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Accurate predictive models of future disease onset are crucial for effective preventive healthcare, yet longitudinal data sets

linking early risk factors to subsequent health outcomes are limited. To overcome this challenge, we introduce a novel

framework, Predictive Risk modeling using Mendelian Randomization (PRiMeR), which utilizes genetic effects as supervi-

sory signals to learn disease risk predictors without relying on longitudinal data. To do so, PRiMeR leverages risk factors

and genetic data from a healthy cohort, along with results from genome-wide association studies of diseases of interest.

After training, the learned predictor can be used to assess risk for new patients solely based on risk factors. We validate

PRiMeR through comprehensive simulations and in future type 2 diabetes predictions in UK Biobank participants without

diabetes, using follow-up onset labels for validation. Moreover, we apply PRiMeR to predict future Alzheimer’s disease on-

set from brain imaging biomarkers and future Parkinson’s disease onset from accelerometer-derived traits. Overall, with

PRiMeR we offer a new perspective in predictive modeling, showing it is possible to learn risk predictors leveraging genetics

rather than longitudinal data.

[Supplemental material is available for this article.]

Large biobanks such as UK Biobank (UKB) (Sudlow et al. 2015), the
German National Cohort (Wichmann et al. 2016), and others
(Leitsalu et al. 2015; Abul-Husn et al. 2019), have unlocked access
to extensive health metrics and risk factors in healthy individuals,
enabling disease risk predictions for prevention. Yet, limited fol-
low-up data can hinder risk predictive modeling (Pingault et al.
2018), particularly for less prevalent diseases.

Mendelian randomization (MR) is pivotal for identifying
causal links between risk factors and health outcomes, utilizing ge-
netic data across different cohorts (Smith and Ebrahim 2003;
Sanderson et al. 2022). For instance, MR has elucidated the causal
impact of risk factors such as cholesterol levels on cardiovascular
disease, invalidating the protective role of high-density lipopro-
tein (HDL) cholesterol (Voight et al. 2012) and confirming the ad-
verse effects of low-density lipoprotein (LDL) (Holmes et al. 2015).
As interest grows in usingMR for preventive healthcare (Glass et al.
2013; Chiolero 2018; Dixon et al. 2020; Yuan and Larsson 2020;
Xu et al. 2022), we explore its potential for disease risk predictions
as an alternative to longitudinal studies.

We present Predictive Risk modeling using Mendelian
Randomization (PRiMeR), a novel framework for learning disease
risk predictors through nonlinear functions ofmultiple risk factors
leveraging genetic effects. To achieve this, PRiMeR utilizes risk fac-
tors and genetic data from a healthy cohort (Fig. 1A), and results
from genome-wide association studies (GWAS) of diseases of inter-
est (Fig. 1B). During training, PRiMeR fine-tunes the risk predictor

function to ensure that the genetic effects on both the predictor
and the disease outcome are aligned across selected genetic vari-
ants (Fig. 1C), upholding MR’s foundational principles. Once
trained, disease risk in new patients can be assessed solely using
risk factors (Fig. 1D). It is important to note that although
PRiMeR employs the MR framework for disease risk predictions,
it does not constitute a test for causality.

We validate PRiMeR’s risk predictions through extensive sim-
ulations and in a type 2 diabetes (T2D) prediction task, leveraging
follow-up labels for validation. Finally, we apply PRiMeR to identi-
fy a brain imaging predictor of Alzheimer’s disease (AD) risk and an
accelerometer-based predictor of Parkinson’s disease (PD) risk.

Results

Predictive risk modeling using Mendelian randomization

Traditionally, two-sample MR utilizes GWAS summary statistics of
a risk factor (exposure, e.g., LDL cholesterol) and a disease (out-
come, e.g., cardiovascular disease) from different cohorts to assess
the directional effect of the exposure on the outcome (Fig. 2A). MR
operates under the premise that, given essential assumptions, if an
exposure causally influences an outcome, then the effects of expo-
sure-associated variants on the outcome should be directly propor-
tional to their effects on the exposure, with the slope of this
proportionality quantifying the directional effect (Sanderson
et al. 2022). Technically, for S independent exposure-associated
variants, the directional effect â is estimated through inverse
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variance weighting (IVW) regression (Burgess et al. 2013), where
the genetic effects on the outcome (βo∈RS) are regressed on the ge-
netic effects on the exposure (βe∈RS), while accounting for their
standard errors (so∈RS) (Fig. 2B). A critical assumption of MR is
the absence of horizontal pleiotropy; that is, exposure-associated
genetic variants must affect the outcome solely via the exposure,
without affecting alternative pathways (Verbanck et al. 2018).

