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Abstract

Background: Acute kidney injury (AKI) is a common adverse outcome following nephrectomy. The progression from AKI to
acute kidney disease (AKD) and subsequently to chronic kidney disease (CKD) remains a concern; yet, the predictive mechanisms
for these transitions are not fully understood. Interpretable machine learning (ML) models offer insights into how clinical features
influence long-term renal function outcomes after nephrectomy, providing a more precise framework for identifying patients at
risk and supporting improved clinical decision-making processes.

Objective: This study aimed to (1) evaluate postnephrectomy rates of AKI, AKD, and CKD, analyzing long-term renal outcomes
along different trajectories; (2) interpret AKD and CKD models using Shapley Additive Explanations values and Local Interpretable
Model-Agnostic Explanations algorithm; and (3) develop a web-based tool for estimating AKD or CKD risk after nephrectomy.

Methods: We conducted a retrospective cohort study involving patients who underwent nephrectomy between July 2012 and
June 2019. Patient data were randomly split into training, validation, and test sets, maintaining a ratio of 76.5:8.5:15. Eight ML
algorithms were used to construct predictive models for postoperative AKD and CKD. The performance of the best-performing
models was assessed using various metrics. We used various Shapley Additive Explanations plots and Local Interpretable
Model-Agnostic Explanations bar plots to interpret the model and generated directed acyclic graphs to explore the potential causal
relationships between features. Additionally, we developed a web-based prediction tool using the top 10 features for AKD
prediction and the top 5 features for CKD prediction.

Results: The study cohort comprised 1559 patients. Incidence rates for AKI, AKD, and CKD were 21.7% (n=330), 15.3%
(n=238), and 10.6% (n=165), respectively. Among the evaluated ML models, the Light Gradient-Boosting Machine (LightGBM)
model demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.97 for AKD
prediction and 0.96 for CKD prediction. Performance metrics and plots highlighted the model’s competence in discrimination,
calibration, and clinical applicability. Operative duration, hemoglobin, blood loss, urine protein, and hematocrit were identified
as the top 5 features associated with predicted AKD. Baseline estimated glomerular filtration rate, pathology, trajectories of renal
function, age, and total bilirubin were the top 5 features associated with predicted CKD. Additionally, we developed a web
application using the LightGBM model to estimate AKD and CKD risks.
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Conclusions: An interpretable ML model effectively elucidated its decision-making process in identifying patients at risk of
AKD and CKD following nephrectomy by enumerating critical features. The web-based calculator, found on the LightGBM
model, can assist in formulating more personalized and evidence-based clinical strategies.

(JMIR Med Inform 2024;12:e52837) doi: 10.2196/52837
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Introduction

Renal tumors rank as the second most prevalent neoplasms in
urology, succeeding bladder cancer, and their annual incidence
is on the rise [1,2]. Nephrectomy remains the preferred
therapeutic modality for localized renal tumors [3], and patients
who are eligible for nephrectomy generally favor longer life
span [4]. Nevertheless, a decline in kidney function frequently
ensues following nephrectomy. It has been proven that the
nephron reduction stemming from radical nephrectomy (RN)
or partial nephrectomy (PN) can result in postoperative acute
kidney injury (AKI), subsequently heightening the risk of
chronic kidney disease (CKD) and mortality [5,6]. Therefore,
it is crucial to discern the predicted risk factors associated with
renal function decline and precisely forecast postoperative renal
impairment, enabling timely intervention.

AKI and CKD are not 2 separate clinical syndromes but often
manifest as a continuum of disease [7]. The 16th Acute Disease
Quality Initiative meeting has defined acute kidney disease
(AKD) as the occurrence of acute or subacute damage or loss
of kidney function for a duration of 7 to 90 days after the onset
of an AKI-initiating event [8]. Within the AKD time frame,
interventions like patient education, medication adjustments,
and regular follow-up can be initiated, potentially leading to
disease reversal [9]. According to AKD definition, renal
recovery is classified into 3 primary groups: transient AKI,
subacute AKD, and persistent AKI [8].

Recent, noteworthy strides in machine learning (ML) have given
rise to remarkable breakthroughs, encompassing fields like
autonomous driving, recommending products, and surpassing
human expertise in intricate games such as chess [10-12]. These
advancements have increasingly impacted the health care
domain, particularly in clinical decision support systems, aiding
in clinical decision-making, forecasting disease progression,
and enhancing the distribution of medical resources [13,14].
ML offers significant advantages in clinical decision-making
by analyzing large datasets, facilitating high-throughput and
real-time predictions, and identifying complex patterns.
However, considering the challenges related to decision-making
transparency, individual patient variability, and ethical concerns,
ML should be considered a complementary tool to enhance
physicians’ diagnostic capabilities rather than substituting their
expertise. One of the prominent challenges faced by ML in the
health care domain is the enigma referred to as the “black-box
phenomenon,” indicating the deficiency in interpretability
experienced by both patients and health care providers [15,16].
The absence of interpretability in predictive models can erode
trust in these models, particularly in health care, where numerous
decisions directly involve matters of life and death. Recent

advancements, however, have introduced algorithms that
effectively extract crucial variables and elucidate model
decisions [17].

