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Abstract 22 

The introduction of next generation sequencing technologies in the clinics has improved rare 23 

disease diagnosis. Nonetheless, for very heterogeneous or very rare diseases, more than half of cases still 24 

lack molecular diagnosis. Novel strategies are needed to prioritize variants within a single individual. The 25 

PSAP method was developed to meet this aim but only for coding variants in exome data. Here, we 26 

propose an extension of the PSAP method to the non-coding genome called PSAP-genomic-regions. In this 27 

extension, instead of considering genes as testing units (PSAP-genes strategy), we use genomic regions 28 

defined over the whole genome that pinpoint potential functional constraints. 29 

We conceived an evaluation protocol for our method using artificially-generated disease exomes 30 

and genomes, by inserting coding and non-coding pathogenic ClinVar variants in large datasets of exomes 31 

and genomes from the general population. 32 

PSAP-genomic-regions significantly improves the ranking of these variants compared to using a 33 

pathogenicity score alone. Using PSAP-genomic-regions, more than fifty percent of non-coding ClinVar 34 

variants were among the top 10 variants of the genome. On real sequencing data from 6 patients with 35 

Cerebral Small Vessel Disease and 9 patients with male infertility, all causal variants were ranked in the 36 

top 100 variants with PSAP-genomic-regions.  37 

 By revisiting the testing units used in the PSAP method to include non-coding variants, we have 38 

developed PSAP-genomic-regions, an efficient whole-genome prioritization tool which offers promising 39 

results for the diagnosis of unresolved rare diseases.  40 

 41 
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Introduction 44 

Each rare disease affects, by definition, a small number of individuals. However, as a whole, rare 45 

diseases affect about 350 million people world-wide (1). Approximately 80% of rare diseases have a 46 

genetic origin that mostly follows a Mendelian mode of inheritance (2–4). The advent of Next Generation 47 

Sequencing (NGS) and the development of variant pathogenicity prediction tools have allowed, in recent 48 

years, the identification of many genes involved in rare Mendelian diseases. Nonetheless, despite 49 

extensive efforts, the molecular diagnosis is still unknown for more than 50% of rare diseases cases (5–7). 50 

This can mainly be explained by the fact that many rare diseases are characterized by an extreme genetic 51 

heterogeneity, which results in only one individual carrying a specific pathogenic causal variant. This issue 52 

is referred to as the “n-of-one” problem (8).  53 

With the advent of high throughput sequencing technologies in clinics, molecular diagnosis is now 54 

often sought through whole exome or whole genome sequencing (WES and WGS respectively). However, 55 

due to the large number of rare variants in each individual genome, causal variants are sought among 56 

very rare and highly pathogenic variants in genes relevant to the current known disease mechanism. The 57 

limited knowledge about gene functions and disease mechanisms can make this strategy unfruitful. To 58 

address the issue of variant prioritization at the level of an individual, the Population Sampling Method 59 

(PSAP) (8)  was developed. PSAP computes, for each gene, a null distribution, which is the probability to 60 

observe in the general population a genotype with a CADD pathogenicity score (9) greater than or equal 61 

to the highest one to the highest one observed in the patient for this gene. This initial version of the PSAP 62 

method, which we will refer to as PSAP-genes, has been successfully applied to identify variants of interest 63 

in  diverse phenotypes, including male infertility (10–12), recurrent pregnancy loss (13) and ciliary 64 

diskynesia (14).  65 
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A current hindrance to the application and generalization of PSAP-genes as a tool for diagnosis is 66 

its restriction to the coding parts of the genome. Indeed, the majority of variants reside in non-coding 67 

parts of the genome (15). Non-coding variants may contribute to explain part of the etiology of rare 68 

diseases (16), as suggested by the large number of GWAS hits located in non-coding regions of the genome 69 

