worldwide in 20191,3 and HBV-
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related mortality is increasing.1–4 Potentially curative treatment
options for HCC are only suitable for patients with limited dis-
ease and preserved liver function. Despite the approval of
additional systemic therapies (e.g. atezolizumab plus bev-
acizumab, or durvalumab–tremelimumab), advanced HCC still
has a poor prognosis, and overall survival remains limited.6

Thus, new markers for early detection of HCC and unraveling
oncogenic processes to abrogate HCC development
are warranted.

HBV is a partially double-stranded DNA virus that replicates
via reverse transcription and persists via an episomal
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HBV-related HCC development in mice
transcription templatewithin the nucleus of infected hepatocytes
(covalently closed circular DNA [cccDNA]).7 Viral genomes can
integrate into the host cell genome, which is a dead end for
replication. Viral integrations can express full-length and trun-
cated HBV proteins and can induce both genomic instability and
direct insertional mutagenesis of diverse cancer-related genes.8

The HBV genome has four overlapping open reading frames
encoding the structural core protein (HBc), which includes the
pre-core protein (HBe), the envelope proteins (S/M/L HBs), the
viral polymerase, and the regulatory X (HBx) protein.9 As with
other viral accessory proteins,HBxstimulatesHBV replicationby
linking a host protein to the DNA damage binding protein 1
(DDB1) associated E3 ubiquitin ligase complex.10 Thereby, HBx
influences the degradation of the structural maintenance of
chromosomes proteins 5 and 6 (SMC5/6), enabling extrachro-
mosomal HBV-DNA transcription.11

The ‘natural’ history of CHB is often assessed by the HBeAg
status to decipher viral replication and risk for disease pro-
gression. However, studies indicate that HBV viral load is the
best predictor to estimate the risk for disease progression and
HCC development.5,12 Nonetheless, only patients showing
apparent signs of liver damage (HBeAg-positive or HBeAg-
negative chronic hepatitis B or established cirrhosis) meet
clear treatment criteria in current practice guidelines.13,14

Nucleos(t)ide analogs such as tenofovir or entecavir inhibit
reverse transcription and block HBV replication, reducing liver
inflammation and disease progression. Interferon treatment can
lead to a ‘functional cure’ (HBs loss/anti-HBs seroconversion)
at a low percentage (<20%) but has side effects.13,14 Never-
theless, even after years of antiviral therapy, HCC risk is pre-
sent15,16 and available treatments rarely achieve a ‘cure’ of HBV
infection and eradication of viral cccDNA.7

Althoughantiviral therapymay reduce theHCC risk to that of a
minimally active CHB,17 there are debates on when to start and
stop treatment. Current guidelines do not recommend treatment
of HBeAg-negative chronic infection (‘inactive carriers’).13,14

However, definitions of inactive carriers with a low risk for detri-
mental effects are not uniform, and these patients are still at risk
to develop HCC.18 Furthermore, HBV-DNA integrations and
clonal expansions of hepatocytes bearing these integrations are
already present in young patients with HBeAg-positive chronic
infection and high viral loads but without an ‘active’ hepatitis.19

Some studies showed an HCC risk of 0–1.4% in 5–10 years in
these (formerly: ‘immune tolerant’) patients.20,21 However, other
studies especially fromAsia reported a10-yearHCC incidenceof
12.7% in the highly replicative phase of HBV infection accom-
panied by a higher risk of clinical events. Treatment of these
patients strongly reduced disease-risk, emphasizing the
advantage of early treatment.22,23

In CHB, and in other etiologies causing HCC, the main driver
is a sequence of chronic inflammation, cell death, compensa-
tory hepatocyte proliferation, and development of liver fibrosis/
cirrhosis, referred to as necro-inflammation.6,24,25 On a mo-
lecular level, many aspects of hepatocarcinogenesis, including
driver mutations or methylation status of genes, show a wide
diversity, and the involvement of cytokine network activation,
including nuclear factor kappa B- and signal transducer and
activator of transcription 3 (STAT3)-signaling, have
been described.26,27

In patients with CHB however, HCC development can also
occur in the absence of liver cirrhosis, suggesting direct
JHEP Reports, --- 2
oncogenic effects of HBV.8,28 As such, the integration of HBV
DNA into the host genome is well studied, but no direct acti-
vation of oncogenes has been found.19,29,30 Studies describe a
direct oncogenic potential of HBV proteins or mutants,
including spliced HBV protein,31 Pre-S2 mutants32 and over-
expression of large HBs.33 Furthermore, HBx protein seems to
play a direct role in HCC development and progression by
interfering with multiple pathways.34–38 Nonetheless, the
impact of physiological levels of HBV protein expression on
HCC development remains unclear.

In this study, we used 1.3-overlength HBV transgenic mice
(HBV1.3), expressing all viral proteins driven by the endoge-
nous HBV promoters enabling high-level HBV replication39,40

and compared them with mice replicating HBV but lacking
full-length HBx expression. These mice neither show viral
spread nor cccDNA formation as a result of restriction factors
or a host cell dependency factor.39,41 As HBV1.3 mice show
high viral replication and lack evidence of hepatitis,39,40 we
aimed to dissect inflammation and integration independent
direct oncogenic effects of HBV in this model.

