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ABSTRACT. Significance: Diffuse optical modalities such as broadband near-infrared spectros-
copy (bNIRS) and hyperspectral imaging (HSI) represent a promising alternative for
low-cost, non-invasive, and fast monitoring of living tissue. Particularly, the possibil-
ity of extracting the molecular composition of the tissue from the optical spectra
deems the spectroscopy techniques as a unique diagnostic tool.

Aim: No established method exists to streamline the inference of the biochemical
composition from the optical spectrum for real-time applications such as surgical
monitoring. We analyze a machine learning technique for inference of changes
in the molecular composition of brain tissue.

Approach: We propose modifications to the existing learnable methodology based
on the Beer–Lambert law. We evaluate the method’s applicability to linear and non-
linear formulations of this physical law. The approach is tested on data obtained from
the bNIRS- and HSI-based monitoring of brain tissue.

Results: The results demonstrate that the proposed method enables real-time
molecular composition inference while maintaining the accuracy of traditional meth-
ods. Preliminary findings show that Beer–Lambert law-based spectral unmixing
allows contrasting brain anatomy semantics such as the vessel tree and tumor area.

Conclusion: We present a data-driven technique for inferring molecular composi-
tion change from diffuse spectroscopy of brain tissue, potentially enabling intra-
operative monitoring.
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1 Introduction
Various biomedical applications such as histopathology or neurosurgery require access to rapid
monitoring of intrinsic tissue properties. In particular, neuronavigation would benefit by having
structural and functional information on brain tissue in real time.1–3 Spatially resolved maps of
the tissue characteristics would allow bypassing invasive disease diagnostics, e.g., biopsy, which
halts the operation. Instead, a surgical decision could be made during the operation, reducing its
time and preserving a healthy brain.

Diffuse optical modalities, such as near-infrared spectroscopy and hyperspectral imaging
(HSI), emerge as promising technologies to address these clinical needs.4,5 These techniques
can probe biological matter utilizing non-ionizing electromagnetic radiation within the visible
and near-infrared ranges. The spectral instrumentation is inexpensive (compared with other
modalities such as MRI), allows for continuous tissue monitoring, and can be easily adapted
for the complex context of the operating room.6

The overarching principle behind spectroscopy-based molecular characterization is to relate
the reflection spectrum obtained upon illumination of the tissue surface with its optical proper-
ties. The molecules constituting the tissue have unique absorption dependency on the optical
radiation frequency, and thus, the reflection should exhibit molecular absorption signatures
in its frequency dependency.

However, several other physical factors contribute to shaping the measured reflectance spec-
tra. These can include light scattering on the surface and within tissue volume, autofluorescence,
tissue inhomogeneity, and background illumination.7 Disentangling these phenomena from a
reflectance spectrum is often an ambiguous, ill-posed problem, yet it is crucial for deducing the
relation between the reflection and molecular composition. Another complication is a scarcity of
available studies in which optical monitoring and quantitative biochemical composition analysis
are performed simultaneously.

Analytical and statistical approaches exist to unmix optical spectra into the physical phe-
nomena defining the spectra profile under a limited data regime.8–14 A large number of methods
mitigate the data scarcity by introducing a physical prior to establishing the spectrochemical link.
Typically, the modified Beer–Lambert law15,16 is used to provide such a link by describing the
incoming light’s energy dissipation as an exponentially decaying function:

EQ-TARGET;temp:intralink-;e001;114;371 log½IRðλÞ∕I0ðλÞ� ¼ −
�X

i

ciμiaðλÞþ sμsðλÞ
�
lþU: (1)

Here, IRðλÞ and I0ðλÞ are the intensities of the reflected and the incoming light; μa and μs are
the absorption and scattering coefficients; the index i denotes the molecule constituting the tissue
such as water, fat, hemoglobin, and cytochromes; ci denotes the corresponding concentration
(e.g., as volume fraction); and s is the weight of scattering in the total light energy dissipation.
The remaining quantities are λ, which is the light wavelength, l is the light pathlength (even
though several works demonstrate the importance of wavelength-dependent definition of the
pathlength,17 in what follows, for simplicity, we opted for constant pathlength independent
of the wavelength), and U describes other physical factors contributing to the energy dissipation
of the incoming light or other sources of the optical signal captured by the light detectors or
cameras.

