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ARTICLE

Genetic liability estimated from large-scale
family data improves genetic prediction, risk score
profiling, and gene mapping for major depression

Morten Dybdahl Krebs,!.2* Kajsa-Lotta Georgii Hellberg,!.2 Mischa Lundberg,!.2 Vivek Appadurai,!2
Henrik Ohlsson, Emil Pedersen,* Jette Steinbach,* Jamie Matthews,> Richard Border,> Sonja LaBianca,!.2
Xabier Calle,1.2 Joeri J. Meijsen,2 iPSYCH Study Consortium,,'* Andrés Ingason,!? Alfonso Buil,!.2
Bjarni J. Vilhjalmsson,2+¢ Jonathan Flint,” Silviu-Alin Bacanu,®° Na Cai,'°® Andy Dahl,!!

Noah Zaitlen,>!'2 Thomas Werge,!2 Kenneth S. Kendler,3° and Andrew J. Schork!.2.13.*

Summary

Large biobank samples provide an opportunity to integrate broad phenotyping, familial records, and molecular genetics data to study
complex traits and diseases. We introduce Pearson-Aitken Family Genetic Risk Scores (PA-FGRS), a method for estimating disease liability
from patterns of diagnoses in extended, age-censored genealogical records. We then apply the method to study a paradigmatic complex
disorder, major depressive disorder (MDD), using the iPSYCH2015 case-cohort study of 30,949 MDD cases, 39,655 random population
controls, and more than 2 million relatives. We show that combining PA-FGRS liabilities estimated from family records with molecular
genotypes of probands improves three lines of inquiry. Incorporating PA-FGRS liabilities improves classification of MDD over and above
polygenic scores, identifies robust genetic contributions to clinical heterogeneity in MDD associated with comorbidity, recurrence, and
severity and can improve the power of genome-wide association studies. Our method is flexible and easy to use, and our study ap-
proaches are generalizable to other datasets and other complex traits and diseases.

Introduction cannot fully accommodate all biobanks, including the
largest for psychiatric genetics, the iPSYCH2015 case-

The analysis of large biobanks (e.g., BioBank Japan,'
deCODE genetics,” iPSYCH,”* UK Biobank,’ etc.) is omni-
present in complex disorder genetics research. These re-
sources provide opportunities to combine large samples,
molecular data, diverse phenotypes, and familial pheno-
types. Leveraging familial phenotypes to estimate disease
liability in large biobanks has applications for improving
power of genome-wide association studies (GWASs),”’
making classifications and predictions,” '’ and offering
better descriptions of underlying causes of disease and het-
erogeneity.'""'* Combining familial and molecular data for
these questions may be especially relevant for paradig-
matic complex disorders, such as major depressive disorder
(MDD), a leading cause of disability worldwide. Such
disorders are marked by complex, multifactorial, highly
polygenic etiologies that limit the power of molecular ge-
netic investigations,'*'* meaning improved approaches
are needed. However, it is not clear how best to combine
familial phenotypes and genotype data. Existing methods

cohort study, due to complex, age-censored, extended ge-
nealogies. Previous applications have focused on one use
case (e.g.,, GWAS or prediction) limiting the picture of
generalizability to other questions. Here, we set out to
develop a method that is applicable to any biobank and
demonstrate, by studying the genetic basis of MDD, that
it can improve multiple approaches applied in molecular
genetic studies of complex disorders.

Currently, methods that transform patterns of diagnoses
in genealogies to continuous liability scores''® in each
relative are limited. Two related resampling approaches es-
timate posterior mean genetic liabilities assuming a liabil-
ity threshold model, conditional on case-control status
and family history (LT-FH)” and additionally conditional
on age at onset and sex (LT-FH++),'” but both consider
only first degree relatives. This excludes information
from more distant relatives and could confound estimates
more strongly with familial environment. Both were
applied only in the context of improving GWASs. So
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et al."® developed a method based on the Pearson-Aitken
(PA) selection formula,'® which is an analytical procedure
for calculating liability from phenotypes in arbitrarily
structured genealogies but assumes each relative has been
followed for their entire life (i.e., is fully observed). A flex-
ible, resampling-based extension of this model was pro-
posed but is computationally prohibitive at scale.”” These
approaches have had a focus on trait predictions. Family
genetic risk scores (FGRSs)”' are kinship weighted sums
of diagnoses of relatives with corrections for familial envi-
ronment, censoring, and other covariates. FGRS accommo-
dates extended genealogies and censored records but is not
based on a well-described model and does not account for
kinship among relatives of probands. FGRS has been
applied to describe genetic differences within and across
disorders. Current methods estimating individual liability
from genealogies are limited and have been applied
narrowly.

We introduce a method, Pearson-Aitken Family Genetic
Risk Scores (PA-FGRS), validate it under simulations, and
apply it to study MDD in the iPSYCH2015 case-cohort
study. We demonstrate that combining PA-FGRS with geno-
types improves three lines of inquiry: (1) classification of
MDD in the context of polygenic score (PGS), (2) identi-
fying robust genetic contributions to clinical heterogeneity
of MDD, and (3) improving power in large, single-cohort
GWASs of MDD. Our applications confirm, add context
to, and extend recent methodological advances and their
applications in similar data. The PA-FGRS framework is
extensible, powerful, and well-calibrated and could be
applied to large biobanks or smaller family studies to pursue
similar aims with other complex disorders.

Methods

iPSYCH2015 case-cohort study

The Lundbeck Foundation initiative for Integrative Psychiatric
Research (iPSYCH)** is a case-cohort study of all singleton births
between 1981 and 2008 to mothers legally residing in Denmark
and who were alive and residing in Denmark on their first birthday
(N = 1,657,449). The iPSYCH2015 case-cohort study comprises
two enrollments from this base population. The iPSYCH2012
case-cohort study enrolled 86,189 individuals (30,000 random
population controls; 57,377 psychiatric cases).> The iPSYCH2015i
case-cohort study expanded enrollment by an additional 56,233
individuals (19,982 random population controls; 36,741 psychiat-
ric cases).”* DNA was extracted from dried blood spots stored in
the Danish Neonatal Screening Biobank®” and genotyping was
performed on the Infinium PsychChip v1.0 array (2012) or the
Global Screening Array v2 (2015i). Psychiatric diagnoses were ob-
tained from the Danish Psychiatric Central Research Register
(PCRR)** and the Danish National Patient Register.”* Diagnoses
in these registers are made by licensed psychiatrists during in- or
out-patient specialty care, but diagnoses or treatments assigned
in primary care are not included. Linkage across population regis-
ters to parents where known and to the neonatal biobank is
possible via unique citizen identifiers of the Danish Civil Registra-
tion System.?® The use of this data follows standards of the Danish

Scientific Ethics Committee, the Danish Health Data Authority,
the Danish Data Protection Agency, and the Danish Neonatal
Screening Biobank Steering Committee. Data access was via secure
portals in accordance with Danish data protection guidelines set
by the Danish Data Protection Agency, the Danish Health Data
Authority, and Statistics Denmark. There are restrictions to the
availability of the individual-level data used for this work, as the
consent structure of iPSYCH and Danish law prevent individual
genotype and phenotype data from being shared publicly.