Materials and methods

Mice

Mice were maintained under specific pathogen free conditions.
Experiments were conducted so that they conformed to
ARRIVE guidelines and in accordance with the guidelines of the
German Animal Protection Law and were approved by local
committees of government of Bavaria (license number: 55.1-1-
54-2531.3-27-08, 55.2-1-54-2532-120-12, 55.2-1-54-2532-
144-2014) and by local committees of government of Baden-
Württemberg (license number: 35-9185.81/G-50/20). Mice
transgenic for a 1.3 × overlength HBV genotype D ayw genome
(HBV1.3) have been provided by Prof. F. Chisari and have been
described.39,40 Mice transgenic for a 1.3 × overlength HBV
genotype D ayw genome replicating HBV but lacking full-length
HBx expression (HBVxfs) were described previously.42 C57BL/
6 mice were bred in-house, used for backcrossing to trans-
genic animals and co-housed with HBV1.3 mice as control
(wild-type [WT]) mice on the same background. For
hepatocyte-specific STAT3 or suppressor of cytokine signaling
3 (SOCS3) inactivation, mice expressing hepatocyte-specific
Cre-recombinase under the albumin promoter (AlbCre)43 were
crossed with STAT3f/f animals,44 which harbor loxP-sites in
exon 21 of STAT3, or with SOCS3f/f animals.45 These mice
were further crossed with HBV1.3 animals resulting in
HBV1.3_AlbCreSTAT3f/f or HBV1.3_AlbCreSOCS3f/f mice.
AlbCre-negative mice (HBV1.3_STAT3f/f or HBV1.3_SOCS3f/f)
were used as HBV1.3 littermate controls. AlbCre, STAT3f/f, and
SOCS3f/f mice were provided by Prof. Algül. Both male and
female mice were used in mouse experiments in an even pro-
portion between different strains. We analyzed between four
and 96 mice per time point in each experiment as indicated in
the figure legends.

Cell lines

HepaRG cells were cultured as previously described46 by
growing the cells for 2 weeks in supplemented William’s E
medium (10% FBS Fetalclone II, 100 U/ml penicillin/strepto-
mycin, 2 mM glutamine, 0.023 U/ml human insulin, 0.0047 mg/
024. vol. 6 j 101128 2
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Fig. 1. HBV1.3 mice spontaneously develop tumors resembling human HCC. (A) Top: Graphical summary of experimental design (created with BioRender.com).
Below: IHC staining for HBcAg and HBsAg in representative liver sections of control (WT) and HBV1.3 mice at 24 months of age (scale bar: 100 lm). (B) Macroscopic
pictures of unaffected WT mouse liver and HBV1.3 liver with tumor nodules (arrows indicate tumors) and bar graph of total number of mice analyzed at 20–24 months of
age (cases without tumor in white and livers with HCC in purple) of WT and HBV1.3 mice (Fisher’s exact test, ***p <0.001). (C) Representative H&E and IHC staining of
collagen IV, GP73, and ki67 of WT and HCC-bearing HBV1.3 mice (scale bar: 100 lm). (D) aCGH displaying chromosomal aberrations in micro-dissected HCC samples
(gains in red and losses in blue). Each row resembles an HCC sample. (E) Quantification and IHC staining for AFP, HBcAg, and HBsAg in HCC of HBV1.3 mice (n = 25;
three different staining patterns of HCC are shown, scale bar: 100 lm). (F) Quantitative RT-qPCR for up/downregulated genes in HCC of HBV1.3 mice (n = 12)
compared with and normalized to 24-month-old WT liver tissue (n = 6). Box plots indicate interquartile range and median of relative expression. The whiskers extend
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HBV-related HCC development in mice
ml hydrocortisone, 0.08 mg/ml gentamicin) and differentiation
for 2 weeks by adding 1.8% DMSO (Sigma-Aldrich, Steinheim,
Germany) to the growth medium.

HuH7 and HepG2-based cells were cultured in supple-
mented DMEM (10% FCS, 100 U/ml penicillin/streptomycin,
2 mM glutamine, 1 × non-essential amino acids, 1 mM sodium
pyruvate). Primary human hepatocytes (PHHs) were obtained
from the Department of General Surgery, MRI, TU-Munich
(Munich, Germany) and cultured as previously described,47

after informed patient’s consent and authorization by the
Technical University Munich ethics committee (ref: 5846/13).

Statistical analysis

Statistical analyses were performed with Prism software
(Graphpad Prism version 9.5.1, GraphPad Software, San Diego,
CA, USA). The standard error of the mean was calculated from
the average of at least four independent samples per condition
as indicated in the figure legends. To evaluate statistical sig-
nificance, data were subjected to Student’s t test (unpaired,
two-tailed test), or with Welch’s correction, ordinary one-way
ANOVA with Tukey’s multiple comparisons test, Brown-
Forsythe and Welsh ANOVA, or Fisher’s exact test. A value of
p <0.05 was considered significant.

For further details regarding the materials and methods
used, please refer to the supplementary information.

Results

HBV1.3 mice spontaneously develop tumors resembling
human HCC

HBV1.3 mice express all viral transcripts and proteins, driven
exclusively by the endogenous HBV promoters enabling high-
level HBV replication.39,40 Expression of viral surface proteins
(HBsAg) and the HBV core protein (HBcAg) were readily
detected in HBV1.3 mice until the age of 24 months (Fig. 1A).
Expression patterns were comparable to that in patients with
HBV infection with HBsAg diffuse/focal cytoplasmic and
membranous staining, and HBcAg predominantly nu-
clear staining.48