Currently, there is limited research on the risk prediction of
AKD following nephrectomy, and the impact of
postnephrectomy AKD on CKD remains unclear. Additionally,
there is a lack of interpretable ML models and web-based
prediction tools for both AKD and CKD. Therefore, this study
aimed to achieve the following objectives: (1) assess the
postoperative occurrence rates of AKI, AKD, and CKD in
patients who underwent nephrectomy; (2) contrast the long-term
renal prognosis across AKI recover, subacute AKD, and patients
with AKD and AKI; (3) formulate risk prediction models for
both AKD and CKD through the use of diverse ML algorithms;
(4) determine the optimal models, evaluate their predictive
efficacy, and explain via Shapley Additive Explanations (SHAP)
values and Local Interpretable Model-Agnostic Explanations
(LIME) algorithms; (5) use directed acyclic graphs (DAGs) to
explore potential associations and causal pathways between
features; and (6) devise an easily accessible web-based
prediction tool tailored to estimating the likelihood of AKD and
CKD after nephrectomy. We hypothesized that patients with
acute or subacute renal impairment are more susceptible to CKD
progression compared to those with normal renal function.
Furthermore, we expected significant differences in the
development of CKD among patients recovering from AKI,
those with subacute AKD, and those experiencing AKD with
AKI.

Methods

Study Design
We conducted a retrospective review of medical records for
2637 patients who underwent nephrectomy between July 2012
and June 2019. Ultimately, the study included 1559 eligible
patients. The patient data were sourced from a prominent tertiary
hospital known for its comprehensive services and ranked
among the top 60 nationwide in terms of overall performance.
Patients were followed up for a duration ranging from 3.0 to
62.8 months until December 2019, with the primary focus being
on the development of CKD as a long-term outcome. The patient
data were randomly stratified into training, validation, and test
sets, using Python’s stratified random sampling method,
maintaining a ratio of 76.5:8.5:15. Internal validation was
performed through 10-fold cross-validation, involving the
partitioning of the training and validation sets into 10 subsets.
A majority of 9 of these subsets were used for model training,
and the remaining 1 was dedicated to model evaluation. The
exclusion criteria for this study encompassed the following
characteristics: (1) patients younger than 18 years of age or with
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hospitalization duration <24 hours, (2) patients with inadequate
serum creatinine (Scr) monitoring interval, (3) patients with
anatomical kidney malformations, (4) patients undergoing renal
cyst unroofing or donor nephrectomies, (5) patients with
pre-existing CKD or undergoing dialysis prior to nephrectomy,
and (6) patients lacking essential features such as Scr.

Ethical Considerations
This study received approval from the Ethics Committee of the
Affiliated Hospital of Qingdao University (approval QDFY WZ
2018-9-13). Informed consent was waived due to the
retrospective nature of the data and the large number of patients
involved, making it impractical to seek consent from each
patient. All data were deidentified. No compensation was
provided to the participants as the study did not involve direct
participant interaction.

Data Collection
Clinical and demographic data were extracted through the
application of natural language processing and parsing methods
on structured information within the electronic health record.
Preoperative complete blood counts, coagulation markers, blood
chemistry analyses, urine tests, and echocardiography were
performed within 3 days of admission. Comorbidities were
defined based on the International Statistical Classification of
Diseases, Tenth Revision. Comprehensive data on concomitant
medications were meticulously collected, with particular
attention to instances where these medications were administered
prior to the occurrence of kidney injury. The surgical details
encompass the surgical approach (laparotomy, laparoscopy, and
da Vinci surgery), procedure type (RN and PN), duration of the
surgery, pathological findings, maximum excision diameter,
and blood loss.

Outcome Definitions
The primary outcome of our study was postoperative AKI. The
secondary outcomes were AKD and CKD. AKI was defined as
an increase in Scr to ≥0.3 mg/dL within 48 hours or ≥1.5 times
the baseline value within 7 days, following the 2012 Kidney
Disease Improving Global Outcomes guideline [18]. According
to the 2017 Acute Disease Quality Initiative, AKD was defined
as persistent renal damage or renal dysfunction for a duration
of 7 to 90 days after exposure to an AKI initiating event [8].
CKD was defined as abnormalities of kidney structure or
function for at least 3 months [19]. Based on the diagnostic
criteria for AKI and AKD, patients exhibited three distinct
trajectories of renal function following kidney injury: (1) AKI
recover, if Scr returned to baseline value within 7 days (AKI
without AKD); (2) AKD with AKI, if stage 1 or greater AKI
persisted for ≥7 days after an AKI initiating event (continuous
AKI progressing to AKD); and (3) subacute AKD, if Scr levels
increased slowly but lasted more than 7 days (AKD without
AKI). The final classification consisted of four categories: (1)
no kidney disease (NKD), (2) AKI recover, (3) AKD with AKI,
and (4) subacute AKD.

