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Summary
Background Host and environment early-life risk factors are associated with progression of wheezing symptoms 
over time; however, their individual contribution is relatively small. We hypothesised that the dynamic interactions 
of these factors with an infant’s developing respiratory system are the dominant factor for subsequent wheeze and 
asthma.

Methods In this dynamic network analysis we used data from term healthy infants from the Basel-Bern Infant Lung 
Development (BILD) cohort (435 neonates aged 0–4 weeks recruited in Switzerland between Jan 1, 1999, and 
Dec 31, 2012) and replicated the findings in the Protection Against Allergy Study in Rural Environments (PASTURE) 
cohort (498 infants aged 0–12 months recruited in Germany, Switzerland, Austria, France, and Finland between 
Jan 1, 2002, and Oct 31, 2006). BILD exclusion criteria for the current study were prematurity (<37 weeks), major 
birth defects, perinatal disease of the neonate, and incomplete follow-up period. PASTURE exclusion criteria were 
women younger than 18 years, a multiple pregnancy, the sibling of a child was already included in the study, the 
family intended to move away from the area where the study was conducted, and the family had no telephone 
connection. Outcome groups were subsequent wheeze, asthma, and healthy. The first outcome was defined as ever 
wheezed between the age of 2 years and 6 years. Week-by-week correlations of the determining factors with 
cumulative symptom scores (CSS) were calculated from weeks 2 to 52 (BILD) and weeks 8 to 52 (PASTURE). The 
complex dynamic interaction between the determining factors and the CSS was assessed via dynamic host–
environment correlation network, quantified by a simple descriptor: trajectory function G(t). Wheeze outcomes at 
age 2–6 years were compared in 335 infants from BILD and 437 infants from PASTURE, and asthma outcomes 
were analysed at age 6 years in a merged cohort of 783 infants. 

Findings CSS was significantly different for wheeze and asthma outcomes and became increasingly important 
during infancy in direct comparison with all determining factors. Weekly symptoms were tracked for groups of 
infants, showing a non-linear increase with time. Using logistic regression classification, G(t) distinguished 
between the healthy group and wheeze or asthma groups (area under the curve>0·97, p<0·0001; sensitivity analysis 
confirmed significant CSS association with wheeze [BILD p=0·0002 and PASTURE p=0·068]) and G(t) was also 
able to distinguish between the farming and non-farming exposure groups (p<0·0001).

Interpretation Similarly to other risk factors, CSS had weak sensitivity and specificity to identify risks at the 
individual level. At group level however, the dynamic host–environment correlation network properties (G(t)) 
showed excellent discriminative ability for identifying groups of infants with subsequent wheeze and asthma. 
Results from this study are consistent with the 2018 Lancet Commission on asthma, which emphasised the 
importance of dynamic interactions between risk factors during development and not the risk factors per se.
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Introduction
We and others1–6 (The Lancet’s Commission on asthma; 
hypothesis 2)7 have raised the hypothesis that the sum 
of the relative contribution of risk factors for asthma or 
wheezing disorders beyond infancy is composed of a 
dynamic interactive network of host and environment 

factors with the respiratory system, and that the dynamic 
interactions of these determining risk factors with an 
infant´s developing respiratory system are the dominant 
factor for subsequent wheeze. We previously identified in 
our cohort that sex, caesarean section, breastfeeding, 
maternal atopy, viral exposure (siblings or nursery care), 
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and environmental tobacco exposure are important 
determinants for subsequent wheeze.8,9 The relative 
importance of these determinants for subsequent wheeze 
might be age-dependent, because it is well known that 
the respiratory system undergoes rapid developmental 
changes in early life (eg, lung growth, immune, and anti-
inflammatory system development). Thus, lung 
susceptibility to each of these host or environment factors 
might change at different ages. So far, limited attention 
has been given to the idea7,10,11 (eg, the gene–environment–
time model) of how the overall temporal evolution 
of health and disease is affected by the complex dynamic 
interplay of these determining factors.

The progression of a subsequent disease in early life 
might be considered as an impaired developmental 
process, given a set of host and environment factors.7 
We hypothesised that the way the respiratory system 
dynamically responds and adapts to these early-life 
environment factors is more relevant for subsequent 
wheeze than individual host and environment factors 
alone. This developmental adaptive process might be 
mathematically characterisable using a dynamic 
network approach. This approach would provide simple 
integrated dynamic early-life network predictors for 
the evolvement of subsequent wheeze and asthma. 
These predictors might have better predictive ability 
than the individual factors alone.

