
ARTICLE

Genetic liability estimated from large-scale family data improves
genetic prediction, risk score profiling, and gene mapping for major
depression
Authors

Morten Dybdahl Krebs,

Kajsa-Lotta Georgii Hellberg,

Mischa Lundberg, ..., Thomas Werge,

Kenneth S. Kendler, Andrew J. Schork

Correspondence
morten.dybdahl.krebs@regionh.dk (M.D.K.),
andrew.joseph.schork@regionh.dk (A.J.S.)
Our method, the Pearson-Aitken Family

Genetic Risk Score, estimates genetic liability

in a proband from patterns of disease

outcomes in their relatives. The method is

flexible, and the resulting scores can be used

for genetic classification, describing genetic

etiology, and improving power for gene

mapping.
Dybdahl Krebs et al., 2024, The American Journal of Human Genetics 111, 1–
16
November 7, 2024 � 2024 American Society of Human Genetics. Published
by Elsevier Inc. All rights are reserved, including those for text and data
mining, AI training, and similar technologies.

mailto:morten.dybdahl.krebs@regionh.�dk
mailto:andrew.joseph.schork@regionh.�dk


Please cite this article in press as: Dybdahl Krebs et al., Genetic liability estimated from large-scale family data improves genetic prediction,
risk score profiling, and gene..., The American Journal of Human Genetics (2024), https://doi.org/10.1016/j.ajhg.2024.09.009
ARTICLE

Genetic liability estimated from large-scale
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profiling, and gene mapping for major depression
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Summary
Large biobank samples provide an opportunity to integrate broad phenotyping, familial records, and molecular genetics data to study

complex traits and diseases.We introduce Pearson-Aitken Family Genetic Risk Scores (PA-FGRS), a method for estimating disease liability

from patterns of diagnoses in extended, age-censored genealogical records. We then apply the method to study a paradigmatic complex

disorder, major depressive disorder (MDD), using the iPSYCH2015 case-cohort study of 30,949 MDD cases, 39,655 random population

controls, and more than 2 million relatives. We show that combining PA-FGRS liabilities estimated from family records with molecular

genotypes of probands improves three lines of inquiry. Incorporating PA-FGRS liabilities improves classification of MDD over and above

polygenic scores, identifies robust genetic contributions to clinical heterogeneity in MDD associated with comorbidity, recurrence, and

severity and can improve the power of genome-wide association studies. Our method is flexible and easy to use, and our study ap-

proaches are generalizable to other datasets and other complex traits and diseases.
Introduction

The analysis of large biobanks (e.g., BioBank Japan,1

deCODE genetics,2 iPSYCH,3,4 UK Biobank,5 etc.) is omni-

present in complex disorder genetics research. These re-

sources provide opportunities to combine large samples,

molecular data, diverse phenotypes, and familial pheno-

types. Leveraging familial phenotypes to estimate disease

liability in large biobanks has applications for improving

power of genome-wide association studies (GWASs),6,7

making classifications and predictions,8–10 and offering

better descriptions of underlying causes of disease and het-

erogeneity.11,12 Combining familial andmolecular data for

these questions may be especially relevant for paradig-

matic complex disorders, such as major depressive disorder

(MDD), a leading cause of disability worldwide. Such

disorders are marked by complex, multifactorial, highly

polygenic etiologies that limit the power of molecular ge-

netic investigations,13,14 meaning improved approaches

are needed. However, it is not clear how best to combine

familial phenotypes and genotype data. Existing methods
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cannot fully accommodate all biobanks, including the

largest for psychiatric genetics, the iPSYCH2015 case-

cohort study, due to complex, age-censored, extended ge-

nealogies. Previous applications have focused on one use

case (e.g., GWAS or prediction) limiting the picture of

generalizability to other questions. Here, we set out to

develop a method that is applicable to any biobank and

demonstrate, by studying the genetic basis of MDD, that

it can improve multiple approaches applied in molecular

genetic studies of complex disorders.

Currently, methods that transform patterns of diagnoses

in genealogies to continuous liability scores15,16 in each

relative are limited. Two related resampling approaches es-

timate posterior mean genetic liabilities assuming a liabil-

ity threshold model, conditional on case-control status

and family history (LT-FH)7 and additionally conditional

on age at onset and sex (LT-FHþþ),17 but both consider

only first degree relatives. This excludes information

from more distant relatives and could confound estimates

more strongly with familial environment. Both were

applied only in the context of improving GWASs. So
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et al.18 developed a method based on the Pearson-Aitken

(PA) selection formula,19 which is an analytical procedure

for calculating liability from phenotypes in arbitrarily

structured genealogies but assumes each relative has been

followed for their entire life (i.e., is fully observed). A flex-

ible, resampling-based extension of this model was pro-

posed but is computationally prohibitive at scale.20 These

approaches have had a focus on trait predictions. Family

genetic risk scores (FGRSs)21 are kinship weighted sums

of diagnoses of relatives with corrections for familial envi-

ronment, censoring, and other covariates. FGRS accommo-

dates extended genealogies and censored records but is not

based on a well-described model and does not account for

kinship among relatives of probands. FGRS has been

applied to describe genetic differences within and across

disorders. Current methods estimating individual liability

from genealogies are limited and have been applied

narrowly.

We introduce a method, Pearson-Aitken Family Genetic

Risk Scores (PA-FGRS), validate it under simulations, and

apply it to study MDD in the iPSYCH2015 case-cohort

study. We demonstrate that combining PA-FGRS with geno-

types improves three lines of inquiry: (1) classification of

MDD in the context of polygenic score (PGS), (2) identi-

fying robust genetic contributions to clinical heterogeneity

of MDD, and (3) improving power in large, single-cohort

GWASs of MDD. Our applications confirm, add context

to, and extend recent methodological advances and their

applications in similar data. The PA-FGRS framework is

extensible, powerful, and well-calibrated and could be

applied to large biobanks or smaller family studies to pursue

similar aims with other complex disorders.
Methods

iPSYCH2015 case-cohort study
The Lundbeck Foundation initiative for Integrative Psychiatric

Research (iPSYCH)3,4 is a case-cohort study of all singleton births

between 1981 and 2008 to mothers legally residing in Denmark

andwhowere alive and residing in Denmark on their first birthday

(N ¼ 1,657,449). The iPSYCH2015 case-cohort study comprises

two enrollments from this base population. The iPSYCH2012

case-cohort study enrolled 86,189 individuals (30,000 random

population controls; 57,377 psychiatric cases).3 The iPSYCH2015i

case-cohort study expanded enrollment by an additional 56,233

individuals (19,982 random population controls; 36,741 psychiat-

ric cases).3,4 DNA was extracted from dried blood spots stored in

the Danish Neonatal Screening Biobank22 and genotyping was

performed on the Infinium PsychChip v1.0 array (2012) or the

Global Screening Array v2 (2015i). Psychiatric diagnoses were ob-

tained from the Danish Psychiatric Central Research Register

(PCRR)23 and the Danish National Patient Register.24 Diagnoses

in these registers are made by licensed psychiatrists during in- or

out-patient specialty care, but diagnoses or treatments assigned

in primary care are not included. Linkage across population regis-

ters to parents where known and to the neonatal biobank is

possible via unique citizen identifiers of the Danish Civil Registra-

tion System.25 The use of this data follows standards of the Danish
2 The American Journal of Human Genetics 111, 1–16, November 7,
Scientific Ethics Committee, the Danish Health Data Authority,

the Danish Data Protection Agency, and the Danish Neonatal

Screening Biobank Steering Committee. Data access was via secure

portals in accordance with Danish data protection guidelines set

by the Danish Data Protection Agency, the Danish Health Data

Authority, and Statistics Denmark. There are restrictions to the

availability of the individual-level data used for this work, as the

consent structure of iPSYCH and Danish law prevent individual

genotype and phenotype data from being shared publicly.
Genotyping and quality control
Genotype phasing, imputation, and quality control were per-

formed in parallel in the 2012 and 2015i cohorts according to

custom, mirrored protocols. Briefly, phasing and imputation

were conducted using BEAGLEv5.1,26,27 both steps including

reference haplotypes from the Haplotype Reference Consortium

(HRC) v1.1.28 Quality control was applied prior to and following

imputation to correct for missing data across SNPs and individ-

uals, SNPs showing deviations from Hardy-Weinberg equilibrium

in cases or controls, abnormal heterozygosity of SNPs and samples,

genotype-phenotype sex discordance, minor allele frequency

(MAF), batch artifacts, and imputation quality. Kinship was de-

tected within and across 2012 and 2015i cohorts using KING,29

censoring to ensure no second degree or high relatives remained.

