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CTD Tyrosine Phosphorylation Impairs
Termination Factor Recruitment to

RNA Polymerase I

Andreas Mayer,** Martin Heidemann,?* Michael Lidschreiber,® Amelie Schreieck,* Mai Sun,*
Corinna Hintermair,? Elisabeth Kremmer,® Dirk Eick,?t Patrick Cramer*t

In different phases of the transcription cycle, RNA polymerase (Pol) Il recruits various factors

via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the
sequence Tyr'-Ser?-Pro>-Thr*-Ser>-Pro®-Ser’. We show that the CTD of transcribing yeast Pol Il is
phosphorylated at Tyr', in addition to Ser?, Thr®, Ser®, and Ser’. Tyr* phosphorylation stimulates
binding of elongation factor Spté and impairs recruitment of termination factors Nrd1, Pcf11, and
Rtt103. Tyr* phosphorylation levels rise downstream of the transcription start site and decrease
before the polyadenylation site, largely excluding termination factors from gene bodies. These results
show that CTD modifications trigger and block factor recruitment and lead to an extended CTD
code that explains transcription cycle coordination on the basis of differential phosphorylation of

Tyr", Ser?, and Ser”.

tail-like extension of RNA polymerase

(Pol) II and consists of 26 (yeast) or 52
(human) highly conserved heptapeptide repeats
of the consensus sequence Tyr'-Ser’-Pro’-Thr*-
Ser’-Pro®-Ser’. During the transcription cycle,
changes in CTD phosphorylation patterns co-
ordinate the recruitment of transcription and
mRNA processing factors to Pol II (/-3). Dur-
ing early transcription, Ser® phosphorylation re-
cruits the mRNA capping enzyme (4, 5). Ser®
phosphorylation occurs during transcription elon-
gation and functions in recruitment of RNA
3'-processing and termination factors (6). Phos-
phorylations at Ser’ (7—9) and Thr* (10) have
roles in processing of specific RNAs. Tyr! phos-
phorylation was described for human Pol II al-
most two decades ago (/7), but whether this has

The C-terminal domain (CTD) is a flexible,
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a functional role and whether it exists in other
species are unknown.

We generated a monoclonal antibody against
a Tyr'-phosphorylated CTD peptide (3D12, Meth-
ods). Because the functional CTD unit is a pair of
repeats (/2), we determined antibody specificity
by using di-heptapeptides bearing combinations
of phosphorylations (Fig. 1A and fig. S1). This re-
vealed a high affinity for the Tyr'-phosphorylated
CTD that was not impaired by adjacent Ser®
phosphorylation and no affinity to other CTD
peptides (Fig. 1A and fig. S1). The antibody
immunoprecipitated Pol II from extracts of the
yeast Saccharomyces cerevisiae (Fig. 1B), and
the precipitated polymerases were also phospho-
rylated at Ser?, Ser’, and Ser’ (fig. S2). The an-
tibody also recognized Pol II that was purified
from human cells with antibody 1C7 (fig. S1)
and phosphorylated in vitro by the Tyr' kinase
c-Abl (13) (Fig. 1C). Thus, antibody 3D12 spe-
cifically recognizes the Tyr'-phosphorylated
CTD, and Tyr' phosphorylation occurs in yeast.

To investigate whether genome-associated
Pol II is phosphorylated at Tyr', we used high-
resolution chromatin immunoprecipitation (ChIP)
profiling in proliferating yeast (/4). Data from
two biological replicates (R = 0.94) were aver-
aged and revealed strong signals over protein-
coding and small nucleolar RNA genes (fig. S3).
To test whether Tyr' phosphorylation occurs on

all transcribed protein-coding genes, we mea-
sured covariation in ChIP data for other CTD
phosphorylations by singular value decompo-
sition (/4). The first singular vector explained
83.8% of the variance (fig. S4), indicating a
similar occurrence of phosphorylations at Tyr',
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Fig. 1. Pol Il CTD is phosphorylated at Tyr". (A)
Part of the CTD sequence around phosphorylated
Tyr* (Y,). Residues Ser?, Pro®, Thr*, Ser®, Pro®, and
Ser’” are denoted S,, Ps, Ts, Ss, Pg, and S, re-
spectively. CTD residues that interfere with 3D12
antibody binding upon phosphorylation are high-
lighted in black. (B) Western blot analysis of whole-
cell extract from proliferating yeast (Input). Pol II
was immunoprecipitated with antibodies 8WG16,
3D12, and 1C7 (IP Pol I1) and probed with 8WG16
or 3D12. Isotype controls are shown. lg, immu-
noglobulin. (C) Antibody 3D12 detects CTD Tyr*
phosphorylation in Hela cells (Input). Pol Il was
immunoprecipitated with antibody 1C7 (IP 1C7,
fig. S1) and incubated with cAbl kinase, leading
to a 3D12 signal (IP+cAbl). The hyper- (110) and
hypophosphorylated forms (IIA) of Pol Il are
indicated.
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Ser?, and Ser’. A correlation between levels of
Tyr' phosphorylation and mRNA expression (15)
(fig. S5A) further indicated that Tyr' phospho-
rylation is functionally relevant.