To characterise this dynamic, interactive, and integra-
tive process we used data from the Basel-Bern Infant 
Lung Development (BILD)12 and Protection Against 
Allergy Study in Rural Environments (PASTURE)13 
prospective birth cohorts. We aimed to make week-by-
week correlations of the determining factors with 

the cumulative symptom score (CSS) obtained during 
the first year of life8 and to investigate the dynamic 
changes of these correlations using mathematical 
network graphs. Because multivariate regression 
ana lysis is limited in capturing complex interactions, 
we aimed to use neural-network-based self-explaining 
machine learning to analyse the relative importance 
of the determining factors.14 

The development of the methods was a step-by-step 
process directed by four aims. First, we aimed to deter-
mine how the week-by-week CSS change in the first 
year of life, and whether the dynamics of this change 
differ in infants with or without subsequent wheeze 
(ever wheezed between age 2 years and 6 years [first 
outcome] and asthma [second outcome]). Second, we 
aimed to examine the correlation of each determining 
factor on the CSS, week-by-week during the first year 
of life. At each week we determined whether the relative 
impact of a given factor on the CSS increased, decreased, 
or remained constant. To account for the complex 
network-type interactions between the factors and 
the symptoms during this adaptive process, we aimed to 
construct a correlation network model and to determine 
its dynamic behaviour over time, characterised by 
the trajectory function G(t). Third, we aimed to analyse 
whether the CSS or G(t) already assessed in infancy 
have the power to differentiate against the control 
group. Fourth, we aimed to investigate whether the CSS 
or G(t) in the first year of life were dependent on 
the environmental context. We aimed to compare 
the cohorts’ identical dynamic networks and also 
the groups of infants from PASTURE raised in farming 
and non-farming environments.
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Research in context

Evidence before this study
This literature review was based mainly on the knowledge and 
judgement of the authors, supported by selected references 
from a PubMed search for papers published from database 
inception to Nov 30, 2022, using two sets of search terms: 
((((host) AND (environment)) AND (time)) AND (early life)) 
AND (asthma OR COPD) as well as ((((gene) AND 
(environment)) AND (on time)) AND (asthma OR COPD)) AND 
(early life). For the two searches, we retrieved 90 studies 
reporting time-dependent effects of host–environment 
interactions occurring in early life in childhood. Of these 
articles, 13 were reviews. Key papers from the authors’ own files 
and online searches were also considered. Only a few papers 
were selected for this specialised topic, without language 
restrictions, based on relevance.

Added value of this study
Using machine learning and dynamic correlation network 
analysis, we showed in two birth cohorts that the correlations 
between early-life host and environment risk factors and 

respiratory symptoms in the first year of life undergo weekly 
temporal changes. These dynamic network-type correlation 
changes (cumulative symptom trajectories) are strong 
determinants of subsequent wheezing between 2 years and 
6 years of life and asthma at age 6 years.

Implications of all the available evidence
The dynamic adaptive process of the respiratory system to the 
environmental risk factors in infancy effectively identifies infant 
groups with subsequent wheezing and asthma. These findings 
underline the crucial role of dynamic adaptation to the 
environment and its importance in disease evolvement in later 
life. Although not suited for risk assessment on an individual 
patient level, these novel early-life biomarkers are clinically and 
scientifically useful for identifying risk groups of infants with 
subsequent persistent airway disease. Our findings are 
consistent with the related hypothesis raised in the 2018 Lancet 
Commission on asthma, which emphasised the importance of 
dynamic interactions between environmental and host risk 
factors during development and not the risk factors per se.
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Methods
Study design
In this dynamic network analysis we developed 
the analytical methods for BILD12 and then replicated 
the findings in PASTURE13 (appendix pp 14–17). The 
BILD cohort comprised 435 neonates aged 0–4 weeks 
that were recruited antenatally in Switzerland between 
Jan 1, 1999, and Dec 31, 2012. The neonates were 
recruited randomly to represent a general population at 
birth and observed until the end of first year of life 
(infancy). The PASTURE cohort comprised 498 infants 
aged 0–12 months recruited in Germany, Switzerland, 
Austria, France, and Finland between Jan 1, 2002, and 
Oct 31, 2006, born in farming and non-farming environ-
ments. The BILD and PASTURE cohorts are 
two comparable birth cohort studies investigating 
the impact of early-life host and environmental risk 
factors contributing to the evolvement of asthma. BILD 
exclusion criteria for the current study were prematurity 
(<37 weeks), major birth defects, perinatal disease 
of the neonate, and incomplete follow-up period. 
PASTURE exclusion criteria were women younger than 
18 years, a multiple pregnancy, the sibling of a child was 
already included in the study, the family intended to 
move away from the area where the study was 
conducted, and the family had no telephone connection. 
This study is an observational study with secondary 
data. The use of clinical data for the prediction 
of outcomes in both cohorts is part of the initial purpose 
of the original BILD and PASTURE cohorts and is thus 
covered by the BILD and PASTURE ethics.