Typical molecules whose changes in concentration are inferred include oxyhemoglobin,
deoxyhemoglobin, and cytochrome-c-oxidase (CCO).5 Measurement of the former two chromo-
phores can reveal, e.g., the oxygenation status of the brain, and can help determine hypoxic or
hyperoxic conditions. CCO is a fundamental metabolic molecule correlated to ATP production
during cellular respiration, which has previously complemented obtained hemodynamic infor-
mation in various applications.5,18

Now, in the case of changes in molecular composition over the course of optical monitoring,
one can assume that the effects contributing to U either stay constant (e.g., which is a fair
assumption for ambient illumination) or change notably less than the total absorption (in certain
scenarios, even changes in scattering are not expected since it is a rather bulk effect dependent on
the density of the probed matter rather than a molecule-specific one). Under this assumption, the
subtraction of two reflection spectra, log I2R − log I1R (traditionally, these have been two different
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points in time, but this could also be true for different points in space), would cancel out or make
negligible the term δU ¼ U2 − U1 in the following equation:

EQ-TARGET;temp:intralink-;e002;117;712 log½I2RðλÞ∕I1RðλÞ� ¼ −
�X

i

δciμiaðλÞþ δðsμsðλÞÞ
�
lþ δU: (2)

In such a differential form, the modified Beer–Lambert law can now be used to identify
molecular composition. For this, standard least-square optimization algorithms (or non-negative
matrix factorization10,19) can be employed to minimize the difference between the real spectra
and the spectra obtained from the modified Beer–Lambert law. As a result of the minimization,
the optimal values of the set of concentration changes fδci ¼ c2i − c1i g are obtained (alongside
the scattering parameters).

The overarching drawback of this approach is the computational time it takes to infer the
biochemical composition. For example, the optimization methods take a subsecond time to infer
the composition of a single spectrum containing a number of wavelengths typical for broadband
near-infrared spectroscopy (bNIRS) and HSI (a few hundred). However, for real-time applica-
tions particularly in the case of HSI modality, one needs to solve the optimization task in a
subsecond time for as many spectra as there are spatial pixels, as every pixel contains its own
spectrum. The number of pixels on a hyperspectral image can be easily in the order of to
105 − 106. Providing subsecond timings for simultaneous inference on such an number of spectra
poses a challenge for traditional methods.

1.1 Contributions
There are numerous studies analyzing the application of machine learning methods to
achieve fast inversion of the physical models based on Beer–Lambert law or Monte-Carlo
simulations.20–26 Predominantly, they imply training a machine learning model on synthetic
data generated by following the chosen physical formalism and then evaluating the trained model
on real spectra. While proven to work for the use cases mentioned in the cited works, this
approach might be inferior as synthetic data generators likely underestimate the complexity
of real data. To mitigate this, we tested different strategies for model training using only the
“synthetic data” as in previous works or incorporating “real data” via traditional optimization
in the training procedure.

Second, we test the proposed method on its ability to approximate physical models of vary-
ing complexity: “linear” (absorption only) and “nonlinear” (absorption combined with scatter-
ing). While evaluated independently in previous works, here, we also analyze our approach to
explicitly compare both models in terms of spectral fit. This comparison is motivated by a desire
to elucidate the conditions under which the linear model (that can be easily solved using, e.g.,
pseudoinverse) is appropriate for describing the light-brain matter interaction process and where
inclusion of the scattering is necessary.

Third, given that the work is carried out within the HyperProbe project27 aiming to achieve
real-time brain tissue monitoring, the present paper evaluates the “computational timing” for the
biochemical composition inference across different methods and hardware platforms. To
reinforce the comparison, in contrast to previous works manually choosing the hyperparameters’
values of the machine learning methods, we used the AutoML technique28 to identify the most
optimal hyperparameters set.

Finally, to our knowledge, this is the first work that applies a neural-network-based approach
to provide real-time inference of chromophore composition from in vivo “brain tissue” spectros-
copy measurements.29–37 We evaluate and discuss the applicability of the method on broadband
NIRS (transmission mode)38 and hyperspectral (reflection mode)39 measurements of brain tissue.

2 Method
As mentioned in the introduction, inference of absolute chromophore concentrations from an
optical spectrum is a challenging task due to multiple physical effects shaping the reflection
spectrum. Thus, we instead aim to predict the changes in concentrations from changes in the
spectra [Eq. (2)].
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2.1 Dataset Creation
In our method, Fig. 1, we use a supervised data-driven approach by creating a dataset of attenu-
ation-concentration pairs to train a neural network (by attenuation, or more precisely the change
of it, we imply the logarithm of the reflection: ΔA ¼ log I2R − log I1R). We employ two different
strategies to create the dataset.

(a) The first strategy directly utilizes the modified Beer–Lambert law to generate the training
dataset pairs ðΔA; fδcigÞ with ΔA being the difference in attenuation between two spectra
and fδcig the corresponding differences in concentration of chromophores [Fig. 2(a)]. For
each chromophore, we randomly sample values for changes in the molecular composition
fδcig using the uniform distribution within physiologically plausible ranges. These ranges
were determined based on values typically used in the literature, and further details are
provided in the Appendix.