In this work, we investigate the use of the two-sample MR
framework to learn disease risk predictors, enabling predictive
modeling when longitudinal data are missing or scarce. To clarify
how this could be feasible, we provide an illustrative example:
Suppose directional effects â1, . . . , âK from K candidate risk fac-
tors x1, …, xK on a disease outcome are determined through two-
sample MR. These effects can be aggregated to construct a linear
risk predictor f (x) = ∑

k[C
âkxk, where C represents the set of signifi-

cant directional effects.
With PRiMeR, we extend this concept to learn nonlinear risk

predictors combining multiple risk factors, leveraging individual-
level data from a genetic cohort of healthy individuals and dis-

ease-specific GWAS summary statistics. To do so, we introduce a
differentiable function f parametrized by ϕ aggregating multiple
risk factors into a single risk predictor (Fig. 2A). The predictor is
then fine-tuned to optimize the IVW regression. Briefly, forN indi-
viduals, K risk factors X∈RN×K, C covariates F∈RN×C, and S inde-
pendent genetic variants G∈RN×S associated with at least one of
the K risk factors, the IVW regression loss can be computed as fol-
lows (Fig. 2C):

1. Compute aggregate risk predictor e(ϕ)∈RN×1 from X using ff.
2. Compute genetic effects βe(ϕ)∈RS×1 on the aggregate risk pre-

dictor as the marginal regression weights of each variant G:s

on e(ϕ) accounting for covariates F. This stepmirrors the risk fac-
tor GWAS step in standard MR.

3. Compute IVW regression loss based on risk predictor genetic ef-
fects βe(ϕ), and disease outcome statistics βo and so; that is,
LIVW(f, a, s2) = −log N (bo|be(f)a, s

2diag(s2o )).

As all these steps are differentiable, ϕ can be learned through
gradient-based optimization of the IVW loss (Methods). To select

A
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B

Figure 1. Overview of the PRiMeR framework for disease risk prediction. (A) PRiMeR utilizes matched health metrics and genetic data from a cohort of
healthy individuals. (B) It integrates thesewith disease-specific GWAS summary statistics from an external cohort. (C) The framework trains risk predictors to
align genetic effects with those observed in disease outcomes, maintaining adherence to two-sample MR principles. (D) Posttraining, the model’s accuracy
in predicting disease risk is evaluated, for example, through the receiver operating characteristic curve against actual follow-up disease onset data.

A B C

Figure 2. Mathematical and computational details of the PRiMeR framework. (A) Diagram illustrating the core MR assumptions, where genetic variants
(g1,…, gS) influence exposure (e), which in turn affects outcome (o) with directional effect α. Additions unique to PRiMeR are highlighted in purple: a risk
predictor is computed as a differentiable function ff (parametrized by ϕ) of risk factors X. (B) Illustration of IVW regression, where genetic variant effects on
outcome (βo) are regressed on the aggregate risk predictor (βe), accounting for their standard errors (so). (C ) Main computations in PRiMeR, including com-
putation of the risk predictor e(ϕ), the estimation of genetic effects on the risk predictor βe(ϕ), and the computation of the IVW regression loss. The function
h(e(ϕ),G, F) returns marginal regression weights of each variantG:s on e(ϕ) accounting for covariates F. As all these steps are differentiable, ff can be learned
through gradient-based optimization of the IVW regression loss.
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independent risk factor-associated variants for our analyses, we
performed univariate GWAS analyses for each risk factor followed
by a multivariate clumping procedure (Methods). We considered
the following nonlinear function of risk factors:

ff(x) =
∑K
k=1

ak g(bkxk + ck),

with parameters ϕ= {a1, …, aK, b1, …, bK, c1, …, cK}, where g is a
nonlinear increasing warping function, a choice that enables
modeling potential nonlinearities while being simple and clini-
cally plausible. Such a shape function is commonly used in risk
prediction as it captures the scenario where contributions from
single risk factors remain minimal until a critical threshold and
then escalate (Wainberg et al. 2019; Liang et al. 2020; Zhao
et al. 2023).

Validation of PRiMeR using simulated data

We evaluated the proposed PRiMeR framework through a series
of simulations derived from UKB, encompassing 309,846 unrelat-
ed European individuals. We focused on 26 blood traits observed
as potential risk factors in healthy individuals, simulating scenar-
ios where subsets of these traits affect future health outcomes.
Importantly, the aggregate risk was simulated as a linear combi-
nation of contributions from these factors, each transformed by
a nonlinear increasing warping function to represent contribu-
tions that activate beyond specific thresholds (Methods). Our
simulation framework allowed us to examine the efficacy of
PRiMeR under various conditions, including the presence of hor-
izontal pleiotropy and varying degrees of risk factor influence on
outcome variance.

We compared PRiMeR with its linear variant (PRiMeR-LIN)
and linear risk predictors based on two-sample univariate andmul-
tivariable Mendelian randomization (UVMR-based and MVMR-
based, respectively; Methods). Beyond MR-derived models, we in-
cluded a longitudinal reference model (LRM) trained directly on
individual-level follow-up labels as a performance benchmark
(Methods). Our evaluation maintained a strict two-sample frame-
work, preventing any overlap between the cohorts used for deter-
mining genetic effects on risk factors and outcomes. Wemeasured
the accuracy of the risk predictions for all methods using Spear-
man’s correlation coefficient, comparing estimated risk scores ver-
sus simulated ones in a held-out validation set. To ensure the
calibration of our evaluation procedure, we verifiedmodels’ perfor-
mance was equivalent to random chance in control simulations
without a directional effect (Supplemental Fig. A1).