Procedures
We calculated the week-by-week CSS (BILD 2–52 weeks 
of life exposures and PASTURE 8–52 weeks of life expo-
sures). We first investigated the correlation between 
early-life host and environment risk factors and 
the week-by-week CSS in the first year of life, and then 
constructed a dynamic host-environment correlation 
network (DHECN) of these interactions quantified 
by G(t). In subgroups of infants with available outcome 
measures at age 2–6 years, we then compared CSS in 
infancy to subsequent wheeze (first outcome) in 
335 infants in BILD and G(t) in infancy to subsequent 
wheeze in 437 infants in PASTURE. For the second 
outcome of asthma (lower prevalence), we merged 
the two cohorts (n=933) and analysed the correlation 
of CSS and G(t) with subsequent asthma outcome 
(BILD + PASTURE) in 783 patients. In the PASTURE 
cohort we also tested the impact of farming environ-
ment (exposure) on the dynamic behaviour of CSS 
(DHECN). To test the clinical utility of the methods in a 
sensitivity analysis, we investigated the effect of missing 
data in the BILD cohort and symptom severity in 
the PASTURE cohort.

Based on previous BILD cohort studies,9,15–21 we 
defined two types of classic risk factors: (1) host risk 

factors such as gestational age, sex (sex was determined 
by hospital record), maternal atopy, and caesarean 
section; and (2) environment factors such as low 
maternal education, parental smoking, prenatal and 
postnatal maternal smoking, prenatal and postnatal 
exposure to particulate matter air pollution (particulate 
matter with a diameter of 10 µM or less [PM10] and NO2), 
farm upbringing, nutritional factors (breastfeeding), 
and factors related to viral exposure (child care or 
siblings). Air pollution was calculated as described by 
Decrue and colleagues16 and other factors were defined 
by Fuchs and colleagues.12

In the BILD cohort, any respiratory symptoms in 
the first year of life were prospectively recorded using 
severity scores,8 resulting in nine symptom severity 
states (states 0–8; appendix p 5). To calculate the CSS, 
we added up the symptom severity states week-by-week, 
which is hypothesised to be a proxy for the integrated 
developmental process of the first year of life. This 
resulted in 52 CSS, expressed as CSS=Σsymptoms (t), 
whereby (t) is any given week. To calculate the cumula-
tive effect of a determining factor, we computed each 
factor’s sum up to a given week. This calculation then 
yielded, for each risk factor, the value Σrisk-factor (t). For 
example, Σbreastfeeding (t) is the sum of t weeks of breast-
feeding. Further details of the analysis methodology, 
including the corresponding PASTURE cohort analysis, 
are in the appendix (pp 4–5). To compare with 
PASTURE, we repeated the analysis but with two differ-
ences: (1) using only the simple symptom scores (0 or 1; 
appendix p 5), and (2) starting from week 8 (not week 2, 
as in BILD).

The correlation between a given risk factor and 
the CSS at week t was calculated resulting in a time 
series of correlation coefficients as a function of time: 
krisk-factor=corr(Σsymptoms (t), Σrisk-factor (t)). Here, the function 
corr denotes the Pearson correlation.

Because associations of all risk factors with symptoms 
in the first year of life should be considered week-by-
week in a comprehensive and interacting manner, a 
dynamic correlation network best visualises our hypoth-
esis. A detailed description of the construction in 
the appendix (pp 8, 19). The network consists 
of the previously described factors (represented in 
the outer ring) and the weekly CSS (which sits in 
the middle of the circle, representing the centre 
of gravity of all krisk-factor). This centre of gravity changes 
week-by-week as a function of time t and is denoted by 
the trajectory function G(t). The position of G(t) is a 
measure for the interactions (strength of correlation) 
between each factor and the CSS. To quantify the trajec-
tory function G(t), we denoted the week-by-week 
summed Euclidian distance between G(t) from 
the beginning to end of the first year of life (which 
corresponds to the length of the two-dimensional trajec-
tory line). We defined this summed distance as 
the trajectory measure.