If scattering is included in Eq. (2), we may assume it to be of rational form

EQ-TARGET;temp:intralink-;e003;114;305sμsðλÞ ¼ s

�
λ

500 nm

�
−b
; (3)

with the scaling of the anisotropy g ¼ 0.9 included in s ¼ s 0∕ð1 − gÞ.5,40 In the differential form,
we obtain

EQ-TARGET;temp:intralink-;e004;114;246δ½sμsðλÞ� ¼ s2

�
λ

500 nm

�
−b2

− s1

�
λ

500 nm

�
−b1

; (4)

and therefore also uniformly sample parameters s1; s2; b1; b2 within plausible ranges.40

Subsequently, we input the obtained values into the modified Beer–Lambert law to obtain
synthetic differential attenuations ΔAðλÞ. This difference in attenuation ΔA as input and the
corresponding fδcig as output are then used for training.

(b) Given that the distribution of the synthetic spectra obtained according to the strategy
described above can be notably different from the distribution of real spectra, this can
result in an unsatisfactory network prediction accuracy. Therefore, in addition to (a),
we evaluate another strategy for creating a dataset trying to bridge the gap between the
physical model and real data [Fig. 2(b)]. For this, we use traditional least square min-
imization to fit the changes in the real reflectance spectrum with the modified Beer–
Lambert law. The concentrations fδcig found upon the optimization and the correspond-
ing ΔA constitute the training samples.

Fig. 1 General pipeline describing the learnable approach for inferring concentrations’ changes of
molecules such as reduced and oxidized CCO, oxy- and deoxy-hemoglobin fδcig ¼ fδredCCO;
δoxCCO; δHHb; δHbO2; etc:g. The pipeline involves training on a dataset that is generated by
the means of a modified Beer–Lambert model. According to the model, the light reflection IR is
shaped by the absorption μa and scattering μs phenomena.
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2.2 Network and Optimization Details
The training was performed using a multi-layer perceptron (MLP)41 neural network for both
approaches. The network takes as input a one-dimensional vector of attenuation difference and
outputs molecular concentration changes.

We trained both networks with early stopping when they reached convergence. To find the
optimal network architecture, we used the Ray Tune library28 to validate different MLP archi-
tectures (width, number of hidden layers, and activation functions), learning rates, and batch
sizes. More details regarding the networks and the training procedure can be found in the
Appendix.

Least squares optimization for the Beer–Lambert law, excluding the scattering effect, can be
performed via multiplication of the observed attenuation with the pseudoinverse of the absorp-
tion coefficients.5 To perform the nonlinear least-squared optimization for the Beer–Lambert law
model including scattering, we used the publicly available solver of the SciPy library.42 We used
the least-square minimization obtained predictions as the ground truth (GT) to validate all the
trained networks.

2.3 Data
For our experiments, we applied two types of Beer–Lambert law formulation, with and without
scattering, to two types of spectral datasets: broadband NIRS data for which the spectra were
measured in light transmission mode38 and hyperspectral data, which were obtained in non-
contact reflection mode.39

2.4 Broadband NIRS
The first dataset is composed of broadband NIRS spectra from a study analyzing 27 piglets’
brains in which a hypoxia-ischemia (HI) state was induced.38 The piglets were monitored for
several hours, during which the carotid arteries were surgically isolated, and a stepwise hypoxia
took place for 15 to 20 min. This produced a significant hypoxic-ischaemic effect that changed

Fig. 2 Two strategies for collecting the training dataset. Strategy (a) in which we train a network on
synthetic attenuation-concentration pairs generated from the modified Beer–Lambert law. Strategy
(b) in which the training is performed on pairs of real attenuation and concentrations obtained
through the least-squares fit to the corresponding real spectra.
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the metabolic status of the brain and, in some instances, caused further brain injury. The details of
the intervention protocol are described in Ref. 38. The optical device used in the study utilizes a
miniature light source and a customized high-throughput miniature spectrometer, connected to
high numerical aperture optical fibers. The measurements contain around eight thousand spectra
per piglet. The distance between each measured time point is between 10.0 and 10.5 s. We use the
first thousand measurements, i.e., we only consider the first ∼2.5 h of measurement. For all
piglets, this is sufficient to observe HI and recovery after HI. As Eq. (2) requires defining a
baseline spectrum, analogously to Ref. 38, we used a spectrum at the very beginning of optical
monitoring (i.e., before HI) for the baseline. We normalized the spectra with respect to dark noise
and white reference. The normalized bNIRS spectra before and after the intervention-inducing
hypoxia are shown in Fig. 3(a), and predictions of the concentrations change over the course of
the optical monitoring are shown in Fig. 3(b). Out of the 27 piglets in the dataset, 25 had data
available during HI, such that 19 were used for training, two for validation, and four for testing.
For this dataset, we predict three types of molecules: oxyhemoglobin, deoxyhemoglobin, and
differential CCO (as the total CCO concentration may be assumed to not change within a few
hours, the oxidized-reduced difference spectrum may be used to infer changes of both oxidized
and reduced CCO18), i.e., fδcig ¼ fδcHbO2