We observed that 35 of the 91 HBV1.3 mice studied (38%)
spontaneously developed macroscopically visible liver tumors
when aged between 20 and 24 months (Fig. 1B). No liver tu-
mors were detected in co-housed WT control mice at that age
(Fig. 1B). H&E staining and immunohistochemistry (IHC) of
these tumors showed broadening of liver cords, loss of
collagen IV structure, Golgi protein-73 (GP73) positivity, and
variable positivity for antigen KI-67/MKI67 (ki67) as typically
found in HCC (Fig. 1C). Besides the most common trabecular
growth pattern some HCC or sub-nodules showed either
pseudoglandular pattern, acinar pattern, clear cell changes,
and solid type growth patterns (Fig. S1A). HCC development
showed a sex disparity, with twice as many tumors in male
mice (Fig. S1B). Typical for HCC, most tumors were negative
for biliary or stemness markers,49 but some had morphologic
intrahepatic cholangiocellular carcinoma patterns. These
above and below min. to max., t test, two-tailed with Welch’s correction: *p <0.05
fetoprotein; GP73, Golgi protein-73; HBcAg, hepatitis B core antigen; HBsAg, hep
eosin; IHC, immunohistochemistry; ki67, antigen KI-67/MKI67; RT-qPCR, quantitat
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stained positive for CK19, CD44, and a few HCC-nodules
showed single A6/CD44-positive cells (Fig. S1C). Array-based
comparative genomic hybridization (aCGH) of micro-
dissected HCC samples showed typical chromosomal aberra-
tions, also found in human HBV-induced HCC such as losses
of 4q and 13q, even though mice have their genetic material
contained in 20 pairs of chromosomes (Fig. 1D).50 Analyses of
multiple micro-dissected HCC-nodules within one liver by
aCGH revealed that these multiple intrahepatic nodules
resemble intrahepatic metastasis as chromosomal aberrations
showed clonality (Fig. S1D).

Interestingly, only a few cells in HCC nodules of HBV1.3
mice stained positive for alpha-fetoprotein (AFP). Most HCC
cells showed a loss of HBcAg expression, whereas up to one
quarter still stained positive for HBsAg as shown by IHC
(Fig. 1E). Quantitative RT-qPCR of typical oncogenes and
tumor-suppressors showed mRNA downregulation of Axin1,
Hnf4a and Met expression as well as upregulation of Erbb2,
Tp53 (Tumor Protein P53) and Cdkn1a expression (Fig. 1F).
Furthermore, HCC in HBV1.3 mice displayed reduced Egfr1
and Ctnnb1 gene expression, but upregulation of Cdh1 and
Cdkn2a by RT-qPCR (Fig. S1E). We conclude that HBV1.3 mice
spontaneously develop HCC, with typical features of human
CHB-related HCC.6

HBV1.3 mice develop HCC in the absence of inflammation

We questioned whether chronic inflammation as a well-
established driver of human CHB-induced HCC may account
for HCC development in HBV1.3 mice. We therefore searched
for signs of liver damage and innate or adaptive immune re-
sponses. We observed normal alanine transaminase (ALT)
serum levels and no histological signs of hepatitis in HBV1.3
mice before HCC development. ALT increased in mice with
HCC at 20–24 months (Fig. 2A). Also, some animals that did not
develop HCC displayed increased ALT associated with other
diseases commonly found in older mice (e.g. lymphoma).

We next analyzed the HBV integration and gene expression.
Sequencing of target locus amplification using two primer sets
showed only one 1.3 × overlength HBV genotype D ayw
genome (transgene [TG]) integrated at chr5:114480565-
114480884 in a non-coding region of HBV1.3 mice (Fig. S2A).
Thus, the integration site of the TG is unlikely to cause aberrant
cellular processes. Furthermore, no TG–TG fusions were found.
Three single nucleotide polymorphisms (TG:331 T/C,
TG:3513 T/C; TG:5625 C/T) but no INDELs were detected
compared with the reference sequence.

Serum HBsAg levels declined in HBV1.3 mice between 3 and
12 months of age and further on remained stable up to 24
months. However, single animals showed measurable anti-HBs
without loss of HBsAg. Except for one HBs/anti-HBs double-
positive animal, no anti-HBs seroconversion was detected
(Fig. 2B and Fig. S2B). HBeAg expression showed a similar
pattern with detectable HBeAg until 24 months of age and no
significant increase or decrease in mice with HCC (Fig. 2B). No
anti-HBe antibodies were detected (Fig. S2B). HBsAg staining of
, **p <0.01. aCGH, array-based comparative genomic hybridization; AFP, alpha-
atits B surface antigen; HCC, hepatocellular carcinoma; H&E, hematoxylin and
ive reverse transcription polymerase chain reaction; WT, wild-type.
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HBV-related HCC development in mice
liver tissue showed diffuse/focal cytoplasmic and membranous
staining and HBcAg predominantly nuclear staining of hepato-
cytes with predominant positivity near central veins (Fig. S2C) as
reported for human samples.48 Importantly, HBsAg and HBeAg
levels were comparable between 24-month-old HBV1.3 mice
that did and did not develop HCC (Fig. 2B and Fig. S2B).