Baseline Scr was defined as the most recent Scr level measured
before nephrectomy. The diagnosis time of AKI, AKD, and
CKD was established when patients first met the respective
diagnostic criteria. All patients underwent at least 3 Scr tests,

including 2 during hospitalization and 1 at the first follow-up.
If elevated Scr levels did not return to baseline, additional tests
were conducted once a week during hospitalization or at the
next follow-up. The estimated glomerular filtration rate (eGFR)
was calculated by using the Chronic Kidney Disease
Epidemiology Collaboration creatinine formula [20].

Model Development and Interpretation
The Light Gradient-Boosting Machine (LightGBM) algorithm
was used to construct predictive models. LightGBM, a
tree-based gradient-boosting framework, adeptly manages
high-dimensional and extensive datasets [21]. By integrating
gradient-based 1-side sampling and exclusive feature bundling,
LightGBM effectively mitigates overfitting and notably
outperforms the computational speed and memory use of
Extreme Gradient-Boosting and stochastic gradient-boosting
techniques [22]. In our comparative analysis, we trained various
ML models, including LightGBM, Gradient-Boosting Machine,
k-nearest neighbors, multilayer perceptron, logistic regression
(LR), naive Bayes, random forest (RF), and support vector
machine, using the same dataset and applying consistent
imputation and scaling techniques. We initially used the default
hyperparameters of each ML algorithm to establish our models.
Subsequently, we conducted manual parameter tuning by grid
search to optimize the performance. The process of parameter
optimization was facilitated through 10-fold cross-validation,
aiding in the identification of the most suitable hyperparameter
configurations [23].

For discerning significant features that influenced the algorithm
and ensuring the appropriateness of the optimal model, we used
SHAP and LIME to interpret the model from both global and
instance-based perspectives. SHAP values, rooted in the Shapley
value from coalitional game theory, quantify the influence of
each feature variable on the target outcome, elucidating the
derivation of a sample’s predicted result [24]. LIME uses local
surrogate models for explaining individual predictions. Its core
method perturbs an input instance to generate interpretable
samples, upon which a linear model approximates the complex
model’s decision-making process near the instance [25]. The
SHAP summary plots exhibit the relative significance of
individual features in predictions, along with their corresponding
positive or negative impact directions. The SHAP interaction
plots reveal the interactions among multiple features and
illustrate how their combined influence impacts model
predictions. We separately used the top 10 features from the
AKD and CKD models and created SHAP dependence plots
through pairwise combinations to elucidate the influence of
individual features on the model’s predictions and the
correlations among them. Additionally, we highlighted features
with significant correlations in Figure S5 in Multimedia
Appendix 1. The SHAP force plots and LIME bar plots were
used to clarify individualized forecasts, demonstrating each
feature’s contribution to the prediction of individual samples.
Finally, we used AKD and CKD as outcomes and applied the
PC algorithm to construct DAGs, facilitating the exploration of
potential associations and causal pathways among the top 20
features [26,27].

JMIR Med Inform 2024 | vol. 12 | e52837 | p. 3https://medinform.jmir.org/2024/1/e52837
(page number not for citation purposes)

Xu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Web-Based Prediction Tool
A web-based calculator for predicting AKD and CKD among
those patients was developed using the “Streamlit” application
in terms of the optimal model. Streamlit, an open-source Python
framework, aids developers in swiftly constructing web-based
and responsive applications [28]. To improve the
user-friendliness of the web calculator, this study implemented
2 panels: one for inputting model parameters and acquiring
AKD or CKD probabilities and another for providing a model
introduction.

Statistical Analysis
Features with a missing proportion exceeding 15% (n=234) are
removed, while those with missing proportions less than 15%
(n=234) are imputed using an RF model. Using LR to calculate
the required sample size with CKD as the outcome, we
determined that a minimum of 1171 patients is necessary to
attain a statistical power of 90% for detecting an effect size of
0.10 at a 2-side α=.05. Categorical features were presented
using frequencies and percentages, while continuous features
were presented as mean (SD) or median (IQR). Comparative
analyses were performed to assess patient characteristics
between individuals with and without CKD as well as among
various trajectories of renal function postkidney injury.
Quantile-quantile plots were generated to visually inspect the
distribution patterns of continuous features. The independent
2-tailed t test was used for normally distributed continuous
features, the Mann-Whitney U test for nonnormally distributed
continuous features, and the Pearson chi-square test for
categorical features. We used a weight rebalancing technique
to adjust the weights of both the majority and minority classes
in the training dataset [29]. The validation dataset underwent
balancing, whereas the test datasets remained unaltered to assess
model performance with representative data. The scikit-learn
Python library (Python Software Foundation) includes a built-in
parameter called “class weight” or “weights” for LR, RF,
LightGBM, support vector machine, and k-nearest neighbors.
For AKD, the class weight was set to 3.3; and for non-AKD
cases, it was set to 0.6. Similarly, the class weight for CKD was
set to 10.0; and for non-CKD cases, it was set to 0.5. In the case
of the naive Bayes classifier, we established a prior probability
of .50 for each class to achieve group balance, and we adjusted

class weights in the multilayer perceptron classifier by
modifying the loss function’s weights. The area under the
receiver operating characteristic curve (AUROC) was used for
optimal model selection. The model underwent evaluation
through graphical techniques, encompassing the receiver
operating characteristic curve and decision curve analysis, in
addition to quantitative metrics such as AUROC, average
precision, precision, recall, accuracy, F1-score, Brier score loss,
and Matthew correlation coefficient. A P value of less than .05
was considered as significant (2-tailed). Python programming
language (version 3.9.13 and integrated development
environment Visual Studio Code 1.81.1) was applied to our
analysis.