; δcHHb; δcdiffCCOg, where δcdiffCCO ¼ δcoxCCO −
δcredCCO. We neglected the potential contribution to the spectra from water and fat due to
their minimal change in concentrations during the 2.5 h of monitoring.38,43 Note that we assume
unitary pathlength in our experiments, which results in units of (mMcm−1) and (cm−1) for
the inferred concentrations. In the NIR range, it has been shown that the pathlength is semi-
constant,38 which effectively leads to a simple rescaling in our concentrations when using this
assumption. This can also be observed when comparing the inferred exemplary concentrations
from Fig. 3(b) with pathlength-corrected concentrations in previous work.38

2.5 Hyperspectral Data
The second dataset we used consists of hyperspectral data from the HELICoiD project.39

The HELICoiD dataset comprises brain HSI images obtained in surgical conditions from 22
patients diagnosed with glioma. The optical instrumentation is based on the pushbroom tech-
nique and a silicon charge-coupled device (CCD) detector array as a camera. The HSI images
provide a high spectral resolution of 826 bands spread between 400 and 1000 nm and a 2D spatial
resolution of a few hundred pixels in each dimension, corresponding to the maximum size of
129 mm × 230 mm.39 The images were also expert-annotated into three tissue classes: normal
and tumor tissues, as well as blood vessels.

A typical hyperspectral image and corresponding spectra are shown in Fig. 4. As one can
see, there is a notable presence of noise at the end of the measured spectra that apparently comes
from the decreasing signal-to-noise ratio of the instrumentation in these ranges. To circumvent

(a) (b)

Fig. 3 (a) Optical spectra from the broadband bNIRS study in Ref. 38 before, during, and after
inducing HI in the piglet’s brain. (b) Predictions of the molecular concentration change
fδcHbO2

; δcHHb; δcdiffCCOg over the course of the optical monitoring (for the Beer–Lambert model
without scattering). The vertical lines denote the time points corresponding to the normalized
reflection spectra on the left.
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this problem, we used the signal from the 530 to 750 nm range, where both absorption properties
of chromophores were known and a high signal-to-noise ratio (SNR) of the instrumentation was
expected. Different from the bNIRS dataset, we used a spectrum of the pixel belonging to the
blood vessel class as a baseline spectrum. The blood vessel was used as a reference for a couple
of reasons. The blood vessel is clearly distinguishable from the other two tissue types, tumor and
non-tumor tissue. These two types of tissue are highly heterogeneous, e.g., within a pixel area,
they can have small capillaries, leakage of blood, agglomeration of dead cells, etc. By contrast,
the blood vessel pixels, especially the ones belonging to large arteries, are less heterogeneous.
Moreover, it is assumed that blood vessels do not possess cytochrome molecules. Thus, it is a
better reference when one sets a goal of detecting the presence of cytochromes in the brain matter.
We then subtracted the baseline spectrum from all other spectra in the same image. In other
words, we performed the differential spectroscopy not in time but in space.

Besides predicting oxyhemoglobin δcHbO2
and deoxyhemoglobin δcHHb, we again infer the

differential CCO concentration due to its role in capturing oxidative metabolic activity. We sep-
arately predicted oxidized CCO and reduced CCO, as the total CCO concentration may not be
assumed to remain constant in space. We also predict water and fat since, for these molecules,
one cannot assume minimal concentration change across different tissue types as in the case of
the bNIRS spectra. For reference, the absorption spectra can be found in the Appendix.

Figure 5 showcases examples of molecular inference for the HSI images from the
HELICoiD dataset. Out of the nine patients with glioblastoma in the dataset, six with distinct
class labeling were chosen, and three patients were used for training, one for validation, and two
for testing. Note that patients might have multiple images taken, and different images from the
same patient were assigned to the same training, validation, and test set to avoid set contami-
nation. Therefore, the training set consists of five, the validation set of one, and the test set of
three images.