Mirroring ALT levels, no histological signs of hepatitis were
found in HBV1.3 mice. IHC staining for major histocompatibility
complex class II (MHCII), cluster of differentiation 3 (CD3), as well
as for EGF-likemodule-containingmucin-like hormone receptor-
like 1 (F4/80), C-type lectin domain family 4 member F (CLEC4F),
and cluster of differentiation 206 (CD206) did not show differ-
ences betweenWT andHBV1.3mice at 6 and 12months (Fig. 2C
and D).
Box plots (indicating interquartile range and median) represent pooled data for TNF-
(for single stains and quantification see Fig. S2). (F) Sirius Red staining of livers from
(data represent mean with SD; n = 4–5, ordinary one-way ANOVA; ns: not significant.
of differentiation 3; CD4, cluster of differentiation 4; CD8, cluster of differentiation
containing mucin-like hormone receptor-like 1; HBcAg, hepatitis B core antigen; HBe
carcinoma; H&E, hematoxylin and eosin; IFN-c Interferon gamma; IHC, immunohis
viation; TNF-a, tumor necrosis factor alpha; WT, wild-type.
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To detect HBV-specific T cells, cells isolated from the spleen
and liver of 20- to 24-month-oldHBV1.3 animalswere stimulated
byoverlappingpeptidepools covering the complete core- andS-
protein. Analysis of liver-associated lymphocytes by
fluorescence-activated cell sorting for TNF-a- or IFN-c-positive
CD4+ or CD8+ T cells detected no T cell population that could
react with HBV antigens in HBV1.3 mice (Fig. 2E). The same
pattern was found for lymphocytes isolated from spleen
(Fig. S2D and E). In line with the absence of liver inflammation,
HBV1.3mice did not develop liver fibrosis as confirmed by Sirius
Red staining (Fig. 2F). Thus, these data indicate that HBV-
induced HCC development occurred in HBV1.3 mice carrying a
single 1.3 × TG in the absence of inflammation or fibrosis and any
detectable adaptive or innate immune response.
a and/or INF-c positive cells. The whiskers extend above and below min. to max.
WT and HBV1.3 mice at indicated time points and quantification of positive area
ALT, alanine aminotransferase; CD206, cluster of differentiation 206; CD3, cluster
8; CLEC4F, C-type lectin domain family 4 member F; F4/80, EGF-like module-
Ag, hepatitis B e-antigen; HBsAg, hepatits B surface antigen; HCC, hepatocellular
tochemistry; MHCII, major histocompatibility complex class II; SD, standard de-
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Expression of 3.5-kb RNA species and HBx in HCC

The non-structural HBx protein was previously implicated in
HBV-related HCC development and progression by direct/
epigenetic interference with tumor suppressors.8,37,38 As direct
detection and quantification of HBx proteinmay be difficult,51 we
first used RNA in situ hybridization (ISH) to visualize HBV RNA
expression. As all HBV RNA transcripts overlap, gene-specific
ISH is not possible, and staining was performed using a probe
targeting the common co-terminus of all HBV RNAs including
HBx. Using consecutive histological sections for IHC and ISH
staining, we observed that before HCC development, ISH
staining of HBVRNAs corresponded toHBs andHBc expression
(Fig. 3A). In contrast, in HCC tissue, we detected a marked
expression of HBVRNAs in areaswithout HBsAg/HBcAg protein
expression (Fig. 3A). These data indicate that the expression
profile from the integrated HBV genome is altered in HCC,
potentially as well favoring HBx gene expression.

Given the positivity for HBeAg in serum throughout the
lifespan of HBV1.3 mice (Fig. 2B) we tested for the presence of
3.5-kb RNA species (including precore RNA for HBeAg
expression and pregenomic RNA for genome replication) by
droplet digital PCR (ddPCR). Expression of 3.5-kb RNA species
showed the same tendency to decrease from younger mice to
24-month-old animals (Fig. 3B) and to increase again in HCC
tissues as compared with non-tumor tissue in age-matched
animals (Fig. 3B). In line with the idea of altered expression of
HBV transcripts in HCC of HBV1.3 mice, IHC analysis for HBx
indicated that in normal liver tissue HBx protein was hardly
detectable but stained positive in HCC areas (Fig. 3C and S3A).
These HBx-positive areas were also positive in HBV RNA ISH
but HBsAg/HBcAg-negative in IHC.

HBx has been reported to directly inhibit several forms of
DNA repair.52 HBx also blocks transcriptional activity and
protein–protein interactions of p53, disrupting apoptotic path-
ways53,54 and has been described to contribute to oncogenic
transformation by upregulating Cdkn1a (p21) (Cyclin Depen-
dent Kinase Inhibitor 1A).55,56 We detected p21 protein in liver
lysates of HBV1.3 animals before HCC development, whereas
the proliferation marker, proliferating cell nuclear antigen
(PCNA), was unchanged (Fig. 3D). Indeed, at 6 and 12 months
HBV1.3 animals expressed significantly more p21 mRNA
(Fig. 3E). The mRNA expression level of p53 was not affected.
In contrast, mouse double minute 2 homolog (MDM2) was
significantly overexpressed in HBV1.3 mice at 12 months of
age (Fig. 3E). MDM2 is involved in long-term survival of hepa-
tocytes and inhibition of p53 transcriptional activity, potentially
playing a role in genetic instability and cellular stress. Thus, we
next analyzed HCCs found in HBV1.3 mice by whole-exome
sequencing (WES) to rule out a high, uniform number of so-
matic single nucleotide variants as reported in the chemical-
genotoxic diethylnitrosamine (DEN) mouse model.57 Copy
number variation profiles recapitulated findings from aCGH
(e.g. loss of chromosome 4), and WES showed a broad spec-
trum of mutations with somatic mutations in genes including
Keap1 and Arid2 (Fig. S3B–E), which were previously reported
in HCC.6 However, no recurrence of specific somatic mutations
or alterations associated with the presence of the transgene
was detected (Fig. S3, Tables S1 and S2). Taken together,
these data suggest that HBV transcripts, other than HBs and
HBc protein, are predominantly found in HCC, and that HBx
JHEP Reports, --- 2
could be involved in HCC development in HBV1.3 mice with its
proposed pro-tumorigenic functions.
Functional knockout of HBx in HBVxfs mice reduces signs
of DNA damage response