See Online for appendix
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Definition of outcomes
Outcomes were assessed by questionnaire during a visit 
at age 6 years. In accordance with the ISAAC III consor-
tium22 the primary outcome was defined as ever wheezed 
between the age of 2 years and 6 years. For simplicity, 
we referred to the group that ever wheezed from the age 
of 2 years to 6 years as the wheeze group and the group 
without wheeze as the healthy group. The comparison 
of G(t) measures for different outcome groups and 
the receiver operating curve (ROC) analysis are in 
the appendix (p 23).

Statistical analysis
First, we compared classic statistics (χ² or Kruskal–
Wallis, logistic regression) between the two outcome 
groups and the time of contribution of each individual 
risk factor, krisk-factor, was calculated for each available risk 
factor. Then, by computing the p values and ROCs, and 
using self-explaining machine learning analysis, we 
determined whether the CSS interaction with risk 
factors is a better risk classifier for wheeze and asthma 
than risk factors alone. Self-explaining machine learning 
analysis (appendix p 7) accounts for all risk factor inter-
actions, thus enabling the relative importance of all risk 
factors to be directly compared with the CSS. Self-
explaining machine learning analysis identifies the risk 
factors carrying the most weight and shows how this 
dynamically changes over the first year of life.

We also tested whether the trajectory function G(t) in 
infancy differs between the wheeze, asthma, and healthy 
outcome groups. To statistically quantify G(t), logistic 
regression classification was used (input was the trajec-
tory measure; and the outcome was the wheeze group 
or the healthy group). Finally, we replicated the predic-
tive power of the CSS and G(t) in the PASTURE cohort 
and compared the farming and non-farming PASTURE 
groups. Detailed statistical and sensitivity analysis infor-
mation is in the appendix (pp 7–9, 11, 24). Of note, CSS 

is an individual classifier, whereas G(t) is a group classi-
fier, thus area under the ROC (AUC) analysis (AUCgroup 
of G(t)) is not directly comparable with AUCindividual 
of CSS. The imputation strategy23,24 is described in 
the appendix (p 5). Data were analysed using Python 
(version 3.9.13) and the Pandas (version 1.5.1), Seaborn 
(version 0.11.2), Scikit-learn (version 1.0.2), and NumPy 
(version 1.22.4) packages. Data visualisation was 
performed using Python packages Plotly (version 5.11.0) 
and NetworkX (version 2.7.1). The distribution of risk 
factors and symptoms in the first year of life, and miss-
ingness of data for both cohorts were processed in R 
(version 4.0.3) and Pandas (version 1.5.1; appendix p 7). 

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
435 participants were included from the BILD cohort, 
of whom 230 (53%) were male, 205 (47%) were female, 
and 435 (100%) were White middle European. 
498 participants were included from the PASTURE 
cohort, of whom 248 (50%) were male and 250 (50%) 
were female. Ethnicity for the entire PASTURE cohort 
was 98·3% European (German, Swiss, Austrian, French, 
and Finnish) and 1·7% non-European. We showed 
the weekly symptoms as a function of time in the first 
year of life for one representative infant from the wheeze 
group and the healthy group and the infant’s corre-
sponding week-by-week CSS (figure 1). The median 
non-cumulative symptom scores and corresponding 
CSS for the whole subsequent wheeze group compared 
with the healthy group are in figure 2 (for PASTURE see 
appendix p 21). When comparing the CSS of the wheeze 
and the healthy groups (figure 2B), the infants with 
subsequent wheeze showed a non-linear steeper increase 
than the healthy group CSS. The findings in BILD were 
replicated using PASTURE (appendix p 22). A further 
analysis with asthma as the outcome confirmed that 
the use of CSS showed congruent behaviour (appendix 
p 23).

We performed a sensitivity analysis to test whether 
the ordering of the weekly CSS time series was a relevant 
finding and not found by chance. By replacing 
the observed non-cumulative symptom scores and CSS 
with scores calculated based on randomly shuffled 
symptom values, visible differences between the groups 
disappeared (appendix p 24).