3 Results

3.1 Scattering Versus Non-scattering
First, before discussing the learnable methods for molecular inference, we test different Beer–
Lambert law formulations—with and without scattering—to elucidate the limits of applicability
of both models. For the case of piglets undergoing HI, it is widely assumed that the 780 to
900 nm range is predominantly dominated by absorption, with scattering being only a minor
contributor to the overall measured spectrum.38 As measurements in the piglet dataset below
the 780 nm threshold were available, we opted to extend the model fitting range from 740 to
900 nm. This test is motivated by our desire to assess whether a linear model (without scattering)
would still be sufficient to describe the broader spectroscopy measurement of brain tissue.

(a) (b)

Fig. 4 (a) Optical spectra from the HSI study of patients diagnosed with glioma39 for different tissue
types: tumor, normal tissue, and blood vessels. (b) A typical RGB image of the brain surface, which
is obtained from the HSI volume. The dots correspond to the spectra on the left image. The black
circles on the RGB image are rubber rings that surgeons use to mark tumors and healthy tissues.
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Figures 6 and 7 show spectral fits and inferred molecular concentrations using both formu-
lations. The model with scattering provides a clearly better fit. It allows us to better describe
the peak around 760 nm for the bNIRS data, whereas for the HSI data, the inclusion of scattering
is often merely necessary for an accurate fit of the spectra in this wavelength range. This finding
is consistent across the dataset, as shown in Table 1. Table 1 also reveals the fact that the
HELICoiD data are notably noisier than the bNIRS data, which explains the models’ worse
fitting.

To show that the model with scattering can significantly improve model fits, especially for
the higher frequency portion of the spectrum, we evaluate the relative improvement r in terms of
the spectral fit of the scattering model compared with the non-scattering model. We use mean
absolute error (MAE) as a measure of the fit and compute it for all piglets across different spec-
trum bands.

Fig. 5 (a) Examples of HSI images of two patients, shown with respective patient ID, from the
HELICoiD dataset.39 Each pixel in the shown 2D image possesses a spectral signature with
826 bands. From this signature, we predict the molecular concentration change for (b) hemo-
dynamic δcHbT ¼ δcHbO2

þ δcHHb and (c) metabolic δcdiffCCO ¼ δcoxCCO − δcredCCO characteriza-
tion. Here, we use the Beer–Lambert model with scattering, as it provides a closer fit to real
spectra than the model without scattering. We observe that performing the spectral unmixing
on the HSI measurement of brain tissue allows us to better contrast the vessel tree (b) and tumor
area (c) than on the RGB image.

Fig. 6 Comparison between predictions using linear (no scattering) and nonlinear (with scattering)
models for (a) bNIRS and (b) HSIspectra. The GT attenuation is computed from the real spectra
difference. The inclusion of scattering into the formulation of the Beer–Lambert law notably
improves the spectral fit to real data.

Ezhov et al.: Learnable real-time inference of molecular composition. . .

Journal of Biomedical Optics 093509-8 September 2024 • Vol. 29(9)



The spectral fit MAE is calculated by

EQ-TARGET;temp:intralink-;e005;117;238MAE ¼
P

n
i¼1 jΔAmodelðλiÞ − ΔAdataðλiÞj

n
; (5)

where ΔAmodelðλiÞ represents the model-inferred attenuation at wavelength λi and ΔAdata the real
measured attenuation, respectively. The relative mean improvement is computed by

EQ-TARGET;temp:intralink-;sec3.1;117;179r ¼ MAEscatter −MAElinear

MAElinear

;

comparing the improvement in mean error between the scattering and linear models, computed
across all timepoints.

The results of such computation for all piglets are shown in Fig. 8, where we observed a
mean relative improvement of 15.7% over the full fitting range. Such improvement is especially
noticeable in the 740 to 780 nm range, where the mean improvement of the distribution almost
doubled at 30.8%. The spectral fit does not improve significantly in the 780 to 900 nm range,
with the mean relative improvement of the distribution being at merely 5.6%. For one of the

Fig. 7 (a) Comparison between chromophore predictions using the linear model without scattering
(“standard model”) and nonlinear model with scattering (“scattering model”) for the bNIRS dataset.
(b) The predicted coefficients s and b for the scattering term in Eq. (3). Note that the purple curve
represents an overlap across the two red and blue curves.

Table 1 Quantitative performance comparison of the different Beer–Lambert models and network
training strategies on the test set of the two spectral datasets.