Results

Study Cohort
The entire study process is illustrated in Figure 1. Among the
participants, 1131 (72.6%) underwent RN, and 1152 (73.9%)
underwent laparotomy. The incidence rates of AKI, AKD, and
CKD were 21.7% (330/1559), 15.3% (238/1559), and 10.6%
(165/1559), respectively. In total, there were 451 (28.9%)
patients who developed acute or subacute kidney dysfunction
(AKI or AKD criterion), with 117 (7.5%) meeting both AKI
and AKD criteria, 121 (7.8%) developed subacute AKD, and
213 (13.7%) experienced recovery from AKI. The
quantile-quantile plots show that features including blood loss,
Scr, and operative duration exhibit skewed distributions,
potentially due to the distinct condition of nephrectomy patients
(Figure S1 in Multimedia Appendix 1). Increased CKD rates
were observed in older patients (mean age 69, SD 9.6 vs mean
age 58, SD 12.3 years), male patients (n=118, 12.9% vs n=47,
7.3% in female patients), those who underwent RN (n=143,
12.6% vs n=22, 5.1% in PN), AKD with AKI (n=42, 35.9% vs
n=32, 26.4% in subacute AKD, n=24, 11.3% in AKI recovery,
and n=67, 6% in NKD), and individuals with 1 or more chronic
complications such as hypertension, diabetes mellitus, and
coronary heart disease. The demographic and clinical
characteristics of the patient cohort, both within different groups
and as a whole, are detailed in Table 1 and Table S1 in
Multimedia Appendix 2.
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Figure 1. Flow diagram of patients’ enrollment. AKD: acute kidney disease; AKI: acute kidney injury; CKD: chronic kidney disease; ML: machine
learning; Scr: serum creatinine.
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Table 1. Baseline characteristics of patients with and without CKDa.

P valueCKD (n=165)CKD-free (n=1394)Total (N=1559)Features

<.00168.5 (9.6)58 (12.3)59.1 (12.5)Age (years), mean (SD)

<.001118 (71.5)796 (57.1)914 (58.6)Male, n (%)

.0125.7 (3.8)24.9 (3.4)25 (3.4)BMI (kg/m2), mean (SD)

<.001139.8 (19.3)130.9 (18.2)131.9 (18.5)Systolic blood pressure (mm Hg), mean (SD)

<.00180 (48.5)490 (35.1)570 (36.6)Smokers, n (%)

.0660 (36.4)404 (29)464 (29.8)Drinkers, n (%)

.534 (2.4)52 (3.7)56 (3.6)Fever, n (%)

Procedure, n (%)

<.001143 (86.7)988 (70.9)1131 (72.5)Radical nephrectomy

—b22 (13.3)406 (29.1)428 (27.4)Partial nephrectomy

Approach, n (%)

.29114 (69.1)1038 (74.5)1152 (73.9)Laparotomy

—41 (24.8)275 (19.7)316 (20.3)Laparoscopy

—10 (6.1)81 (5.8)91 (5.8)da Vinci surgery

—252 (152.7)1721 (123.5)1973 (126.6)Pathology, n (%)

<.00198 (59.4)673 (48.3)771 (73. 9)Benign

—56 (33.9)375 (26.9)431 (20.3)Malignant (nonclear)

—11 (6.7)346 (24.8)357 (5.8)Clear cell

<.001100 (50-200)50 (20-150)50 (20-150)Blood loss (mL), median (IQR)

<.00111 (6-13)12 (10-14)11 (7-13)Excision diameter (cm), median (IQR)

<.0012.4 (2-3)2.8 (2.3-3.3)2.5 (2-3)Operative duration (hours), median (IQR)

Laboratory tests

<.0016 (5-7.4)6.6 (5.6-7.8)6.1 (5.1-7.4)White blood cell (×109/L), median (IQR)

.014.4 (0.6)4.5 (0.6)4.5 (0.6)Red blood cell (×1012/L), mean (SD)

.02234 (193-280)221 (190-262)232 (193-278)Platelet (×109/L), median (IQR)

.01130 (21.3)134.3 (20.2)133.9 (20.4)Hemoglobin (g/L), mean (SD)

.013 (2.5-3.6)3.1 (2.7-3.7)3 (2.6-3.6)Fibrinogen (g/L), median (IQR)

<.00183 (72-95)102 (91-121)85 (73-97)Serum creatinine (μmol/L), median (IQR)

<.0015.6 (4.6-6.7)6.6 (5.6-7.9)5.7 (4.7-6.8)Blood urea nitrogen (mmol/L), median (IQR)