The CSS at 52 weeks of life was significantly associ-
ated with subsequent wheeze in BILD: p=0·0002 
(PASTURE p=0·068). However, to see how the predic-
tive power of CSS and all other considered risk factors 
changed week-by-week during the first year of life and 
thus determine the best predictor, we used self-
explaining machine learning (figure 3; appendix 

Figure 1: Non-cumulative (A) and cumulative (B) weekly symptom scores from two infants
(A) Representative time series of weekly symptom scores over the first year of life using the non-cumulative 
symptom score for an individual infant from the wheeze group and the healthy group. (B) Corresponding, week-
by-week, cumulative symptom score time series, Σsymptoms (t) for weeks t=2–52, shown in (A). 
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pp 25–28). When directly compared with the other 
determining factors, the relative importance of the CSS 
(sum of symptoms in figure 3) steadily increases 

week-by-week, becoming the most dominant factor 
from week 40 onwards (week 37 for PASTURE; appendix 
pp 25–26). Of note, the sensitivity and specificity of CSS 

Figure 2: Group medians and IQRs of non-cumulative symptom scores (A) and cumulative symptom scores (B)
(A) The median values together with IQR for the number of symptoms over time for the wheeze group and the healthy group. Note the overlapping medians. (B) The 
median values of the corresponding cumulative symptom scores together with IQR for the wheeze group and the healthy group. From week 22, the two group 
medians increase with different slopes, supporting the relevance of the cumulative symptom scores as a predictor. 

0

0

0·5

1·0

2·0

1·5

Sy
m

pt
om

 sc
or

e

10 20 30 40 50

Weeks of life

0

5

15

10

20

25

30

Cu
m

ul
at

iv
e 

sy
m

pt
om

 sc
or

e

0 10 20 30 40 50

Weeks of life

A B
Healthy group median
Wheeze group median

Healthy group median
Healthy group IQR
Wheeze group median
Wheeze group IQR

Figure 3: Self-explaining machine learning showing the relative importance of risk factors over the first year of life
Comparison of the relative importance of risk factors and the cumulative symptom score across multiple timepoints in the first year of life on subsequent wheeze using self-explaining machine 
learning. A multi-layer perceptron builds a model for prediction of subsequent wheeze (appendix pp 7, 25–28). This model is then used to evaluate the predictive power of each factor. Predictive power 
is determined by the difference between the loss function of the multi-layer perceptron model and two cases: (1) when each factor is dropped out (the difference is represented by the length of the bar; 
values are given in the horizontal axis); and (2) when the values of each factor are shuffled between the infants (the difference is represented by the value at the end of the bar). The importance of the 
cumulative symptoms rises over time and becomes the most important factor from week 34 until week 52. The full year animation is in video 1. 
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at week 52 for the clinical risk assessment on an indi-
vidual patient (AUCindividual for BILD was 0·65 and 
AUCindividual for PASTURE was 0·61) was still weak. 
Similarly, the more specific outcome of asthma in 
the merged cohorts was 0·64. 

The correlation coefficients (krisk-factor) between all 
considered risk factors and the CSS as a function of time 
over the first year of life in BILD are in the appendix 
(p 29). During the first year of life, the influence of some 
factors generally decreased (eg, breastfeeding, smoking 
in pregnancy, and farming environment) and the impact 
of other factors increased (sex, day care, and siblings). 

The temporal influence of these factors on the CSS was 
tested in a sensitivity analysis, which suggested a true 
temporal influence (appendix p 30). For other risk 
factors (eg, NO2 and PM10), the influence showed a close-
to-zero linear correlation throughout the first year 
of life.

The correlations of all risk factors with cumulative 
symptoms were represented by a DHECN. The 
DHECNs for weeks 4, 12, 26, and 52 show dynamically 
changing network characteristics over time (figure 4). 
An animation of these week-by-week changes is the first 
evidence of temporal changes of host–environment 