Dataset Individual ID

Spectral MAE Concentration MAE

Non-scattering Scattering Strategy (a) Strategy (b)

Broadband NIRS 507 1.23 × 10−2 8.60 × 10−3 1.36 × 10−2 4.32 × 10−3

509 1.09 × 10−2 9.37 × 10−3 2.46 × 10−2 4.81 × 10−3

511 8.01 × 10−3 6.60 × 10−3 1.16 × 10−2 3.41 × 10−3

512 1.20 × 10−2 1.09 × 10−2 1.25 × 10−2 4.59 × 10−3

HELICoiD 012-01 3.27 × 10−2 2.49 × 10−2 1.73 × 10−1 1.64 × 10−2

012-02 2.24 × 10−2 2.19 × 10−2 1.50 × 10−1 2.58 × 10−2

015-01 6.33 × 10−2 2.54 × 10−2 1.75 × 10−1 1.54 × 10−2

To compare the two (non-scattering and scattering) models, we compute the mean absolute error of the spec-
tral fit (denoted as “Spectral MAE”) between the GT observed and predicted signals. The two network training
strategies are compared by assessing the MAE of each strategy between the network and optimization-inferred
concentrations (denoted as “Concentration MAE”) of all considered chromophores. In the case of the HELICoiD
dataset, only pixels labeled as normal, tumor, or blood were considered for these computations. The best-
performing model and strategy for each individual is highlighted in bold.
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25 piglets, we observed that the spectral fit slightly worsened in the 780 to 900 nm range through
the nonlinear model. However, the fitting MAE is only worse by 0.6%, and the spectral fit was
still better for the overall range and in the 740 to 780 nm range. We therefore can still confidently
conclude that the presented model is able to fit the piglets’ measured spectra more closely, espe-
cially for presumed scattering-dominated bands.

The necessity of the scattering consideration in the Beer–Lambert model for the HSI data
can be explained by the more pronounced contribution of the scattering process. For the HSI
data, we infer the difference in molecular composition between different spatial locations on an
image, i.e., between different tissue types. The scattering property across brain tissues can sig-
nificantly vary, and thus, the scattering shapes markedly the differential spectra. By contrast,
for the bNIRS data, we perform the differential spectroscopy analysis not in space but in time
(comparing two spectra for the same location taken at different time points), meaning that the
molecular inference is performed for the same tissue type.

In conclusion, we find that the nonlinear model is especially helpful in describing scattering-
dominated bands. However, the linear model may still be used when absorption is the prevalent
physical effect.

3.2 Evaluating Different Training Strategies
Next, we evaluate the proposed machine learning approach in its ability to substitute both the
linear absorption and the nonlinear scattering model.

Figure 9 demonstrates the results of the experiment in which we test the network trained on
synthetic data collected according to strategy (a) and on real data according to strategy (b), for
both linear and nonlinear models. For the linear case, both strategies are able to correctly infer the
concentrations. The solution to the linear model can merely be found by a matrix multiplication,
i.e., the pseudoinverse, which is why both strategies are able to very accurately predict the opti-
mization-inferred concentrations.

For the nonlinear case, strategy (b) provides qualitatively closer fits. We also tested this
model for the HELICoiD dataset, where we found highly matching results by the use of strategy
(b), as seen in Fig. 10.

These findings are also quantitatively supported by the results in Table 1.

3.3 Computational Time
Importantly, the proposed network-based optimization comes with a significant speed-up in
computational time. In Fig. 11, we show a comparative analysis for performing chromophore
composition inference using standard least-square solvers (based on gradient update or

Fig. 8 Histograms showing mean relative improvement of the spectral fit MAE for the presented
scattering model, compared with the linear model, across all piglets in the dataset for (a) all wave-
lengths, (b) in the range 740 to 780 nm, and (c) in the range 780 to 900 nm in the broadband NIRS
dataset. The x -axis represents the relative improvement r between the two models, and the y -axis
shows the number of piglets that achieved the corresponding mean relative improvement r . The
dashed line signifies improvements below zero, i.e., cases where the spectral fit worsened.
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pseudoinverse) and our proposed approach. The used spectra for this comparative analysis are
taken from the broadband NIRS dataset assuming the scattering model, i.e., they are in the 740 to
900 nm range, with a total of 244 measured wavelengths per spectrum, and the underlying chro-
mophores are oxyhemoglobin, deoxyhemoglobin, and differential CCO.

Fig. 9 Comparison between inference of the molecular composition using the standard optimiza-
tion methods and proposed network-based inference for training strategies (a) and (b) on the
bNIRS dataset. The top row compares both strategies when using the linear model, where highly
accurate neural network predictions are visible in both cases. The bottom row compares the strat-
egies when using the nonlinear model, with strategy (b) delivering noticeably more accurate
predictions.