Genotyping and quality control

Genotype phasing, imputation, and quality control were per-
formed in parallel in the 2012 and 2015i cohorts according to
custom, mirrored protocols. Briefly, phasing and imputation
were conducted using BEAGLEv5.1,°“?” both steps including
reference haplotypes from the Haplotype Reference Consortium
(HRC) v1.1.%® Quality control was applied prior to and following
imputation to correct for missing data across SNPs and individ-
uals, SNPs showing deviations from Hardy-Weinberg equilibrium
in cases or controls, abnormal heterozygosity of SNPs and samples,
genotype-phenotype sex discordance, minor allele frequency
(MAF), batch artifacts, and imputation quality. Kinship was de-
tected within and across 2012 and 2015i cohorts using KING,*’
censoring to ensure no second degree or high relatives remained.
Ancestry was examined using the smartpca module of
EIGENSOFT,*” and multivariate PCA outliers from the set of iP-
SYCH individuals with both parents and four grandparents born
in Denmark were excluded. In total, 7,649,999 imputed allele dos-
ages were retained for analysis.

iPSYCH2015 case-cohort genealogies

All recorded relatives of probands in this iPSYCH2015 case-cohort
were obtained from the Danish Civil Registry*® using mother-fa-
ther-offspring linkages. From the 141,265°" probands, we identi-
fied 2,066,657 unique relatives, assembling all relationships into
a population graph using the kinship2®* and FamAgg®' packages
where edges denoted membership in a recorded trio. The related-
ness coefficient for each pair was calculated as a weighted sum of
unique ancestral paths through the population graph (i.e., not
including the same individual, except for the common ancestor).
Each path in the sum was weighted by (0.5)(number of edges in
the path).** The Danish Civil Registry does not contain informa-
tion on zygosity for same-sex twins, but following analysis of
the SNP-kinship of children of same-sex twins (Figure S1), we as-
signed same-sex twins a relatedness coefficient of 0.75. Similarly,
guided by analysis of siblings with missing paternal records
(Figure S2), we assigned maternal siblings with missing paternal re-
cords a relatedness coefficient of 0.25. Among individuals with pu-
tative European ancestry and both genotyped on the same array,
SNP-based relatives were identified using KING*® (-degree 4 op-
tion). Additionally, 24,773 pairs of relatives from the population
genealogy included two probands genotyped on the same geno-
type array. We used Pearson’s correlation of the graph-inferred
kinship and SNP-inferred kinship from KING*” as an estimate of
concordance and quality of inferred relationships.

PA-FGRS

PA-FGRS estimates a liability for disease carried by a proband from
the observed disease status in a pedigree and under the assump-
tion of a liability threshold model for the disease.** The method
first estimates an initial liability for each relative and then uses
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the PA selection formula to sequentially update the expected lia-
bility in the proband conditional on each relative.**

We begin by assuming a disease, D; = 1, arises when an individual,
i, carries a latent liability, L;, that surpasses some threshold, ¢. Liabil-
ity, L;, can arise from additive effects (B;) of genetic factors (Xy) or
environmental deviations (e;), and genetic contributions follow
classic polygenic theory.***> We can write a generative model:

L=G +e= Zﬁ,‘xﬁ + e
j

D = { LLiZt 4 go1(1 - Kyy)

0,L; < t’
where the threshold, {, is the standard normal quantile that corre-
sponds to a cumulative probability of Ko, the lifetime prevalence
of the disorder. Further, we assume that the vector consisting of
the genetic liability of the proband and the total liability of n ge-
netic relatives [L1, ..., Ly, GP]T ~ MVN([O,..., O]T, X) with covariance
matrix:

1 ol ol
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Under this model, the expected value of L;, conditional on the
true value for D; is according to truncated normal distribution
36,

theory””:

E(Li|Dy) =

A critical assumption of this model is that each individual is fully
observed (i.e., no age censoring), meaning there is an equivalence
between their diagnostic and disorder status. This assumption
rarely holds in practice, but the variable follow-up of relatives by
the Danish register system makes it extremely tenuous. We instead
propose a model (Note S1) where the disease status Y; in those who
surpass the threshold is observed with a probability corresponding
to the ratio between (possibly stratified) age-specific prevalence
(K;) and the life-time prevalence (K,).

;=

Bemoulli( Ki ), D=1
Kpop

0, D;=0

To get the expected liabilities under this model, we use a mixture
of an upper and a lower truncated Gaussian both with mean and
variance corresponding to their conditional expectations and with
the mixture proportion (m;), corresponding to the conditional
probability of being a case. Let ¥ (u,0?,a,b) denote a truncated
Gaussian with mean u, variance o2, lower truncation at 4, and up-
per truncation at b. Then the distribution of L; conditional on ob-
servations 1 to i is

1 ? LI ?

LilYa, oo, Yi, Ko Ko Kpepy £ v (1= iy (", 07

a=—ob= T) + Wi¢<#$i—l)* Q(i—l)*l’a _

[l ¥

T,b = 00>

with u;* = E(L/'|Y17.”,Y,',Kl,...,Kthop,E) for i >0 and ,U,?* =0,
while Q% = Cov(Lj,Lg|Y1, ..., Yi,Ki, ..., Ki, Kppp, £) for i >0 and
Q¥ = 3 and m; =1 if ¥, =1 and = = P(Di= 1|Yy,...,
Yi, Ky, ... Ki, Kyop, £) otherwise. This we approximate as (Note S1)

P(D,: 1|Y1,“.,Y,',1,Y,‘ = O,Kl,..A,Ki,Kpop,E)zl

T — ,u’(i—l)*
g
. T _ ,ul@i—l)* Koy — Ki Lo T _ ugi—l)*
ol Kpop oli-D+

ii ii
Following adaptations'®*” of the PA selection formula,'® the
conditional mean and variance of expected liability for a proband
is estimated given their pedigree, initial liabilities, and population
parameters.”” Let u* — '~ " be the effect of conditioning on Y;
(i

and K; has on y; U* then the vector of conditional mean liabil-

ities, u'*, is

i i i—1)* i—1)* -1 i i—1)% .
= g0l ) () (Baquation 1

1) i

Similarly, if conditioning changes Qg_ii’ " to @}, the conditional

covariance matrix of liabilities, ™, is estimated as

o — gli-1+ _ _Q(.ifl)*(<g(i.—1)*)71
o

ii
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Previous work has found PA selection to be an efficient estimator of
genetic liabilities of binary traits given family history.”'**’ In prac-
tice, we start by setting the liability vector to a zero vector, we then
iteratively condition on the observed disease status of each relative
using the expected mean and a variance of a mixture of truncated
Gaussians in combination with the PA selection formula to obtain
the expected genetic liability of the index individual. Alternatively,
the censoring can be modeled using an age-dependent threshold
(ADT) model'” in which the liability threshold is assumed to be
defined by the cumulative incidence proportion (K; = P(D|agey)),
suchthatt; = = 1(1 — K;). Under this model the expected liability
of case is the Eapr(L;|Y; = 1,K;) = t; while for a control it is

Eapr(LilYi = 0,K;) = E(LiL; < ) = 122 (Note $2).