The findings from our simulations underscore the robust-
ness and versatility of PRiMeR across a wide range of scenarios.
Specifically, PRiMeR’s performance in estimating risk remained
stable when increasing the number of causal risk factors (Fig.
3A). This superior performance persisted across different values
of the variance explained by the risk factors (Fig. 3B) and
when simulating horizontal pleiotropy (Fig. 3C; Methods). We
also assessed the robustness of PRiMeR across differently trans-
formed contributions of single risk factors (Supplemental Fig.
A2; Methods) and varying numbers of observed genetic variants
strongly associated with the risk factors (Supplemental Fig. A3;
Methods).

Finally, we note that although the LRMoffers the highest pre-
dictive accuracy, PRiMeR’s performance can be competitive if fol-
low-up data are sparse (Supplemental Fig. A4). Collectively, these
results highlight PRiMeR’s potential as a powerful tool for predic-
tive modeling when follow-up labels are scarce.

Validation of PRiMeR in predicting 5-year type 2 diabetes risk

Next, we evaluated the prediction accuracy of PRiMeR in a real-
world setting, considering a T2D data set derived from the UKB
data set. Specifically, we aimed to predict 5-year T2D risk by lever-
aging risk factors and genetic data from 218,665 UKB individuals
with no reported T2D at the initial assessment (Methods), and ex-
ternal GWAS summary statistics for T2D (Mahajan et al. 2018). As
input risk factors, we used 37 traits previously linked to diabetes
risk (Edlitz and Segal 2022), including metabolic, anthropometric,
and cardiovascular metrics (Fig. 4A). We used 6077 independent
genetic variants associated with at least one of the risk traits at
the genome-wide significance level (P<5×10−8; Methods).

PRiMeR outperformed baseline MR methods, achieving an
average AUC of 0.847 (±0.002) against 0.836 (±0.002) obtained
using the MVMR-based predictor (P<10−4) (Fig. 4B; Supplemen-
tal Fig. A5). Additionally, we evaluated MR-based model predic-
tions against a polygenic risk score (PRS) model that relies
exclusively on genetic data for predictions (Thompson et al.
2024; Methods), unlike MR-based models which use risk factors
for prediction. Notably, the PRS model markedly underper-
formed compared to MR-based models, recording an AUC of
0.647 (±0.002) (Supplemental Fig. A5). Although a supervised ref-
erence model expectedly yielded the best performance when
trained on full individual-level follow-up data, PRiMeR demon-
strated competitiveness in scenarios with low numbers of fol-
low-up labels (Supplemental Fig. A4).

A B C

Figure 3. Assessment of disease risk prediction accuracy using simulated data. Comparison of model accuracy in recovering the simulated aggregate risk
factor measured by Spearman’s correlation coefficient. Compared are PRiMeR, its linear variant (PRiMeR-LIN), a predictor based on multivariable MR
(MVMR-based), a predictor based on univariate MR (UVMR-based), and the supervised model accessing individual-level follow-up labels (LRM;
Methods), varying the number of contributing risk factors (A), the fraction of outcome variance explained by the risk factors (B), and the fraction of out-
come variance explained by horizontal pleiotropy (C). Stars denote standard values held constant while other parameters were varied. Error bars indicate
standard errors across 10 replicate experiments.
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The risk predictor derived from PRiMeR robustly aligns with
established clinical knowledge, underscored by its correlation
with individual factors (Supplemental Fig. A6; Edlitz and Segal
2022). Notably, the nonlinear relationships identified by
PRiMeR align with clinical expectations; for example, the risk
contributions from glycated hemoglobin and glucose show sig-
nificant increases nearing clinical risk thresholds (Fig. 4C).
Overall, these results showcase the accuracy and clinical plausi-
bility of risk predictors learned through PRiMeR in a real data
setting.

Application of PRiMeR to predict 5-year Alzheimer’s disease

risk from brain imaging biomarkers

We applied PRiMeR to identify imaging biomarkers predictive of
5-year AD risk focusing on 31,552 unrelated European individuals
in the UKB with brain imaging data. As imaging risk factors, we

considered 70 subcortical and gray matter volume traits from T1
MRI having at least five independent genome-wide significant sig-
nals, for a total of 353 independent genetic variants associated
with at least one of these traits. As external AD GWAS results, we
used AD GWAS summary statistics from Wightman et al. (2021).

All multivariable MR models exceeded the performance ex-
pected by chance (Fig. 5A), with PRiMeR achievingmarkedly higher
accuracy compared to linear counterparts (PRiMeR AUC at 0.741±
0.003 vs. PRiMeR-LIN at 0.690±0.003 vs. MVMR-based at 0.629±
0.004) (Fig. 5B). A thoroughanalysis of the key imaging features pin-
pointed byPRiMeR for ADpredictions underscored their correlation
with reductions in gray matter and subcortical volume across vari-
ous regions (Supplemental Fig. A7), particularly in the midbrain
(Fig. 5B,C), consistent with known AD pathology (Knopman et al.
2021). Overall, these results underscore PRiMeR’s effectiveness in
utilizing genetic data for accurate risk prediction in the context of
diseases with lower prevalence, such as AD.