Ancestry was examined using the smartpca module of

EIGENSOFT,30 and multivariate PCA outliers from the set of iP-

SYCH individuals with both parents and four grandparents born

in Denmark were excluded. In total, 7,649,999 imputed allele dos-

ages were retained for analysis.
iPSYCH2015 case-cohort genealogies
All recorded relatives of probands in this iPSYCH2015 case-cohort

were obtained from the Danish Civil Registry25 using mother-fa-

ther-offspring linkages. From the 141,26531 probands, we identi-

fied 2,066,657 unique relatives, assembling all relationships into

a population graph using the kinship232 and FamAgg31 packages

where edges denoted membership in a recorded trio. The related-

ness coefficient for each pair was calculated as a weighted sum of

unique ancestral paths through the population graph (i.e., not

including the same individual, except for the common ancestor).

Each path in the sum was weighted by (0.5)̂(number of edges in

the path).33 The Danish Civil Registry does not contain informa-

tion on zygosity for same-sex twins, but following analysis of

the SNP-kinship of children of same-sex twins (Figure S1), we as-

signed same-sex twins a relatedness coefficient of 0.75. Similarly,

guided by analysis of siblings with missing paternal records

(Figure S2), we assignedmaternal siblings withmissing paternal re-

cords a relatedness coefficient of 0.25. Among individuals with pu-

tative European ancestry and both genotyped on the same array,

SNP-based relatives were identified using KING29 (–degree 4 op-

tion). Additionally, 24,773 pairs of relatives from the population

genealogy included two probands genotyped on the same geno-

type array. We used Pearson’s correlation of the graph-inferred

kinship and SNP-inferred kinship from KING29 as an estimate of

concordance and quality of inferred relationships.
PA-FGRS
PA-FGRS estimates a liability for disease carried by a proband from

the observed disease status in a pedigree and under the assump-

tion of a liability threshold model for the disease.34 The method

first estimates an initial liability for each relative and then uses
2024
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the PA selection formula to sequentially update the expected lia-

bility in the proband conditional on each relative.34,35

Webegin by assuming a disease,Di¼ 1, ariseswhenan individual,

i, carries a latent liability, Li, that surpasses some threshold, t. Liabil-

ity, Li, can arise from additive effects (bj) of genetic factors (Xij) or

environmental deviations (ei), and genetic contributions follow

classic polygenic theory.34,35 We can write a generative model:

Li ¼ Gi þ ei ¼
X
j

bjXij þ ei

Di ¼
�

1;Li R t
0;Li < t

; t ¼ F�1
�
1 � Kpop

�

where the threshold, t, is the standard normal quantile that corre-

sponds to a cumulative probability of Kpop, the lifetime prevalence

of the disorder. Further, we assume that the vector consisting of

the genetic liability of the proband and the total liability of n ge-

netic relatives ½L1; :::;Ln;Gp�T � MVNð½0; :::;0�T ;SÞwith covariance

matrix:

X
¼ ½ 1 / r1;nh

2 r1;ph
2

« 1 « «

rn;1h
2

rp;1h
2

/

/

1

rp;nh
2
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Under this model, the expected value of Li, conditional on the

true value for Di is according to truncated normal distribution

theory36:

EðLijDiÞ ¼

8>>><
>>>:

�4ðtÞ
1 � Kpop

; Di ¼ 0

4ðtÞ
Kpop

; Di ¼ 1

A critical assumption of this model is that each individual is fully

observed (i.e., no age censoring), meaning there is an equivalence

between their diagnostic and disorder status. This assumption

rarely holds in practice, but the variable follow-up of relatives by

the Danish register systemmakes it extremely tenuous.We instead

propose amodel (Note S1) where the disease status Yi in those who

surpass the threshold is observed with a probability corresponding

to the ratio between (possibly stratified) age-specific prevalence

(Ki) and the life-time prevalence (Kpop).

Yi ¼

8><
>:

Bernoulli

�
Ki

Kpop

�
; Di ¼ 1

0; Di ¼ 0

To get the expected liabilities under this model, we use a mixture

of an upper and a lower truncated Gaussian both with mean and

variance corresponding to their conditional expectations and with

the mixture proportion (pi), corresponding to the conditional

probability of being a case. Let jðm;s2; a; bÞ denote a truncated

Gaussian with mean m, variance s2, lower truncation at a, and up-

per truncation at b. Then the distribution of Li conditional on ob-

servations 1 to i is

LijY1; :::;Yi;K1; ::: Ki;Kpop;S � ð1 � piÞj
�
m
ði�1Þ�
i ;U

ði�1Þ�
i;i ;

a ¼ �N; b ¼ T
�
þ pij

�
m
ði�1Þ�
i ;U

ði�1Þ�
i;i ; a ¼ T; b ¼ N

�

The Am
with mi�
j ¼ EðLj

		Y1; :::;Yi;K1; :::;Ki;Kpop;SÞ for i >0 and m0�
j ¼ 0,

while Ui�
j;k ¼ CovðLj;Lk

		Y1; :::;Yi;K1; :::;Ki;Kpop;SÞ for i >0 and

U0� ¼ S, and pi ¼ 1 if Yi ¼ 1 and pi ¼ PðDi¼ 1jY1; :::;

Yi;K1; ::: Ki;Kpop;SÞ otherwise. This we approximate as (Note S1)

P
�
Di¼ 1jY1; :::;Yi�1;Yi ¼ 0;K1; :::;Ki;Kpop;S

�
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�

F

0
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Following adaptations18,37 of the PA selection formula,19 the

conditional mean and variance of expected liability for a proband

is estimated given their pedigree, initial liabilities, and population

parameters.37 Let mi�
i � m

ði�1Þ�
i be the effect of conditioning on Yi

and Ki has on m
ði�1Þ�
i then the vector of conditional mean liabil-

ities, mi�, is

mi� ¼ mði�1Þ� þ U
ði�1Þ�
;i

�
U

ði�1Þ�
i;i

��1�
mi�
i � m

ði�1Þ�
i

�
(Equation 1)

Similarly, if conditioning changes U
ði� 1Þ�
i;i to Ui�

i;i, the conditional

covariance matrix of liabilities, Ui�, is estimated as

Ui� ¼ Uði�1Þ� � U
ði�1Þ�
;i

��
U

ði�1Þ�
i;i

��1

�
�
U

ði�1Þ�
i;i

��1

Ui�
i;i

�
U

ði�1Þ�
i;i

��1�
U

ði�1Þ�
i;

