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Abstract

Aims: A data-driven cluster analysis in a cohort of European individuals with type

2 diabetes (T2D) has previously identified four subgroups based on clinical character-

istics. In the current study, we performed a comprehensive statistical assessment to

(1) replicate the above-mentioned original clusters; (2) derive de novo T2D subpheno-

types in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA)

cohort and (3) describe underlying genetic risk and diabetes complications.

Methods: We used data from n = 301 individuals with T2D from KORA FF4 study

(Southern Germany). Original cluster replication was assessed forcing k = 4 clusters
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using three different hyperparameter combinations. De novo clusters were derived

by open k-means analysis. Stability of de novo clusters was assessed by assignment

congruence over different variable sets and Jaccard indices. Distribution of polygenic

risk scores and diabetes complications in the respective clusters were described as an

indication of underlying heterogeneity.

Results: Original clusters did not replicate well, indicated by substantially different

assignment frequencies and cluster characteristics between the original and current

sample. De novo clustering using k = 3 clusters and including high sensitivity

C-reactive protein in the variable set showed high stability (all Jaccard indices >0.75).

The three de novo clusters (n = 96, n = 172, n = 33, respectively) adequately cap-

tured heterogeneity within the sample and showed different distributions of poly-

genic risk scores and diabetes complications, that is, cluster 1 was characterized by

insulin resistance with high neuropathy prevalence, cluster 2 was defined as age-

related diabetes and cluster 3 showed highest risk of genetic and obesity-related

diabetes.

Conclusion: T2D subphenotyping based on its sample's own clinical characteristics

leads to stable categorization and adequately reflects T2D heterogeneity.

K E YWORD S
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1 | INTRODUCTION

Diabetes is a rapidly growing global health concern.1,2 The underlying

causes of pancreatic beta-cell dysfunction are heterogeneous, and

individual trajectories of hyperglycaemia and subsequent diabetes

complications vary widely.3,4 Therefore, classifications of type 2 diabe-

tes (T2D) that predict the risk of complications and provide options

for a tailored treatment have been actively studied.5–8

Traditionally, diabetes is mainly classified into type 1 (T1D) and T2D,

primarily determined by the presence (T1D) or absence (T2D) of autoan-

tibodies. A novel approach to identify subphenotypes of diabetes was

the hallmark study by Ahlqvist et al.9 They used six diabetes-related vari-

ables including age at diagnosis, body mass index (BMI), haemoglobin

A1c (HbA1c), homeostasis model assessment (HOMA) estimates of beta-

cell function (HOMA2-B) and insulin resistance (HOMA2-IR) and gluta-

mic acid decarboxylase antibodies (GADA) to categorize individuals with

diabetes into five clusters. Thereby, four clusters mainly represent T2D

subphenotypes and one cluster with severe autoimmune diabetes (SAID)

mainly corresponds to the T1D subphenotype. The four T2D subpheno-

types were labelled based on their distinctive features as severe insulin-

deficient diabetes (SIDD), severe insulin resistant diabetes (SIRD), mild

obesity-related diabetes (MOD) and mild age-related diabetes (MARD)

and exhibited different risks of disease progression and diabetes compli-

cations. These clusters have been replicated in diverse ethnic groups

such as British,10 German,11,12 American and Chinese,13,14 Mexican,15

Icelandic,16 Japanese17 and Asian Indian cohorts.18 Recently, subpheno-

types were characterized in more detail from a molecular perspective,

including potential underlying genetic determinants19,20 and cluster-

specific signatures of metabolomics and proteomics.21,22 There appear to

be differences in biomarkers of inflammation between diabetes subphe-

notypes, which is in line with the involvement of inflammatory mecha-

nisms, most often assessed by C-reactive protein (CRP), in the

progression of diabetes.12,23 Taken together, the current state of evi-

dence suggests that diabetes subphenotyping, including deep molecular

phenotyping, holds the potential to offer key insights into the underlying

pathophysiology of glucose dysregulation and the onset of comorbidities

among individuals with T2D, while it further enables the advancement of

personalized treatment of diabetes.

In the current study, we aimed to perform a comprehensive statisti-

cal assessment of T2D subphenotyping in the Cooperative Health

Research in the Region of Augsburg (KORA) FF4 cohort (Southern

Germany). Our aims were threefold: (1) to investigate to which extent

the original clusters from Ahlqvist et al.9 could be replicated in the KORA

sample; (2) to derive novel T2D subphenotypes based on data-driven

clustering, also accounting for inflammation and (3) to investigate hetero-

geneity between the de novo derived subphenotypes by describing the

distribution of genetically predicted risk as captured by a polygenic risk

score (PRS), diabetes-related complications and parental history of diabe-

tes. An overview of the study design is shown in Figure 1.

2 | METHODS

2.1 | Study population and clinical data

KORA comprises several deeply phenotyped population-based epide-

miological surveys.24 The current analysis is based on data from the

KORA-FF4 study, conducted between 2013 and 2014. Details about

2 DONG ET AL.
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F IGURE 1 Study design. The left part in orange corresponds to aim (1) whereas the right part in blue corresponds to aims (2) and (3). The
fixed variable set contained the basic variables: Age, body mass index, haemoglobin A1c, homeostasis model assessment (HOMA) estimates of
beta-cell function (HOMA2-B) and insulin resistance (HOMA2-IR), corresponding to the original ANDIS study. Variable sets in KORA contained
the basic variables plus one additional variable, respectively: High sensitivity C-reactive protein, triglycerides, HDL-cholesterol or systolic blood
pressure. ANDIS, Swedish All New Diabetics in Scania cohort; KORA, ‘Cooperative Health Research in the Region of Augsburg’ cohort; T2D, type
2 diabetes; PRS, polygenic risk score.

TABLE 1 Characteristics of the KORA FF4 participants for men and women.