<.001354.2 (92.5)312 (87.8)316.5 (89.2)Uric acid (μmol/L), mean (SD)

<.00157.6 (15)81.8 (17.4)79.3 (18.7)Baseline estimated glomerular filtration rate (mL/min/1.73 m2), mean
(SD)

.1918 (13-24)17 (13-22)17 (13-24)Alanine transaminase (U/L), median (IQR)

.1117 (14-20)16 (13-19)17 (14-20)Aspartate transaminase (U/L), median (IQR)

<.00113.4 (10.1-17.9)11.8 (9.4-15.5)13.1 (10-17.7)Total bilirubin (μmol/L), median (IQR)

.2369 (57-85)68 (57-78)69 (57-84)Alkaline phosphatase (U/L), median (IQR)

.011.1 (0.8-1.6)1.2 (0.9-1.7)1.1 (0.8-1.6)Triglyceride (mmol/L), median (IQR)

.402.8 (0.8)2.9 (0.8)2.9 (0.8)Low-density lipoprotein cholesterol (mmol/L), mean (SD)

<.00138.4 (5.1)39.7 (5)39.5 (5)Albumin (g/L), mean (SD)

.015.1 (4.6-5.8)5.2 (4.8-6.2)5.1 (4.6-5.8)Blood glucose (mmol/L), median (IQR)

Urinalysis, n (%)
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P valueCKD (n=165)CKD-free (n=1394)Total (N=1559)Features

<.00177 (46.7)230 (16.5)307 (19.7)Protein

.1029 (17.6)177 (12.7)206 (13.2)Glucose

<.001145 (87.8)857 (61.5)1002 (64.3)Hematuria

Echocardiography, median (IQR)

.6263 (61-65)63 (61-65)63 (61-65)Ejection fraction

Comorbidities, n (%)

<.00136 (21.8)166 (11.9)202 (13)Diabetes mellitus

<.00130 (18.2)94 (6.7)124 (7.9)Coronary heart disease

<.00192 (55.8)396 (28.4)488 (31.3)Hypertension

<.00147 (28.5)255 (18.3)302 (19.4)Obesity

Medications, n (%)

.3373 (44.2)557 (40)630 (40.4)β-Blocker

<.00134 (20.6)129 (9.2)163 (10.5)ACEI or ARBc

<.00167 (40.6)311 (22.3)378 (24.2)Calcium channel blocker

.02124 (75.1)918 (65.8)1042 (66.8)Antibiotics

.4149 (29.7)367 (26.3)416 (26.7)Nonsteroidal anti-inflammatory drugs

<.00162 (37.6)373 (26.8)435 (27.9)Diuretics

Trajectories of renal function, n (%)

<.00124 (14.5)189 (13.6)213 (13.6)AKId recover

—32 (19.4)89 (6.4)121 (7.8)Subacute AKDe

—42 (25.4)75 (5.4)117 (7.5)AKD with AKI

Outcome

<.00166 (40)264 (18.9)330 (21.2)AKI, n (%)

<.00174 (44.8)164 (11.8)238 (15.3)AKD, n (%)

<.001165 (100)0 (0)165 (10.6)CKD, n (%)

<.00111 (9-14)11 (9-13)11 (9-13)Length of stay, median (IQR)

aCKD: chronic kidney disease.
bNot available.
cACEI or ARB: angiotensin-converting enzyme inhibitor or angiotensin receptor blocker.
dAKI: acute kidney injury.
eAKD: acute kidney disease.

Model Performance
A comprehensive set of over 90 features was served as features
for both AKD and CKD and were integrated into the ML
models. Among the assessed ML models, the LightGBM model
demonstrated superior performance (Figure S2 in Multimedia
Appendix 1 and Tables S2 and S3 in Multimedia Appendix 2).
In the test set, LightGBM achieved the highest AUROC of 0.97
for AKD and 0.96 for CKD prediction. The F1-scores, 0.75 for
AKD and 0.70 for CKD, indicate a balanced trade-off between
precision and recall. Additionally, Brier score loss was
maintained at 0.05 for both AKD and CKD predictions,
demonstrating the model’s impressive calibration. To create a
user-friendly web-based calculator, we simplified the model by
reducing the number of input features. The inclusion of the top

10 and top 5 features for the AKD and CKD models,
respectively, negligibly affected the LightGBM model’s
AUROC (achieving 0.94 vs 0.97 for AKD prediction and 0.94
vs 0.96 for CKD prediction, as detailed in Figure S2 in
Multimedia Appendix 1 and Table 2). Notably, it outperformed
all other ML algorithms in terms of AUROC (Tables S4 and
S5 in Multimedia Appendix 2), while maintaining an optimal
balance between precision, recall, and error rates (both false
positives and negatives). Subsequently, we used the LightGBM
model for result interpretation and the development of a
web-based calculator. Comprehensive insights into performance
metrics and visualizations are provided in Figures S2 and S3 in
Multimedia Appendix 1, Table 2, and Tables S2-S5 in
Multimedia Appendix 2.
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Table 2. Performance of Light Gradient-Boosting Machine models in predicting AKDa and CKDb on the test set.