Previousworkhas foundPAselection tobeanefficient estimatorof

genetic liabilities of binary traits given family history.7,18,37 In prac-

tice, we start by setting the liability vector to a zero vector, we then

iteratively condition on the observed disease status of each relative

using the expected mean and a variance of a mixture of truncated

Gaussians in combination with the PA selection formula to obtain

the expected genetic liability of the index individual. Alternatively,

the censoring can be modeled using an age-dependent threshold

(ADT) model17 in which the liability threshold is assumed to be

defined by the cumulative incidence proportion (Ki ¼ P(D|agei)),

such that ti ¼ F�1ð1 � KiÞ. Under thismodel the expected liability

of case is the EADT ðLijYi ¼ 1;KiÞ ¼ ti while for a control it is

EADT ðLijYi ¼ 0;KiÞ ¼ EðLijLi < tiÞ ¼ �fðtiÞ
1�Ki

(Note S2).
Software
PA-FGRS is freely available as R code: https://github.com/BioPsyk/

PAFGRS.
Simulations
We first simulated 50,000 four-generational proband pedigrees

with varying numbers (0–18) and kinds of relatives with variable

age censoring. The heritability was set to 0.50 and lifetime preva-

lence was set to 0.2. This was done assuming random age of onset,

under the ADT model, and under a model with a correlation be-

tween liability and age of onset of 0.50. We assessed the correla-

tion between the estimated liabilities obtained from eight

different liability estimation methods: PA-FGRS, PA-FGRSadt,

FGRS,21 PA,18 LT-PA,7 LT-FHþþ,17 gibbsF90,38 and a Gibbs sam-

pling-based approach.20 Next, we repeated the simulations under

each generative model generating 2,500 pedigrees, 100 times for

each of seven different lifetime prevalences.
erican Journal of Human Genetics 111, 1–16, November 7, 2024 3
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To assess the impact of shared environment (c2), we considered a

generative model with an additional factor that determined the

similarity between parents, offspring, and siblings (Figure S3).

We estimated the correlation of FGRS and the true genetic and

environmental liability. For FGRS,21 we considered two versions:

(1) a c2-adjusted FGRS and (2) an unadjusted FGRS. For PA-FGRS,

we considered two versions: (1) using all available relatives

(PA-FGRS) or (2) estimating liability without parents, siblings, or

children (PA-FGRSnoFDR), proposing the latter as a correction

for shared environment. For each of the four (PA-)FGRS, we

computed the correlation between true and estimated liability in

simulations.

Psychiatric phenotypes
Our primary outcome, MDD, was defined as having a registration

with a depressive episode (F32) or recurrent depression (F33)

before January 1, 2017, according to the Danish Psychiatric Cen-

tral Research Register (PCRR).23 Diagnostic codes used for the con-

struction of PA-FGRS scores are found in Table S1. For relatives

diagnosed between 1968 and 1994, records are limited to in-pa-

tient contacts and ICD-8 codes.

Population parameters used for computing PA-FGRS in

iPSYCH
The sex-specific lifetime prevalence of each disorder (Table S1) was

obtained from published estimates based on Danish registers.39

Narrow-sense heritability was set to 0.8 for attention deficit/hyper-

activity disorder (ADHD), autism spectrum disorder (ASD), bipolar

disorder (BPD), and schizophrenia (SCZ) and 0.4 for MDD

(Table S1). We chose to estimate Ki using sex and birth-year-spe-

cific cumulative incidence computed using all members of the

iPSYCH2015 random sample genealogies (N¼ 979,582; Figure S4).

PGSs
PGSs for MDD, SCZ, and BPD were computed based on published,

external summary statistics (Table S2) that had no overlap with iP-

SYCH. PGS for ASD and ADHDwere based on GWAS performed in

the complementary half of the iPSYCH2015 case-cohort study

(i.e., iPSYCH2012 for iPSYCH2015i and vice versa; Figure S5).

We used SBayesR40 to estimate allelic effects for SNPs in the inter-

section of all GWASs, iPSYCH, and the reference linkage disequi-

librium (LD) panel. Palindromic SNPs (A/T, C/G), those not map-

ping uniquely to hg19 positions, and without a unique rsID in

dbSNP v.151 were excluded via our summary statistics quality con-

trol (QC) pipeline (https://github.com/BioPsyk/cleansumstats).

Classification analysis
In the European subset of the iPSYCH2015 MDD case-cohort

study (Figure S5), we used logistic regression with MDD as an

outcome and each or varying combinations of PA-FGRS and PGS

as predictors (Tables S1 and S2). For this analysis, PA-FGRS were

computed excluding proband status. The classification accuracy

was reported in an out-of-sample test. We trained the logistic clas-

sifier in iPSYCH2012 (or iPSYCH2015i) and report the area under

the receiver operating characteristic curve (AUC) achieved in the

independent, complementary iPSYCH2015i (or iPSYCH2012).

Empirical performance of each liability score was assessed by

fitting a weighted probit regression with the liability score, age

and sex as explanatory variables, and reporting the incremental

R2
l gained relative to a model with only age and sex. 95% confi-

dence intervals for the R2
l and differences in R2

l between estimators
4 The American Journal of Human Genetics 111, 1–16, November 7,
were estimated by 500 bootstraps. The same procedure was used to

compare the performance of PA-FGRS under different h2 parame-

ters and when comparing PA-FGRS, PA-FGRSadt, and PA across

other psychiatric phenotypes. The same procedure was followed

when comparing the performance of PA-FGRS under nine

different settings of the h2 parameter.
Comparing polygenic profiles
Putative subgroup-defining features were obtained from the PCR23

and the Danish Civil Registry.25 We divided individuals diagnosed

with MDD on the basis of a diagnosis of BPD (ICD10: F30–F31), co-

morbid anxiety (F40.0–40.2, F41.0–41.1, or F42), sex (as registered

at birth), recurrence (ICD10: F32 or F33), severity (ICD10: F32/

33.0, F32/33.1, F32/33.2, or F32/33.3), age at first recorded diag-

nosis, and mode of treatment (in-patient, casualty ward, or out-pa-

tient). We computed a composite estimate of genetic liability for

each of the five mental disorders as a weighted sum of the PGS

and PA-FGRS with weights corresponding to the betas from a logis-

tic regression of their natural outcome in a calibration sample

(Figure S5). For each subgroup defining feature, multiple multino-

mial logistic regression was fitted to sequentially estimate the ef-

fects of each the composite genetic risk estimates with age and

sex and 10 genetic principal components (PCs) as covariates using

the R package nnet.41 We report a normalized partial effect size for

each PGS and PA-FGRS, bMLR/bLR. The effect is the ratio of the effect

of the PA-FGRS onMDD outcomes (bMLR) over its effect on the nat-

ural outcomes (bLR; e.g., ASD for PA-FGRS for ASD). Each bLR was

estimated separately in outcome-specific case cohort samples

(e.g., ASD case cohort; Figure S5). This effect size can then be given

context, for example, the effect of BPD genetic liability for being

diagnosed BPD given a prior diagnosis of MDD is the same (bMLR/

bLR �1) as the effect of BPD genetic liability on being diagnosed

with BPD in the general population. These analyseswere conducted

separately for iPSYCH2012 and iPSYCH2015i samples and meta-

analyzed. Subgroup-level effect estimates weremeta-analyzed using

inverse variance weighting, while heterogeneity test p values were

combined using Fisher’s method. In total, we report 35 p values

declaring those less than 0.05/35 ¼ 0.0014 strictly significant.
GWASs
GWASs were performed within two proband groups, the iP-

SYCH2012 MDD case-cohort and the iPSYCH2015i MDD case-

cohort, on imputed allelic dosage data using PLINK2.42 For binary

MDD diagnosis, logistic regression was applied, and for continuous

valued PA-FGRS, we used linear regression, both including sex and

age and 10 principal components of genetic ancestry as covariates.