A

C

B

Figure 4. Validation of PRiMeR in predicting 5-year T2D risk. (A) Schematic representation of UKB T2D cohort, showing the inclusion criteria, the 37 risk
factors included in our analysis, and the definition of the 5-year T2D onset labels. (B) Comparison of the mean area under the receiver operating charac-
teristic curve (AUC) scores for 5-year T2D onset labels obtained using PRiMeR, its linear variant (PRiMeR-LIN), a predictor based on multivariable MR
(MVMR-based) and univariate MR (UVMR-based). Error bars denote standard errors across 50 random train/test splits (Methods). (C) Scaled contributions
to risk learned by PRiMeR as function of observed values for glycated hemoglobin (HbA1c), glucose, HDL, and waist-to-hip ratio (WHR). Risk reference
thresholds are annotated in red.

A B C

Figure 5. Application of PRiMeR to predict 5-year AD risk. (A) Comparative performance of PRiMeR against baseline MR models using average AUC for
5-year AD predictions using follow-up labels. (B) Heatmap of the signed −log10 P-value of association between voxel intensities and the AD risk predic-
tor scores, overlayed on the MNI152 template (Miller et al. 2016; Alfaro-Almagro et al. 2018; https://www.bic.mni.mcgill.ca/ServicesAtlases/
ICBM152NLin6). Areas where increased risk predictor scores correlate with significant increased (decreased) voxel intensities are highlighted in red
(blue) (Bonferroni-adjusted P<0.05). (C) Spearman’s correlation coefficients between the AD risk predictor and individual MRI traits in the validation
set. Results for the top 10 associated regions are displayed, with associations for all analyzed regions available in Supplemental Figure A7.
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Application of PRiMeR to predict 5-year Parkinson’s disease

risk from accelerometer features

We applied PRiMeR to learn the risk of 5-year PD, focusing on
69,670 unrelated European individuals in the UKB with acceler-
ometer data. As risk factors, we considered 38 accelerometer-de-
rived biomarkers having at least one independent genome-wide
significant signal (Methods), and we considered external PD
GWAS summary statistics from the FinnGen cohort (Kurki et al.
2023).

PRiMeR and PRiMeR-LIN achieved the highest accuracy
(AUC of 0.787±0.003 and 0.784±0.003, respectively). In con-
trast, the MVMR-based and UVMR-based predictors showed
significantly lower accuracies with AUCs of 0.521±0.006 and
0.519±0.006, respectively (Supplemental Fig. A8). When com-
pared to a PRS model, PRiMeR demonstrated superior predictive
performance (AUC of 0.787±0.003 vs. 0.624±0.001) (Supple-
mental Fig. A8). The analysis of key accelerometer features re-
vealed their strong association with sleep duration and physical
activity levels (Supplemental Fig. A9), confirming recent findings
(Schalkamp et al. 2023).

Discussion

In this study, we demonstrate that the two-sample MR framework
can be extended to enable disease risk predictions using genetic in-
formation, without relying on longitudinal data. We introduce
PRiMeR, a method for genetics-based risk predictions that leverag-
es results fromdiseaseGWAS as supervisory signals for training risk
predictors. The introduced approach is especially valuable given
that genetic biobanks boast extensive health metrics but can lack
longitudinal disease onset data for specific diseases, especially for
those with lower incidence rates.

We validated PRiMeR through simulations and applications
to predict diabetes from cardiovascular health indicators, AD
from brain imaging biomarkers, and PD from accelerometer
data. In simulations, PRiMeR outperformed baseline models
and demonstrated robustness to horizontal pleiotropy, where ge-
netic variants influence outcomes through alternative pathways,
creating outliers in the regression of genetic effects central to
two-sample MR. In real data applications, PRiMeR effectively re-
capitulated several established risk factors. In the T2D applica-
tion, higher risk correlated with higher body mass index and
waist-to-hip ratio (Belkina and Denis 2010; Burhans et al.
2018), lower levels of sex hormone-binding globulin (SHBG)
(Huang et al. 2023), and an imbalance in cholesterol levels
(Lewis and Steiner 1996; Sparks et al. 2012; Vergès 2015)—that
is, higher LDL and lower HDL (Supplemental Fig. A6). In the
brain imaging application, lower volumes in the amygdala, thal-
amus, and hippocampus correlated with higher AD risk
(Supplemental Fig. A7), aligning with known disease pathogene-
sis (Vereecken et al. 1994; de Jong et al. 2008; Poulin et al. 2011).
Finally, lower sleep duration and reduced physical activity were
linked to increased PD risk (Supplemental Fig. A9), confirming
known early stage symptoms (Xu et al. 2010; Lysen et al. 2019;
Schalkamp et al. 2023).