Men (N = 178) Women (N = 123) p

Age at examination (years) mean (SD) 69.6 (10.0) 69.4 (10.2) 0.83

BMI (kg/m2) mean (SD) 30.3 (4.9) 32.2 (5.7) 0.003

HbA1c (mmol/mol) mean (SD) 46.9 (11.7) 47.9 (10.9) 0.48

HOMA2-B % mean (SD) 72.3 (38.4) 71.5 (31.8) 0.85

HOMA2-IR (SD) 2.1 (1.2) 2.0 (1.0) 0.52

hsCRP (mg/L) mean (SD) 2.7 (3.3) 4.5 (6.0) 0.001

TG (mmol/L) mean (SD) 1.9 (1.1) 1.6 (0.8) 0.025

HDL-C (mmol/L) mean (SD) 1.4 (0.4) 1.6 (0.4) <0.001

SBP (mmHg) mean (SD) 130.4 (17.8) 122.3 (19.9) <0.001

Fasting glucose (mmol/L) mean (SD) 7.6 (2.0) 7.5 (1.9) 0.543

Use of metformin 84 (47.2) 57 (46.3) 0.94

Any oral antidiabetic medication or insulin treatment 96 (53.9) 64 (52.0) 0.80

Known diabetes (%) 123 (69.1%) 84 (68.3%) 0.982

Note: Mean and standard deviation (SD) are provided for quantitative variables and differences were evaluated by student's t test. Count and percentage

are provided for categorical variables and differences were evaluated by chi square test.

Abbreviations: BMI, body mass index; HbA1C, haemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; hsCRP, high sensitivity C-reactive protein;

HOMA2-B, homeostasis model assessment estimates of beta-cell function; HOMA2-IR, homeostasis model assessment estimates of insulin resistance;

Known diabetes, the diabetes diagnosis was known prior to the study; TG, triglycerides; SBP, systolic blood pressure.
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the study sample and the assessment of clinical data are presented in

Supplementary Material.

For the current analysis, only participants with T2D were included

for cluster analysis. Participants with T1D (n = 6) were excluded from

all analyses. Moreover, participants with missing values for clustering

variables (described below) were excluded (n = 20). Finally, the cluster

analysis comprised N = 301 individuals with T2D (Table 1). For the

assessment of genetically T2D risk, a PRS was calculated for all indi-

viduals with T2D (N = 301) and without T2D (N = 1357) as the con-

trol group (Table S1).

2.2 | Genotyping and polygenetic risk score

Genetically predicted T2D risk was calculated by an established PRS,

as described in Supplementary Material.

2.3 | Statistical analysis

Statistical analysis was conducted using R version 4.1.1. A two-sided

p value <0.05 was considered statistically significant. A detailed

description of (1) the replication of original clusters, including different

combinations of scaling and centroid hyperparameters, (2) de novo

cluster derivation in the KORA study and (3) assessment of differ-

ences between clusters with respect to PRS, parental history of diabe-

tes and diabetes complications is presented in Supplementary

Material.

3 | RESULTS

3.1 | Study sample

The final sample included 301 individuals with T2D, thereof

94 (31.2%) with newly detected diabetes by oral glucose tolerance

test (oGTT). Comparison between women and men showed higher

BMI, hsCRP and HDL-C values in women and higher TG and SBP

levels in men, whereas medication intake (metformin and any other

oral antidiabetic medication or insulin treatment) was similar (Table 1).

Fasting glucose and HbA1c values over time are presented in

Figure S1.

3.2 | Replication of the four ANDIS T2D clusters

3.2.1 | Assignment by using ANDIS scaling and
ANDIS centroids

First, clinical variables of the KORA participants were scaled based on

ANDIS's scaling parameters, and each participant was assigned to a

single cluster based on the Euclidean distance to the ANDIS cen-

troids.25 The characteristics of four clusters are shown in Table S2

and Figure 2A. The SIDD cluster in KORA was characterized by a rela-

tively younger age, lower insulin secretion (HOMA2-B) and highest

HbA1c; the SIRD cluster had the highest level of insulin resistance

(HOMA2-IR) and insulin secretion (HOMA2-B); the MOD cluster had

a high BMI but younger age and the MARD cluster showed low insulin

resistance, low BMI and older age. The relative cluster sizes in KORA

were not comparable to those found in the ANDIS study. SIDD made

up only 2% of the T2D cases in KORA compared to 17.5% in ANDIS.

More than 80% of participants in KORA were assigned to the MARD

cluster, compared to only around 40% in ANDIS.

3.2.2 | Assignment by using KORA scaling and
ANDIS centroids

Second, the clinical variables of KORA participants were scaled

based on own scaling parameters derived from the KORA sample

and then assigned to a single cluster based on the Euclidean dis-

tance to the ANDIS centroids.21 The characteristics of four clusters

are shown in Table S2 and Figure S2A. The SIDD cluster in KORA

was characterized by a relatively younger age, lower insulin secre-

tion (HOMA2-B) and poorer glycaemic control (higher HbA1c); the

SIRD cluster had the highest level of insulin resistance (HOMA2-IR)

and insulin secretion (HOMA2-B); the MOD cluster had a high BMI

and individuals were younger and the MARD cluster had low insulin

resistance and low BMI, but an older age. All these variables

followed the same trend in KORA and ANDIS. The relative cluster

sizes in KORA were comparable to those found in the ANDIS study,

for example, most participants were allocated to MARD for both

KORA (46.8%) and ANDIS (39.1%), and 15.3% of individuals in

KORA were assigned to SIDD which was similar to the ANDIS

study (17.5%).

We then investigated the transfer of individuals when using

ANDIS centroids, with either ANDIS scaling or KORA scaling. Sixty-

five percent of participants were assigned to the same clusters

(Figure S2B). Compared to ANDIS scaling, clusters were more

evenly distributed when using KORA scaling. Most strikingly, a

substantial part of the MARD cluster when using ANDIS scaling

was allocated to the SIDD, SIRD and MOD clusters using KORA

scaling.