Inverse-varianceweightedmeta-analysis of the twoconstituent sam-

ples was performed using METAL.43 SNPs with association p values

less than 5 3 10�8 were declared significant, while variants with

a false discovery rate of 0.05 were considered suggestive. Indepen-

dent loci were defined as >1 Mb apart. Observed-scale SNP

heritability (h2
SNP;obs) and genetic correlations to nine published

GWASs (Table S3) were estimated using LD score regression.44,45 Dif-

ference in h2
SNP;obs was computed as h2

PA� FGRS � h2
case=ctrl with std.err.

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s:e:ðh2

PA� FGRSÞ
2 þ s:e:ðh2

case=ctrlÞ
2

q
.Genome-wide significant index

SNPs were defined from a large external GWAS ofMDD,modified to

exclude 23andMeand iPSYCH, by clumpingoverlapping SNP lists. A

paired t test comparing squared test statistics was used to assess

significance of improvement. Polygenic scores for within iPSYCH

classification were computed using SNPs with MAF >0.01 and
2024
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INFO>0.8, clumpedandthresholdedwithPLINK1.90b6.27,42using

parameters –clump-kb 625 –clump-p1 0.1 –clump-p2 0.1 –clump-r2

0.8. Improvements in predictions were assessed using the difference

in AUC test in the pROC package.
Results

The iPSYCH2015 MDD case-cohort genealogies are

complex and contain a wealth of information

The iPSYCH2015 case-cohort study ascertained 141,265

probands from the population born in Denmark between

May 1, 1981, and December 31, 2008 (N ¼ 1,657,449), by

cross linking the Danish Civil Registration System25 (CPR)

and The Danish Neonatal Screening Biobank.22 The

CPR includes all individuals who have legally resided in

Denmark since its establishment in 1968 and each

proband is associated with parental identifiers, where

known. We use mother-father-proband connections46 to

reconstruct extended genealogies (see methods) of

141,265 iPSYCH2015 probands, identifying 2,066,657

unique relatives spanning up to nine generations (birth

years range from 1870s to 2016; Figures 1A and S6). Among

the 120,269 and 73,052 European ancestry samples geno-

typed in iPSYCH2012 and iPSYCH2015i, we used KING29

to identify 41,476 first to fourth degree relative pairs. Of

these, most first, second, and third degree relatives (99%,

67%, and 68%) had concordant relatedness in the geneal-

ogy, with pairs missing as relations were more distant

(0.4%, 17%, and 25%). In particular, 82% of putative fourth

degree relatives identified using genotypes were not re-

corded in the genealogy. The correlation of genotype-based

and genealogy-based kinship for relative pairs identified us-

ing genotypes was 0.94 (Figures 1B and S7). This correlation

for the 24,773 of the 20,071,410 relative pairs identified in

the genealogy that included two iPSYCH probands geno-

typed on the same array was 0.97 (Figure S8). Siblings

sharing one recorded parent (with the other missing)

tended to be half-siblings (Figure S2), and approximately

45% of same-sex twins were monozygotic (Figure S1). The

genealogies of 141,265 probands included 99.5% of par-

ents, 82.0% of grandparents, and 7% of great-grandparents,

with the number of relatives identified per proband varying

considerably (Figure 1C). Clinical diagnoses are aggregated

for all relatives during periods of legal residence within

Denmark from 1968. In-patient psychiatric contacts were

recorded from 1969 to 1994 using ICD-8 and from 1994 on-

wards using ICD-10. Since 1995, both in- and out-patient

contacts are recorded using ICD-10 (Figures 1D and 1E).

There is a wealth of high-quality psychiatric familial pheno-

types for each genotyped proband (Figure 1), but relatives

are neither completely nor consistently observed.
PA-FGRS is a flexible, powerful framework for

estimating individual liability scores

PA-FGRS estimates the expected genetic liability carried by

a proband from an arbitrary set of relatives, assuming the
The Am
outcome results from a thresholded latent Gaussian liabil-

ity (Figure 2). As input PA-FGRS takes a kinship matrix,

diagnostic status and age (at censoring, diagnosis, or end

of follow up) for each relative, disorder heritability, and in-

dividual morbid risks, which may be estimated from life-

time sex by birth-year-specific cumulative incidence. In

the first step, each pedigree member is assigned an initial

liability of 0 with variance 1. Then, we consecutively con-

dition on observations of other relatives, 1,. , n, updating

all expected liabilities based on each relative. We first up-

date the expected liability of a selected relative, r(i), esti-

mating their expected liability given their prior liability

distribution, disease status, age, and the lifetime incidence

estimate. Then we update the liabilities of all remaining

relatives, riþ1, . , rn, according to the PA-selection for-

mula19 and a modified kinship matrix (Figure S9). An

optional final step updates the proband liability on their

own diagnostic status and age. PA-FGRS produces a contin-

uous score that summarizes the genetic liability from the

proband’s pedigree.

Other methods have approached this problem, but with

limitations critical to our intended use case. Binary out-

comes were incorporated in the BLUPF90 family of soft-

wares38 (i.e., gibbsF90) and in prior implementations18,37

of the PA selection formula.19 These models, however,

assumed no age censoring, which we address by either

modeling individuals as a mixture of truncated Gaussians,

with mixture proportions reflecting individual morbid

risks (PA-FGRS; methods) or by assuming an ADT model

as introduced by Pedersen et al.17 (PA-FGRSadt; see Note

S2). FGRS21 followed this concept, but PA-FGRS takes a

more formal approach that incorporates kinship relation-

ships among relatives as well as between relatives and pro-

band, producing better calibrated scores and estimates of

conditional liability variance (see methods). LT-FHþþ17

used an ADT model (see methods), which, similar to a

Cox model, assigns higher liabilities to early-onset cases

(Figure S10), but the LT-FHþþ paper only considered

first-degree relatives. For more details on all comparator

methods, see Note S4.

Simulations demonstrate the advantages of PA-FGRS

over other methods

We simulated 1,900,000 four-generational pedigrees with

an average of nine relatives per proband (range 0–18),

generating phenotypes from a liability threshold model

(methods). We found that eight considered methods, PA-

FGRS, PA-FGRSadt, FGRS,21 PA18, LT-PA7, LT-FHþþ,3

gibbsF90,38 and a fully specified Gibbs sampling-based

approach,20 gave estimates that were highly correlated

(Figures 3A and 3B; r > 0.8), suggesting that they target

similar latent constructs. Methods incorporating more

similar information were more highly concordant, e.g.,

extended relatives (Figures 3A and 3B; r > 0.89) or

extended relatives and censoring (Figure 3A; r > 0.95).

The Gibbs sampling approach20 produced nearly identical

estimates to PA-FGRS (r ¼ 0.999; Figures 3A and 3B),
erican Journal of Human Genetics 111, 1–16, November 7, 2024 5
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Figure 1. The iPSYCH2015 MDD case-cohort genealogies are complex and contain a wealth of information
(A) Each of the 141,265 probands (white box) in iPSYCH2015 can be connected to a number of different types of relatives, here reported
as a total across all probands and average per proband.
(B) SNP-based relatedness generally confirms relatedness inferred from genealogies and suggests that most first, second, and third-degree
relatives are captured.
(C) The number of relatives linked to each proband varies considerably.
(D) The proportion of total person years of follow up is distributed differently across probands and their relatives, showing variability by
relative type (y axis), year of observation (x axis), and register era (color).
(E) The proportion of total person years of follow up for MDD cases similarly varies.
P, parents; S, siblings; Ch, children; 1GP, grandparents; Pib(lings), aunts and uncles; Nib(lings), nieces and nephews; iCjR i-th cousin, j
times removed; H-, half; Other, relative types not in the figure; MDD, major depressive disorder.