Despite its advantages, PRiMeR is not without limitations.
PRiMeR requires genetic cohorts for risk factors and outcomes to
be sampled from the same population, and failure to meet these
criteriamay lead to challenges due to variations in linkage disequi-
librium patterns (The International HapMap Consortium et al.
2007), necessitating the integration of robust instrument selection

strategies, such as variant fine-mapping (Cai et al. 2023). Although
the simple nonlinearity implemented in PRiMeR enables inter-
pretability, it may fail to capture more complex relationships
between risk factors. Although extensions to more complex para-
metric forms or flexible neural network functions would miti-
gate this, managing overfitting will represent a key challenge.
Future work to address this may involve extending PRiMeR’s
Bayesian framework by integrating recent developments in deep
probabilistic models (Kingma and Welling 2014; Nikolentzos
et al. 2023). Furthermore, incorporating explicit mechanisms to
counterweak instrument bias (Wang andKang 2022) andhorizon-
tal pleiotropy (Sanderson et al. 2022) are critical areas for further
development.

Finally, although our focus has been on predicting disease
risk without reliance on longitudinal data, utilizing a causal infer-
ence framework for disease prediction may provide a viable meth-
od to mitigate confounding in longitudinal data sets (Pingault
et al. 2018), potentially enhancing the generalization of risk pre-
dictors across different data sets. The potential of PRiMeR to facil-
itate this exploration opens exciting avenues for future research,
particularly as more cohorts with deeper phenotype data become
available.

As we look to the future, we identify three key areas where
PRiMeR can make a significant impact. It offers promising solu-
tions for diseases with low prevalence and well-developed GWAS,
such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis,
and bipolar disorder. These applications are critical where tradi-
tional longitudinal analyses areoften limitedby small sample sizes,
particularly for specialized biomarker modalities—for example,
only 19 individuals developed AD within 5 years in the T1 brain
MRI cohort in our analysis. Additionally, PRiMeR has potential ap-
plications in underdiagnosed diseases such as attention deficit hy-
peractivity disorder, depression, and fatty liver disease, all of which
have robust GWAS but lack reliable diagnostic labels for longitudi-
nal analysis. Finally, we are poised to extend PRiMeR’s application
to molecular genetic data sets, such as bulk and single-cell expres-
sion quantitative trait loci data sets (Lonsdale et al. 2013; van der
Wijst et al. 2020;Yazar et al. 2022),where longitudinal information
is typically not available.

Methods

Predictive risk modeling utilizing Mendelian randomization

Two-sample Mendelian randomization and inverse variance weighting

Two-sample MR leverages summary statistics of GWAS of a
risk factor (exposure) and a health outcome to infer the causal ef-
fect of the exposure on the outcome. Assuming S independent
genetic variants associated with the analyzed exposure, this can
be estimated through the IVW regression (Burgess et al. 2013):

bo � N (bea, s
2diag(s2o )), (1)

whereN denotes the multivariate normal distribution, βo∈RS de-
notes the variant effects on the outcome, so∈RS is the standard er-
rors, βe∈RS is the variant effects on the exposure, α is the regression
slope, and σ2 is the variance of the regression error. Within this
framework, the causal effect of the exposure on the outcome is
the maximum likelihood estimator of the regression slope α, that
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is, â =

∑S
i=1

wi be,i bo,i

∑S
i=1

wi (be,i)
2

with standard error SE( â ) = 1��������������∑S
i=1

wi (be,i)
2

√ ,

where wi = 1

(so,i)
2. MR is an instrumental variable analysis method

(Angrist et al. 1996), using the genetic variants associated with the
exposure as instruments. As such, it relies on key assumptions
(Sanderson et al. 2022): (1) The chosen instruments are robustly as-
sociatedwith the exposure; (2) the instruments are independent of
any confounders that may influence both the exposure and the
outcome; and (3) the instruments influence the outcome only
through the exposure, that is, no horizontal pleiotropy.
Moreover, for the causal effect estimate to be valid, the exposure
and outcome statistics need to be estimated on independent co-
horts sampled from the same population (Zhao et al. 2019).

Predictive risk modeling utilizing Mendelian randomization

In classical two-sample MR, βe is retrieved from the GWAS of a sin-
gle risk factor. However, given access to individual-level data and
multiple risk factors, it is feasible to define an aggregate risk factor
as a function of these factors and compute βe by regressing genetic
instruments against this aggregate risk factor. Importantly, if the
function ff parametrized by ϕ is differentiable, the corresponding
genetic effects on the aggregate risk factor βe(ϕ) are also differentia-
ble, enabling the learning of an aggregate risk function ff by
directly optimizing the IVW regression loss through gradient
descent. For N individuals, K risk factors X∈RN×K, C covariates
F ∈ RN×C, and S independent genetic variantsG∈ RN×S, each asso-
ciatedwith at least one of the K risk factors, the IVWregression loss
can be computed as