Figure 4: Dynamic host–environment correlation network over the first year of life; the BILD cohort
To simulate the overall adaptive behaviour of these interactions in the first year of life, a time series of networks from weeks 2 to 52 was generated. Here the network 
configurations at 4 weeks (A), 12 weeks (B), 26 weeks (C), and 52 weeks (D) are presented. The full animation for weeks 2 to 52 is in video 2. The different risk factors 
are represented by coloured circles with their size corresponding to their correlation to ΣSymptoms. The grey circle, (sum of symptoms), represents the cumulative symptom 
score for the given week (ΣSymptoms). Its position, G(t), is determined by the strength of correlation with the various host and environment risk factors. Higher correlation 
to a risk factor shortens the distance between G(t) and the risk factor’s circle. The network line colour represents the correlation strength between individual risk factors 
and between risk factors and symptoms—stronger correlations are shown in blue. The position of the symptom circle is the two-dimensional result of the relative 
strength of the correlations (length of correlation lines) with all risk factors in the network graph. Across time, there is dynamic change in correlation and hence in G(t), 
which indicates the adaptive process involving the competing influences of host and environment factors. BILD=Basel-Bern Infant Lung Development. 
PM10=particulate matter with a diameter of less than 10 µm.
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interactions in the first year of life (video 2). In 
the DHECN graphs, a higher correlation of a given risk 
factor to the CSS for a given week (ie, gravity point 
G(t)) shortens the distance between the two points, 
which results in a dynamic trajectory, G(t), changing 
week-by-week. In early life, host factors play a more 
dominant role, however environmental factors, particu-
larly those related to higher viral exposure (day care or 
siblings), start to dominate towards the end of the first 
year of life, as would be expected. In a correlation 
network representation, such influences are competing 
and determine the relative contribution to the develop-
mental cumulative symptom trajectory (PASTURE 
appendix pp 31–32).

The DHECNs show differences in the cumulative 
symptom trajectories G(t) between the wheeze group 
(Gwheeze(t)) and the healthy group (Ghealthy (t); figure 5). 
The DHECNs show that the G(t) is distinct between 
the two groups at all times during the first year of life. 
As early as in the second week of life, G(t), which at 
week 2 is G(2), shows a major difference between 
the two outcome groups. Graphically, (Gwheeze(t)) and 
(Ghealthy (t)) follow different dynamic trajectories, indi-
cating that the relative impact of the various risk factors 
changes differently in the two outcome groups, even 
during the first year of life (PASTURE and asthma 
outcome are in the appendix pp 33–34). The trajectory 
measure is a comprehensive property and gives an 
AUCgroup of 0·99 for BILD, 0·97 for PASTURE, and 
0·98 for asthma outcome (figure 6).

In PASTURE we were able to study the influence 
of distinct environmental risk factors. From plotting 
the G(t) trajectories for PASTURE infants raised in 
farming and non-farming settings we saw clear differ-
ences in the two G(t) trajectories (p<0·0001; appendix 
p 35). Although the symptom trajectories of the farming 
group have different starting points, they converge 
towards a similar endpoint.

Discussion
Infants with known early-life risk factors have a higher 
risk of wheezing disorders at school age9,25 and, later in 
life, of respiratory morbidity and mortality.26 Typically, 
the relative impact of each individual factor is small.10 
We present novel evidence that the impact of several 
early-life determinants for subsequent wheeze or 
asthma show temporal changes during the first year 
of life. These dynamic changes are complex and act in a 
network-type manner on the respiratory system. The 
resulting correlations between early-life determining 
factors and the respiratory system in infancy can be 
characterised and quantified with simple parameters 
such as the CSS and the trajectory function G(t) repre-
senting dynamic network characteristics. G(t) can be 
considered as a composite proxy for the dynamic inter-
action of the respiratory system with the environment 
during infancy, given a set of host factors. While 

the individual classifier CSS is moderately related, 
the group classifier G(t) is strongly related to subse-
quent wheeze and asthma.