Please cite this article in press as: Dybdahl Krebs et al., Genetic liability estimated from large-scale family data improves genetic prediction,
risk score profiling, and gene..., The American Journal of Human Genetics (2024), https://doi.org/10.1016/j.ajhg.2024.09.009
suggesting PA-FGRS behaves near optimally. When simu-

lating under a model where age of onset is independent

of liability, PA-FGRS consistently produced the highest cor-

relations with true liability across a range of simulated

prevalences (Figure 3C), and when simulating under the

ADT model, the PA-FGRSadt performed best (Figures 3D
6 The American Journal of Human Genetics 111, 1–16, November 7,
and S11–S14). The largest relative gains were when preva-

lence and censoring were high. PA-FGRS was also the

onlymethod tested that was well calibrated in the presence

of censored data (Figures 3E and S12). In simulations

without censoring, PA and gibbsF90 were highly correlated

(Figure 3B), and both attained similar performance to
2024



Figure 2. PA-FGRS estimates a contin-
uous liability score for a proband from di-
agnoses in relatives and specific popula-
tion parameters
PA-FGRS estimates latent disease liability in
a proband from patterns of diagnoses in
arbitrarily structured pedigrees where rela-
tive phenotypes may be age censored.
Input data for a proband can be a simple,
fully observed pedigree (i.e., no censoring;
yellow proband), an extended pedigree
with fully observed phenotypes (green pro-
band), or an arbitrarily structured pedigree
where many relative phenotypes may be
age censored (blue proband). PA-FGRS
combines (1) an assumed form for covari-
ance in liabilities among relatives with (2)
estimates of individual morbid risk from,
e.g., covariate stratified cumulative inci-
dence curves, in (3) an extension of the
PA selection formulas that models age-
censored controls as a mixture of cases
and controls. Estimated genetic liabilities
are assigned to each proband and deter-
mined by the unique configuration of their

pedigree, population parameters, and the morbid risk of each relative. Proband liabilities (colored) are shown against the population dis-
tribution of genetic liability (gray) with E(G|case) and E(G|control), indicating the expected population (i.e., unconditioned) mean lia-
bility of a case and control, respectively.
cum. inc., cumulative incidence; h2, heritability; rxy, relatedness between relative x and y, which can take values i for index individual,
s for sibling, f for father, or m for mother; T, threshold.
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PA-FGRS (Figure S11). The three resampling-based

methods were much more computationally demanding

than the analytical methods (Figure S15); in particular,

gibbs20 was computationally demanding for larger pedi-

grees, and none of the three gave a more accurate liability

estimate than PA-FGRS (Figures 3C and 3D).

One limitation of methods that consider only first-de-

gree relatives7,17 is that estimated genetic liabilities may

be unduly influenced by effects of familial environment.

This may be desirable if the goal is to optimize predic-

tion9,18 only but less so if the goal is to make etiological in-

ferences.21 We repeated our simulations including a com-

mon environment component of variance shared among

first-degree relatives (Figures 3F and S3)—a typical quanti-

tative genetics model.47 Here, PA-FGRS (and all other ap-

proaches) produce liability estimates that are correlated

with environmental liability (Figure 3F). With extended

genealogies, we can omit close relatives as a sensitivity

test for undue influence. Liabilities estimated after

excluding first-degree relatives remained good estimators

of genetic liability and were uncorrelated with environ-

mental liability (Figure 3F). The flexibility of PA-FGRS can

add important context to estimated liabilities that may

be especially important when interpreting, e.g., profiles

of liability scores21,48 or if shared environment is a

concern.

PA-FGRS requires external estimates of specific popula-

tion parameters, namely lifetime prevalence and herita-

bility. Providing inaccurate estimates leads to miscali-

brated liabilities but has modest impact on the

correlation between estimated and true liability in simula-

tions (Figure S16).
The Am
PA-FGRS and PA-FGRSadt explain more variance in

liability to MDD than other methods

We compared, in our two cohorts, the variance in liability

to MDD explained by eight different methods that

use diagnoses in relatives to estimate liability scores

of probands (PA-FGRS, PA-FGRSadt, FGRS, PA, LT-PA,

gibbsF90, LT-FHþþ, and PA-FGRS using only first-

degree relatives). As inour simulation results, these estimates

were highly correlated (Figure S17), and the best performing

methods were PA-FGRS and PA-FGRSadt (iPSYCH2012:

R2
l;PA� FGRS ¼ 0:0327, R2

l;PA� FGRSadt
¼ 0:0337; iPSYCH2015i:

R2
l;PA� FGRS ¼ 0:0219, R2

l;PA� FGRSadt
¼ 0:0220; Figure S18).

PA-FGRSadt explained slightly more variance in liability

to MDD than PA-FGRS (DR2
l;2012 ¼ 0:0010; DR2

l;2015i ¼
0:0002) but this was not consistent across four other

psychiatric disorders (Figure S19). Across the 10 total com-

parisons, PA-FGRS was best for five, PA-FGRSadt for three,

and PA for two. Also consistent with simulation results

(Figure S16), we found that varying the h2 parameter has

negligible impact on empirical variance explained in MDD

(Figure S20) but has a substantial impact on calibration

(Figure S21).
PA-FGRS contribute to classification models of MDD

over and above PGS

Both family history and PGS explain liability for MDD.

Using a 2-fold split of iPSYCH (Figure S5), we trained a

model to classify MDD from combinations of PA-

FGRS and PGS in iPSYCH2012 (or iPSYCH2015i) and

evaluated classification accuracy in the complement,

iPSYCH2015i (or iPSYCH2012; methods; Figures 4A and
erican Journal of Human Genetics 111, 1–16, November 7, 2024 7
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Figure 3. Simulations demonstrate the
advantages of PA-FGRS over other
methods
(A and B) PA-FGRS liabilities are correlated
with those from other methods in simula-
tions when (A) all relatives are fully
observed or (B) when younger relatives
are age-censored.
(C and D) (C) PA-FGRS shows the largest
correlation with true genetic liability in
simulations under a mixture model (i.e., a
random age of onset [AOO]) across a range
of trait prevalences, but (D) when simula-
tions are conducted under an age-depen-
dent-threshold (ADT) model, PA-FGRSadt
performs the best.
(E) Linear regression of estimated liability
on true liability shows PA-FGRS estimates
are, uniquely, calibrated in the presence
of age-censored records.
(F) The presence of shared environmental ef-
fects in generative models of familial resem-
blance creates correlation between PA-FGRS
and this environmental component (C þ
E) of liability. This can be reduced at the
cost of power (i.e., reduced correlation with
genetic components, A) by excluding
confounded (i.e., first degree) relatives.
(C–E) show mean and 95% confidence in-
terval across simulations, while (F) shows
median, range, and interquartile range
across simulations.
Models: LTPA, liability threshold Pearson-
Aitken7; LT-FHþþ, liability threshold fam-
ily history plus plus17; gibbsF9038; FGRS,
family genetic risk score21; PA-FGRS,
Pearson-Aitken family genetic risk score;
PA-FGRSADT, Pearson-Aitken family ge-
netic risk score with an age-dependent
threshold; gibbs20; PA, Pearson-Aitken.18

R2
l, Liability scale variance explained; cor,

correlation; deg., degree; c2, shared familial
environment.
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4B; Table S6). Both genetic instruments, fit alone, signif-

icantly classify MDD cases from controls in both

cohorts: iPSYCH2012 (AUCPGS ¼ 0.588 [0.583–0.594],

p ¼ 3:73 10�229; AUCPA-FGRS ¼ 0.598 (0.592–0.603),

p ¼ 4:93 10�328) and iPSYCH2015i (AUCPGS ¼ 0.573

[0.565–0.580], p ¼ 7:83 10�94; AUCPA-FGRS ¼ 0.576

[0.569–0.583], p ¼ 4:13 10�136). When combined

in a multivariate model, each genetic instrument con-

tributes independent information to classification with

combined effects of PA-FGRS and PGS larger than indi-

vidual effects (iPSYCH2012: AUCPGSþFGRS ¼ 0.630

[0.625–0.638] and iPSYCH2015i: AUCPGSþFGRS ¼ 0.608

[0.601–0.615]).