(17). The involvement of non-coding pathogenic variants in rare diseases is further corroborated by the 70 

fact that non-coding regions are heavily involved in the regulation of gene expression. Several prediction 71 

tools have been developed to this end (18–20), but most of them lack a variant-based score for both 72 

coding and non-coding regions. In addition, to be performant, they often require multiple annotations like 73 

Human Phenotype Ontology (HPO) terms (21) to characterize the symptoms or disease of a patient . Thus, 74 

they rely on previous knowledge and rarely go beyond candidate genes. 75 

To move beyond the gene as a natural unit of testing for the PSAP method, we need to use 76 

predetermined regions across the whole genome. These regions also need to be defined using functional 77 

information to be used as a cohesive unit for the construction of PSAP null distributions. This challenge of 78 

defining regions along the whole genome has been tackled by Bocher et al. in the context of rare-variant 79 

association testing (22): they describe CADD regions, which are characterized by a lack of observed 80 

variants with high functionally-Adjusted CADD Scores (ACS) in the gnomAD database (23). CADD regions 81 

are expected to reflect functional constraints. CADD regions present the key advantage of providing pre-82 

defined and functionally-informed regions which can be used to construct PSAP null distributions.  83 

We have made available a new implementation of the PSAP method using Snakemake (24) 84 

workflows, called Easy-PSAP (https://github.com/msogloblinsky/Easy-PSAP), which features null 85 

distributions constructed with up-to-date allele frequency data and pathogenicity scores. Here, we 86 

introduce PSAP-genomic-regions, an extension of the PSAP method to the non-coding genome by using 87 

the pre-defined CADD regions as testing unit instead of genes. This is an innovative strategy to prioritize 88 

variants at the scale of an individual genome. PSAP-genomic-regions is now available in Easy-PSAP. We 89 

https://github.com/msogloblinsky/Easy-PSAP
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devised an evaluation protocol using artificially-generated disease exomes and genomes, obtained by 90 

inserting coding and non-coding ClinVar (25) variants in general population whole genomes from the 1000 91 

Genomes Project (26) and exomes from the FrEnch EXome (FREX) project (27). We show the consistent 92 

improvement in prioritization by using PSAP-genomic-regions over pathogenicity scores alone for non-93 

coding and then coding variants. For coding variants, we also demonstrate the good performance of PSAP-94 

genomic-regions compared to PSAP-genes. On real-life data, we illustrate the power of PSAP-genomic-95 

regions on WES data from six resolved cases of Cerebral Small Vessel Disease (CSVD) and WGS data from 96 

three families affected by male infertility. These two diseases are particularly relevant to test our method, 97 

monogenic forms of CSVD (28) and male infertility (29) being extremely heterogeneous.   98 
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Results  99 

Construction of PSAP null distribution in coding and non-coding regions 100 

The idea behind the original PSAP method, referred to as PSAP-genes, relies on the calculation of 101 

gene-specific null distributions of CADD pathogenicity scores. More precisely, for an individual exome or 102 

genome and in a given gene, PSAP-genes considers the genotype with the highest CADD score and 103 

evaluates the probability to observe such a high CADD score in this gene in the general population. PSAP-104 

genes deals separately with heterozygote and homozygote variants in the autosomal dominant (AD) and 105 

the autosomal recessive (AR) models respectively. Here, we will focus on homozygote variants for the 106 

recessive model. As a result, PSAP-genes gives a p-value to the genotype with the highest CADD score in 107 

the gene for each gene, model, and individual. PSAP can also score compound heterozygote variants, i.e. 108 

two heterozygote variants in the same gene, thus also giving a PSAP p-value to the genotype with the 109 

second highest CADD score in the gene. This p-value allows the ranking of the genes for an individual 110 

exome or genome. The PSAP principle can be generalized to any genomic unit.  111 

Here, with PSAP-genomic-regions, we extended the PSAP method to analyze whole-genome data 112 

using predefined CADD regions as testing units instead of genes (Fig 1). The same principle as before is 113 

employed, with the difference being that the genotype with the highest CADD score in the region can be 114 

coding or non-coding. We thus constructed PSAP-genomic-regions null distributions using the CADD 115 

pathogenicity score (PHRED scaled across the whole genome). Our novel strategy will be referred to as 116 