Gene-averaging of ChIP profiles (/4) revealed
Tyr' phosphorylation in the coding region (Fig. 2,
A and B). Whereas Tyr' phosphorylation signals
were low at promoters, they increased down-
stream of the transcription start site (TSS). The
gene-averaged profile resembled that for Ser”
phosphorylation, except that Ser* phosphoryl-
ation signals persist downstream of the poly-
adenylation (pA) site for ~200 nucleotides (nt),
whereas Tyr' phosphorylation signals decrease
already around 180 nt upstream of the pA site
(Fig. 2, A, B, and D). The point of Tyr' phospho-
rylation signal increase was dependent on the
TSS, whereas the point of decrease was depen-
dent on the pA site but not on gene length or ex-
pression level (Fig. 2D and figs. S5B and S6).
These results indicate that Tyr' phosphorylation
marks are set and removed within the transcrip-
tion cycle.

To investigate whether Tyr' phosphorylation
influences factor recruitment to Pol II, we de-
termined genomic occupancy profiles for ter-
mination factors Nrd1, Rtt103, and Pcf11, which
contain a CTD-interacting domain (CID). The
gene-averaged Nrdl occupancy peaked at the
beginning of the transcribed region, 193 + 44 nt
downstream of the TSS (Fig. 2C). This region
also showed maximum signals in Ser’ phospho-
rylation, and genomic Nrdl and Ser’ phospho-
rylation profiles correlate (R = 0.6), consistent
with Nrd1 binding to the Ser’-phosphorylated
CTD (16). The general presence of Nrdl at
protein-coding genes extends previous results
(17, 18) and befits a role of Nrdl in early tran-
scription termination (2, /9-21). Rtt103 showed
peak occupancy at the end of genes, 112 + 27 nt
downstream of the pA site, where peak levels of
Pcfl1 were also observed (/4) (Fig. 2C and fig.
S7). Because this region shows the maximum
difference between Ser” and Tyr' phosphoryl-
ation signals, Tyr' phosphorylation may impair
recruitment of Rtt103 and Pcfl11 upstream of the
PA site. Consistent with this, genome-wide oc-
cupancies of Rtt103 and Pcfll do not correlate
well with Ser? phosphorylation signals (R = 0.4,
for both), although both proteins bind the Ser*-
phosphorylated CTD (22, 23).

To test whether Tyr' phosphorylation impairs
CTD binding of termination factors, we deter-
mined the affinity of purified recombinant CIDs
of yeast Nrd1, Pcfl1, and Rtt103 for various
CTD diheptad phosphopeptides (table S1) by
using fluorescence anisotropy (Fig. 3, A to C,
and fig. S8). None of the CIDs bound to an
unphosphorylated CTD peptide. Consistent with
previous results (16, 23), Pcf11-CID and Rtt103-
CID bound to the Ser*-phosphorylated CTD pep-
tide [dissociation constants (Kp) = 54 + 6 uM
(#SD) and 12 + 2 uM, respectively; Methods],
whereas the Nrd1-CID preferentially bound to a
Ser’-phosphorylated CTD peptide (Kp = 85 +
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25 uM). In contrast, none of the CIDs bound Tyrl-
phosphorylated CTD peptides, regardless of
whether additional phosphorylations were present
or not. Thus, Tyr' phosphorylation blocks CID
binding to the CTD in vitro, consistent with the
hypothesis that it impairs termination factor re-
cruitment in vivo.

Structural modeling reveals how Tyr' phos-
phorylation blocks the CID-CTD interaction.
Crystal structures of Ser*-phosphorylated CTD
peptides bound to Pcf11-CID (22) and Rtt103-
CID (23) are available, and the structure of the
Nrd1-CID (6) is known. In the Pcf11-CTD struc-
ture, the Tyr' hydroxyl group forms a hydrogen
bond with the Asp®® side chain in the CID (22)
(fig. S9A). This indicates that Tyr' phosphoryl-
ation blocks CTD binding because of electrostatic
repulsion of two negatively charged groups, the
Asp®® side chain and the Tyr' phosphate. The
CTD-binding aspartate residue is conserved in
the Nrd1 CID (16). In the Rtt103-CTD structure,
the corresponding residue, Asn®, forms a hy-
drogen bond with the Tyr' hydroxyl group (23)
that is incompatible with Tyr' phosphorylation.
Generally, a Tyr' phosphate group modeled onto
CTD peptides in CID complex structures results
in steric clashes (fig. S9B).