Figure 5: Different networks for the wheeze and healthy groups in the BILD 
cohort
The weekly trajectory function G(t) was computed for BILD for the wheeze group 
Gwheeze(t) (red) and for the healthy group Ghealthy (t) (blue). We identified non-
intersecting G(t) for both groups. For both groups the gravity points in the 
second week and in the last week (starting point, marked with a circle, 
52nd week by triangle) show a large difference. The trajectory functions, G(t), of 
the two groups approach over time. By computing the Euclidean distances 
between the following week of G(t), a simple logistic regression algorithm can 
distinguish between both groups (PASTURE replication is in the appendix 
pp 33–35). BILD=Basel-Bern Infant Lung Development. PASTURE=Protection 
Against Allergy Study in Rural Environments.
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Figure 6: ROCs for G(t) for wheeze at age 2–6 years and asthma
The G(t) pathway shows a remarkable ability to predict the outcome group, 
shown by the ROCs. The ROCs for the trajectory measure for G(t) are presented 
for the outcome groups wheeze (BILD and PASTURE) and asthma (merged 
cohorts of BILD and PASTURE). The AUC was very high for both the wheeze 
outcome groups (0·997 for BILD and 0·978 for PASTURE) and the asthma 
outcome group (0·986). Each ROC analysis was performed by randomly taking 
70% of the population from the healthy group and 70% from the wheeze or 
asthma group and computing the trajectory measure for G(t). This process was 
repeated 500 times. AUC=area under the curve. BILD=Basel-Bern Infant Lung 
Development. PASTURE=Protection Against Allergy Study in Rural 
Environments. ROC=receiver operating curve.
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Many epidemiological birth cohort studies use multi-
variate regression analysis to determine the effect 
of early-life risk factors on respiratory outcome in later 
age. However, according to our first hypothesis from 
The Lancet’s Commission on asthma7 that the dynamic 
interactions between risk factors during development 
are important and not the risk factors per se, such 
methods are limited by how they consider these complex 
interactions. We used novel self-explaining machine 
learning methods14 to better capture these complex 
interactions. These methods confirmed that the week-
by-week CSS (figure 2; appendix p 14) discriminated 
best between the subsequent wheeze group and healthy 
group, whereas for the asthma outcome maternal host 
factors dominated the comparison. These findings were 
no trivial mathematical phenomenon, because the effect 
disappeared in a sensitivity analysis using randomisa-
tion methods. Thus, these findings strongly support 
evidence that, even during the first year of life, 
the respiratory system’s characteristics change differ-
ently in infants with subsequent wheeze or asthma. We 
also observed a change in slope of the group means 
of CSS after around 20 weeks of life. Thus, we hypothe-
sised that this temporal pattern is likely related to 
the temporal change of the relative importance 
of the individual determining factors.

In both cohorts, we observed that the impact of some 
factors on the CSS during the first year of life changed 
with increasing age (eg, breastfeeding and farming 
environment impact decreases, and the impact of child 
care and siblings increases, in line with typical chil-
drearing behaviours). For some factors no significant 
linear correlation was found over the first year of life. 
Sensitivity analysis confirmed true age-dependent 
temporal changes in correlation profiles (appendix 
p 30). We further found that the overall correlation 
between risk factors and CSS at a given week can be 
represented in the DHECN, characterised by its centre 
of gravity G(t) for each week, t.

We found that not only the CSS but also the dynamic 
changes in the network trajectory function G(t) were 
different in the subsequent wheeze and asthma groups. 
Quantitative analysis showed that G(t) was highly 
discriminating between the two groups.

G(t), which best represents the respiratory system’s 
dynamic and adaptive response to the environment, is a 
group classifier and cannot be used as an individual 
clinical biomarker. However, the temporal behaviour 
of CSS also inherits indirect characteristics of this 
dynamic and adaptive response. Its dynamically 
increasing relative importance for the prediction 
of subsequent wheeze (and asthma) in comparison to 
the other risk factors during the first year of life can be 
seen in figure 3 and the appendix (pp 25–28). This 
machine learning analysis directly compares CSS with 
other risk factors in a dynamic manner. The findings 
are consistent with the primary hypothesis of the 

relative importance of dynamic adaptive processes in 
infancy in comparison to other risk factors (The Lancet 
Commission on asthma).7 Because we observed 
temporal changes in CSS and G(t) in the first year 
of life, we propose a first model hypothesis that 
the dynamic changes of the correlations (relative 
impact) between determining factors and respiratory 
symptoms could be understood as an adaptive process. 
We hypothesise that this adaptive process was already 
different in infants with subsequent wheeze in compar-
ison to the healthy group. Our data suggest that it is 
probably a dynamic integrating process involving both 
host and environment factors. The CSS could be seen as 
a proxy for a dynamic integration process, whereby 
the CSS predictor inherits the composite cumulative 
network-type impact of the known and, potentially, 
unknown risk factors.

Our second hypothesis is that this adaptive dynamic 
process during the first year of life might be more rele-
vant for subsequent wheeze than the individual risk 
factors alone, as shown by the highly discriminative 
power of G(t) and CSS dynamics.

Our third hypothesis concerns the contextual aspects 
of the DHECN network in this adaptive process in 
infancy. We found clear differences in the dynamic 
behaviour of G(t) in the group of infants between BILD 
and PASTURE (eg, the relative contribution of sex, 
breastfeeding, maternal education, and farming envi-
ronment). Within PASTURE, the DHECN 
representation showed differences in the dynamic 
properties of the trajectory G(t) in infants born on 
farms.