PSAP-genomic-regions-CADD. We also explored the use of another pathogenicity score, the ACS (22) 117 

(PHRED scaled CADD scores by “coding”, “regulatory” and “intergenic” regions) to mitigate the higher 118 

CADD scores of coding variants (PSAP-genomic-regions-ACS strategy). The PSAP-genomic-regions 119 

strategies were compared to the initial PSAP-genes strategy, also referred to as PSAP-genes-CADD. 120 
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 121 

Fig 1. Description of the PSAP-genomic-regions strategy. 122 

We calculated PSAP null distributions for SNVs in genes and CADD regions, in the hg19 and hg38 123 

assemblies of the human genome. In hg19, PSAP null distributions were obtained for 19,283 genes and 124 

119,695 CADD regions. In hg38 PSAP null distributions were obtained for 18,395 genes and 123,991 CADD 125 

regions. PSAP null distributions and their parameters (unit of testing, allele frequencies and pathogenicity 126 

score) can be found in S1 Table. 127 

 128 

Evaluating the performance of PSAP-genomic-regions on artificially-129 

generated disease exomes and genomes using ClinVar variants 130 

Prioritization of non-coding pathogenic variants 131 

First, to evaluate how PSAP-genomic-regions performed to prioritize non-coding pathogenic variants, 132 

we used artificially-generated disease genomes created by inserting non-coding ClinVar variants in the 133 

Non-Finnish Europeans (NFE) from the 1000 Genomes Project phase 4 (NFE genomes) (see Material & 134 

Methods and S1 File for the list of variants). Because the 1000 Genomes project is population-based, we 135 
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expect that some individuals might carry one or a few pathogenic variants in their genome. These 136 

pathogenic variants are characterized by a high CADD score and a low PSAP p-value. Thus, in order to 137 

summarize the rank of a ClinVar variant in an evaluation setting, we considered the best rank reached by 138 

the variant in at least 90% of the individuals.  139 

Most of the NFE genomes carried a variant with a higher pathogenicity score or a lower PSAP p-value 140 

than most of the ClinVar variants (S1 Fig). We thus compared the percentage of the non-coding pathogenic 141 

variants ranked among the top N (N = 1, 10, 50 and 100) in at least 90% of the NFE genomes. The ranking 142 

at the individual level was done among all heterozygous variants for the ClinVar variants under the AD 143 

model, and across homozygous variants for the ClinVar variants under the AR model. Our main strategy 144 

PSAP-genomic-regions-CADD performed systematically better than using the CADD score alone (Fig 2A). 145 

The improvement was especially large for the top 10 ranking: 24.6% and 79.2% of ClinVar variants reached 146 

the top 10 with PSAP-genomic-regions-CADD for the AD and AR models, respectively, while no ClinVar 147 

variant reached the top 10 with CADD scores alone. For the prioritization of coding variants, the PSAP-148 

genomic-regions-CADD strategy always outperformed PSAP-genomic-regions-ACS (S2 Fig). 149 
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 150 

Fig 2. Comparison of the PSAP-genomic-regions-CADD strategy versus the CADD score alone in 151 

artificially-simulated disease genomes. Percentage of non-coding and coding pathogenic ClinVar variants 152 

reaching the top N of variants in at least 90% of NFE genomes, with PSAP-genomic-regions (darker shade 153 

of pink or purple) or the CADD score alone (lighter shade of pink or purple) (A) N = 175 non-coding AD 154 

variants and N = 96 non-coding AR variants (B) N = 4,965 coding AD variants and N = 2,680 coding AR 155 

variants. 156 

 157 

Using the ACS scores improved the performance to detect non-coding-variants for the AD model (S2 158 