Software
PA-FGRS is freely available as R code: https://github.com/BioPsyk/
PAFGRS.

Simulations

We first simulated 50,000 four-generational proband pedigrees
with varying numbers (0-18) and kinds of relatives with variable
age censoring. The heritability was set to 0.50 and lifetime preva-
lence was set to 0.2. This was done assuming random age of onset,
under the ADT model, and under a model with a correlation be-
tween liability and age of onset of 0.50. We assessed the correla-
tion between the estimated liabilities obtained from eight
different liability estimation methods: PA-FGRS, PA-FGRS,qt,
FGRS,*' PA,'® LT-PA,” LT-FH++,"” gibbsF90,’® and a Gibbs sam-
pling-based approach.?’ Next, we repeated the simulations under
each generative model generating 2,500 pedigrees, 100 times for
each of seven different lifetime prevalences.
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To assess the impact of shared environment (c?), we considered a
generative model with an additional factor that determined the
similarity between parents, offspring, and siblings (Figure S3).
We estimated the correlation of FGRS and the true genetic and
environmental liability. For FGRS,?! we considered two versions:
(1) a c®>-adjusted FGRS and (2) an unadjusted FGRS. For PA-FGRS,
we considered two versions: (1) using all available relatives
(PA-FGRS) or (2) estimating liability without parents, siblings, or
children (PA-FGRS,orpr), proposing the latter as a correction
for shared environment. For each of the four (PA-)FGRS, we
computed the correlation between true and estimated liability in
simulations.

Psychiatric phenotypes

Our primary outcome, MDD, was defined as having a registration
with a depressive episode (F32) or recurrent depression (F33)
before January 1, 2017, according to the Danish Psychiatric Cen-
tral Research Register (PCRR).>* Diagnostic codes used for the con-
struction of PA-FGRS scores are found in Table S1. For relatives
diagnosed between 1968 and 1994, records are limited to in-pa-
tient contacts and ICD-8 codes.

Population parameters used for computing PA-FGRS in
iPSYCH

The sex-specific lifetime prevalence of each disorder (Table S1) was
obtained from published estimates based on Danish registers.*’
Narrow-sense heritability was set to 0.8 for attention deficit/hyper-
activity disorder (ADHD), autism spectrum disorder (ASD), bipolar
disorder (BPD), and schizophrenia (SCZ) and 0.4 for MDD
(Table S1). We chose to estimate K; using sex and birth-year-spe-
cific cumulative incidence computed using all members of the
iPSYCH2015 random sample genealogies (N = 979,582; Figure 54).

PGSs

PGSs for MDD, SCZ, and BPD were computed based on published,
external summary statistics (Table S2) that had no overlap with iP-
SYCH. PGS for ASD and ADHD were based on GWAS performed in
the complementary half of the iPSYCH2015 case-cohort study
(i.e., iPSYCH2012 for iPSYCH2015i and vice versa; Figure S5).
We used SBayesR*’ to estimate allelic effects for SNPs in the inter-
section of all GWASs, iPSYCH, and the reference linkage disequi-
librium (LD) panel. Palindromic SNPs (A/T, C/G), those not map-
ping uniquely to hgl9 positions, and without a unique rsID in
dbSNP v.151 were excluded via our summary statistics quality con-
trol (QC) pipeline (https://github.com/BioPsyk/cleansumstats).

Classification analysis
In the European subset of the iPSYCH2015 MDD case-cohort
study (Figure S5), we used logistic regression with MDD as an
outcome and each or varying combinations of PA-FGRS and PGS
as predictors (Tables S1 and S2). For this analysis, PA-FGRS were
computed excluding proband status. The classification accuracy
was reported in an out-of-sample test. We trained the logistic clas-
sifier in iPSYCH2012 (or iPSYCH2015i) and report the area under
the receiver operating characteristic curve (AUC) achieved in the
independent, complementary iPSYCH2015i (or iPSYCH2012).
Empirical performance of each liability score was assessed by
fitting a weighted probit regression with the liability score, age
and sex as explanatory variables, and reporting the incremental
R? gained relative to a model with only age and sex. 95% confi-
dence intervals for the R? and differences in R? between estimators

were estimated by 500 bootstraps. The same procedure was used to
compare the performance of PA-FGRS under different h* parame-
ters and when comparing PA-FGRS, PA-FGRS,q;, and PA across
other psychiatric phenotypes. The same procedure was followed
when comparing the performance of PA-FGRS under nine
different settings of the h* parameter.

Comparing polygenic profiles

Putative subgroup-defining features were obtained from the PCR**
and the Danish Civil Registry.>* We divided individuals diagnosed
with MDD on the basis of a diagnosis of BPD (ICD10: F30-F31), co-
morbid anxiety (F40.0-40.2, F41.0-41.1, or F42), sex (as registered
at birth), recurrence (ICD10: F32 or F33), severity (ICD10: F32/
33.0, F32/33.1, F32/33.2, or F32/33.3), age at first recorded diag-
nosis, and mode of treatment (in-patient, casualty ward, or out-pa-
tient). We computed a composite estimate of genetic liability for
each of the five mental disorders as a weighted sum of the PGS
and PA-FGRS with weights corresponding to the betas from a logis-
tic regression of their natural outcome in a calibration sample
(Figure S5). For each subgroup defining feature, multiple multino-
mial logistic regression was fitted to sequentially estimate the ef-
fects of each the composite genetic risk estimates with age and
sex and 10 genetic principal components (PCs) as covariates using
the R package nnet.*' We report a normalized partial effect size for
each PGS and PA-FGRS, Byir/Brr. The effect is the ratio of the effect
of the PA-FGRS on MDD outcomes (Bygr) OVer its effect on the nat-
ural outcomes (Brg; e.g., ASD for PA-FGRS for ASD). Each B was
estimated separately in outcome-specific case cohort samples
(e.g., ASD case cohort; Figure S5). This effect size can then be given
context, for example, the effect of BPD genetic liability for being
diagnosed BPD given a prior diagnosis of MDD is the same (Byr/
BLr ~1) as the effect of BPD genetic liability on being diagnosed
with BPD in the general population. These analyses were conducted
separately for iPSYCH2012 and iPSYCH2015i samples and meta-
analyzed. Subgroup-level effect estimates were meta-analyzed using
inverse variance weighting, while heterogeneity test p values were
combined using Fisher’s method. In total, we report 35 p values
declaring those less than 0.05/35 = 0.0014 strictly significant.