LIVW(f, a, s2) = −logN (bo | be(f) a, s
2 diag(so)),

where the genetic effects of the aggregated risk factor βe(ϕ) are com-
puted as the marginal regression weights of each variant G:,1, …,
G:,S on ff(X) accounting for covariates F (Supplemental
Information). As LIVW is fully differentiable in ϕ, α, σ2, the predic-
tor function ff is end-to-end trainable. Regarding the analytical
form of f, we opted for a linear combination of nonlinear increas-
ing warping functions of single risk factors:

ff(X) =
∑K
k=1

ak ELU(bk Xk + ck),

with parameters ϕ = {a1, …, aK, b1, …, bK, c1, …, cK} and where
ELU(·) is the exponential linear unit function (Clevert et al.
2015). This formulation assumes contributions from single risk
factors remain minimal until a critical threshold is reached, after
which they escalate (Wainberg et al. 2019; Liang et al. 2020;
Zhao et al. 2023). Note that PRiMeR reduces to multivariable
MR when selecting a linear function for ff (Supplemental
Information; Burgess and Thompson 2015; Sanderson et al.
2020), underscoring the robust foundation and adaptability of
our approach. An overview of related methods to PRiMeR is de-
tailed in Supplemental Information.

Bayesian model and optimization

To enhance PRiMeR’s robustness in scenarios with a limited num-
ber of genetic variants robustly associated with the analyzed risk
factors, we implemented a Bayesian inference approach. This in-
volved introducing priors over the parameters ϕ and optimizing
the log marginal likelihood of the IVW model. For parameters

where analytical integration was infeasible, mean-field variational
inference was utilized to derive the evidence lower bound (ELBO).
Optimization of the ELBO was achieved through gradient descent
using the Adam optimizer, incorporating the reparametrization
trick to enable backpropagation through the expectation term of
the ELBO. This approach aligns with standard practices in varia-
tional inference methods that leverage gradient descent (Kingma
and Welling 2014; Ranganath et al. 2014; Engelmann et al.
2024). The learning rate for all experiments was fixed at 0.01,
and we consistently applied gradient clipping with a norm bound
of one while training for 1000 epochs. Risk predictions were ob-
tained as the mean of the variational posterior of the model.
Comprehensive details on our Bayesian model and variational in-
ference procedure can be found in Supplemental Information.
Finally, we note that prior to all experiments, risk factors were nor-
malized using a rank-inverse Gaussian transformation, a widely
used phenotype transformation for GWAS analyses (McCaw
et al. 2020). Our PRiMeR framework was implemented in
PyTorch (Paszke et al. 2019).

Selection of genetic variants

To identify genetic variants associated with risk factors, we first
conducted a univariate GWAS for each risk factor followed by a
multivariate clumping procedure. GWAS analysis utilized linear re-
gression via GCTA (fastGWA-lr functionality) (Jiang et al. 2019),
adjusting for sex, age, UKB array type, and the top 20 genetic prin-
cipal components. Adjusting for the top 20 genetic principal com-
ponents is a standard practice to correct for population structure in
genetic analyses of unrelated Europeans (Price et al. 2006). After
GWAS, we applied clumping on the minimum P-value statistics
across all traits using PLINK (Purcell et al. 2007), with parameters
fixed to a P-value threshold of 5 ×10−8, an r2 linkage disequili-
brium cutoff of 0.05, and a clumping window of 5000 kb, follow-
ing Zhu et al. (2018). This procedure ensured that selected variants
are approximately independent and associated with at least one of
the risk factors at genome-wide significant level (P<5×10−8).

Comparison models

In our study, we assess the performance of PRiMeR in comparison
to predictive models based on univariate Mendelian randomiza-
tion (UVMR-based) and multivariate Mendelian randomization
(MVMR-based). Both UVMR-based and MVMR-based prediction

methods apply a linear risk prediction function f (X) = ∑K
k=1

akX:,k,

where X represents risk factors and ak represents the estimated
causal effects. UVMR-based determines ak from MR-estimated
causal effects âk for each risk factor Xk, requiring at least five ge-
nome-wide significant genetic instruments, assigning ak=0 for
factorswith a lower number of instruments or nonsignificant caus-
al effects (Bonferroni-corrected P<0.05). Conversely, MVMR-
based determines ak jointly across all risk factors, through a multi-
variate regression of the risk factor effect size matrix Be∈RS×K on
the outcome effect sizes βo (Burgess and Thompson 2015; Sander-
son 2021). Additionally, we contrast PRiMeR’s performance with
its linear counterpart, PRiMeR-LIN, adopting a linear disease risk
prediction function f. As performance benchmarks, we also includ-
ed supervised models trained directly on individual-level follow-
up labels. We primarily compared PRiMeR against a LRM using
the same risk prediction function as PRiMeR. Additionally, we con-
ducted comparisons with ElasticNet, RandomForest, and XGBoost
models. Hyperparameters for all models with access to individual-
level follow-up labels were optimized using an inner fivefold cross-
validation procedure (Supplemental Information). In simulation
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scenarios, these models aimed to minimize the mean squared er-
ror, whereas in the T2D study, the objective was to minimize the
binary cross-entropy loss.