Structural considerations also indicated that
Thr* phosphorylation (10) interferes with CID
binding by destabilizing the bound CTD confor-
mation (22). This predicted that Thr* phospho-

500 +250 bp

2000 -1500 -

Fig. 2. Gene-averaged ChIP profiles for CTD
phosphorylations and termination factors. (A)
DNA frame with promoter, 5-untranslated re-
gion (UTR), open reading frame (ORF), and
3-UTR. Dashed black lines indicate the TSS and
pA sites. The dashed gray line marks the posi-
tion 180 nt upstream of the pA site. (B) Gene-
averaged profiles for Ser” (14), Ser® (14), and Tyr*
phosphorylation for 339 genes of medium length
(1238 + 300 nt). (€) Gene-averaged profiles for
Nrd1, Pcf1l (14), and Rit103. ChIP-chip occu-
pancy of Nrd1 and Rtt103 is on the left y axis,
Pcf11 occupancy on the right y axis. (D) Gene-
averaged Tyr' phosphorylation ChIP profiles for
small (S) (725 + 213 nt, 266 genes), medium (V)
(B), and long () (2217 + 679 nt, 299 genes)
gene-length classes, aligned at the pA site.

ChlIP-chip occupancy Pcf11

rylation levels at the pA site are low, to enable
recruitment of Pcfll and Rtt103. Indeed, ChIP
profiling revealed that Thr* phosphorylation is
limited to the transcribed region (fig. S10). Mod-
eling further indicated that Ser’ phosphorylation
is unlikely to interfere with CTD-CID binding,
consistent with Nrd1 recruitment in the 5’ region
of genes where Ser’ phosphorylation levels are
high (14). Thus, genome-wide signals of CTD
phosphorylation at Thr* and Ser” are consistent
with the function of Tyr' phosphorylation in im-
pairing termination factor recruitment.

To investigate whether Tyr' phosphorylation
also impairs CTD interactions of factors with
other CTD-binding domains, we investigated the
tandem Src homology 2 (SH2) domain of elon-
gation factor Spt6. This domain binds the Ser’-
phosphorylated CTD (24-27) and is required for
high Spt6 occupancy on transcribed genes (/4),
suggesting that Tyr' phosphorylation does not
interfere with its CTD binding. Indeed, the re-
combinant domain (residues 1250 to 1444) bound
very well to CTD peptides phosphorylated at
Tyr', Tyr' and Ser?, or Tyr' and Ser® but not to
unphosphorylated CTD (Fig. 3D). These results
were consistent with recent data (26, 27) and
showed that interactions with Tyr'-phosphorylated
CTD peptides were even stronger than for pep-
tides with phosphorylations at Ser” or Ser” alone.
This shows that Tyr' phosphorylation stimulates
CTD binding of a bona fide elongation factor.
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We tested whether Tyr' phosphorylation de-
pends on one of the yeast CTD kinases, Kin28,
Stb10, Burl, or Ctkl, which correspond to hu-
man Cdk7, Cdk8, Cdk9, and Cdk12, respectively.
Inhibition of these kinases in vivo did not signif-
icantly affect Tyr' phosphorylation signals (table S2
and fig. S11). This indicates that Tyr' phosphoryl-
ation of the yeast CTD depends on a kinase other
than the known CTD kinases. Consistent with this,
Tyr' phosphorylation in human cells is achieved
by c-Abl (13), a kinase that lacks a yeast homolog.

Our results extend the previously proposed
CTD code (3, 28, 29), which was based on Ser?
and Ser® phosphorylation, leading to an extended
CTD code for the coordination of the transcrip-
tion cycle with factor recruitment (fig. S12). Dur-
ing initiation and early elongation, the CTD is
phosphorylated on Ser’, which facilitates recruit-
ment of the capping enzyme and Nrdl. Peak
occupancy levels are reached for Nrd1 and Pol IT
150 to 200 nt downstream of the TSS (/4), likely
marking a decision point where Pol II transiently
pauses and either terminates or continues elon-
gation (2). When Tyr' and Ser” phosphorylation
levels rise, Pol II binds elongation factors stably
and continues elongation. Tyr' phosphorylation re-
leases Nrdl and impairs recruitment of Rtt103 and
Pcfl1, suppressing termination during elongation.
Before the pA site, Tyr' phosphorylation levels
drop, whereas Ser” phosphorylation levels remain
high. This enables recruitment of Rtt103 and Pcf11

Protein concentration (uM)

that is enhanced by cooperative interactions between
factors (23) and with nascent RNA (/8), resulting in
3"-RNA processing and transcription termination.
Our results indicate that Tyr' CTD phosphorylation
is a target to activate transcription by suppressing
Pol II termination and explain why mutation of Tyr'
to phenylalanine, which lacks the oxygen atom re-
quired for phosphorylation, is lethal (30).
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