Fig. 10 Comparison between inference of the molecular composition using the standard optimi-
zation methods (Opti) and proposed network-based inference (NN) for training strategies (a) and
(b) on the HELICoiD dataset. The top row compares strategy (a), left, with strategy (b), right, for the
bNIRS dataset. The figure compares the inference of the hemodynamic signal of the optimization-
based result, left, with strategy (a), middle, and strategy (b), right. Strategy (b) significantly
improves results when using the nonlinear model.
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As solving the linear system using the pseudoinverse requires the least amount of matrix
multiplication, this method provides the fastest computation. However, with the growth of the
number of spectra for which we solve the optimization task, the matrix size for the inversion
increases, and thus, the computational time increases. Starting from ca. 104 number of spectra,
the proposed network having a fixed number of computational units becomes superior in terms of
optimization time. Such runtime will remain approximately constant with a further increasing
number of spectra, assuming sufficient GPU memory is available. More importantly, for non-
linear systems, which are here represented as a Beer–Lambert model with the inclusion of
scattering, one cannot utilize the pseudoinverse and has to resort to nonlinear solvers such as
the ones based on gradient update. Such solvers are two to three orders of magnitude slower
than the neural network approach, which has fixed compute time for linear and nonlinear
systems. As Fig. 11 shows, it takes ca. 0.4 ms for the network to infer biochemical composition
for 105 spectra on NVIDIA GeForce MX450 with 2048 MiB. Overall, on our hardware, it takes
between 2.5 and 3.1 s to run the neural network for one image from the HELICoiD dataset (the
largest among all tested data), from opening the normalized HSI image and loading the neural
network into the GPU, to displaying the inferred concentrations.

4 Discussion and Conclusion
First, in this paper, we wanted to address the limitation of the existing machine learning
approaches to infer molecular composition using a physical model. Predominantly, the training
within these approaches is performed on synthetic data produced by the physical model, analo-
gously to the strategy (a) above. However, real spectroscopy measurements include a few factors
not considered by the modeling, such as instrumentation and physiological noise or other
nonlinear optical phenomena. To close the gap between synthetic and real data, several works
propose incorporating various kinds of noise into the synthetic data.26 But the realism of the used
noise formulations and their sufficiency to close the gap can still be questioned. Instead, the
learning scheme proposed in this paper results in training and testing carried out on the same
type of data obtained by processing real spectra with traditional least-squares optimization. Thus,
no noise model is required to achieve accurate predictions.

However, we must admit that the predictions by the existing training approach are, never-
theless, close to the GT. Intuitively, this behavior is not within expectations as, again, the spectra
of synthetic data on which the network was trained and real data on which it was evaluated
notably vary. We attribute such behavior to the fact that the main spectral feature that networks
learn to focus on is the global functional shape of the spectra. The local behavior of the spectral
function is less informative, and thus, the local perturbations, i.e., random noise, do not affect the
network performance significantly. This reasoning is further reinforced when comparing the net-
work performance between bNIRS and HSI data. For the HSI data, the noise has a pronounced

Fig. 11 Comparison between inference time for various optimization approaches for varying
number of spectra (from 10 to 105): including the pseudoinverse for the linear model (blue) and
optimization-based (red) for the nonlinear scattering model (both running on CPU), as well as
network-based approach for scattering model running on CPU (orange) and GPU (green).
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wavelength dependency, in contrast to bNIRS data (see Fig. 4), which results in the network
performance (trained according to the existing approach) degrading more notably compared with
bNIRS data.

Another explanation for this behavior can be that here, we try to learn with a neural network
a solution to a linear system (or quasi-linear system, in the case of the model with scattering,
where scattering contribution to the reflection spectra is minor compared with the absorption, as
for bNIRS data). We hypothesize that upon network training on the dataset representing solutions
to linear systems, the network weights are learned to minimize the contribution from nonlinear
network units (e.g., activation functions), as such units are unnecessary to establish a linear map-
ping. Generally speaking, the nonlinear units are both a strength and a limitation of the networks.
The strength is that they enable us to learn an arbitrary mapping, and the limitation is the very
sequential application of nonlinear units that can cause the predictions to become highly unstable
for input data unseen during training. However, if the contribution from nonlinear units of the
network is minimized, we would not expect such instability in the network’s predictions.