3.2.3 | Assignment by using KORA scaling and
KORA centroids

Third, clusters were derived based on hyperparameters from KORA

data alone, using k-means clustering on the same variable set (age,

BMI, HbA1c, HOMA2-B and HOMA2-IR) forcing the same number of

clusters (k = 4) as in the ANDIS cohort. As shown in Figure S3, cluster

1 was characterized by low insulin secretion (low HOMA2-B), high

BMI and poor metabolic control (high HbA1c); thus, we labelled clus-

ter 1 as SIDD. Cluster 2 had insulin resistance as evidenced by a high

HOMA2-IR which could be compared to SIRD. Cluster 3 featured

4 DONG ET AL.
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elderly individuals with relatively mild metabolic irregularities which is

similar to MARD in the ANDIS study. Cluster 4 represented a novel

distinct subphenotype with the overall most modest metabolic impair-

ments and low BMI and was thereby distinct from the ANDIS

cluster MOD.

We also generated the Sankey diagram to visualize and compare

the cluster assignment based on the second approach (using KORA

scaling and ANDIS centroids) and the third approach (using

KORA scaling and KORA centroids). We observed consistent cluster

assignments for only 45% of the individuals between the second and

third approach (Figure 2C). Taken together, these results suggest that

the original ANDIS clusters do not fully reflect the characteristics of

the KORA sample.

3.3 | De novo cluster derivation in KORA

3.3.1 | Determination of k and cluster derivation

Both silhouette width and the elbow plot methods agreed that k = 3

rather than k = 4 was the optimal number of clusters for the KORA

data (Figure S4). Subsequently, k-means was used on the basic vari-

able set to categorize KORA participants into three clusters represent-

ing three T2D subphenotypes. Clinical characteristics according to

each subphenotype are shown in (Figure S5A). Cluster 1 (n = 96,

31.9%) was characterized by hyperinsulinemia and insulin resistance

(most similar to the SIRD cluster in the ANDIS cohort); participants in

cluster 2 (n = 172, 57.1%) had older age, low BMI and low insulin

F IGURE 2 Distributions of age at examination, body mass index (BMI), haemoglobin A1c (HbA1c), homeostasis model assessment (HOMA)
estimates of beta-cell function (HOMA2-B) and insulin resistance (HOMA2-IR) in the KORA FF4 cohort for each cluster (A) using ANDIS scaling
and ANDIS centroids or (B) with additional high sensitivity C-reactive protein (hsCRP) derived from de novo k-means with k = 3. The upper and
lower bounds of boxes represent the first and third quartiles, box centres represent the median values and circles represent outliers. (C) Sankey
diagram displaying the transfer of individuals between the clusters identified using KORA scaling and ANDIS centroids (left side) and the clusters
identified using KORA scaling and KORA centroids (right side), (D) transition of individuals between the clusters originally replicated using KORA
scaling and KORA centroids (left side, corresponding to the right side of Figure 2C) and de novo derivation (right side) and (E) transition of
individuals between the de novo clusters identified using basic variables (left side) and with the additional variable hsCRP (right side). MARD, mild
age-related diabetes; MOD, mild obesity-related diabetes; SIDD, severe insulin-deficient diabetes; SIRD, severe insulin resistant diabetes.
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resistance which could be compared to MARD in the ANDIS cohort;

and cluster 3 (n = 33, 11.0%) showed insulin deficiency (low

HOMA2-B), high BMI and poor glycaemic control (high HbA1c), which

is a distinct cluster from those present in the ANDIS cohort. We then

compared participant transitions from the original cluster replication

using KORA centroids and KORA scaling (third approach as described

above) with the de novo derived clusters (Figure 2D). Individuals pre-

viously allocated to the MARD subphenotype were reallocated to the

new cluster 1 and cluster 2. Individuals previously allocated to

the novel distinct subphenotype were mainly reallocated not only to

the new cluster 2, but also to the new cluster 3 (distinct). Individuals

previously allocated to the SIRD subphenotype were reallocated to

the new cluster 3.

3.3.2 | Different variable sets and final clusters

We assessed the stability of cluster assignments when using differ-

ent sets of variables for clustering: basic variables (age at examina-

tion, BMI, HbA1c, HOMA2-B and HOMA2-IR) plus hsCRP, TG,

HDL-C or SBP, respectively. In general, the addition of these vari-

ables did not substantially influence the distribution of the basic

variables between clusters and did not lead to substantial transition

of participants between clusters (Figure 2B,D, Figures S5, S6 and

S7). In detail, 90%, 93%, 90% and 98% of participants were allo-

cated to the same cluster when using basic variables compared to

when adding hsCRP, TG, HDL-C or SBP, respectively. To account

for the role of systemic inflammation in diabetes differentiation, we

defined the clusters derived from the variable set of age, BMI,

HbA1c, HOMA2-B and HOMA2-IR plus hsCRP as the final subphe-

notypes, presented in Figure 2B, Tables S3 and S4. Cluster

1 included 91 participants (30.2%) and was characterized by insulin

resistance (high HOMA2-IR) and hyperinsulinemia, with a high pro-

portion of newly diagnosed diabetes cases (most similar to the

SIRD cluster in ANDIS). Cluster 2 included 182 individuals (60.5%)

and was characterized by high age, low BMI and low insulin resis-

tance (most similar to the MARD cluster in ANDIS). Cluster

3 included 28 participants (9.3%) and was characterized by a high

BMI, poor glycaemic control, high level of subclinical inflammation

(high hsCRP) and relative insulin deficiency, broadly resembling a

typical patient seen in clinical practice (most similar to SIDD/MOD

cluster in ANDIS).

The assessment of cluster stability showed that Jaccard indices

of all final clusters were above 0.75, indicating reasonably high

cluster stability for the final variable set (Table S5). Of note, with

additional variables TG, HDL-C or SBP, stability slightly decreased

for all clusters and cluster 3 even showed Jaccard indices below

0.75 (Table S5). Besides, the majority of individuals (95%) were

assigned to the same cluster as in the initial data analysis, and both

men and women showed the same trend on the clinical variable

distribution (Figure S8), suggesting a lack of substantial sex-specific

effects.