GWASs

GWASs were performed within two proband groups, the iP-
SYCH2012 MDD case-cohort and the iPSYCH2015i MDD case-
cohort, on imputed allelic dosage data using PLINK2.*” For binary
MDD diagnosis, logistic regression was applied, and for continuous
valued PA-FGRS, we used linear regression, both including sex and
age and 10 principal components of genetic ancestry as covariates.
Inverse-variance weighted meta-analysis of the two constituent sam-
ples was performed using METAL.** SNPs with association p values
less than 5 x 10~® were declared significant, while variants with
a false discovery rate of 0.05 were considered suggestive. Indepen-
dent loci were defined as >1 Mb apart. Observed-scale SNP
heritability (thP7DbS) and genetic correlations to nine published
GWASs (Table S3) were estimated using LD score regression.**** Dif-

ference in Iy, was computed as 13, _pops — 12,0, 0 With std.err.

case/c

= /5. rors) + s.e.(hfm/m,)z.Genome-wide significantindex
SNPs were defined from a large external GWAS of MDD, modified to
exclude 23andMe and iPSYCH, by clumping overlapping SNP lists. A
paired t test comparing squared test statistics was used to assess
significance of improvement. Polygenic scores for within iPSYCH
classification were computed using SNPs with MAF >0.01 and
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INFO >0.8, clumped and thresholded with PLINK 1.90b6.27,** using
parameters —clump-kb 625 —clump-p1 0.1 —clump-p2 0.1 —clump-r2
0.8. Improvements in predictions were assessed using the difference
in AUC test in the pROC package.

Results

The iPSYCH2015 MDD case-cohort genealogies are
complex and contain a wealth of information

The iPSYCH2015 case-cohort study ascertained 141,265
probands from the population born in Denmark between
May 1, 1981, and December 31, 2008 (N = 1,657,449), by
cross linking the Danish Civil Registration System® (CPR)
and The Danish Neonatal Screening Biobank.”” The
CPR includes all individuals who have legally resided in
Denmark since its establishment in 1968 and each
proband is associated with parental identifiers, where
known. We use mother-father-proband connections*® to
reconstruct extended genealogies (see methods) of
141,265 iPSYCH2015 probands, identifying 2,066,657
unique relatives spanning up to nine generations (birth
years range from 1870s to 2016; Figures 1A and S6). Among
the 120,269 and 73,052 European ancestry samples geno-
typed in iPSYCH2012 and iPSYCH2015i, we used KING*’
to identify 41,476 first to fourth degree relative pairs. Of
these, most first, second, and third degree relatives (99%,
67%, and 68%) had concordant relatedness in the geneal-
ogy, with pairs missing as relations were more distant
(0.4%, 17%, and 25%). In particular, 82% of putative fourth
degree relatives identified using genotypes were not re-
corded in the genealogy. The correlation of genotype-based
and genealogy-based kinship for relative pairs identified us-
ing genotypes was 0.94 (Figures 1B and S7). This correlation
for the 24,773 of the 20,071,410 relative pairs identified in
the genealogy that included two iPSYCH probands geno-
typed on the same array was 0.97 (Figure S8). Siblings
sharing one recorded parent (with the other missing)
tended to be half-siblings (Figure S2), and approximately
45% of same-sex twins were monozygotic (Figure S1). The
genealogies of 141,265 probands included 99.5% of par-
ents, 82.0% of grandparents, and 7% of great-grandparents,
with the number of relatives identified per proband varying
considerably (Figure 1C). Clinical diagnoses are aggregated
for all relatives during periods of legal residence within
Denmark from 1968. In-patient psychiatric contacts were
recorded from 1969 to 1994 using ICD-8 and from 1994 on-
wards using ICD-10. Since 1995, both in- and out-patient
contacts are recorded using ICD-10 (Figures 1D and 1E).
There is a wealth of high-quality psychiatric familial pheno-
types for each genotyped proband (Figure 1), but relatives
are neither completely nor consistently observed.

PA-FGRS is a flexible, powerful framework for
estimating individual liability scores

PA-FGRS estimates the expected genetic liability carried by
a proband from an arbitrary set of relatives, assuming the

outcome results from a thresholded latent Gaussian liabil-
ity (Figure 2). As input PA-FGRS takes a kinship matrix,
diagnostic status and age (at censoring, diagnosis, or end
of follow up) for each relative, disorder heritability, and in-
dividual morbid risks, which may be estimated from life-
time sex by birth-year-specific cumulative incidence. In
the first step, each pedigree member is assigned an initial
liability of O with variance 1. Then, we consecutively con-
dition on observations of other relatives, 1, ..., n, updating
all expected liabilities based on each relative. We first up-
date the expected liability of a selected relative, rg), esti-
mating their expected liability given their prior liability
distribution, disease status, age, and the lifetime incidence
estimate. Then we update the liabilities of all remaining
relatives, ri,q, ... , In, according to the PA-selection for-
mula'® and a modified kinship matrix (Figure S9). An
optional final step updates the proband liability on their
own diagnostic status and age. PA-FGRS produces a contin-
uous score that summarizes the genetic liability from the
proband’s pedigree.

Other methods have approached this problem, but with
limitations critical to our intended use case. Binary out-
comes were incorporated in the BLUPF90 family of soft-
wares’® (i.e., gibbsF90) and in prior implementations'®*’
of the PA selection formula.!” These models, however,
assumed no age censoring, which we address by either
modeling individuals as a mixture of truncated Gaussians,
with mixture proportions reflecting individual morbid
risks (PA-FGRS; methods) or by assuming an ADT model
as introduced by Pedersen et al.'"” (PA-FGRS,q; see Note
S2). FGRS?! followed this concept, but PA-FGRS takes a
more formal approach that incorporates kinship relation-
ships among relatives as well as between relatives and pro-
band, producing better calibrated scores and estimates of
conditional liability variance (see methods). LT-FH++""
used an ADT model (see methods), which, similar to a
Cox model, assigns higher liabilities to early-onset cases
(Figure S10), but the LT-FH++ paper only considered
first-degree relatives. For more details on all comparator
methods, see Note S4.

Simulations demonstrate the advantages of PA-FGRS
over other methods

We simulated 1,900,000 four-generational pedigrees with
an average of nine relatives per proband (range 0-18),
generating phenotypes from a liability threshold model
(methods). We found that eight considered methods, PA-
FGRS, PA-FGRS,q, FGRS,>! PA'®, LT-PA’7, LT-FH++,*
gibbsF90,?® and a fully specified Gibbs sampling-based
approach,?’ gave estimates that were highly correlated
(Figures 3A and 3B; r > 0.8), suggesting that they target
similar latent constructs. Methods incorporating more
similar information were more highly concordant, e.g.,
extended relatives (Figures 3A and 3B; r > 0.89) or
extended relatives and censoring (Figure 3A; r > 0.95).
The Gibbs sampling approach”’ produced nearly identical
estimates to PA-FGRS (r = 0.999; Figures 3A and 3B),