BSLeMCCdF1-scoreFalse negative rateFalse positive rateAccuracyRecallPrecisionAUROCcOutcome

AKD

0.120.420.520.340.160.820.660.430.87Top 5 features

0.070.680.730.200.070.910.800.670.94Top 10 features

0.060.730.770.200.050.930.800.740.95Top 15 features

0.060.660.710.290.050.920.710.710.95Top 20 features

0.050.720.750.310.030.930.690.830.97All features

CKD

0.070.510.540.280.080.910.720.430.94Top 5 features

0.070.490.520.330.070.910.670.430.93Top 10 features

0.080.430.480.440.070.910.560.420.91Top 15 features

0.070.470.510.390.070.910.610.440.92Top 20 features

0.050.680.700.220.040.950.780.640.96All features

aAKD: acute kidney disease.
bCKD: chronic kidney disease.
cAUROC: area under the receiver operating characteristic curve.
dMCC: Matthew correlation coefficient.
eBSL: Brier score loss.

Model Interpretation
The SHAP summary plots of the LightGBM models are depicted
in Figure 2. Operative duration, hemoglobin (Hb), blood loss,
urine protein, and hematocrit were the top 5 features associated
with predicted AKD. Baseline eGFR, pathology, trajectories of
renal function, age, and total bilirubin were the top 5 features
associated with predicted CKD. The SHAP interaction plots
visually elucidate the interplays among the top 10 features in
both the AKD and CKD models (Figure S4 in Multimedia
Appendix 1). The SHAP dependence plots offer detailed insights
into the correlations among the top 10 features, as depicted in
Figures S6 and S7 in Multimedia Appendix 1, with
representative examples showcased in Figure S5 in Multimedia
Appendix 1. For instance, the influence of AKI grade on the
probability of AKD varies across Hb levels. Among patients
with lower Hb levels, higher AKI grades are associated with a
significant increase in the risk of AKD. Conversely, this
correlation is less pronounced in patients with higher Hb levels.
For patients presenting with a baseline eGFR below 80,
postoperative complications, such as AKD with AKI, subacute
AKD, or AKI recover, markedly elevate the risk of developing
CKD. This observation underscores the significance of
encompassing factors like trajectories of renal function within
a comprehensive clinical framework, particularly one that
integrates a patient’s eGFR.

Sample individualized predictions with their explanations are
shown in Figure 3. The AKD and CKD models, respectively,
present the top 10 and top 5 features. We selected 4 random
samples from the test set and analyzed them using both the
SHAP and LIME algorithms. For example, Figure 3D presents
an individualized explanation for a case where the actual and
predicted outcomes are both CKD. The notably high predicted

probability for CKD (P=.97) primarily stemmed from several
incremental factors, including a low baseline eGFR level (39.36

mL/min/1.73 m2), postoperative complications of AKD with
AKI, clear cell pathology, and a history of antibiotic use, despite

a normal white blood cell level (3.94×109/L). The SHAP force
plot revealed minor deviations in the top 5 features for predicting
this patient, highlighting the greater significance of γ-glutamyl
transferase over albumin-globulin (AG) ratio.