CSS can be used as an individual risk classifier for 
clinical purposes already in the first year of life. CSS can 
easily be assessed by parents using diaries or in an 
e-health and telemonitoring setting. As a cumulative 
biomarker, CSS is robust in terms of observation inter-
vals—it works for complex (eg, BILD) and simpler 
symptom score schemata (eg, PASTURE) and for overall 
symptoms as well as severe symptoms alone. The 
discriminative power of CSS for identifying the risk 
of individual infants is comparable to other risk scores 
described in the literature (AUC of various methods: 
0·66–0·87).27 In the direct comparison of the different 
risk factors using self-explaining machine learning 
the relative importance of the CSS dynamically 
increased week-by-week in the first year of life and is 
the dominant determinant at the end of infancy. 
Although all known risk factors (including CSS) in our 
study have only a modest sensitivity and specificity to 
identify individual infants with subsequent wheeze and 
asthma; on a group level, it becomes clearer that 
dynamic network-type interactions (represented by 
G(t)) between respiratory system and host and environ-
mental risk factors are very important. G(t) is useful in 
a clinical and research setting for identifying groups 
of infants at risk of later wheeze and asthma. G(t) is 
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suitable for detecting the effect of dynamically changing 
risk factors during development or for detecting 
network-type complex interactions between risk factors 
and the respiratory system. Based on G(t), future 
studies could develop novel statistical and algorithmic 
methods to quantify the risk profile of mixed groups 
of infants or prognostic individual patient risk in 
research settings—eg, to guide clinical trials, preventive 
and therapeutic strategies, and to develop clinically 
relevant early-life biomarkers. In real-life clinical prac-
tice, the machine learning findings suggest that 
clinicians treating infants in the first weeks of life can 
identify those at risk of subsequent wheeze or asthma 
by considering factors such as breastfeeding, caesarean 
section, and maternal atopy. For older infants, clinicians 
can be better guided by cumulative symptoms.

Our study has some limitations. The analyses are 
explorative in nature and aim to raise hypotheses for 
future studies. We used subsequent wheeze as our 
outcome, albeit a heterogeneous entity, but it was 
chosen due to sample size considerations. Future 
prospective studies with sufficiently large data samples 
(of both healthy and wheeze or asthma populations) 
would then strengthen our results, helping to further 
explore the importance of the DHECN in infancy for 
more specifically defined asthma outcomes. The 
dynamic behaviour of the correlation networks depends 
on the choice of risk factors. Our choice in this proof-of-
concept study was based on previous publications but 
theoretically, other determining factors could have been 
chosen (eg, prematurity, pet exposure, and preventive or 
therapeutic measures). Future studies might even 
include asthma-related biomarkers (eg, genetic poly-
morphism). Furthermore, the ordering of the risk 
factors within the network circle might affect both 
the graphical representation and the two-dimensional 
statistical analysis. Additionally, we chose a high resolu-
tion of symptom scores during the first year of life, 
assessed prospectively with resource-intensive inter-
views. To increase feasibility for clinical prediction tools, 
future studies need to show whether similar dynamic 
effects can be obtained with reduced observation or 
home-monitoring telemetric devices. Additionally, even 
though we could replicate our results using PASTURE, 
some of the effects appear later than in BILD (towards 
the end of the first year of life), which might happen 
because of the differing symptom scoring systems and 
the different starting points for symptom data collec-
tion. Another point of limitation is the small differences 
between the parameter and outcome definitions (eg, 
maternal education and asthma). Finally, we compared 
G(t) on only pure groups—ie, in individuals who have 
only wheeze, only asthma, or are only healthy. Analysis 
of mixed groups and individuals would require a larger 
sample size of wheeze or asthma population.

These novel findings highlight the importance 
of the dynamic development of the respiratory system 

and correlation networks in the context of a given envi-
ronment for subsequent disease evolvement. We 
propose a paradigm shift in the understanding 
of the evolvement of persisting disease in early life, thus 
we propose novel mathematical methods to quantify 
the dynamic development of disease. For the first time 
we show evidence that such quantitative developmental 
network measures in infancy can effectively be used to 
predict the risk groups of infants with subsequent 
wheeze and asthma. Although gene–environment–time 
models have been described in the literature,7,10 such 
quantitative predictors open a novel field of dynamic 
network physiology and developmental disease research. 
In future studies, the proposed dynamic correlation 
network analysis might help to investigate and quantify 
such temporal disease evolvement of any chronic 
disease, even with different sets of clinically relevant 
determining factors (eg, genes and preventive or thera-
peutic measures) and biomarkers. 
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