Simulations

Data set generation

In our simulation study, we used 26 blood traits from 309,865 un-
related Europeans from the UKB data set, as potential risk factors.
The data set is available at https://biobank.ndph.ox.ac.uk/ukb/ af-
ter a registration and approval process. We crafted scenarios where
a subset of these traits exerted a causal influence on the health out-
come, with individual risk contributions following a nonlinear in-
creasing warping function—initially remaining negligible until
surpassing a certain threshold, beyond which they increased line-
arly. The health outcomewas generated as the sumof a linear com-
binationof these nonlinearly transformed risk factors, a horizontal
pleiotropy effect, and Gaussian noise. The horizontal pleiotropy
effect was simulated as a direct genetic contribution from a subset
of the variants associated with the blood traits. We systematically
varied key parameters, such as the number of causal risk factors,
and the proportions of the outcome variance explained by the
risk factors and the horizontal pleiotropy effect, respectively.
Additionally, we created a scenario in which we controlled the
sharpness of the risk function, and whether it saturates after sur-
passing a certain threshold, instead of growing linearly.We jointly
validated different values of sharpness and saturation, ranging
from very flat risks to very abrupt risk increases, and from fully un-
bounded risks to those asymptotically approaching an upper
bound. Finally, to assess the robustness of our model under condi-
tions of limited genetic data, we explored scenarios with fewer ge-
netic variants by randomly subsampling from the full set of
variants associated with blood traits. For each simulation parame-
ter configuration, we considered 10 repeat experiments, utilizing
distinct random seeds. Detailed descriptions of our simulation ap-
proach can be found in Supplemental Information.

Evaluation framework

Adhering to a two-sample framework, the datawere divided evenly
into risk factor and outcome cohorts, with this consistent split
maintained throughout all simulated scenarios. Through the ge-
netic variant selection procedure detailed above, 2904 indepen-
dent genetic variants were identified in the risk factor cohort.
Using the outcome cohort, the effects of these genetic variants
on the outcome were estimated—this step substitutes the real
data analysis process of obtaining genetic effects on the outcome
from external GWAS results. We trained PRiMeR using 80% of
the risk factor cohort and evaluated the risk prediction accuracy
on the remaining 20%. Prediction accuracy was assessed by calcu-
lating Spearman’s correlation coefficient between the predicted
and simulated risk values. Within this evaluation framework, we
compare PRiMeR against PRiMeR-LIN, as well as UVMR-based
and MVMR-based predictors. We also compared PRiMeR with
models trained on individual-level follow-up data, including the
LRM, ElasticNet, RandomForest, and XGBoost models (Supple-
mental Fig. A4). For these models, we considered inner fivefold
cross-validation for hyperparameter selection (grid of explored val-
ues in Supplemental Information). Standard errors for all metrics
were calculated from the results of 10 repeat experiments. To en-
sure the calibration of the evaluation procedure, Spearman’s corre-
lation coefficients of all MR-based models were verified to be
compatible with zero in simulations without causal links (Supple-
mental Fig. A1).

Diabetes risk predictions

Cohort definition

We utilized PRiMeR to predict 5-year T2D risk from 37 established
risk factors (Edlitz and Segal 2022). For the outcome genetic ef-
fects and standard errors, we considered the external T2D
GWAS summary statistics from Mahajan et al. (2018), which ex-
cluded the UKB cohort and can be obtained from http://www
.type2diabetesgenetics.org/. For the risk factor cohort, we consid-
ered 218,665 unrelated Europeans fromUKB who did not have di-
abetes at the time of assessment. After matching variants across
the two data sets and excluding palindromic variants, the genetic
variant selection procedure described above identified 6077 inde-
pendent genetic variants associated with at least one of the 37
traits. More info on the longitudinal cohort definition can be
found in Supplemental Information.

Evaluation framework

We compared PRiMeR with MR-based models (PRiMeR-LIN,
UVMR-based, and MVMR-based) and models with direct access
to individual-level follow-up data (LRM, ElasticNet, RandomFor-
est, and XGBoost) (Supplemental Information). Additionally, we
included a PRS predictor, computed externally by Thompson
et al. (2024) and made available in UKB through field 26285, for
comparison. To assess T2D risk prediction accuracy, we employed
the AUC, using actual 5-year T2D risk as labels (derived from fields
41280 and 41270 using ICD10 code E11). To ensure robust signifi-
cance testing and estimate standard errors, we conducted 50 repeat
experiments with random80%/20% splits for training and testing.
Standard errors for all metrics were computed across these experi-
ments, along with t-tests to assess performance improvements.

Interpretation of the learned T2D biomarker

To assess the risk predictor learned by PRiMeR in the T2D experi-
ments, we employed analysis. Firstly, univariate associations
were quantified using Spearman’s correlation coefficients between
the risk predictor and each input risk factor in out-of-sample indi-
viduals (Supplemental Fig. A6). Secondly, to evaluate the model’s
ability to capture nonlinear relationships among the selected risk
factors, we visualized the learned contributions (normalized be-
tween 0 and 1) against observed values of these factors (Fig. 4C).
We observed that all reported values are highly consistent across
all 50 repeat experiments.