3.4 | Cluster differences in genetic risk, diabetes-
related complications and parental history

3.4.1 | Polygenic risk score

The overall distribution of the PRS in the KORA FF4 sample is given

in Figure 3A. Participants with T2D had significantly higher PRS

values (p < 0.001) compared to those without T2D and were

F IGURE 3 (A) Density plot shows the polygenic risk score (PRS) distribution in the KORA FF4 sample without (light green) and with (light red)
type 2 diabetes (T2D). Data beyond the two vertical lines indicate extreme values of the PRS distribution, and the corresponding numbers reflect
the proportion of individuals without (light green) and with (light red) T2D who showed extreme PRS values. (B) Percentile of increasing PRS (x-
axis) versus the prevalence of T2D (y-axis). (C) Distributions of PRS in control group (marked as 0) and three clusters representing T2D
subphenotypes.
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overrepresented in the highest quantiles of the distribution

(Figure 3A,B). When comparing the distribution of PRS in the respec-

tive clusters to individuals without diabetes (Figure 3C), the PRS in

cluster 2 and cluster 3 was significantly different to the control group

(both p < 0.001, respectively) but the PRS in cluster 1 was not differ-

ent to the control group. An additional t test confirmed that cluster

3 had a significantly higher PRS than cluster 1 (p = 0.034), whereas

there was no significant difference between cluster 1 and cluster 2.

3.4.2 | Diabetes-related complications and parental
history of diabetes

We evaluated the prevalence of diabetes-related complications and

parental history of T2D in the three clusters. As shown in Figure S9

and Table S7, in general, individuals in clusters 1 and 2 had a substan-

tially higher prevalence of myocardial infarction, stroke and chronic

kidney disease (CKD). Individuals in cluster 3 had a more frequently

positive parental history of diabetes.

Moreover, compared to cluster 1, cluster 2 had a lower frequency

of neuropathy (p = 0.043) but a higher prevalence of stroke (not sig-

nificant) and CKD (p = 0.030).

4 | DISCUSSION

The T2D subphenotype classification scheme proposed by Ahlqvist

et al.9 has been replicated in different populations and has proven to

be a useful tool to further characterize potential pathophysiological

pathways and diabetes progression. Our study aimed at a comprehen-

sive assessment of original cluster replication, including a systematic

illustration of participant transitions between replicated clusters, de

novo cluster derivation, including the assessment of cluster stability,

and underlying genetic risk and complication distribution. We found

that the original clusters only partially reflected the characteristics of

individuals with T2D in the KORA sample, whereas de novo derived

clusters showed excellent stability and captured the underlying het-

erogeneity between the T2D subphenotypes. Our results therefore

underscore the importance of subphenotyping by illustrating the

importance of individual study characteristics, and we contribute

another potential T2D subphenotype to the existing panel.

Our results align with recent findings, which indicated that 11 of

18 studies either delineated distinct subphenotypes or failed to iden-

tify all ANDIS subphenotypes.26 Part of the lack of replicability of the

original clusters may be attributed to differences in the study setup

and participants' characteristics. For example, we used age at exami-

nation for clustering, since age of diabetes onset for most T2D partici-

pants was not available. Therefore, the average age used in the KORA

sample was significantly higher compared to the ANDIS cohort

(Table S1), especially in the de novo cluster 2 (comparable to MARD).

Moreover, individuals in KORA had better glycaemic control and less

insulin resistance compared to the ANDIS sample (Table S1), indicat-

ing that KORA potentially included a larger proportion of T2D cases

with less severe disease. Furthermore, our HOMA models were based

on insulin instead of C-peptide, which might have led to differences in

estimates. Some studies27,28 suggested that C-peptide better

reflected insulin secretion, while another study29 suggested that both

of them performed similar in evaluating beta cell function.

Employing different scaling parameters generated a big difference

in cluster allocation, and different studies applied different

approaches.21,25 The incongruence of cluster assignment, together

with the identification of a novel, distinct subphenotype not present

in ANDIS when using KORA centroids, shows that the original clusters

do not capture the characteristics of the KORA sample as well. We

consider this finding important for personalized prevention. While the

ANDIS cohort captured crucial subphentoypes, these clusters might

take different shapes or not fully reflect the underlying sample in

other cohorts with different characteristics. Contributions from multi-

ple studies are therefore needed to expand and refine the current

panel of T2D subphenotypes.

Determination of the optimal number of clusters k based on sil-

houette and elbow plot showed that in the KORA sample, k = 3 was

the best number of clusters, which is consistent with the Danish DD2

study.25 A head-to-head comparison between the clusters from KORA

and DD2 revealed major similarities (Table S8). Consistent with the

research from Safai et al.,30 which did not identify an evident

MOD-like cluster in their de novo cluster analysis (when using k = 5,

including SAID), the clusters with the highest BMI also exhibited sig-

nificantly higher insulin resistance. Besides the clinical characteristics

used for clustering, multiple other factors are associated with T2D.

We thus assessed cluster stability across different variable sets, addi-

tionally including hsCRP, HDL-C, TG or SBP, respectively. We found

that these additional variables did not contribute much to the reallo-

cation of individuals, as more than 90% individuals were still assigned

to the same cluster, indicating high cluster stability and robustness

towards different variable sets. One could thus hypothesize that the

original variables already capture a major part of T2D heterogeneity

and are adequate to identify clinically meaningful T2D subpheno-

types. Other studies18,30,31 also applied analytical approaches for a

wider range of clusters or included different variables than the ANDIS

study but did not systematically evaluate how participants were real-

located when using different clustering variables.

CRP is regulated by proinflammatory cytokines derived from adi-

pose tissue.32,33 In individuals with T2D, CRP levels are chronically

elevated.34 In the current analysis, we included hsCRP for clustering

to account for the role of subclinical inflammation and assess potential

differences according to subphenotypes. The de novo derived cluster

3 could not be mapped to one of the original ANDIS clusters and was

characterized by high BMI, high hsCRP and relatively low HOMA2-B.