The American Journal of Human Genetics 177, 1-16, November 7, 2024 5



Please cite this article in press as: Dybdahl Krebs et al., Genetic liability estimated from large-scale family data improves genetic prediction,
The American Journal of Human Genetics (2024), https://doi.org/10.1016/j.ajhg.2024.09.009

risk score profiling, and gene...,

A [ Relatedness ! B 10000{ Relatedness
0.5 I (Pedigree)
1
0.25 : 7500 0.5
M1 ar ' Full o
4 a u
0.0625 Z 5000 0.125
0.03125 0.0625
0.01562 2500 0
0.00781
X 0 JRNTE. 11 SN
? 0.00391 H102R
a e 0125 025 0375 05
@ 0.00195 Relatedness (Genotypes)
K} /
=
g H2C1
c 1950 28784
8 0.01 0.2
H3C H2C
Al 1475 [ 28125 '
0.01 1
1 1 !
H3C1R lH2C1R X 2c1R W 3C1R
183 4852 ! 9911
<0.01 .03 ! 0.07 J <0.01
z : . .-—
H2C2R lH1C2R JH1GNib i 1GNib | 1c2R [ 2C2R y y f——f
-2 42 1164 W 2765 { 395 1692 Qo © @ Q,Q ,\Q S .S,
<0.01 .01 0.02 i <001l 001 W <0.01 N \'\’ 'v"’ »;\’ W QY 4'\’ q;\’q\/ Ry
! ! Nrelatives
D ) E
D alive D diagnoses ICD-8
|:| followed in- patient registers . diagnoses ICD - 10
D followed in/out - patient registers /
-
3rd degree .
/—
Other 2nd degree _\
Grand Parents - —//_
Half siblings | [Fe—
/_§
Parents
Full siblings 1
Children
[—
Probands -
1920 1960 2000 1960 1980 1994 2000
1969 1995
year year
Figure 1. The iPSYCH2015 MDD case-cohort genealogies are complex and contain a wealth of information

(A) Each of the 141,265 probands (white box) in iPSYCH2015 can be
as a total across all probands and average per proband.

connected to a number of different types of relatives, here reported

(B) SNP-based relatedness generally confirms relatedness inferred from genealogies and suggests that most first, second, and third-degree

relatives are captured.

(C) The number of relatives linked to each proband varies considerably.
(D) The proportion of total person years of follow up is distributed differently across probands and their relatives, showing variability by
relative type (y axis), year of observation (x axis), and register era (color).

(E) The proportion of total person years of follow up for MDD cases

similarly varies.

P, parents; S, siblings; Ch, children; 1GP, grandparents; Pib(lings), aunts and uncles; Nib(lings), nieces and nephews; iCjR i-th cousin, j
times removed; H-, half; Other, relative types not in the figure; MDD, major depressive disorder.

suggesting PA-FGRS behaves near optimally. When simu-
lating under a model where age of onset is independent
of liability, PA-FGRS consistently produced the highest cor-
relations with true liability across a range of simulated
prevalences (Figure 3C), and when simulating under the
ADT model, the PA-FGRS,4; performed best (Figures 3D

and S11-S14). The largest relative gains were when preva-
lence and censoring were high. PA-FGRS was also the
only method tested that was well calibrated in the presence
of censored data (Figures 3E and S12). In simulations
without censoring, PA and gibbsF90 were highly correlated
(Figure 3B), and both attained similar performance to
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PA-FGRS (Figure S11). The three resampling-based
methods were much more computationally demanding
than the analytical methods (Figure S15); in particular,
gibbs?’ was computationally demanding for larger pedi-
grees, and none of the three gave a more accurate liability
estimate than PA-FGRS (Figures 3C and 3D).

One limitation of methods that consider only first-de-
gree relatives’-'” is that estimated genetic liabilities may
be unduly influenced by effects of familial environment.
This may be desirable if the goal is to optimize predic-
tion”'® only but less so if the goal is to make etiological in-
ferences.”' We repeated our simulations including a com-
mon environment component of variance shared among
first-degree relatives (Figures 3F and S3)—a typical quanti-
tative genetics model.*” Here, PA-FGRS (and all other ap-
proaches) produce liability estimates that are correlated
with environmental liability (Figure 3F). With extended
genealogies, we can omit close relatives as a sensitivity
test for undue influence. Liabilities estimated after
excluding first-degree relatives remained good estimators
of genetic liability and were uncorrelated with environ-
mental liability (Figure 3F). The flexibility of PA-FGRS can
add important context to estimated liabilities that may
be especially important when interpreting, e.g., profiles
of liability scores*"*® or if shared environment is a
concern.

PA-FGRS requires external estimates of specific popula-
tion parameters, namely lifetime prevalence and herita-
bility. Providing inaccurate estimates leads to miscali-
brated liabilities but has modest impact on the
correlation between estimated and true liability in simula-
tions (Figure S16).

PA-FGRS and PA-FGRS,4: explain more variance in
liability to MDD than other methods

We compared, in our two cohorts, the variance in liability
to MDD explained by eight different methods that
use diagnoses in relatives to estimate liability scores
of probands (PA-FGRS, PA-FGRS,q, FGRS, PA, LT-PA,
gibbsF90, LT-FH++, and PA-FGRS wusing only first-
degree relatives). As in our simulation results, these estimates
were highly correlated (Figure S17), and the best performing
methods were PA-FGRS and PA-FGRS,4: (iPSYCH2012:
RZpy_pers = 0.0327, R,Z,PAJGRSM = 0.0337; iPSYCH2015i:
Rip)_pgrs = 0.0219, R%PA—FGRSad! = 0.0220; Figure S18).
PA-FGRS,4: explained slightly more variance in liability
to MDD than PA-FGRS (AR?,,, = 0.0010; AR?,) . =
0.0002) but this was not consistent across four other
psychiatric disorders (Figure S19). Across the 10 total com-
parisons, PA-FGRS was best for five, PA-FGRS,q; for three,
and PA for two. Also consistent with simulation results
(Figure S16), we found that varying the h? parameter has
negligible impact on empirical variance explained in MDD
(Figure S20) but has a substantial impact on calibration
(Figure S21).

PA-FGRS contribute to classification models of MDD
over and above PGS

Both family history and PGS explain liability for MDD.
Using a 2-fold split of iPSYCH (Figure S5), we trained a
model to classify MDD from combinations of PA-
FGRS and PGS in iPSYCH2012 (or iPSYCH2015i) and
evaluated classification accuracy in the complement,
iPSYCH2015i (or iPSYCH2012; methods; Figures 4A and
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4B; Table S6). Both genetic instruments, fit alone, signif-
icantly classify MDD cases from controls in both
cohorts: iPSYCH2012 (AUCpgs = 0.588 [0.583-0.594],
p = 3.7%x 10722%; AUCpprgrs = 0.598 (0.592-0.603),
p = 49x%x 10-3%28) and iPSYCH2015i (AUCpgs = 0.573
[0.565-0.580], p = 7.8x 10~%% AUCpprcrs = 0.576
[0.569-0.583], p = 4.1x 10-'3). When combined
in a multivariate model, each genetic instrument con-
tributes independent information to classification with
combined effects of PA-FGRS and PGS larger than indi-
vidual effects (iPSYCH2012: AUCpgsrGrs 0.630
[0.625-0.638] and iPSYCH2015i: AUCpgs rgrs = 0.608
[0.601-0.615]).