Fig): 56.6% and 24.6% of variants reached the top 10 with PSAP-genomic-regions-ACS and PSAP-genomic-159 
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regions-CADD, respectively. The gain in performance with PSAP-genomic-regions-ACS compared to PSAP-160 

genomic-regions-CADD is not significant for the AR model for the top 10, top 50 and top 100. Nonetheless, 161 

we can note the pattern is different for the top 1 for the AR model: 51% with PSAP-genomic-regions-CADD 162 

to 5.5% with PSAP-genomic-regions-ACS. Indeed, switching from CADD score to ACS score has lowered 163 

the PSAP p-value of non-coding variants shared by more than 10% of NFE genomes. This led to a defect 164 

of the top rank reached by the ClinVar variants, as we considered the lowest rank reached in at least 90% 165 

of individuals. For instance, a variant in the CADD region R109138 shared by 70 of the NFE genomes went 166 

from a CADD score of 18.1 and a PSAP-genomic-regions-CADD p-value of 0.1 to an ACS of 22.2 and a PSAP-167 

genomic-regions-ACS p-value of 5.18x10-10. Thus, the ClinVar variants inserted in these individuals having 168 

a higher p-value than 5.18x10-10 do not rank first. Considering the overall more consistent performance 169 

of the PSAP-genomic-regions-CADD strategy, we chose to focus on this strategy, although we provide 170 

comparison with the PSAP-genomic-regions-ACS strategy which can have advantages for non-coding 171 

variants. 172 

We further explored PSAP results for splicing ClinVar variants versus other type of non-coding ClinVar 173 

variants. Indeed, we observed that splicing variants are the major type of non-coding ClinVar variants. 174 

These splicing variants often had a very good ranking, especially with PSAP-genomic-regions-ACS (n=115 175 

splicing variants among 175 non-coding AD variants and n=72 splicing variants among 96 non-coding AR 176 

variants; S3 Table; Panel A in S3 Fig). Splicing ClinVar variants have a much higher ACS than CADD scores 177 

(Panel B in S3 Fig) which results in better ranking than for other types of non-coding ClinVar variants using 178 

PSAP-genomic-regions-ACS p-values (Panel C in S3 Fig). As a consequence, the percentage of splicing 179 

ClinVar variants ranked in the top 10 was largely improved when using PSAP-genomic-regions-ACS, for the 180 

AD model especially which was less powerful with PSAP-genomic-regions-CADD to begin with (Panel D in 181 

S3 Fig). 182 
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The full results of ranking by PSAP-genomic-regions-CADD and PSAP-genomic-regions-ACS for the 183 

non-coding non-splicing pathogenic ClinVar variants can be found in S2 File. With PSAP-genomic-regions-184 

ACS, around half of the non-coding non-splicing variants are ranked in the top 50 and top 10 of variants 185 

for more than 90% of NFE genomes for the AD and AR models, respectively (19 out of 45 variants for the 186 

AD model and 8 out of 21 variants for the AR model). The other half of variants present a less significant 187 

PSAP-genomic-regions-ACS p-value and a poorer ranking. PSAP-genomic-regions-CADD achieves a similar 188 

ranking of AR non-coding non-splicing variants (7 out of 21 variants) but a decreased prioritization for AD 189 

non-coding non-splicing variants (6 out of 45 variants). To confirm this pattern of ranking for non-coding 190 

non-splicing pathogenic variants on another set of variants, we evaluated with our artificially generated 191 

disease genomes protocol 320 non-coding SNVs used to train Genomiser (30). These variants were not 192 

associated with a mode of inheritance. Hence, we inserted them in the NFE genomes and scored them 193 

with both AD and AR PSAP-genomic-regions-ACS null distributions. Among the 320 non-coding variants, 194 