Increased CRP levels have been linked to excess body weight since

adipose tissue produces tumour necrosis factor α (TNF-α) and

interleukin-6 (IL-6), which are pivotal factors for CRP stimulation.32,33

We could thus hypothesize that cluster 3 represents a T2D subpheno-

type with chronic, obesity-induced subclinical inflammation. The PRS

and the prevalence of self-reported parental history of diabetes were

both the highest in cluster 3. So, cluster 3 could represent a T2D
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subphenotype with higher genetically induced risk for both diabetes

and obesity, resulting in chronic subclinical inflammation (Table S6

and Figure S10). We note that the use of a PRS to define subgroups

of diabetes is still questionable and would render the algorithm less

readily applicable in clinical practice and other studies, which is why

we only use it descriptively. Since non-genetic risk factors might have

even stronger unfavourable impacts in individuals with genetic predis-

position, the group in cluster 3 would particularly benefit from rigor-

ous weight control, either through lifestyle modifications or drug

treatment. Moreover, these individuals should be monitored for

potential other causes of inflammation, such as infections or wounds.

The analysis of diabetes complications showed that in cluster

2, there was a higher proportion of CKD cases and a relatively higher

percentage of stroke (not significant) compared to cluster 3. This

could be due to the higher average age in cluster 2, since it is well-

established that age is a major risk factor for metabolic complications

in T2D.35,36 Because risk in cluster 2 is mainly conferred by aging pro-

cesses, and age is a non-modifiable factor, for this cluster in particular,

close monitoring of comorbidities and strict, potentially medication-

based, control of, for example, blood pressure and renal function is

advisable. Cluster 1 was characterized by hyperinsulinemia and a com-

paratively higher prevalence of neuropathy compared to cluster

2. Insulin dysregulation can contribute to neuropathic changes in sen-

sory neurons, and the peripheral nervous system is one of several

organ systems that are profoundly affected in diabetes.37 Interest-

ingly, HbA1c levels in cluster 1 were comparatively low, so it would

be crucial to investigate the use of glucose-lowering therapy in this

cluster to evaluate their role in the prevention of neuropathy in

this subphenotype. Medication therapy in this cluster was compara-

tively low, likely due to the high proportion of newly diagnosed diabe-

tes cases, so this would be an obvious target to tackle insulin

resistance in these individuals. Moreover, lifestyle interventions would

be beneficial, including dietary changes by reducing calorie intake and

limiting high glycaemic index carbohydrates and regular physical activ-

ity which enhances calorie burning and increases insulin sensitivity in

muscle tissue.38,39 Evidence indicates that an increased level of hsCRP

is linked with diabetes-related complications,40,41 but cluster 3 with

the highest hsCRP levels was not characterized by a high load of com-

plications. This may be due to the younger age of individuals in cluster

3 (Figure 2B), since given the potential pathway discussed above

about a genetic predisposition to obesity-induced inflammation, it

would be possible that diabetes complications in cluster 3 have not

yet developed.

We acknowledge the limitations of our current study. The sample

size was relatively small compared to other population-based studies,

and although unsupervised clustering does not have strict sample size

requirements, the small number of individuals with diabetes-related

complications and family history information impedes the interpreta-

tion of shared disease characteristics. While the clusters represent a

true underlying structure in the data from a statistical perspective, this

structure could also have emerged due to other shared characteristics

of the respective individuals, for example, environmental factors, and

do not necessarily represent shared pathophysiology. Moreover, our

results regarding diabetes complications need to be interpreted with

caution, since complications were self-reported, and the sample size

was small. We were unable to model medication effects, since medica-

tion could not be included as a variable in the clustering procedure, and

participants' individual medication regimes could not be disentangled.

Moreover, our participants were exclusively of white European ethnic-

ity, which limits the generalizability to other populations.

In conclusion, to exploit the full advantages of T2D subphenotyp-

ing, a potential mismatch between reported T2D clusters and the indi-

vidual study characteristics has to be taken into account. Since

adapting the clustering algorithm might not always be possible, further

efforts should be undertaken to identify further subtypes from differ-

ent well-characterized studies, in order to expand and refine the cur-

rent panel of T2D subphenotypes.

AUTHOR CONTRIBUTIONS

Conceptualization: Qiuling Dong, Yue Xi, Harald Grallert and Susanne

Rospleszcz. Methodology: Qiuling Dong and Yue Xi. Software: Qiuling

Dong and Yue Xi. Validation: Qiuling Dong and Yue Xi. Formal analysis:

Qiuling Dong. Investigation: Qiuling Dong and Yue Xi. Resources:

Susanne Rospleszcz, Stefan Brandmaier, Barbara Thorand, Marie-

Theres Huemer, Melanie Waldenberger, Christian Herder, Wolfgang

Rathmann, Wolfgang Koenig, Gidon J. Bönhof, Christian Gieger,

Annette Peters and Harald Grallert. Data curation: Christian Herder,

Wolfgang Rathmann, Wolfgang Koenig, Gidon J. Bönhof and Christian

Gieger. Writing—original draft preparation: Qiuling Dong. Writing—

review and editing: Qiuling Dong, Yue Xi, Susanne Rospleszcz, Stefan

Brandmaier, Barbara Thorand, Marie-Theres Huemer, Melanie

Waldenberger, Jiefei Niu, Christian Herder, Wolfgang Rathmann,

Wolfgang Koenig, Gidon J. Bönhof, Christian Gieger, Annette Peters

and Harald Grallert. Visualization: Qiuling Dong. Supervision: Annette

Peters, Susanne Rospleszcz and Harald Grallert. Project administration:

Harald Grallert and Annette Peters. Funding acquisition: Harald Grallert

and Annette Peters. All authors have read and agreed to the published

version of the manuscript.

ACKNOWLEDGEMENTS

We express our appreciation to all KORA study participants for donat-

ing their blood and time. We thank the field staff in Augsburg conduct-

ing the KORA studies. We would like to thank the China Scholarship

Council (CSC) for the financial support (No. 202008310176).