Including PGS for four other psychiatric disorders, SCZ,
BPD, ASD, and ADHD, improved the classification of
MDD relative to models with MDD PGS only (iP-
SYCH2012: AUCs.pgs 0.599 [0.594-0.604]; iPSY-
CH2015i: AUCs.pgs = 0.589 [0.582-0.596]; Figures 4C
and 4D; Table S6). Similarly, incorporating PA-FGRS for
the four other psychiatric disorders improved the classifi-

i

environment.

cation of MDD relative to models with MDD PA-FGRS
only (iPSYCH2012: AUCs.pargrs = 0.620 [0.614-0.625];
iPSYCH2015i:  AUCs.pa-rGrs 0.596 [0.589-0.603];
Figures 4E and 4F). Combining all 10 predictors resulted
in the best out of sample classification (iPSYCH2012:
AUCs pGs+s-pa-rgrs = 0.648 [0.643-0.653]; iPSYCH2015i:
AUCS-PGS+S-PA-FGRS = 0.626 [0619—0632], Figures 4G and
4H). These results demonstrate that combining genetic in-
struments that leverage different sources of genetic infor-
mation improves classification of MDD.

Composite genetic profiles identify robust genetic
liability differences among subgroups in MDD
Individuals diagnosed with MDD demonstrate extensive
clinical heterogeneity that may reflect etiologic heterogene-
ity. We used multinomial logistic regression to associate dif-
ferences in clinical presentations of individuals diagnosed
with MDD to genetic liability profiles (methods; Figure 5).
We leverage the complementarity of PGS and PA-FGRS,
above, by defining composite genetic liability scores (e.g.,
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Figure 4. PA-FGRS contribute to classification models of MDD
over and above PGS

Combining PA-FGRSy\pp and PGSypp improves classification of
MDD. (A) The iPSYCH2012 (N¢ases = 20,632, Ny = 23,870) and
(B) iPSYCH2015i (N¢ases = 10,317, Ny = 15,785) case-cohorts. Us-
ing PGS:s for five disorders improves prediction of MDD over only
PGSmpp in (C) iPSYCH2012 and (D) iPSYCH2015i. Using PA-FGRS
for five disorders improves prediction of MDD over only PA-
FGRSMpp in (E) iPSYCH2012 and (F) iPSYCH2015i. Combining
PA-FGRS for five disorders with PGS for five disorders improves
prediction of MDD over only PA-FGRSyipp and PGSypp in
(G) iPSYCH2012 and (H) iPSYCH2015i. Intervals are 95% confi-
dence intervals.

AUC, area under the receiver operating characteristic curve; MDD,
major depressive disorder; SCZ, schizophrenia; BP, bipolar disor-
der; ASD, autism spectrum disorder; ADHD, attention-deficit/hy-
peractivity disorder; PGS, polygenic score.

BPD score = Bpgs*PGSgpp+ Bra-rgrs*PA-FGRSgpp, Where Bpgs
and Bpargrs are the estimated effect of the PGS and PA-
FGRS on their natural outcome in a case-control logistic
regression). Each composite liability score was significantly
larger in individuals diagnosed with MDD than in the con-
trol group across all subgroups (Figure 5; p < 0.05). The liabil-
ity scores for BPD, SCZ, ASD, and ADHD tended to have
smaller effects on MDD subgroups than on their natural
outcome (i.e., Byr/Prr < 1; the colored bars below dashed
linein Figure 5; methods), except for BPD liability on conver-
sion to a BPD diagnosis (Byir/BLr = 0.97 [0.90-1.04];
Figure 5A).

Among 30,949 individuals diagnosed with MDD, those
also diagnosed with BPD (N = 1,477) had significantly
(p < 1.4 x 1073, adjusting for 35 tests) higher genetic lia-
bility for MDD (p = 1.1 x 107!2), BPD (p = 4.7 x 10~ ),
and SCZ (p = 2.5 x 107%; Figure 5A). Among the 29,472
individuals diagnosed with MDD (excluding BPD), the
7,205 also diagnosed with an anxiety disorder had higher
genetic liability to MDD (p = 4.9 x 107%) and SCZ (p =
3.5%x 107!2; Figure 5B). Individuals with recurrent
depression (N = 9,903) had higher liability to MDD
(p = 3.2x 10~ '2%; Figure 5C) than those with single-
episode depression (N = 19,569). Individuals treated for
MDD in-patient (Nyospitatized = 5,815) had higher liability
toMDD (p = 6.2% 1075)and BPD (p = 8.1 x 10~ %) than
those treated out-patient (Noutpatient = 12,432,
Figure 5D). We did not observe any significant differences
(p > 1.4x 1073) in the genetic liability score profiles of
males vs. females (Ngemale = 19,906, Nypae = 9,566;
Figure SE) based on age at first diagnosis (Figure 5F) or
based on diagnostic codes for severity (mild Nymq =
3r004r NModerate = 8;7421 NSevere = 2;391; NPsychotic =
856; Figure 5G).

Each analysis was repeated using PGS- or PA-FGRS-only
profiles (Figures S22 and S23). PGS-only and PA-FGRS-
only results were highly similar (r = 0.95 [0.93-0.97];
Figure SH), and PA-FGRS or PGS scores alone were less
powerful than composite scores (PA-FGRS-only mean
log10(p) = 2.90; PGS-only mean log,0(p) = 2.47; compos-
ite mean log;o(p) = 4.24). PGS and PA-FGRS appear to
capture similar constructs, and by combining the two,
we can increase power to detect differences in genetic li-
ability between groups. Finally, to test for large effects of
the familial environment, we constructed PA-FGRS
excluding nuclear family members (i.e., parents, siblings,
half-siblings, and children). The overall trends were
highly consistent with the full analysis (Figure 5I), albeit
with reduced significance (Figure S24). Repeating ana-
lyses using PA-FGRS,q: had no impact on the profile re-
sults (correlation of effects estimated with PA-FGRS and
PA-FGRS,q¢ = 0.9998; Figures S25-527). Genetic liability
score profiles are associated with differences in the clin-
ical presentation of MDD, involving contributions from
non-MDD liability scores, with parallel trends in PGS
or PA-FGRS alone, and do not seem strongly influenced
by familial environment.
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Figure 5. Composite genetic profiles identify robust liability differences between subgroups in MDD

We predicted MDD subgroup membership from composite genetic liability scores that integrate PGSs and PA-FGRS, together in multi-
nomial logistic regression with controls as a reference group.

(A) Higher MDD, SCZ, and BPD genetic liability were associated with conversion from MDD to BPD.

(B) Higher MDD and SCZ genetic liability were associated with a comorbid anxiety diagnosis.

(C) Higher MDD genetic liability was associated with recurrent MDD.

(D) Lower MDD and BPD genetic liability were associated with out-patient treatment.

(E-I) No differences were observed (E) between females and males diagnosed with MDD, (F) first MDD diagnosis before/after age 23, or
(G) mild, moderate, severe, or psychotic depression. PGS-only and PA-FGRS-only effects are highly consistent both, when (H) using all
relatives and (I) when excluding first degree relatives.