Second, we want to understand the limits of applicability of the linear model (with no scat-
tering) for describing brain tissue spectroscopy. Note that under the assumption of negligible
contribution from scattering in the modified Beer–Lambert law, Eq. (2) results in a linear system.
Such a system can be efficiently solved using the pseudoinverse, achieving close to real-time
computation. However, in general, when including nonlinear terms in the Beer–Lambert law
formulation (scattering, nonlinear absorption effects, etc.), the system of equations cannot be
solved anymore using pseudoinverse. Our analysis reveals that including scattering can often
be necessary to describe the spectroscopy measurements, especially for HSI data. But also for
the bNIRS data, we have qualitatively observed that the nonlinear model seems to fit the wave-
length range between 740 and 780 nm particularly well (Fig. 8). This finding was within expect-
ations since the range between 780 and 900 nm is not regarded to be dominated by changes in
scattering and has therefore been widely used in broadband NIRS technologies with concentra-
tions inferred through the Beer–Lambert law solely considering absorption.38

Importantly, as a by-product of our analysis, when we test the spectral unmixing on the brain
tissue HSI dataset, we observe that the molecular inference driven by the physical model leads to
better contrasting the blood vessel tree compared with the RGB image, Fig. 5(b), and capturing
metabolic activity (right). Image semantics related to both hemodynamic and metabolic tissue
properties could be highly valuable in assisting neurosurgeons during the process of tumor
removal. Knowledge of the topology of the blood vessel tree would minimize the amount of
undesirable resection of the vessels leading to bleeding. In turn, understanding the metabolic
activity across the 2D field of view would allow for better separation of pathological tissue from
the healthy parenchyma, reducing the time spent on intra- and postoperative biopsy.

To conclude, in the paper, we present a data-driven concept for inferring molecular com-
position change from diffuse spectroscopy of brain tissue. We test the approach on various data-
sets (bNIRS and HSI) and physical models of different complexity (with and without scattering,
i.e., linear and nonlinear systems). Importantly, we evaluate different training strategies for
neural-network-based molecular prediction. The proposed strategy provides predictions that are
nearly identical to the traditional least-square-fit method, making the learnable solver an accurate
alternative. Finally, the method achieves subsecond time for simultaneous inference of molecular
composition across a large number of spectra, allowing for real-time tissue characterization using
bNIRS and HSI imaging modalities.

5 Appendix

5.1 Absorption Spectra of Chromophores
For the broadband NIRS dataset, we used oxyhemoglobin, deoxyhemoglobin, and differential
CCO as absorbing chromophores. These have been used extensively in literature in the context of
NIRS imaging.38 For HSI brain tumor imaging, there is no standardized chromophore set in
the literature that could be used for fitting observed attenuations. We therefore resorted to the
assumptions explained in the main text and reported absorption spectra of these fitted chromo-
phores in Fig. 12.
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5.2 Dataset Generation Details
To generate the synthetic datasets necessary to train the neural networks with strategy (a), we
uniformly sample parameters from certain ranges. For the broadband NIRS dataset, the selected
ranges are shown in Table 2. We also report the physiologically used ranges for the scattering
parameters a1, b1, used in both datasets, and the corresponding reference upon which they were
based. For the HELICoiD dataset, we do not make any direct physiological assumptions as we
instead use minima and maxima of the parameters found during optimization.

5.3 Neural Network Training
All networks were trained with the Adam optimizer. The Ray Tune framework28 automatically
finds neural network hyperparameters that would otherwise be difficult to manually tune and
find. It selected the optimal number of hidden layers H; the network width W; the learning
rate λ; the activation function f; and the batch size B in 200 trials of random search from
the following ranges: H ∈ f0;1; 2;3g or H ∈ f0;1; 2;3; 4g (depending on whether training
was being performed on the broadband NIRS or HELICoiD dataset), W ∈ ½1;64�,
λ ∈ ½10−4; 10−1�, f ∈ fELU;Hardshrink;LeakyReLUg, and B ∈ f32;64;128;256g or
B ∈ f32;64;128;256;512;1024;2048g (depending on the dataset). Slightly different ranges
were used for the HELICoiD dataset to account for a possibly larger needed computational
complexity, due to the inherently more complex dataset. The found optimal parameters are
reported in Table 3.

Fig. 12 Absorption coefficients of the fitted chromophores44–47 used for the HELICoiD dataset. The
first plot shows the absorption coefficients of oxyhemoglobin and deoxyhemoglobin. The second
plot shows the absorption coefficients of CCO, cytochrome-c, and cytochrome-b in oxidized and
reduced form, respectively. Units of these absorption coefficients are per cm per millimole, as they
represent concentrations. The third plot shows absorption coefficients of fat and water in the form
of volumetric content, with units per cm.

Table 2 Ranges for model parameters chosen based on physiological assumption, with the cor-
responding references.

Parameter type Parameter Minimum Maximum Reference

Concentration (broadband NIRS) HbO2 (mM/cm) −0.5 0.5 38

HHb (mM/cm) −0.5 0.5 38

diffCCO (mM/cm) −0.25 0.25 38

Scattering a1 (cm−1) 0 100 40

b1 0 5 40
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