FUNDING INFORMATION

The KORA study was initiated and financed by Helmholtz Munich—

German Research Center for Environmental Health, which is financed

by the German Federal Ministry of Education and Research and by

the State of Bavaria. Furthermore, KORA research was supported

within the Munich Center of Health Sciences (MC-Health), Ludwig-

Maximilians-Universität, as part of LMUinnovativ. The German Diabe-

tes Center is funded by the German Federal Ministry of Health

(Berlin, Germany) and the Ministry of Culture and Science of the State

North Rhine-Westphalia (Düsseldorf, Germany) and receives addi-

tional funding from the German Federal Ministry of Education and

8 DONG ET AL.

 14631326, 0, D
ow

nloaded from
 https://dom

-pubs.pericles-prod.literatum
online.com

/doi/10.1111/dom
.16022 by H

elm
holtz Z

entrum
 M

uenchen D
eutsches Forschungszentrum

, W
iley O

nline L
ibrary on [31/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://dom-pubs.pericles-prod.literatumonline.com/action/rightsLink?doi=10.1111%2Fdom.16022&mode=


Research (BMBF) through the German Center for Diabetes Research

(DZD e.V.).

CONFLICT OF INTEREST STATEMENT

M.R. reports receipt of consulting fees by AstraZeneca, Boehringer

Ingelheim, Echosens, Eli Lilly, Madrigal, NovoNordisk and institutional

research grants from Boehringer Ingelheim, Novartis Pharma, Novo-

Nordisk and Nutriticia/Danone outside of the topic of this publication.

W.R. reports the receipt of consulting fees for attending educational

sessions or advisory boards run by AstraZeneca, Boehringer Ingelheim

and NovoNordisk and institutional research grants from NovoNordisk

outside of the topic of this publication. The other authors declare no

conflict of interest.

PEER REVIEW

The peer review history for this article is available at https://www.

webofscience.com/api/gateway/wos/peer-review/10.1111/dom.

16022.

DATA AVAILABILITY STATEMENT

The KORA FF4 datasets are not publicly available but can be accessed

upon application through the KORA-PASST (Project application

self-service tool, https://www.helmholtz-munich.de/epi/research/

cohorts/kora-cohort/data-use-and-access-via-korapasst/index.html).

INFORMED CONSENT STATEMENT

Written informed consent has been obtained from the study

participants.

ORCID

Qiuling Dong https://orcid.org/0000-0002-3369-4120

REFERENCES

1. Collaboration NCDRF. Worldwide trends in diabetes since 1980: a

pooled analysis of 751 population-based studies with 4.4 million par-

ticipants. Lancet. 2016;387(10027):1513-1530. doi:10.1016/S0140-

6736(16)00618-8

2. World Health Organization. April 5 2023. Diabetes https://www.

who.int/news-room/fact-sheets/detail/diabetes. accessed at 2024.

01.10

3. Davidson MB. Diagnosing diabetes with glucose criteria: worshiping a

false god. Diabetes Care. 2011;34(2):524-526. doi:10.2337/dc10-

1689

4. American Diabetes Association Professional Practice C. 2. Classifica-

tion and diagnosis of diabetes: standards of medical care in diabetes-

2022. Diabetes Care. 2022;45(suppl 1):S17-S38. doi:10.2337/dc22-

S002

5. Schwartz SS, Epstein S, Corkey BE, Grant SF, Gavin JR 3rd,

Aguilar RB. The time is right for a new classification system for diabe-

tes: rationale and implications of the beta-cell-centric classification

schema. Diabetes Care. 2016;39(2):179-186. doi:10.2337/dc15-1585

6. Bancks MP, Casanova R, Gregg EW, Bertoni AG. Epidemiology of dia-

betes phenotypes and prevalent cardiovascular risk factors and diabe-

tes complications in the National Health and Nutrition Examination

Survey 2003–2014. Diabetes Res Clin Pract. 2019;158:107915. doi:

10.1016/j.diabres.2019.107915

7. Thorens B, Rodriguez A, Cruciani-Guglielmacci C, Wigger L,

Ibberson M, Magnan C. Use of preclinical models to identify markers

of type 2 diabetes susceptibility and novel regulators of insulin

secretion – a step towards precision medicine. Mol Metab. 2019;27S

(Suppl):S147-S154. doi:10.1016/j.molmet.2019.06.008

8. Herder C, Roden M. A novel diabetes typology: towards precision dia-

betology from pathogenesis to treatment. Diabetologia. 2022;65(11):

1770-1781. doi:10.1007/s00125-021-05625-x

9. Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-

onset diabetes and their association with outcomes: a data-driven

cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):

361-369. doi:10.1016/S2213-8587(18)30051-2

10. Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT. Dis-

ease progression and treatment response in data-driven subgroups of

type 2 diabetes compared with models based on simple clinical fea-

tures: an analysis using clinical trial data. Lancet Diabetes Endocrinol.

2019;7(6):442-451. doi:10.1016/S2213-8587(19)30087-7

11. Zaharia OP, Strassburger K, Strom A, et al. Risk of diabetes-associated

diseases in subgroups of patients with recent-onset diabetes: a

5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684-

694. doi:10.1016/S2213-8587(19)30187-1

12. Herder C, Maalmi H, Strassburger K, et al. Differences in biomarkers

of inflammation between novel subgroups of recent-onset diabetes.

Diabetes. 2021;70(5):1198-1208. doi:10.2337/db20-1054

13. Zou X, Zhou X, Zhu Z, Ji L. Novel subgroups of patients with adult-

onset diabetes in Chinese and US populations. Lancet Diabetes Endo-

crinol. 2019;7(1):9-11. doi:10.1016/S2213-8587(18)30316-4

14. Li X, Yang S, Cao C, et al. Validation of the Swedish diabetes

re-grouping scheme in adult-onset diabetes in China. J Clin Endo-

crinol Metab. 2020;105(10):e3519-e3528. doi:10.1210/clinem/

dgaa524

15. Bello-Chavolla OY, Bahena-Lopez JP, Vargas-Vazquez A, et al. Clinical

characterization of data-driven diabetes subgroups in Mexicans using

a reproducible machine learning approach. BMJ Open Diabetes Res

Care. 2020;8(1):e001550. doi:10.1136/bmjdrc-2020-001550

16. Gudmundsdottir V, Zaghlool SB, Emilsson V, et al. Circulating protein

signatures and causal candidates for type 2 diabetes. Diabetes. 2020;

69(8):1843-1853. doi:10.2337/db19-1070

17. Tanabe H, Saito H, Kudo A, et al. Factors associated with risk of dia-

betic complications in novel cluster-based diabetes subgroups: a

Japanese retrospective cohort study. J Clin Med. 2020;9(7):2083. doi:

10.3390/jcm9072083

18. Anjana RM, Baskar V, Nair ATN, et al. Novel subgroups of type 2 dia-

betes and their association with microvascular outcomes in an Asian

Indian population: a data-driven cluster analysis: the INSPIRED study.