Including PGS for four other psychiatric disorders, SCZ,

BPD, ASD, and ADHD, improved the classification of

MDD relative to models with MDD PGS only (iP-

SYCH2012: AUC5-PGS ¼ 0.599 [0.594–0.604]; iPSY-

CH2015i: AUC5-PGS ¼ 0.589 [0.582–0.596]; Figures 4C

and 4D; Table S6). Similarly, incorporating PA-FGRS for

the four other psychiatric disorders improved the classifi-
8 The American Journal of Human Genetics 111, 1–16, November 7,
cation of MDD relative to models with MDD PA-FGRS

only (iPSYCH2012: AUC5-PA-FGRS ¼ 0.620 [0.614–0.625];

iPSYCH2015i: AUC5-PA-FGRS ¼ 0.596 [0.589–0.603];

Figures 4E and 4F). Combining all 10 predictors resulted

in the best out of sample classification (iPSYCH2012:

AUC5-PGSþ5-PA-FGRS ¼ 0.648 [0.643–0.653]; iPSYCH2015i:

AUC5-PGSþ5-PA-FGRS ¼ 0.626 [0.619–0.632]; Figures 4G and

4H). These results demonstrate that combining genetic in-

struments that leverage different sources of genetic infor-

mation improves classification of MDD.

Composite genetic profiles identify robust genetic

liability differences among subgroups in MDD

Individuals diagnosed with MDD demonstrate extensive

clinical heterogeneity that may reflect etiologic heterogene-

ity. We used multinomial logistic regression to associate dif-

ferences in clinical presentations of individuals diagnosed

with MDD to genetic liability profiles (methods; Figure 5).

We leverage the complementarity of PGS and PA-FGRS,

above, by defining composite genetic liability scores (e.g.,
2024
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BPD score¼ bPGS*PGSBPDþ bPA-FGRS*PA-FGRSBPD, where bPGS

and bPA-FGRS are the estimated effect of the PGS and PA-

FGRS on their natural outcome in a case-control logistic

regression). Each composite liability score was significantly

larger in individuals diagnosed with MDD than in the con-

trol group across all subgroups (Figure 5; p< 0.05). The liabil-

ity scores for BPD, SCZ, ASD, and ADHD tended to have

smaller effects on MDD subgroups than on their natural

outcome (i.e., bMLR/bLR < 1; the colored bars below dashed

line inFigure5;methods), except for BPD liability onconver-

sion to a BPD diagnosis (bMLR/bLR ¼ 0.97 [0.90–1.04];

Figure 5A).

Among 30,949 individuals diagnosed with MDD, those

also diagnosed with BPD (N ¼ 1,477) had significantly

(p < 1.4 3 10�3, adjusting for 35 tests) higher genetic lia-

bility for MDD (p ¼ 1:13 10�12), BPD (p ¼ 4:73 10�66),

and SCZ (p ¼ 2:53 10�6; Figure 5A). Among the 29,472

individuals diagnosed with MDD (excluding BPD), the

7,205 also diagnosed with an anxiety disorder had higher

genetic liability to MDD (p ¼ 4:93 10�6) and SCZ (p ¼
3:53 10�12; Figure 5B). Individuals with recurrent

depression (N ¼ 9,903) had higher liability to MDD

(p ¼ 3:23 10�12; Figure 5C) than those with single-

episode depression (N ¼ 19,569). Individuals treated for

MDD in-patient (NHospitalized ¼ 5,815) had higher liability

to MDD (p ¼ 6:23 10�5) and BPD (p ¼ 8:13 10�4) than

those treated out-patient (NOut-patient ¼ 12,432,

Figure 5D). We did not observe any significant differences

(p > 1:43 10�3) in the genetic liability score profiles of

males vs. females (NFemale ¼ 19,906, NMale ¼ 9,566;

Figure 5E) based on age at first diagnosis (Figure 5F) or

based on diagnostic codes for severity (mild NMild ¼
3,004, NModerate ¼ 8,742, NSevere ¼ 2,391, NPsychotic ¼
856; Figure 5G).

Each analysis was repeated using PGS- or PA-FGRS-only

profiles (Figures S22 and S23). PGS-only and PA-FGRS-

only results were highly similar (r ¼ 0.95 [0.93–0.97];

Figure 5H), and PA-FGRS or PGS scores alone were less

powerful than composite scores (PA-FGRS-only mean

log10(p) ¼ 2.90; PGS-only mean log10(p) ¼ 2.47; compos-

ite mean log10(p) ¼ 4.24). PGS and PA-FGRS appear to

capture similar constructs, and by combining the two,

we can increase power to detect differences in genetic li-

ability between groups. Finally, to test for large effects of

the familial environment, we constructed PA-FGRS

excluding nuclear family members (i.e., parents, siblings,

half-siblings, and children). The overall trends were

highly consistent with the full analysis (Figure 5I), albeit

with reduced significance (Figure S24). Repeating ana-

lyses using PA-FGRSadt had no impact on the profile re-

sults (correlation of effects estimated with PA-FGRS and

PA-FGRSadt ¼ 0.9998; Figures S25–S27). Genetic liability

score profiles are associated with differences in the clin-

ical presentation of MDD, involving contributions from

non-MDD liability scores, with parallel trends in PGS

or PA-FGRS alone, and do not seem strongly influenced

by familial environment.
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Figure 5. Composite genetic profiles identify robust liability differences between subgroups in MDD
We predicted MDD subgroup membership from composite genetic liability scores that integrate PGSs and PA-FGRS, together in multi-
nomial logistic regression with controls as a reference group.
(A) Higher MDD, SCZ, and BPD genetic liability were associated with conversion from MDD to BPD.
(B) Higher MDD and SCZ genetic liability were associated with a comorbid anxiety diagnosis.
(C) Higher MDD genetic liability was associated with recurrent MDD.
(D) Lower MDD and BPD genetic liability were associated with out-patient treatment.
(E–I) No differences were observed (E) between females and males diagnosed with MDD, (F) first MDD diagnosis before/after age 23, or
(G) mild, moderate, severe, or psychotic depression. PGS-only and PA-FGRS-only effects are highly consistent both, when (H) using all
relatives and (I) when excluding first degree relatives.
(A–G) Effect sizes are presented on a calibrated scale, where the regression coefficient describing the effect of a genetic liability score on
the subgroup is divided by the coefficient of the same score when predicting its natural outcome (i.e., BPD score predicting BPD) in a
simple logistic regression. This places the magnitude of subgroup effects on a scale that is relative to the effect of the score in its distin-
guishing natural outcome from controls, which can account for differences in the sensitivity of the individual scores.
(A–F) Models are meta-analyzed across iPSYCH2012 (Ncases % 20,632, Nctrl % 23,870) and iPSYCH2015i (Ncases % 10,317, Nctrl %
15,785), (G) is only available in iPSYCH2012. Significance is depicted in bold, at p < 0.05/35.
Detailed sample sizes for the individual analyses are provided in Table S3. Error bars indicate 95% confidence intervals. MDD, major
depressive disorder; SCZ, schizophrenia; BPD, bipolar disorder; ASD, autism spectrum disorder; ADHD, attention-deficit/hyperactivity
disorder; p, unadjusted p value frommeta-analyzed multinomial regressions. p values greater than 0.05 after Bonferroni adjustment dis-
played in gray text.
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GWAS on PA-FGRS liability values can add power to

single-cohort MDD GWAS

Studying genetic liability of threshold traits is expected to

boost power in GWAS (Figure S28). We performed meta-

analytic GWAS across the iPSYCH2012 (Ncases ¼ 17,518,

Nctrl ¼ 23,341) and 2015i (Ncases ¼ 8,323, Nctrl ¼ 15,204;