We next asked whether precluding DDB1- and/or p53-binding
by HBx would prevent HCC development. Therefore, we used
a second mouse model, the X frame-shift mouse (HBVxfs), that
also replicates HBV from a 1.3 ayw, genotype D overlength
genome, but with a frame-shift mutation at amino acid 87 in
both copies of the HBx open reading frame. This HBVxfs
mouse line expresses all viral transcripts, but the frame-shifts
result in the expression of a truncated HBx protein that lacks
the well-defined DDB1- and p53-binding sites (XFS) (Fig. S4A).
The TG is integrated in Chr10: 6523201-6523204 in HBVxfs
mice (Fig. S4B). Loss of HBx does not prevent HBV replication
from integrated DNA, and its functional knockout should not
affect viral protein expression (Fig. 4A and B). The higher
expression of some viral proteins in HBVxfs as compared with
HBV1.3 mice is most likely an effect of the different integration
site. HBVxfs mice also showed no significant signs of hepatitis
using H&E staining (Fig. 4A) or aberrant ALT serum values up to
the age of 12 months (Fig. S4C).

By inducing Structural Maintenance of Chromosomes 5/6
(SMC5/6) degradation, HBx drives expression from HBV
cccDNA.11 The XFS protein lacks the domain responsible for
interaction with DDB1 and consequently does not induce
SMC6 degradation when expressed in vitro (Fig. 4C). Conse-
quently, XFS is not able to stimulate the activity of luciferase
reporter constructs containing either an upstream HBx pro-
moter sequence (pX-Luciferase) or an upstream HBc promoter
sequence (pCore-Luciferase) (Fig. 4D) and does not rescue
transcription of HBx-deficient HBV in PHHs (Fig. S4D) or
HepRG cells (Fig. S4E).

We observed various markers of DNA damage response in
HBV1.3 mice previously described to be related to HBx.38,58,59

HBV1.3 mice showed increased phosphorylation of the H2A
histone family member X (cH2AX) in hepatocytes as a sign of
accumulating DNA damage response at 12 months compared
with the control (Fig. 4E). Nevertheless, HBVxfs mice also
showed positive cH2AX hepatocytes but reduced compared
with HBV1.3 mice (Fig. 4E). Western blot analyses of liver ly-
sates also showed abundance of cH2AX and phosphorylated
protein kinase ataxia telangiectasia mutated (ATM) in HBV1.3
and HBVxfs mice at 12 months of age (Fig. S4F). ATM is a
kinase which is upregulated and auto-phoshorylated in
response to double-stranded DNA breaks, leading to a
cascade of kinase reactions that regulate cell cycle, apoptosis
and DNA damage repair, including H2AX phosphorylation. In
line, HBV1.3 mice showed a small but significant increase in
cleaved Caspase 3 positive hepatocytes as a sign of cell
death by apoptosis (Fig. 4E). In contrast, HBVxfs mice showed
no increase of cleaved Caspase 3 staining over control mice,
and no significant difference for ki67 was observed (Fig. 4E).
Furthermore, HBV1.3 and HBVxfs mice overexpressed
Cdkn1a and Mdm2 at 12 months. However, only HBV1.3 mice
showed a significant increase in Atm expression by RT-qPCR
compared with WT and HBVxfs mice (Fig. 4F). Taken together,
HBV1.3 mice accumulated DNA damage response over time,
024. vol. 6 j 101128 7
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which was reduced but not abolished in HBV transgenic mice
lacking functional HBx expression.
HCC incidence is significantly higher in HBV1.3 mice
expressing WT HBx

Both HBV1.3 (see Fig. 1) and HBVxfs mice developed HCC at
the age of 20–24 months, with a significantly higher incidence
in HBV1.3 mice (relative risk 3.750, 95% CI 2.067–6.803)
(Fig. 5A and Fig. S5A). In addition, the average tumor nodule
size and the number of intrahepatic HCC nodules were higher
in HBV1.3 mice (Fig. 5B). Higher HCC incidence in HBV1.3
occurred despite similar HBsAg and HBeAg abundance in the
serum of HBVxfs mice (Fig. 5C) compared with HBV1.3
(Fig. 2B). HBVxfs also showed abundance of HBV 3.5-kb RNA
species in liver and HCC tissue (Fig. 5C), as transcription of
those derive from the 1.3 × overlength TG.

Histological analysis of HCC in both mouse lines showed
typical HCC patterns (Fig. 5D) and analysis of HCC tissue
clustered typically for HCC in an mRNA-based 16-gene array
(Fig. S5B).60 However, no significant difference was found in
chromosomal aberrations between HCC of the two mouse
models using aCGH, as displayed by frequency blots (Fig. 5E)
and principal component analysis (Fig. S5C).

HBVxfs HCC presented frequently with a histologically well-
differentiated pattern (Fig. 5D and Fig. S5A), and had fewer
infiltrating CD3-positive cells, as well as a significantly
increased amount of AFP, glutamine synthetase, and HBsAg-
positive hepatocytes (Fig. S5D and E). Less differentiated
HCC of HBV1.3 mice could explain the latter, which is also
reflected by the RNA expression pattern, including differentia-
tion factors, oncogenes and tumor-suppressors analyzed by
RT-qPCR (Fig. 5F). HCC of HBVxfs mice showed fewer intra-
hepatic metastasis but more frequent lung metastasis
(Fig. S5F). These data indicate that WT HBx is a major driver of
HCC development in HBV1.3 mice, but also that other HBx/
HBV functions might be involved in HCC development and
metastasis in this model.