DAG is a type of causal diagram comprising nodes representing
features and arrows representing causal relationships between
the features. Since the importance of features does not
necessarily reflect causality, we designated only AKD and CKD
as end points (nodes with only inward-pointing arrows) in the
DAGs, without designating source nodes (nodes with only
outward-pointing arrows). Given that analyzing all features
(over 90) would lead to an excessively complex causal structure,
we limited the analysis to the top 20 features for AKD and CKD.
During the investigation of AKD as the outcome, we observed
direct links from features such as AKI grade, operative duration,
systolic blood pressure, Hb, antibiotic, baseline eGFR, urine
protein, and hematocrit to AKD, indicating potential direct
causality (Figure S8 in Multimedia Appendix 1). All these
features, except for antibiotics, are among the top 10 features
for AKD prediction. We discovered that the trajectories of renal
function, pathology, and baseline eGFR exhibit potential direct
causal relationships with CKD, and they also rank among the
top 5 features in the CKD model (Figure S9 in Multimedia
Appendix 1). Age did not exert a direct effect on CKD but
influenced it indirectly through its impact on pathology and
baseline eGFR. Despite AG and procedure being within the top
10 features for CKD, our analysis did not reveal a causal link
to CKD, suggesting that while there was a correlation between
AG or procedure and CKD, they were causally independent.
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Figure 2. SHAP summary plots of the top 10 features in the Light Gradient Boosting Machine model for (A and B) AKD and (C and D) CKD prediction.
(A) The ranking of feature importance within the AKD prediction model. Features with higher mean absolute SHAP values signify increased predictive
influence. (B) Each dot represents the SHAP value of a specific feature for an individual, with red and blue indicating high and low feature values,
respectively. On the x-axis, a positive or negative SHAP value signifies that the feature positively or negatively influenced the AKD prediction for the
individual. (C) The ranking of feature importance within the CKD prediction model. (D) The distribution of the impacts of the top 10 features on the
CKD model output. AG: albumin-globulin; AKD: acute kidney disease; AKI: acute kidney injury; ALB: albumin; CKD: chronic kidney disease; eGFR:
estimated glomerular filtration rate; GGT: γ-glutamyl transferase; Hb: hemoglobin; Hct: hematocrit; MPV: mean platelet volume; SBP: systolic blood
pressure; SHAP: Shapley Additive Explanations; TBIL: total bilirubin; WBC: white blood cell.
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Figure 3. SHAP force plots and LIME bar plots for explaining individual predictions for (A and B) AKD and (C and D) CKD. (A) The SHAP force
plot (upper section) and the LIME bar plot (lower section) are used to illustrate a case where both actual and predicted outcomes indicate AKD-free
status. The SHAP force plot outlines the top 10 features for the prediction, where red feature values positively impact the AKD outcome, while blue
values have a negative impact. The importance of each feature is reflected by the length of its corresponding arrow, with longer arrows highlighting
more significant influences. In the LIME bar plot, the left section shows an 87% predicted probability of the patient being AKD-free. The central section
lists the top 10 features for predicting AKD-free or AKD status, with the length of each bar indicating its importance. Blue bars indicate positive
influences, whereas yellow bars signify negative impacts. The right panel presents the specific values at which these top 10 features have the most
substantial impact on the AKD-free or AKD prediction. (B) The SHAP force plot and the LIME bar plot, emphasizing the top 10 features, depict a case
where both actual and predicted outcomes align with AKD status. (C) The SHAP force plot and the LIME bar plot, emphasizing the top 5 features,
depict a case where both actual and predicted outcomes align with CKD-free status. (D) The SHAP force plot and the LIME bar plot, emphasizing the
top 5 features, depict a case where both actual and predicted outcomes align with CKD status. AG: albumin-globulin; AKD: acute kidney disease; AKI:
acute kidney injury; ALB: albumin; CKD: chronic kidney disease; EF: ejection fraction; eGFR: estimated glomerular filtration rate; FIB: fibrinogen;
FLD: fatty liver disease; GGT: γ-glutamyl transferase; Hb: hemoglobin; Hct: hematocrit; LDLC: low-density lipoprotein cholesterol; LIME: Local
Interpretable Model-Agnostic Explanations; MPV: mean platelet volume; NKD: no kidney disease; NSAID: nonsteroidal anti-inflammatory drug; PCT:
procalcitonin; PN: partial nephrectomy; PTA: prothrombin activity; SHAP: Shapley Additive Explanations; TBIL: total bilirubin; WBC: white blood
cell.

Web-Based Calculator
Since the LightGBM model proved to be the most effective in
our study, we developed a web-based calculator using the
“Streamlit” application to predict both AKD and CKD with this
model. Restricting the LightGBM model to only the top 10 and
top 5 features did not diminish predictive performance for the
AKD and CKD models (AUROC: 0.94 vs 0.97 in AKD
prediction and 0.94 vs 0.96 in CKD prediction). For ease of use,
we constructed a web-based calculator using the top 10 and top
5 features to predict AKD and CKD, respectively. You can
access this calculator at Streamlit [30].

Discussion

Principal Findings
Our exploration into the use of ML techniques to predict and
elucidate outcomes in patients undergoing nephrectomy was
instigated by an amplified emphasis on the long-term renal
functional prognosis, the accessibility of intricate data within
the electronic health record system, and the maturation of
interpretable predictive models. Among patients who underwent
nephrectomy, 28.9% (n=451) developed AKI or AKD.

Specifically, 7.5% (n=117) of patients developed AKD in
conjunction with AKI, 13.7% (n=213) experienced recovery
from AKI, and 7.8% (n=121) developed subacute AKD. The
incidence rate of CKD was 10.6% (n=165). We formulated a
diverse array of ML models with a focus on AKD and CKD
prognosis. Among these models, LightGBM exhibited the most
robust predictive prowess, achieving an AUROC of 0.97 for
AKD prediction and 0.96 for CKD prediction. Our research
used SHAP values and the LIME algorithm to interpret the
decision-making process from both global and instance-based
perspectives. Additionally, we used DAG to further visualize
the potential causal relationships between features and outcomes.
In consideration of clinical applicability, we further developed
a web application that uses the final prediction model to estimate
AKD and CKD risks.