Figure S5) cohorts and compare logistic regression GWASs

of binary diagnoses to linear regression GWASs of PA-FGRS
10 The American Journal of Human Genetics 111, 1–16, November 7
in the same individuals (methods; Figure 6). GWAS of PA-

FGRS identified three independent loci (Figure 6A; index

SNPs: rs16827974, b ¼ 0.014, p ¼ 2:93 10�8; rs1040574,

b ¼ -0.011, p ¼ 3:33 10�8; rs112585366, b ¼ 0.026, p ¼
4:43 10�8; Table S7). These three variants and 24 of the 29

suggestive loci (false discovery rate < 0.05) showed consis-

tent sign in an independent MDD GWAS from Howard

el al.49 (excluding iPSYCH; Tables S2 and S3). GWASs of
, 2024
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Figure 6. PA-FGRS liabilities improve power for GWAS of MDD
(A and B) Genome-wide association studies (GWASs) of 25,841 cases and 38,545 controls using (A) PA-FGRS liability finds three indepen-
dent genome-wide significant loci, while (B) logistic regression (case/control) finds two.
(C) PA-FGRS GWAS test statistics are more extreme (i.e., more significant) than case-control GWAS at index SNPs of 28 loci reported in a
previous GWAS of MDD.
(D and E) PGSs trained using PA-FGRS GWASs achieve higher classification accuracy than those trained on case-control GWAS in
(D) iPSYCH2012 and (E) iPSYCH2015i, two independent evaluation cohorts.
(F) SNP-heritability estimated by LD-score regression analyses is slightly, but not significantly, larger for PA-FGRS GWAS, while estimated
intercepts are equivalent.
(G) PA-FGRS and case-control GWAS show similar genetic correlations with external GWAS of MDD and related traits. Error bars indicate
95% confidence interval.
h2

o, observed scale SNP heritability; int, LD score regression intercept; rG, SNP-based genetic correlation. External GWAS citations:
UKBþPGC,49UKB (GPpsy),11 FinnGen (ICD),50UKB (Imputed),51UKB (LifetimeMDD),11 SCZ,52BPD,53ADHD,54 educational attainment.55
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binarydiagnoses identifiedtwoof these loci (Figure6B; index

SNPs: rs6780942, 8.5 Kb from rs16827974 Beta¼ 0.085, p¼
7:13 10�9; rs3777421 36.3 Kb from rs1040574, b ¼ -0.073,

p¼ 4:63 10�8; Table S8). These two and 24 of the 35 sugges-

tive loci (false discovery rate< 0.05) showed consistent sign

inHoward el al.49 (excluding iPSYCH; Tables S2 and S3). The

28 independent, genome-wide significant index SNPs re-

ported in Howard el al.49 (excluding iPSYCH) have slightly,

but significantly, larger test statistics in the GWAS on PA-

FGRS (PA-FGRS mean c2 ¼ 4.55; case-control mean c2 ¼
3.80; paired t test p ¼ 0.018; Figure 6C).

Next, we trained PGSs in each subcohort (iPSYCH2012 or

iPSYCH2015i) using GWASs performed in the other
The Ame
(iPSYCH2015i or iPSYCH2012). In both cohorts, PGS

trained with PA-FGRS GWASs were modestly, but signifi-

cantly, better at classifying MDD vs. controls (2012:

AUCcase-control PGS ¼ 0.537 [0.531–0.542], AUCPA-FGRS PGS ¼
0.544 [0.538–0.550], test of differences: p ¼ 3:93 10�5;

2015i: AUCcase-control PGS ¼ 0.556 [0.548–0.563],

AUCPA-FGRS,PGS ¼ 0.548 [0.540–0.556], test of differences:

p¼ 2:13 10�7; Figure 6D). Observed scale SNP-h2was larger

in the PA-FGRS GWAS, but this difference was not signifi-

cant (h2
obs,PA-FGRS-h

2
obs,PA-case/ctrl ¼ 0.015 [�0.013–0.043];

Figure 6E), and genetic correlations with external studies

of MDD and other psychiatric disorders were similar

(Figure 6F). Taken together, the confluence of trends
rican Journal of Human Genetics 111, 1–16, November 7, 2024 11
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suggests GWASs on PA-FGRS do provide a small increase in

power per genotyped individual, which is consistent with

previous work17 and our simulations (Figure S28). Replacing

PA-FGRS with PA-FGRSadt liabilities reduced the gains across

most GWAS tests (Figures S29–S33).
Discussion

We have developed a method for estimating genetic liabil-

ity, PA-FGRS, that is more generalizable across datasets and

research questions and outperforms existing methods in

complex genealogical data. We show that PA-FGRS com-

plements genotype-based inferences into MDD in three

ways: (1) PA-FGRS liabilities improve classification models

when fit together with state-of-the-field PGS, (2) combing

PA-FGRS and PGS better describes the etiology underlying

clinical heterogeneity associated with comorbidity, recur-

rence, and severity in MDD, and (3) GWASs performed

on PA-FGRS scores have slightly more power than

GWASs on case-control status. Our method is flexible,

easy to use, and could be applied to ask similar questions

about other complex diseases. While large-scale family

data are not ubiquitous, Nordic and other national regis-

ters have extensive genealogical records. These data sour-

ces are much more representative of underlying popula-

tions than typical volunteer cohorts but are not typically

genotyped at large scale. PA-FGRS can enable important ge-

netic epidemiological investigations of these resources that

overcome some limits of PGS studies in ascertained bio-

banks. Our data-first approach—describing the unique

characteristics of a powerful resource and tailoring a

method to accommodate its peculiarities—allows us to

leverage, rather than discard or censor, inconvenient

data. This is a complementary approach to lowest common

denominator cross-cohort studies and may be especially

relevant as larger, deeper, and necessarily more peculiar

data emerge.

PA-FGRS is model based, incorporates distant relatives,

and handles age-censored phenotypes of relatives. Incor-

porating distant relatives allows us to manipulate our lia-

bility calculation to exclude close relatives as a sensitivity

test for undue impact of familial environment. This, and

using morbid risk to define a mixture model, makes PA-

FGRS most similar in concept to FGRS,21 but the formal

model underlying PA-FGRS (PA-selection theory) gains ef-

ficiency and improves calibration of estimated liabilities.