(A-G) Effect sizes are presented on a calibrated scale, where the regression coefficient describing the effect of a genetic liability score on
the subgroup is divided by the coefficient of the same score when predicting its natural outcome (i.e., BPD score predicting BPD) in a
simple logistic regression. This places the magnitude of subgroup effects on a scale that is relative to the effect of the score in its distin-
guishing natural outcome from controls, which can account for differences in the sensitivity of the individual scores.

(A-F) Models are meta-analyzed across iPSYCH2012 (Neases < 20,632, Nen < 23,870) and iPSYCH2015i (Neases < 10,317, Negn <
15,785), (G) is only available in iPSYCH2012. Significance is depicted in bold, at p < 0.05/35.

Detailed sample sizes for the individual analyses are provided in Table S3. Error bars indicate 95% confidence intervals. MDD, major
depressive disorder; SCZ, schizophrenia; BPD, bipolar disorder; ASD, autism spectrum disorder; ADHD, attention-deficit/hyperactivity
disorder; p, unadjusted p value from meta-analyzed multinomial regressions. p values greater than 0.05 after Bonferroni adjustment dis-
played in gray text.

GWAS on PA-FGRS liability values can add power to
single-cohort MDD GWAS

Studying genetic liability of threshold traits is expected to
boost power in GWAS (Figure S28). We performed meta-
analytic GWAS across the iPSYCH2012 (Ncuses = 17,518,
New = 23,341) and 20151 (Neases = 8,323, Ne = 15,204;
Figure SS5) cohorts and compare logistic regression GWASs
of binary diagnoses to linear regression GWASs of PA-FGRS

in the same individuals (methods; Figure 6). GWAS of PA-
FGRS identified three independent loci (Figure 6A; index
SNPs: 1516827974, 8 = 0.014, p = 2.9 x 10~8; 151040574,
g =-0.011, p = 3.3 x 1078; 15112585366, 8 = 0.026, p =
4.4 x 10~8; Table S7). These three variants and 24 of the 29
suggestive loci (false discovery rate < 0.05) showed consis-
tent sign in an independent MDD GWAS from Howard
el al.* (excluding iPSYCH; Tables S2 and S3). GWASs of
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Figure 6. PA-FGRS liabilities improve power for GWAS of MDD

(A and B) Genome-wide association studies (GWASs) of 25,841 cases and 38,545 controls using (A) PA-FGRS liability finds three indepen-
dent genome-wide significant loci, while (B) logistic regression (case/control) finds two.

(C) PA-FGRS GWAS test statistics are more extreme (i.e., more significant) than case-control GWAS at index SNPs of 28 loci reported in a
previous GWAS of MDD.

(D and E) PGSs trained using PA-FGRS GWASs achieve higher classification accuracy than those trained on case-control GWAS in
(D) iPSYCH2012 and (E) iPSYCH2015i, two independent evaluation cohorts.

(F) SNP-heritability estimated by LD-score regression analyses is slightly, but not significantly, larger for PA-FGRS GWAS, while estimated
intercepts are equivalent.

(G) PA-FGRS and case-control GWAS show similar genetic correlations with external GWAS of MDD and related traits. Error bars indicate
95% confidence interval.

h?,, observed scale SNP heritability; int, LD score regression intercept; rg, SNP-based genetic correlation. External GWAS citations:
UKB+PGC,*” UKB (GPpsy),'! FinnGen (ICD),*° UKB (Imputed),’' UKB (Lifetime MDD),' SCZ,°* BPD,>* ADHD,* educational attainment.>*

binary diagnoses identified two of these loci (Figure 6B; index =~ (iPSYCH2015i or iPSYCH2012). In both cohorts, PGS
SNPs: 156780942, 8.5 Kb from 1s16827974 Beta = 0.085, p =  trained with PA-FGRS GWASs were modestly, but signifi-
7.1 % 10%; 13777421 36.3 Kb from rs1040574, 8 = -0.073, cantly, better at classifying MDD vs. controls (2012:
p=4.6x10"8; Table S8). These two and 24 of the 35 sugges-  AUC ase_control pGs = 0.537 [0.531-0.542], AUCpa_rGrs pGs =
tive loci (false discovery rate < 0.05) showed consistent sign ~ 0.544 [0.538-0.550], test of differences: p = 3.9 x 10~5;
in Howard el al.*’ (excluding iPSYCH; Tables S2 and S3). The  2015i: AUCcse.controt pes = 0.556  [0.548-0.563],
28 independent, genome-wide significant index SNPs re- AUCpapgrsrgs = 0.548 [0.540-0.556], test of differences:
ported in Howard el al.*’ (excluding iPSYCH) have slightly, p=2.1 x 10~ 7; Figure 6D). Observed scale SNP-h? was larger
but significantly, larger test statistics in the GWAS on PA- in the PA-FGRS GWAS, but this difference was not signifi-
FGRS (PA-FGRS mean xz = 4.55; case-control mean Xz = cant (hzobsll)A,FGRS'hZObS’l)A_Case/ctr] = 0.015 [-0.013-0.043];
3.80; paired t test p = 0.018; Figure 6C). Figure 6E), and genetic correlations with external studies

Next, we trained PGSs in each subcohort (iPSYCH2012 or of MDD and other psychiatric disorders were similar
iPSYCH2015i) using GWASs performed in the other (Figure 6F). Taken together, the confluence of trends
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suggests GWASs on PA-FGRS do provide a small increase in
power per genotyped individual, which is consistent with
previous work'” and our simulations (Figure $28). Replacing
PA-FGRS with PA-FGRS,4; liabilities reduced the gains across
most GWAS tests (Figures S29-S33).

Discussion

We have developed a method for estimating genetic liabil-
ity, PA-FGRS, that is more generalizable across datasets and
research questions and outperforms existing methods in
complex genealogical data. We show that PA-FGRS com-
plements genotype-based inferences into MDD in three
ways: (1) PA-FGRS liabilities improve classification models
when fit together with state-of-the-field PGS, (2) combing
PA-FGRS and PGS better describes the etiology underlying
clinical heterogeneity associated with comorbidity, recur-
rence, and severity in MDD, and (3) GWASs performed
on PA-FGRS scores have slightly more power than
GWASs on case-control status. Our method is flexible,
easy to use, and could be applied to ask similar questions
about other complex diseases. While large-scale family
data are not ubiquitous, Nordic and other national regis-
ters have extensive genealogical records. These data sour-
ces are much more representative of underlying popula-
tions than typical volunteer cohorts but are not typically
genotyped at large scale. PA-FGRS can enable important ge-
netic epidemiological investigations of these resources that
overcome some limits of PGS studies in ascertained bio-
banks. Our data-first approach—describing the unique
characteristics of a powerful resource and tailoring a
method to accommodate its peculiarities—allows us to
leverage, rather than discard or censor, inconvenient
data. This is a complementary approach to lowest common
denominator cross-cohort studies and may be especially
relevant as larger, deeper, and necessarily more peculiar
data emerge.