169 reached the top 100 in at least 90% of NFE genomes, with either the AD or AR model (S3 File). This 195 

can be explained by the distributions of CADD scores compared to ACS scores for the ClinVar variants: the 196 

non-coding variants that do not reach the top 100 have a significantly lower CADD and ACS scores 197 

compared to all the other types of variants (S4 Fig). Overall, PSAP-genomic-regions prioritizes around half 198 

of non-coding ClinVar and Genomiser training variants in the top 100 of NFE genomes. The ones who have 199 

a higher ranking present much lower CADD and ACS scores and would never be well-ranked by any PSAP 200 

strategy.  201 

PSAP-genomic-region is also relevant for the analysis of exome data. Indeed, exome sequencing 202 

captures variants outside of the bounds of coding regions (31), such as intronic variants. We explored the 203 

prioritization of non-coding ClinVar variants located within the WES-targeted regions of the FREX 204 

individuals using our artificially-generated disease exomes protocol (N=48 variants for the AD model and 205 

N=64 variants for the AR model, Panel A in S5 Fig). For both PSAP-genomic-regions-CADD and PSAP-206 
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genomic-regions-ACS, there was a large increase in prioritization performance compared to using only the 207 

pathogenicity scores. Because there are fewer variants in an exome background than in a genome 208 

background, the rankings of these non-coding ClinVar variants were better in FREX than in NFE genomes. 209 

The best ranking was achieved using PSAP-genomic-regions-ACS, with 82% and 90.3% of variants reaching 210 

the top 10 for the AD and AR models, respectively, whilst PSAP-genomic-regions-CADD achieved a similar 211 

ranking for AR variants. Most of these non-coding pathogenic variants were splicing variants (40 out of 73 212 

variants for the AD model and 56 out of 64 variants for the AR model), and half of them were considered 213 

as having a functional “HIGH IMPACT” (26 variants for the AD model and 22 variants for the AR model). 214 

Hence, prioritizing variants with PSAP-genomic-regions allows identifying more variants even in exome 215 

data, that are in addition functionally-relevant. 216 

 217 

Prioritization of coding pathogenic variants 218 

Similar evaluations were performed for ClinVar coding variants inserted in either WGS from 219 

1000G NFE individuals or WES from FREX. As observed for non-coding pathogenic variants, PSAP-genomic-220 

regions outperformed the pathogenicity scores alone (Fig 2B, Panel B in S5 Fig). However, in the context 221 

of coding pathogenic ClinVar variants, we observed that the strategy of PSAP-genomic-regions-CADD 222 

provided better prioritization compared with the PSAP-genomic-regions-ACS strategy. We observed that 223 

18.2% and 74.6% of the coding variants reached the top 1 in at least 90% of genomes backgrounds with 224 

the PSAP-genomic-regions-CADD for the AD and AR model respectively, against no variants with the CADD 225 

score alone, and against 5.3% and 2.5% reaching the top 1 with PSAP-genomic-regions-ACS. In the exome 226 

background and with PSAP-genomic-regions-CADD, 38.7% and 89.8% of AD variants reached the top 1 227 

and top 50, respectively; 80.3% and 97.9% of AR variants reached the top 1 and the top 50, respectively. 228 
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 229 

Fig.3. Comparison of PSAP-genomic-regions-CADD and PSAP-genes-CADD strategies in artificially-230 

simulated disease genomes. Number of coding pathogenic ClinVar variants reaching rank [x-y] of variants 231 

in at least 90% of 1000 Genomes Project NFE individuals for each strategy. 232 

 233 

We also compared the number of coding ClinVar variants reaching the tops in NFE genomes between 234 

PSAP-genomic-regions-CADD strategy and the initial PSAP-genes-CADD strategy (Fig 3). More differences 235 

were observed across the two PSAP strategies for the AD than for the AR model (Fig 3A). There were 362 236 

variants ranked first and 1,017 variants ranked [2-10] in common between the two strategies. However, 237 