BMJ Open Diabetes Res Care. 2020;8(1):e001506.

19. Mansour Aly D, Dwivedi OP, Prasad RB, et al. Genome-wide associa-

tion analyses highlight etiological differences underlying newly

defined subtypes of diabetes. Nat Genet. 2021;53(11):1534-1542.

doi:10.1038/s41588-021-00948-2

20. Zaharia OP, Strassburger K, Knebel B, et al. Role of patatin-like phos-

pholipase domain-containing 3 gene for hepatic lipid content and

insulin resistance in diabetes. Diabetes Care. 2020;43(9):2161-2168.

doi:10.2337/dc20-0329

21. Zaghlool SB, Halama A, Stephan N, et al. Metabolic and proteomic

signatures of type 2 diabetes subtypes in an Arab population. Nat

Commun. 2022;13(1):7121. doi:10.1038/s41467-022-34754-z

22. Wesolowska-Andersen A, Brorsson CA, Bizzotto R, et al. Four groups

of type 2 diabetes contribute to the etiological and clinical heteroge-

neity in newly diagnosed individuals: an IMI DIRECT study. Cell Rep

Med. 2022;3(1):100477. doi:10.1016/j.xcrm.2021.100477

23. Stanimirovic J, Radovanovic J, Banjac K, et al. Role of C-reactive pro-

tein in diabetic inflammation. Mediators Inflamm. 2022;2022:3706508.

doi:10.1155/2022/3706508

DONG ET AL. 9

 14631326, 0, D
ow

nloaded from
 https://dom

-pubs.pericles-prod.literatum
online.com

/doi/10.1111/dom
.16022 by H

elm
holtz Z

entrum
 M

uenchen D
eutsches Forschungszentrum

, W
iley O

nline L
ibrary on [31/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/dom.16022
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/dom.16022
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/dom.16022
https://www.helmholtz-munich.de/epi/research/cohorts/kora-cohort/data-use-and-access-via-korapasst/index.html
https://www.helmholtz-munich.de/epi/research/cohorts/kora-cohort/data-use-and-access-via-korapasst/index.html
https://orcid.org/0000-0002-3369-4120
https://orcid.org/0000-0002-3369-4120
info:doi/10.1016/S0140-6736(16)00618-8
info:doi/10.1016/S0140-6736(16)00618-8
https://www.who.int/news-room/fact-sheets/detail/diabetes
https://www.who.int/news-room/fact-sheets/detail/diabetes
info:doi/10.2337/dc10-1689
info:doi/10.2337/dc10-1689
info:doi/10.2337/dc22-S002
info:doi/10.2337/dc22-S002
info:doi/10.2337/dc15-1585
info:doi/10.1016/j.diabres.2019.107915
info:doi/10.1016/j.molmet.2019.06.008
info:doi/10.1007/s00125-021-05625-x
info:doi/10.1016/S2213-8587(18)30051-2
info:doi/10.1016/S2213-8587(19)30087-7
info:doi/10.1016/S2213-8587(19)30187-1
info:doi/10.2337/db20-1054
info:doi/10.1016/S2213-8587(18)30316-4
info:doi/10.1210/clinem/dgaa524
info:doi/10.1210/clinem/dgaa524
info:doi/10.1136/bmjdrc-2020-001550
info:doi/10.2337/db19-1070
info:doi/10.3390/jcm9072083
info:doi/10.1038/s41588-021-00948-2
info:doi/10.2337/dc20-0329
info:doi/10.1038/s41467-022-34754-z
info:doi/10.1016/j.xcrm.2021.100477
info:doi/10.1155/2022/3706508
https://dom-pubs.pericles-prod.literatumonline.com/action/rightsLink?doi=10.1111%2Fdom.16022&mode=


24. Holle R, Happich M, Lowel H, Wichmann HE; Group MKS.

KORA – a research platform for population based health research.

Gesundheitswesen. 2005;67(suppl 1):S19-S25. doi:10.1055/s-2005-

858235

25. Christensen DH, Nicolaisen SK, Ahlqvist E, et al. Type 2 diabetes

classification: a data-driven cluster study of the Danish Centre for

Strategic Research in Type 2 Diabetes (DD2) cohort. BMJ Open

Diabetes Res Care. 2022;10(2):e002731. doi:10.1136/bmjdrc-

2021-002731

26. Varghese JS, Carrillo-Larco RM, Narayan KV. Achieving replicable

subphenotypes of adult-onset diabetes. Lancet Diabetes Endocrinol.

2023;11(9):635-636. doi:10.1016/S2213-8587(23)00195-X

27. Song YS, Hwang YC, Ahn HY, Park CY. Comparison of the usefulness

of the updated homeostasis model assessment (HOMA2) with the

original HOMA1 in the prediction of type 2 diabetes mellitus in

Koreans. Diabetes Metab J. 2016;40(4):318-325. doi:10.4093/dmj.

2016.40.4.318

28. Caumo A, Perseghin G, Brunani A, Luzi L. New insights on the simul-

taneous assessment of insulin sensitivity and beta-cell function with

the HOMA2 method. Diabetes Care. 2006;29(12):2733-2734. doi:10.

2337/dc06-0070

29. Li X, Zhou ZG, Qi HY, Chen XY, Huang G. Replacement of insulin by

fasting C-peptide in modified homeostasis model assessment to eval-

uate insulin resistance and islet beta cell function. Zhong Nan Da Xue

Xue Bao Yi Xue Ban. 2004;29(4):419-423.