Imaging biomarkers of dementia

Cohort definition

We employed two-sample MR methods to estimate the 5-year AD
risk based on brain T1 MRI features. For the risk factor cohort, we
selected 31,552 unrelated Europeans from UKB with T1 brain im-
aging data. Out of the 153 brain volume features that are available
in UKB, we included 70 brain T1 MRI traits with at least five asso-
ciated variants P<5 ×10−8 as risk factors in all MR models, for
which we identified a total of 385 genetic variants. More info
on the risk factor cohort can be found in Supplemental Informa-
tion. For outcome genetic effects, we utilized external GWAS sum-
mary stats for AD in unrelated Europeans from Wightman et al.
(2021), which we downloaded from https://ctg.cncr.nl/software/
summary_statistics.
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Evaluation

We compared PRiMeR with PRiMeR-LIN, as well as UVMR-based
andMVMR-based predictors. We assessed AD risk prediction accu-
racy by AUC using actual 5-year AD risk as labels (derived from
field 131036). Across 31,552 unrelated Europeans from UKB with
T1 brain imaging data, only 19 developed AD within 5 years. All
models were trained on 80% of the healthy risk factor cohort,
while the remaining 20% along with 19 individuals with reported
AD were used as a test set. To robustly test for significance and es-
timate standard errors, we conducted 50 repeat experiments, each
employing different random 80%/20% splits.

Interpretation of the learned AD biomarker

For the interpretation of the learned risk predictor, we conducted a
voxel-based association analysis using T1-weightedMRI scans that
were registered to theMNI152 template (Grabner et al. 2006;Miller
et al. 2016; Alfaro-Almagro et al. 2018; https://www.bic.mni.mcgill
.ca/ServicesAtlases/ICBM152NLin6). Each voxel’s intensity was re-
gressed against the out-of-sample individual’s risk predictor scores,
adjusting for sex, age, UKB array type, and the top 20 genetic prin-
cipal components. This linear association test yielded P-values for
the contribution of the risk predictor to each voxel, which were
transformed into a heatmap overlay on the MNI152 template us-
ing signed P-values (− log10(P) · sign(β)). Blue regions on the heat
map indicate areas of volume decrease associated with increased
risk predictor values, highlighting potential areas that correlate
with higher AD risk (Fig. 4B). Furthermore, we quantified
Spearman’s correlation coefficient between the risk predictor and
each input imaging trait within the held-out validation set (Fig.
4C; Supplemental Fig. A7). Overall, both analyses displayed re-
markable consistency across all experimental repeats, underscor-
ing the reliability of our findings.

Accelerometer-based biomarkers for Parkinson’s disease

risk prediction

Cohort definition

We used PRiMeR to predict 5-year PD risk from accelerometer-de-
rived features from Schalkamp et al. (2023). For outcome genetic
effects and standard errors, we used external PD GWAS summary
statistics from the FinnGen cohort, which is available at https://
www.finngen.fi/en/access_results (Freeze 11; G6_PARKINSON).
Our risk factor cohort included 69,670 from UKB without PD at
the time of accelerometer data collection (field 90003). After
matching variants across data sets and removing palindromic var-
iants, we identified 45 independent variants associated (P<5×
10−8) with at least one of the 38 accelerometer traits, which were
used as input features for our predictors. Due to the lower number
of instruments, we repeated the experiment with a relaxed signifi-
cance threshold for the inclusion of variants in genetics-based pre-
dictive modeling (P<10−6), which yielded 185 variants and
confirmed the robustness of our results across both thresholds
(Supplemental Fig. A10). The Supplemental Information provides
more details on the longitudinal cohort definition and the exact
names of the considered features.

Evaluation framework

We compared the performance of PRiMeR against PRiMeR-LIN, as
well as UVMR-based and MVMR-based predictors. Additionally,
we included a PRS predictor, computed externally by Thompson
et al. (2024) and made available in UKB through field 26260, for
comparison. We assessed PD risk predictions, using the area under
the receiver operating characteristic curve (AUC ROC) as our pri-

mary metric, based on actual 5-year PD risk labels (field 131022).
Our cohort comprised 69,670 unrelated Europeans from the UKB
with accelerometer data, of whom 128 developed PD within 5
years. We trained all models on 80% of healthy participants
from the risk factor cohort and tested on the remaining 20%, along
with the 128 PD cases. To ensure the robustness of our results, we
show the standard error across 50 random 80%/20% splits.

Assessment of risk contribution

We computed Spearman’s correlation coefficients between the
predicted risk and the input accelerometer features within the
test set (Supplemental Fig. A9). The values remained highly consis-
tent across all 50 repeat experiments, highlighting the robustness
of the results.

Use of artificial intelligence

In the preparation of this manuscript, we utilized the large lan-
guage model GPT-4 (https://chat.openai.com/) for editing assis-
tance, including language polishing and clarification of text.
Although this tool assisted in refining the manuscript’s language,
it was not used to generate contributions to the original research,
data analysis, or interpretation of results. All final content deci-
sions and responsibilities rest with the authors.

Software availability

An open-source software implementation of PRiMeR and all
baseline methods are available at GitHub (https://github.com/
AIH-SGML/PRiMeR), Zenodo (https://doi.org/10.5281/zenodo
.13632773), and as Supplemental Code.
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