908 variants that were ranked [2-10] with PSAP-genes-CADD were [11-50] with PSAP-genomic-regions-238 

CADD, and 395 variants that were ranked [2-10] with PSAP-genes-CADD were ranked first with PSAP-239 

genomic-regions-CADD. Regarding variants that are ranked more than a 100 with PSAP-genomic-regions-240 

CADD, 278 of them are ranked [11-50] and 90 are ranked [51-100] by PSAP-genes-CADD. Regarding the 241 

AR model (Fig 3B), PSAP-genomic-regions-CADD performed similarly to PSAP-genes-CADD, and the 242 

majority of variants were ranked first with both strategies (1,550 variants). Even more promising results 243 

can be found when looking at the same comparison of ranks within the FREX exomes (S6 Fig). For instance, 244 

in the AD model, 592 variants that were ranked [2-10] with PSAP-genes-CADD are ranked first with PSAP-245 
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genomic-regions-CADD, against 115 variants ranked [2-10] with PSAP-genomic-regions-CADD that 246 

become first with PSAP-genes-CADD. 247 

 248 

Application of PSAP-genomic-regions to real data with different modes 249 

of inheritance 250 

To illustrate our method in real-life settings, we analyzed two datasets (S4 Table), one with an AD 251 

mode of inheritance and the other with an AR mode of inheritance. The first dataset consisted of WES 252 

data for six individuals affected by monogenic forms of CSVD (32). Using PSAP-genomic-regions-CADD, all 253 

of the causal variants were ranked at least in the top 100 in each patient (Fig 4). The contribution of CADD 254 

regions as a unit of testing was especially visible for the variant in COL4A2 and one variant in HTRA1 which 255 

were not well-ranked using genes as testing unit (rank 110 and 193 respectively with genes, and rank 3 256 

and 69 with CADD regions). Using their maximal CADD score by gene or CADD region alone, these variants 257 

would not have been prioritized in the top 100 for five out of six individuals.  258 



15 
 

 259 

Fig. 4. Prioritization of 6 known CSVD mutations and 3 male infertility candidate variants with PSAP-260 

genomic-regions-CADD, PSAP-genes-CADD and the maximal CADD score on genes or CADD regions. 261 

 262 

The second dataset consisted of WGS data for 9 individuals from three families with clinically 263 

diagnosed male infertility (33). All causal variants fell within the top 20 of variants with prioritization by 264 

PSAP-genes-CADD, and within the top 50 for at least one case per family with PSAP-genomic-regions-265 

CADD (within top 100 for all cases, Fig 4). PSAP-genomic-regions-CADD did not improve the ranking of 266 

these coding variants, which was expected considering the large number of variants in a WGS analysis 267 

(see S4 Table for the total number of variants in each analysis). The prioritization from PSAP-genomic-268 

regions-CADD was still interesting to narrow the set of candidates for causal variants. In clinics when the 269 

CADD score alone is used, these variants would not have been prioritized (CADD score  270 

< 25, and rank > 100 with the maximal CADD score strategy). PSAP-genomic-regions-CADD thus allow a 271 
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relevant prioritization of coding pathogenic variants in WGS sequencing and an unbiased exploratory 272 

analysis at the scale of the whole genome.  273 

Using PSAP-genomic-regions-ACS or the ACS score alone, almost all of the CSVD and male infertility 274 

coding pathogenic variants had a rank greatly exceeding the top 100 (S4 Table). The only exception is one 275 

variant in HTRA1 (10:124266885 G/A) that was ranked 3 by PSAP-genomic-regions-ACS and 10 by the 276 

maximal ACS score alone. This HTRA1 variant was a splicing variant, which confirms the good performance 277 

of the PSAP-genomic-regions-ACS strategy on this type of variant.  278 
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Discussion 279 