30. Safai N, Ali A, Rossing P, Ridderstrale M. Stratification of type 2 diabe-

tes based on routine clinical markers. Diabetes Res Clin Pract. 2018;

141:275-283. doi:10.1016/j.diabres.2018.05.014

31. Slieker RC, Donnelly LA, Fitipaldi H, et al. Replication and cross-

validation of type 2 diabetes subtypes based on clinical variables: an

IMI-RHAPSODY study. Diabetologia. 2021;64(9):1982-1989. doi:10.

1007/s00125-021-05490-8

32. Freeman DJ, Norrie J, Caslake MJ, et al. C-reactive protein is an inde-

pendent predictor of risk for the development of diabetes in the west

of Scotland coronary prevention study. Diabetes. 2002;51(5):1596-

1600. doi:10.2337/diabetes.51.5.1596

33. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of

inflammation and infection. Front Immunol. 2018;9:754. doi:10.3389/

fimmu.2018.00754

34. Kanmani S, Kwon M, Shin MK, Kim MK. Association of C-reactive

protein with risk of developing type 2 diabetes mellitus, and role of

obesity and hypertension: a large population-based Korean cohort

study. Sci Rep. 2019;9(1):4573. doi:10.1038/s41598-019-40987-8

35. Bhatti GK, Bhadada SK, Vijayvergiya R, Mastana SS, Bhatti JS. Meta-

bolic syndrome and risk of major coronary events among the urban

diabetic patients: North Indian Diabetes and Cardiovascular Disease

Study—NIDCVD-2. J Diabetes Complications. 2016;30(1):72-78.

36. Shamshirgaran SM, Mamaghanian A, Aliasgarzadeh A, Aiminisani N,

Iranparvar-Alamdari M, Ataie J. Age differences in diabetes-related

complications and glycemic control. BMC Endocr Disord. 2017;17(1):

25. doi:10.1186/s12902-017-0175-5

37. Grote CW, Wright DE. A role for insulin in diabetic neuropathy. Front

Neurosci. 2016;10:581. doi:10.3389/fnins.2016.00581

38. Racz O, Linkova M, Jakubowski K, Link R, Kuzmova D. Az inzulinke-

zeles elkezdesenek gyakorlati akadalyai 2-es tipusu

cukorbetegekben – a “pszichologiai inzulinrezisztencia” lekuzdese

(Barriers of the initiation of insulin treatment in type 2 diabetic

patients – conquering the “psychological insulin resistance”). Orv

Hetil. 2019;160(3):93-97. doi:10.1556/650.2019.31269

39. Yaribeygi H, Atkin SL, Simental-Mendia LE, Sahebkar A. Molecular

mechanisms by which aerobic exercise induces insulin sensitivity.

J Cell Physiol. 2019;234(8):12385-12392. doi:10.1002/jcp.28066

40. Mugabo Y, Li L, Renier G. The connection between C-reactive protein

(CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr

Diabetes Rev. 2010;6(1):27-34. doi:10.2174/157339910790442628

41. Esser N, Paquot N, Scheen AJ. Inflammatory markers and cardiometa-

bolic diseases. Acta Clin Belg. 2015;70(3):193-199. doi:10.1179/

2295333715Y.0000000004

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Dong Q, Xi Y, Brandmaier S, et al.

Subphenotypes of adult-onset diabetes: Data-driven

clustering in the population-based KORA cohort. Diabetes

Obes Metab. 2024;1‐10. doi:10.1111/dom.16022

10 DONG ET AL.

 14631326, 0, D
ow

nloaded from
 https://dom

-pubs.pericles-prod.literatum
online.com

/doi/10.1111/dom
.16022 by H

elm
holtz Z

entrum
 M

uenchen D
eutsches Forschungszentrum

, W
iley O

nline L
ibrary on [31/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1055/s-2005-858235
info:doi/10.1055/s-2005-858235
info:doi/10.1136/bmjdrc-2021-002731
info:doi/10.1136/bmjdrc-2021-002731
info:doi/10.1016/S2213-8587(23)00195-X
info:doi/10.4093/dmj.2016.40.4.318
info:doi/10.4093/dmj.2016.40.4.318
info:doi/10.2337/dc06-0070
info:doi/10.2337/dc06-0070
info:doi/10.1016/j.diabres.2018.05.014
info:doi/10.1007/s00125-021-05490-8
info:doi/10.1007/s00125-021-05490-8
info:doi/10.2337/diabetes.51.5.1596
info:doi/10.3389/fimmu.2018.00754
info:doi/10.3389/fimmu.2018.00754
info:doi/10.1038/s41598-019-40987-8
info:doi/10.1186/s12902-017-0175-5
info:doi/10.3389/fnins.2016.00581
info:doi/10.1556/650.2019.31269
info:doi/10.1002/jcp.28066
info:doi/10.2174/157339910790442628
info:doi/10.1179/2295333715Y.0000000004
info:doi/10.1179/2295333715Y.0000000004
info:doi/10.1111/dom.16022
https://dom-pubs.pericles-prod.literatumonline.com/action/rightsLink?doi=10.1111%2Fdom.16022&mode=

	Subphenotypes of adult‐onset diabetes: Data‐driven clustering in the population‐based KORA cohort
	Abstract
	1  |  INTRODUCTION
	2  |  METHODS
	2.1  |  Study population and clinical data
	2.2  |  Genotyping and polygenetic risk score
	2.3  |  Statistical analysis

	3  |  RESULTS
	3.1  |  Study sample
	3.2  |  Replication of the four ANDIS T2D clusters
	3.2.1  |  Assignment by using ANDIS scaling and ANDIS centroids
	3.2.2  |  Assignment by using KORA scaling and ANDIS centroids
	3.2.3  |  Assignment by using KORA scaling and KORA centroids

	3.3  |  De novo cluster derivation in KORA
	3.3.1  |  Determination of k and cluster derivation
	3.3.2  |  Different variable sets and final clusters

	3.4  |  Cluster differences in genetic risk, diabetes‐related complications and parental history
	3.4.1  |  Polygenic risk score
	3.4.2  |  Diabetes‐related complications and parental history of diabetes


	4  |  DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT
	INFORMED CONSENT STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