PA-FGRS is model based, incorporates distant relatives,
and handles age-censored phenotypes of relatives. Incor-
porating distant relatives allows us to manipulate our lia-
bility calculation to exclude close relatives as a sensitivity
test for undue impact of familial environment. This, and
using morbid risk to define a mixture model, makes PA-
FGRS most similar in concept to FGRS,”! but the formal
model underlying PA-FGRS (PA-selection theory) gains ef-
ficiency and improves calibration of estimated liabilities.
The modeling of censoring in PA-FGRS is different from
the ADT model, e.g., LT-FH++"" or age-dependant liabil-
ity threshold model (ADuLT),>® which we implemented
as PA-FGRS,q4:. PA-FGRS assigns the same liability to rare
cases as average cases (i.e., uses one population threshold)
using covariate stratified cumulative incidence to define
mixture proportions for controls. LT-FH++ and PA-
FGRS,q: assign increasingly larger genetic liability to
increasingly rarer cases observed in empirical cumulative
incidence curves (i.e., uses per individual thresholds). For

example, in our MDD data, males diagnosed at a young
age many decades back (a rare event in empirical cumula-
tive incidence) would make much larger contributions to
liability estimates in the LT-FH++/ADuLT model than in
the PA-FGRS model. While simulations confirmed that
PA-FGRS,.q; is better when simulating under the ADT
model, among tested methods, only PA-FGRS remained
calibrated under model misspecification, suggesting that
PA-FGRS is a robust choice. We did see a small improve-
ment in prediction of MDD by the ADT model but not
in GWASs nor in the subgroup liability profiling. The un-
derlying model of PA-FGRS is amenable to analysis and
extension, representing an advantage for future work
that could extend the model to include non-additive
covariance, multiple traits, or more complicated etiolog-
ical models of heterogeneity and comorbidity.

Combining family-based liabilities and genotype-based
PGS from multiple disorders significantly improved classi-
fication accuracy. In cancer’’ or coronary artery disease,’®
risk models incorporate multiple measures—health states,
health traits, family history, and PGS. In psychiatry, this
has been pursued in more limited contexts (e.g., Agerbo
et al.®). Previous studies have found that combining
parental history information and PGS improves the predic-
tion accuracy;8 however, these studies only considered risk
associated with parental MDD and did not leverage diag-
noses in other relatives. Integrative models that combine
multiple sources of genetic information, such as family his-
tory, estimated liability, and PGS, along with exposure data
have the potential to advance the clinical utility of risk
assessment in psychiatry but will require large population
data and integrative models.

Our composite profile analysis replicates, extends, and
adds context to previous work considering genetic liabil-
ity profile differences between subgroups in MDD. First,
we replicate previous results in similar data showing sta-
tistically significant associations of genetic liability to
MDD with recurrence and MDD and BPD with treatment
location.>”"®° Our models calibrate effect sizes differently
to accommodate noisy instruments, such as PGS, leading
to different framing of effect sizes, which we see as mod-
erate to substantial rather than minimal. We also repli-
cate associations between BPD and SCZ liability and con-
version from MDD to BPD®!' but interpret BPD genetic
liability to be significantly more important than SCZ
genetic liability for conversion. Second, studies in
Swedish registers have shown differences in FGRSs asso-
ciated with progression to BPD,”! comorbid anxiety,*®
recurrence,”’ treatment setting,®” and age at onset”' of
MDD. We confirm higher genetic liability to MDD
among cases with recurrent depression using composite,
PGSs-only, and PA-FGRS-only liability scores, which sug-
gests that genetic liability to MDD itself plays an impor-
tant role in recurrency—although we cannot rule out
that a larger fraction of people with single-episode
depression could be misdiagnosed. We also replicated a
higher liability to MDD and SCZ among MDD cases
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with comorbid anxiety using our composite and PGS-
only scores and saw the same trend of higher liability
to MDD and BPD among hospitalized cases using our
composite and PGS-only scores. These findings appear
to indicate that liabilities to psychiatric diseases other
than MDD also contribute to clinical heterogeneity
within MDD—although, again, we cannot rule out
that individuals who truly have these other disorders
(e.g., SCZ) have been misclassified into these categories
(e.g., MDD + anxiety). Findings of higher BPD liability
in male MDD cases®” was nominally significant in our
study. We did not observe associations to age at onset;
however, iPSYCH has a reduced range for onset (15 to
35 vs. <22 to >69) and includes only secondary-care
treated (i.e., more severe) MDD. Our study replicates
and extends previous results by providing more inter-
pretable effect sizes using an alternative model-based
approach for family liability scores and by showing con-
sistency between familial and molecular scores.

We observed a small, significant improvement in power
when performing GWAS for MDD on PA-FGRS liabilities. A
previous study incorporating family history in GWASs of
MDD using iPSYCH did not observe gains'’ but only
considered first-degree relatives and weighted them differ-
ently. Consistent with simulations, the relative increase in
power observed in highly ascertained case-control data is
smaller than what has been reported for population-based
studies.”!” In population studies, especially for rarer disor-
ders, most of the variance in liability is hidden within con-
trols, whereas for highly ascertained data, most of the vari-
ance in liability remains between cases and controls. In
this latter context, little is gained by moving from binary
to continuous measures. Although we observe small gains
in power for GWASs, consistent with other studies, the
most impactful applications of PA-FGRS may lie in classifi-
cation and descriptions of etiology. Our study should be in-
terpreted in light of a few important limitations. Certain
modeling choices could affect the reliability of PA-FGRS.
First, pedigree size varies substantially among individuals.
Probands with few relatives have scores regressed more to-
ward the mean liability, which can introduce bias. Second,
modeling the censoring process requires external informa-
tion about age-of-onset curves for disease of interest—as do
the other methods—and these may change in calendar
time cohorts. While reliable age-of-onset curves are avail-
able for the present register coverage, estimating age-of-
onset curves for past decades with different diagnostic sys-
tems and different register coverage is challenging. Third,
our model assumes that the true liability of cases with
different age and calendar year of onset is the same, while
others have proposed true liability should vary according
to these covariates.'”*® Both approaches are based on heu-
ristics and could be better compared, integrated, and opti-
mized to improve performance. Fourth, in our framework,
genotypes are only used to generate PGSs based on
external effect estimates, but as the number of genotyped
samples within cohorts grows, adding within cohort esti-

mates either as a meta-PGS®® or a genomic BLUP®* could
likely improve accuracy.

Here, we have taken a data-first approach to studying the
genetic architecture of MDD by tailoring both our study
aims and method development to the particular strengths
and challenges of a unique data resource. Doing so resulted
in a methodological increment with broad applicability
and highlights the utility of integrating multiple sources
of genetic data when considering trait predictions, etiolog-
ical descriptions, and gene mapping.

Data and code availability

The code generated during this study is available through public
github repositories: https://github.com/BioPsyk/PAFGRS and
https://github.com/MortenKrebs/PA-FGRS-simulations.
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