Comparison to Prior Work and Implications
Assessment of renal injury risk following nephrectomy has
predominantly concentrated on AKI and CKD, with limited
attention to the recovery of renal function within 7-90 days
post-AKI and its enduring consequences [5,31-33]. Our prior
research has unveiled discernible distinctions in the predicted
risk factors between AKI and AKD. Specifically, AKD is
associated with a notably elevated risk of de novo CKD
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development when contrasted with AKI [34]. This study
encompassed all patients who were hospitalized, with no specific
subgroup analysis conducted for those undergoing nephrectomy.
Hu et al [35] initially developed a predictive model for
postnephrectomy AKD, using an LR model to assess predicted
risk factors associated with renal injury within 3 months
following nephrectomy. Nevertheless, this study did not
differentiate between AKI recover, subacute AKD, and AKD
with AKI. Furthermore, it did not investigate the long-term
outcomes for patients experiencing these distinct renal function
trajectories. In our study, we found a significant association
between trajectories of renal function and the onset and
progression of CKD. Specifically, the coexistence of AKD with
AKI led to a CKD incidence rate of 35.9% (n=42), nearly 1.5
times higher than that observed in patients with subacute AKD
(AKD without AKI). Meanwhile, the CKD incidence rate was
11.3% (n=24) for individuals who had recovered from AKI and
6% (n=67) for those with normal kidney function. Among
patients with kidney injury, nearly one-third experienced
subacute AKD, which did not meet the criteria for either AKI
or CKD diagnosis. These individuals are frequently overlooked
in the early stages due to the modest changes in renal function
they exhibit; however, their risk of developing CKD is
significantly elevated when compared to both patients with
NKD and those who have recovered from AKI. As such, the
presence of AKD serves as a critical link between AKI and
CKD, aiding in the assessment of declining renal function and
prognosis.

Currently, LR is the most widely used model for predicting
kidney injury risk in patients undergoing nephrectomy, with
limited application of ML algorithms [36,37]. Lee et al [38]
used various ML algorithms to formulate a risk prediction model
for AKI after nephrectomy, identifying that the LightGBM
model outperforms others in terms of predictive accuracy.
Compared to LR, LightGBM demonstrates enhanced speed,
more efficient memory use, and superior parallel processing
capabilities, which allow it to more effectively manage nonlinear
relationships, large datasets, and high-dimensional data [39].
Our study has undertaken a thorough evaluation of the predictive
abilities of several ML models, with LightGBM emerging as
the most effective in forecasting high-risk AKD and CKD cases,
alongside precisely pinpointing individual predicted risk factors.
Early alerts assist in promptly notifying clinicians to undertake
vigilant monitoring of patients at high risk. Addressing
manageable predicted risk factors early, such as Hb, systolic
blood pressure, and total bilirubin, presents a considerable
opportunity to lower the occurrence of AKD and CKD, thereby
enhancing patient outcomes.

Given our emphasis on interpretability, our methodology entails
a thorough interpretation of the entire predictive algorithm,
exploring the potential causal relationships between major
features. First, we generate global-level diagrams that elucidate
the contributions of each feature to the model’s output along
with interactions among key features. Features denoting acute
injury, such as surgical factors and AKI grade, exert a significant
influence on AKD. Baseline eGFR and trajectories of renal

function constitute pivotal features affecting CKD. Features
such as advanced age or clear cell carcinoma may be associated
with an elevated CKD risk. While these attributes are generally
nonmodifiable, augmenting the frequency of follow-up visits
for individuals with these characteristics can effectively facilitate
the early detection of renal function deterioration. Second, this
study delineates the decision-making process for each patient.
The examples depicted in Figure 3 elucidate the predominant
feature compositions among patients exhibiting diverse predicted
probabilities of AKD or CKD. Using SHAP force plots and
LIME plots amplifies the individualization and transparency of
the decision-making process, thereby alleviating the black-box
issue inherent in the model’s prediction process. Finally, DAGs
were used to delve deeper into the potential causal relationships
between features and outcomes. It was found that most of the
top 10 features identified by SHAP values have the potential to
directly or indirectly influence the occurrence of AKD or CKD.

For the sake of enhancing user convenience, we have developed
web-based prediction tools for both AKD and CKD. Users can
effortlessly input the values of their chosen features to calculate
the probabilities of AKD and CKD following nephrectomy.
Our research marks a pioneering effort in constructing
web-based prediction tools for postnephrectomy AKD and CKD,
which can assist clinicians in identifying high-risk individuals
and risk factors. Given the clinical feasibility and straightforward
accessibility of features derived from routine medical records,
our models are eminently suitable for seamless integration into
daily clinical practice.

Limitations and Future Directions
The study exhibits several limitations. First, the web-based
prediction tool is crafted to assist clinicians in discerning
individuals with elevated risk of AKD and CKD rather than
serving as a replacement for clinical diagnosis. Due to the
retrospective nature of data collection, it is crucial to undertake
additional validation using an independent population to ensure
robust predictive validity across diverse usage scenarios. Second,
the collection of urine output data is subjective, and a significant
number of values are missing. Consequently, this study refrained
from using urine output as a diagnostic criterion for AKI. Third,
our study lacks time-variant monitored values among its
features. Moving forward, we intend to collect longitudinally
monitored data from patients undergoing nephrectomy to enable
dynamic prediction of AKD and CKD before their clinical
identification. Finally, DAGs visually represent the potential
causal relationships between features and outcomes. This
underscores the need to further explore and quantify the causal
mechanisms in future work.

Conclusions
This study has developed prediction models that accurately
estimate the risk of AKD and CKD following nephrectomy.
These models provide interpretability from both global and
instance-based perspectives. We recommend the use of the AKD
criterion in clinical practice due to its superior accuracy in
predicting prognosis, particularly the development of CKD.
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