The modeling of censoring in PA-FGRS is different from

the ADT model, e.g., LT-FHþþ17 or age-dependant liabil-

ity threshold model (ADuLT),56 which we implemented

as PA-FGRSadt. PA-FGRS assigns the same liability to rare

cases as average cases (i.e., uses one population threshold)

using covariate stratified cumulative incidence to define

mixture proportions for controls. LT-FHþþ and PA-

FGRSadt assign increasingly larger genetic liability to

increasingly rarer cases observed in empirical cumulative

incidence curves (i.e., uses per individual thresholds). For
12 The American Journal of Human Genetics 111, 1–16, November 7
example, in our MDD data, males diagnosed at a young

age many decades back (a rare event in empirical cumula-

tive incidence) would make much larger contributions to

liability estimates in the LT-FHþþ/ADuLT model than in

the PA-FGRS model. While simulations confirmed that

PA-FGRSadt is better when simulating under the ADT

model, among tested methods, only PA-FGRS remained

calibrated under model misspecification, suggesting that

PA-FGRS is a robust choice. We did see a small improve-

ment in prediction of MDD by the ADT model but not

in GWASs nor in the subgroup liability profiling. The un-

derlying model of PA-FGRS is amenable to analysis and

extension, representing an advantage for future work

that could extend the model to include non-additive

covariance, multiple traits, or more complicated etiolog-

ical models of heterogeneity and comorbidity.

Combining family-based liabilities and genotype-based

PGS from multiple disorders significantly improved classi-

fication accuracy. In cancer57 or coronary artery disease,58

risk models incorporate multiple measures—health states,

health traits, family history, and PGS. In psychiatry, this

has been pursued in more limited contexts (e.g., Agerbo

et al.8). Previous studies have found that combining

parental history information and PGS improves the predic-

tion accuracy;8 however, these studies only considered risk

associated with parental MDD and did not leverage diag-

noses in other relatives. Integrative models that combine

multiple sources of genetic information, such as family his-

tory, estimated liability, and PGS, along with exposure data

have the potential to advance the clinical utility of risk

assessment in psychiatry but will require large population

data and integrative models.

Our composite profile analysis replicates, extends, and

adds context to previous work considering genetic liabil-

ity profile differences between subgroups in MDD. First,

we replicate previous results in similar data showing sta-

tistically significant associations of genetic liability to

MDD with recurrence and MDD and BPD with treatment

location.59,60 Our models calibrate effect sizes differently

to accommodate noisy instruments, such as PGS, leading

to different framing of effect sizes, which we see as mod-

erate to substantial rather than minimal. We also repli-

cate associations between BPD and SCZ liability and con-

version from MDD to BPD61 but interpret BPD genetic

liability to be significantly more important than SCZ

genetic liability for conversion. Second, studies in

Swedish registers have shown differences in FGRSs asso-

ciated with progression to BPD,21 comorbid anxiety,48

recurrence,21 treatment setting,62 and age at onset21 of

MDD. We confirm higher genetic liability to MDD

among cases with recurrent depression using composite,

PGSs-only, and PA-FGRS-only liability scores, which sug-

gests that genetic liability to MDD itself plays an impor-

tant role in recurrency—although we cannot rule out

that a larger fraction of people with single-episode

depression could be misdiagnosed. We also replicated a

higher liability to MDD and SCZ among MDD cases
, 2024
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with comorbid anxiety using our composite and PGS-

only scores and saw the same trend of higher liability

to MDD and BPD among hospitalized cases using our

composite and PGS-only scores. These findings appear

to indicate that liabilities to psychiatric diseases other

than MDD also contribute to clinical heterogeneity

within MDD—although, again, we cannot rule out

that individuals who truly have these other disorders

(e.g., SCZ) have been misclassified into these categories

(e.g., MDD þ anxiety). Findings of higher BPD liability

in male MDD cases62 was nominally significant in our

study. We did not observe associations to age at onset;

however, iPSYCH has a reduced range for onset (15 to

35 vs. <22 to >69) and includes only secondary-care

treated (i.e., more severe) MDD. Our study replicates

and extends previous results by providing more inter-

pretable effect sizes using an alternative model-based

approach for family liability scores and by showing con-

sistency between familial and molecular scores.

We observed a small, significant improvement in power

when performing GWAS for MDD on PA-FGRS liabilities. A

previous study incorporating family history in GWASs of

MDD using iPSYCH did not observe gains17 but only

considered first-degree relatives and weighted them differ-

ently. Consistent with simulations, the relative increase in

power observed in highly ascertained case-control data is

smaller than what has been reported for population-based

studies.7,17 In population studies, especially for rarer disor-

ders, most of the variance in liability is hidden within con-

trols, whereas for highly ascertained data, most of the vari-

ance in liability remains between cases and controls. In

this latter context, little is gained by moving from binary

to continuous measures. Although we observe small gains

in power for GWASs, consistent with other studies, the

most impactful applications of PA-FGRS may lie in classifi-

cation and descriptions of etiology. Our study should be in-

terpreted in light of a few important limitations. Certain

modeling choices could affect the reliability of PA-FGRS.

First, pedigree size varies substantially among individuals.

Probands with few relatives have scores regressed more to-

ward the mean liability, which can introduce bias. Second,

modeling the censoring process requires external informa-

tion about age-of-onset curves for disease of interest—as do

the other methods—and these may change in calendar

time cohorts. While reliable age-of-onset curves are avail-

able for the present register coverage, estimating age-of-

onset curves for past decades with different diagnostic sys-

tems and different register coverage is challenging. Third,

our model assumes that the true liability of cases with

different age and calendar year of onset is the same, while

others have proposed true liability should vary according

to these covariates.17,56 Both approaches are based on heu-

ristics and could be better compared, integrated, and opti-

mized to improve performance. Fourth, in our framework,

genotypes are only used to generate PGSs based on

external effect estimates, but as the number of genotyped

samples within cohorts grows, adding within cohort esti-
The Ame
mates either as a meta-PGS63 or a genomic BLUP64 could

likely improve accuracy.

Here, we have taken a data-first approach to studying the

genetic architecture of MDD by tailoring both our study

aims and method development to the particular strengths

and challenges of a unique data resource. Doing so resulted

in a methodological increment with broad applicability

and highlights the utility of integrating multiple sources

of genetic data when considering trait predictions, etiolog-

ical descriptions, and gene mapping.
Data and code availability

The code generated during this study is available through public

github repositories: https://github.com/BioPsyk/PAFGRS and

https://github.com/MortenKrebs/PA-FGRS-simulations.
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Hougaard, D.M., Grove, J., et al. (2021). Risk of Early-Onset

Depression Associated With Polygenic Liability, Parental Psy-

chiatric History, and Socioeconomic Status. JAMA Psychiatr.

78, 387–397.

9. Hujoel, M.L.A., Loh, P.-R., Neale, B.M., and Price, A.L. (2022).

Incorporating family history of disease improves polygenic

risk scores in diverse populations. Cell Genom. 2, 100152.

10. Mars, N., Lindbohm, J.V., Briotta Parolo, P.D., Widén, E., Kap-

rio, J., Palotie, A., Ripatti, S.; and FinnGen (2022). Systematic

comparison of family history and polygenic risk across 24

common diseases. Am. J. Hum. Genet. 109, 2152–2162.

11. Cai, N., Revez, J.A., Adams, M.J., Andlauer, T.F.M., Breen, G.,

Byrne, E.M., Clarke, T.-K., Forstner, A.J., Grabe, H.J., Hamilton,

S.P., et al. (2020). Minimal phenotyping yields genome-wide

association signals of low specificity for major depression.

Nat. Genet. 52, 437–447.
14 The American Journal of Human Genetics 111, 1–16, November 7
12. LaBianca, S., Brikell, I., Helenius, D., Loughnan, R., Mefford,

J., Palmer, C.E., Walker, R., Gådin, J.R., Krebs, M., Appadurai,
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