HCC in HBV1.3 critically depends on STAT3 activation

We screened for altered pathways that could be involved in
HCC development in our model. HBV infection has been shown
to directly activate STAT3, which may support HBV replication
by preventing apoptosis of infected hepatocytes in vitro.61 In
HCC development the significance of STAT3 activation has
been convincingly demonstrated,27,62 and STAT3 phosphory-
lation is increased in up to 60% of human HCC cases corre-
lating with high tumor aggressiveness.27,63

As one potential pathway in HCC development driven by
HBV, we identified single clusters of phosphorylated STAT3
(pSTAT3)-positive hepatocyte nuclei in livers of HBV1.3 mice
before HCC development (Fig. 6A). Upon HCC development,
tumor tissue of HBV1.3 mice showed a significant increase in
pSTAT3-positive hepatocyte nuclei in IHC when compared
n = 3–6; HBV1.3 n = 4–5, HBVxfs n = 4–5 each time point; *p <0,05, **p <0,01, ****p
family member X; Atm, protein kinase ataxia telangiectasia mutated; ClCaspase3, C
HBsAg, hepatits B surface antigen; IHC, immunohistochemistry; ki67, antigen KI-67/
quantitative reverse transcription polymerase chain reaction; SMC6, Structural Ma
frame-shift.
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with HBV1.3 non-tumor tissue (Fig. 6A and B). Searching for
upstream regulators that could be responsible for the
observed activation of STAT3, we found that the cytokine
receptor subunit glycoprotein 130 (gp130) was significantly
upregulated on mRNA level at 6 months of age in HBV1.3
compared with control and with HBVxfs mice. HBVxfs also
showed increased expression but significantly less than
HBV1.3 (Fig. 6C). Gp130 is known to be phosphorylated after
complexing with other proteins and to activate STAT3 which
indicates that gp130-mediated STAT3 activation could be
involved in HCC development in the HBV1.3 and HBVxfs
model. Using a multiplex cytokine assay, we screened for
potential factors that could activate STAT3 signaling in liver
tissue lysates. From the analyzed factors (i.e. IL-6, IL-12p70,
IL-21, IL-27p28, IL-31, and oncostatin M), only IL-6 showed a
significant increase in expression on protein level at 12
months of age in HBV1.3 mice compared with con-
trols (Fig. S6A).

To demonstrate the critical involvement of STAT3 signaling
in HBV-driven HCC at a functional level, we crossed HBV1.3
mice with mice carrying hepatocyte-specific conditional
knockout of STAT3 (HBV1.3-AlbCreSTAT3f/f).62,64 As HBV
was reported to favor epigenetic silencing of Suppressor of
cytokine signaling 3 (SOCS3) mRNA, which is a negative
regulator of JAK/STAT signaling, leading to the sustained
activation of IL-6/STAT3 pathway,65 we investigated whether
over-activation of STAT3 signaling would increase HCC inci-
dence. Therefore, we crossed HBV1.3 mice with mice with
hepatocyte-specific conditional knockout of SOCS3 (HBV1.3-
AlbCreSOCS3f/f).45 Albumin-Cre-negative animals (HBV1.3-
STAT3f/f or HBV1.3-SOCS3f/f) served as HBV1.3 littermate
controls (Fig. 6D). HBV1.3-AlbCreSTAT3f/f mice showed
abrogation of pSTAT3-positive hepatocyte nuclei, whereas
HBV1.3-AlbCreSOCS3f/f mice harbored big foci of hepato-
cytes with nuclear pSTAT3 (Fig. 6E). Although the number of
infiltrating CD3-positive cells and MHCII-positive area were
not significantly changed (Fig. S6B and C), HBV1.3-Alb-
CreSTAT3f/f mice showed reduced ki67-positive hepatocytes
compared with HBV1.3 and HBV1.3-AlbCreSOCS3f/f animals,
but no change in the frequency of cleaved Caspase3-positive
hepatocytes (Fig. S6B and C). Nevertheless, despite extensive
screening of IL-6/gp130/STAT3-related signatures/pathways
in liver tissue by cytokine arrays and proteomics analysis
before HCC development, the source of STAT3 activation in
this mouse model could not be identified in 12-month-old
animals (Fig. S6D).

Increased STAT3 activity in HBV1.3-AlbCreSOCS3f/f ani-
mals did not change HCC incidence as compared with HBV1.3
mice (Alb-Cre-negative HBV1.3-STAT3f/f or HBV1.3-SOCS3f/f

animals at 20–24 months of age) (Fig. 6F).
In sharp contrast, the hepatocyte-specific knockout of STAT3

in HBV1.3-AlbCreSTAT3f/f mice abrogated HCC development
(Fig. 6F). Altogether, these data indicate a STAT3-dependent
mechanism in directly HBV-driven HCC in our model.
<0,0001, ordinary one-way ANOVA). cH2AX, phosphorylation of the H2A histone
leaved Caspase-3; H&E, hematoxylin and eosin; HBcAg, hepatitis B core antigen;
MKI67; p21, CDK-inhibitor 1; Mdm2, mouse double minute 2 homolog; RT-qPCR,
intenance of Chromosomes 6; Tp53, Tumor Protein P53; WT, wild-type; XFS, X
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Discussion
Here, we show that the expression of HBV transcripts and
proteins from an integrated TG in HBV1.3 mice is sufficient to
drive HCC development in 35 out of 91 mice analyzed at 20–24
months of age. Previously, mouse models expressing mutated
HBs or overexpressing HBs or HBx were generated to assess
the effect of HBV proteins on HCC development, which partially
required additional challenge by an oncogenic chemical
chain reaction; FFPE, formalin-fixed, paraffin-embedded; GP73, Golgi protein-73; H&
antigen; HBsAg, hepatits B surface antigen; HCC, hepatocellular carcinoma; IHC, im
transcription polymerase chain reaction; SD, standard deviation; WT, wild-type.
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toxin.31–33,35,36 Unlike these models, HBV1.3 mice in this study
express all viral transcripts at physiological levels and replicate
HBV from a single 1.3 × overlength, HBV genotype D (ayw)
transgene. Thorough characterization of liver tumors in HBV1.3
mice showed typical histological patterns and genetic aberra-
tions, including a wide variety of HCC subtypes resembling the
multitude of patterns of human HCC.30,50 Of note, well-
established changes in expression levels of oncogenes and
E, hematoxylin and eosin; HBcAg, hepatitis B core antigen; HBeAg, hepatitis B e-
munohistochemistry; ki67, antigen KI-67/MKI67; RT-qPCR, quantitative reverse
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tumor-suppressors (e.g. AXIN1, MYC, MET, CDKN2a, and
CDKN1a)6,30,60 were detected in HBV1.3 mice. HCC in HBV1.3
mice show no uniform patterns or overexpression of stemness
markers. In contrast to other studies, we show that expression
of physiological levels of HBV transcripts from the original
promoters is sufficient to cause liver tumors resembling hu-
man HCC.

A typical main oncogenic driver for HCC is necro-
inflammation, a sequence of chronic inflammation, cell death
and compensatory hepatocyte proliferation, and includes the
development of liver cirrhosis.24,25 We found no significant
signs of active hepatitis or significant HBV-specific immunity,
including innate immune responses in HBV1.3 mice up to the
age of 24 months, which is in line with previous reports.40 In
different HBs-transgenic mice, incompetent anti-HBV CD8+
and CD4+ T cells were described to majorly contribute to im-
mune tolerance in HBs-transgenic mice,66 possibly also
explaining the lack of significant HBV-specific immune re-
actions in HBV1.3 mice. However, a therapeutic vaccine
approach in HBV1.3 animals was able to induce HBV-specific
antibodies and CD8+ T cell immunity.67

Notably, in CHB the risk for HCC is known to be already
present in patients without cirrhosis, illustrating the direct
oncogenic effect of HBV.4,15,16,29 Mutagenesis or genetic
instability by integration of HBV-DNA in host hepatocyte ge-
nomes is a well-accepted oncogenic factor of HBV.8,29,68

However, by sequencing of target locus amplifications we
found only a single HBV TG in a non-coding region in the
HBV1.3 strain and no evidence of HBV DNA integration in mice.
Missing HBV DNA (‘re’)-integration in host DNA of murine he-
patocytes can be explained by species specificity of HBV (no
human NTCP)69 and secondly by a second restriction very
likely at the step of capsids entry into the nucleus or rcDNA
repair and cccDNA formation, or as proposed previously, a
different host cell dependency factor.41 In conclusion, necro-
inflammation and insertional mutagenesis can be excluded as
oncogenic drivers in HBV1.3 mice.

The expression of HBeAg in HBV1.3 and HBVxfs up to the
age of 24 months strengthens the notion of a HBeAg-positive
HBV infection model. The abundance of 3.5-kb RNA species,
which comprise precore RNA for HBeAg expression and the
pregenomic (pg)RNA for genome replication in liver and HCC of
HBVxfs and HBV1.3 is a possibly important finding. In HCC of
HBsAg-positive patients treated with active antiviral drugs
expression of episomal forms of HBV DNA in 40% and of
pgRNA in 66% of cases was reported.70 The presence of 3.5-
kb RNA in HBxfs animals can be explained by expression from
the linear 1.3 × HBV TG independent of cccDNA and thus in-
dependent of WT HBx. An oncogenic potential of HBV pgRNA
was previously reported.71 Furthermore, we found a tendency
towards higher 3.5-kb RNA species expression in HCC of
HBV1.3 mice as compared with liver tissue of 24-month-old
HBV1.3 mice.

Accumulated evidence has shown that the non-structural
HBx protein can interfere with or alter the expression of tu-
mor suppressor genes and oncogenes, as well as cause
epigenetic aberrations, and that plays a role in HCC develop-
ment and progression.8,37,38 We found only scarce signals of
HBx protein in HBV1.3 mice. However, our observation of HBV
RNA expression in areas without HBs/HBc protein as well as
JHEP Reports, --- 20
finding HBx protein in HCC is indicative of altered expressions
from the HBV TG in HCC, favoring HBx gene expression, and is
in line with previous reports.34,38 Thus, we postulated an effect
of HBx in HCC development in HBV1.3 mice. Maintenance of
genomic integrity through the recognition and repair of
damaged or altered DNA is essential for cellular integrity. It has
been reported that HBx inhibits several forms of DNA repair and
blocks transcriptional activity and protein–protein interactions
of p53 disrupting apoptotic pathways.53,54 In HBV1.3 mice, we
found overexpression of Cdkn1a and Cdkn2a and chromo-
somal aberrations in HCC and increased Cdkn1a (p21) and
Mdm2 expression before HCC development. Upregulation of
p21 by HBx has previously been reported,55,56 and MDM2 is
involved in the long-term survival of hepatocytes resulting in
genetic instability, cellular stress and abnormalities in antitumor
genes in HCC development.72 Interestingly, WES of HBV1.3
HCC showed a diverse spectrum of mutations but no recur-
rence of specific somatic mutations and no high numbers of
single nucleotide variants, as usually seen in for example the
genotoxic DEN-mouse model.57 Nevertheless, stochastic mu-
tation events leading to gene abnormalities are likely to be
involved as HCC promoters in this model.

Firstly, DDB1-dependent degradation of SMC5/6 by HBx is
a crucial host restriction factor of HBV gene expression from
cccDNA and maintains virus replication.11 Secondly, the
SMC5/6 complex has an essential role in DNA replication
through natural pausing sites and in endogenous DNA damage
tolerance.73 Thus, we used a second mouse model, transgenic
for the same HBV1.3-overlength genome (HBVxfs mice). They
also express all HBV gene products from a TG integrated at a
different site and produce HBV particles but express a trun-
cated HBx lacking the previously described DDB1 and p53
binding sites.

HBVxfs mice showed decreased signs of accumulating DNA
damage response compared with HBV1.3 mice expressing WT
HBx. Besides changes in DNA damage response caused by c-
terminal truncated HBx, HBV1.3 mice developed significantly
more HCC as compared with HBVxfs mice (38% vs. 10% HCC
incidence, relative risk 3,750, 95% CI 2.067–6.803). In contrast,
the generally well-differentiated HCC in HBVxfs mice fostered a
higher frequency of pulmonary metastases. This could for
example be explained by an epithelial–mesenchymal transition
independent mechanism such as vessels that encapsulated
tumor clusters that predicted higher metastasis and recurrence
rates in humans.74 In our model a distinct pattern with higher
expression of differentiation markers but a lower number of
infiltrating T cells was present. Because of usage of co-housed
C57Bl/6 mice from backcrossings as controls and based on the
different origin of HBV1.3 and HBVxfs mice, minor differences
in the genetic background and an effect on the observed tumor
incidence cannot be excluded. However, the thorough back-
crossings of the lines to the C57Bl/6 background and co-
housing in the same animal facility should minimize con-
founding factors. Moreover, observed molecular patterns in
HBV1.3 mice that are known to be driven by HBx support the
notion of HBx being one oncogenic factor in this model. We
concluded that the c-terminal action of HBx has potent onco-
genic potential by increasing HCC incidence and leading to
less differentiated HCC subtypes, however, metastatic disease
seems to rely on different factors. Nonetheless, our data
24. vol. 6 j 101128 12
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suggest additional oncogenic factors in these models, inde-
pendent of mechanisms related to functions of C-terminal HBx
as HBVxfs animals still developed HCC.

Thus, we screened for a common factor altered in HBV
transgenic models. We found clusters of pSTAT3-positive
hepatocytes in young HBV1.3 mice without active signs of
hepatitis and a significant increase of nuclear pSTAT3 in HCC.
The critical link between continuous hepatocyte death and
compensatory liver regeneration with STAT3 signaling as
intrinsic signaling pathways driving or mediating these pro-
cesses in HCC development has been identified previ-
ously27,62 and STAT3 is frequently found phosphorylated in
human HCC.27,63 Nevertheless, the functional consequence of
STAT3 activation is highly context- and tissue-dependent.75

Previously, HBV infection was shown to activate STAT3
signaling by induction of Y705 phosphorylation, supporting
virus replication and preventing apoptosis,61,76 as well as fa-
voring epigenetic silencing of SOCS3 mRNA which leads to
the sustained activation of the IL-6/STAT3 pathway.65

Nevertheless, in our model a protein screen performed in
12-month-old animals did not detect a significant candidate
(Fig. S6D), and we did not find the source of STAT3 activation
in HBV1.3 mice.

Given the STAT3 activation in hepatocytes of HBV1.3 mice
and the transient upregulation of gp130, and as STAT3 is known
to be essential for efficient repair of damaged DNA,77 we asked
whether over-activation of STAT3 signaling by hepatocyte-
specific conditional knockout of SOCS3 would increase HCC
incidence. However, HCC incidence in HBV1.3-AlbCreSOCS3f/f

animals was unchanged to HBV1.3 mice. This could be partially
JHEP Reports, --- 2
explained as IL-6 signaling is selectively inhibited by SOCS3
binding to gp130. However, SOCS3 does not interfere with, for
example, IL-10R-mediated STAT3 activation.75

In contrast, hepatocyte-specific conditional knockout of
STAT3 in HBV1.3-AlbCreSTAT3f/f mice abrogated HCC
development. This finding reinforces the idea for STAT3
signaling from previously described pro-viral effects by sup-
porting virus replication and preventing apoptosis61,76 to be-
ing a host factor in directly HBV-driven HCC development in
HBV1.3 mice.

Whether STAT3 is indispensable for HCC development in
our model because of cellular effects, such as prevention of
apoptosis, or by supporting virus replication, remains unclear.
Moreover, how HBV increases nuclear pSTAT3 in HBV trans-
genic mice and whether this is mediated by an increase in
STAT3 phosphorylation or changes in nuclear translocation
remains elusive and further research is warranted.

Our data provide in vivo proof of direct oncogenic effects of
HBV, independent of inflammation and insertional mutagen-
esis. Therapeutic targeting of, for example, HBx or a
hepatocyte-specific STAT3 inhibition – without detrimental ef-
fects – is warranted but not reasonable in every patient with
chronic HBV infection. Furthermore, the direct oncogenic ef-
fects of HBV found in this model further challenge the idea of a
benign ‘immune tolerant’-phase not requiring antiviral treat-
ment.12,19 Given that antiviral therapy can reduce HCC risk by
70% among patients with indeterminate phase CHB,78 in-
dications for treatment should be adapted. Our data once again
emphasize the necessity for HBV ‘cure’ in patients chronically
infected with HBV.
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