Variant prioritization, especially in the case of very heterogeneous rare diseases, is a clinically-280 

relevant methodological challenge for both clinicians and researchers. Mounting evidence suggests that 281 

current methods of analysis and their restriction to the coding genome are a hindrance to the discovery 282 

of new genetic variants implicated in rare diseases (16). We have developed PSAP-genomic-regions, an 283 

extension of the PSAP method to the whole genome using functionally-relevant genomic regions. PSAP-284 

genomic-regions broadens the scope of variants evaluated by PSAP and addresses the issue of variant 285 

prioritization at an individual whole-genome scale.  286 

PSAP-genomic-regions has been thoroughly tested and validated by using simulations emulating real-287 

life scenarios of causal variant prioritization. PSAP-genomic-regions achieves a prioritization of coding 288 

pathogenic SNVs in the top 100 variants of an exome or genome which is a relevant number of variants 289 

to analyze for clinicians. Without use of prior knowledge on the disease, PSAP-genomic-regions achieves 290 

relevant variant prioritization within millions of variants to analyze, which is illustrated by the ranking of 291 

6 variants involved in CSVD and 3 variants involved in familial cases of male infertility in the top 100 of 292 

WES and WGS data respectively. PSAP-genomic-regions thus helps with the diagnosis of such 293 

heterogeneous diseases in conjunction with other relevant information like the mode of transmission, 294 

prevalence or type of variant involved. 295 

PSAP-genomic-regions also allows the scoring of variants otherwise discarded from the analysis, like 296 

splicing variants with a high predicted functional impact, and other non-coding variants of proven clinical 297 

significance. The only scenario for which PSAP-genomic-regions is not advantageous compared to the 298 

PSAP-genes strategy is for prioritizing coding variants in WGS data. In that case, using coding CADD 299 

regions, i.e. the coding parts of CADD regions for the analysis still yields better results compared to PSAP-300 

genes (S7 Fig). Our simulations using known pathogenic variants have shown which PSAP strategy 301 
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performs the best depending on the type of data and variant expected to be involved in the disease 302 

mechanism. If there is no expected type of variant: we advise on the use of the PSAP-genomic-regions-303 

CADD strategy, which gives the overall best results.  For coding variants prioritization specifically, PSAP-304 

genomic-regions-CADD gives the best results in WES, and PSAP-coding-genomic-regions-CADD performs 305 

best in WGS data. Finally, if no coding variant of interest for the disease is found with PSAP-genomic-306 

regions-CADD or PSAP-coding-genomic-regions-CADD, PSAP-genomic-regions-ACS can be applied to look 307 

for non-coding variants of interest especially for an AD expected model of transmission. 308 

To the best of our knowledge, there is no other score of predicted pathogenicity for all possible SNVs 309 

comparable to CADD. The main pathogenicity prediction scores developed to date were described and 310 

compared in a recent review (34). Multiple benchmarks on the subject show conflicting conclusions 311 

depending on the variant testing set (35,36). A significant limitation of some of the most popular tools, 312 

such as SIFT (37), PolyPhen-2 (38), VEST (39), and REVEL (40), is their restriction to analyzing only missense 313 

variants. In contrast, CADD stands out as it is a meta-predictor, integrating scores from SIFT, PolyPhen-2, 314 

phyloP (41), and GERP (42), and enabling the scoring of any SNV with pre-computed scores, and any InDel 315 

in the genome with on-request scores. Additionally, CADD is trained on a much larger number of variants 316 

compared to other machine-learning methods, while using a relatively modest number of features. Similar 317 

types of methods aim at prioritizing more constrained regions in the non-coding genome (18,20) or 318 

distinguishing deleterious non-coding variants from neutral ones (18,43). However, most of these 319 

prediction methods either do not provide a variant-specific score, or are not defined in both coding and 320 

non-coding parts of the genome. Other well-known methods for identification of pathogenic variants in 321 

exome and genome data rely on the use of HPO terms to make a prediction, like Exomiser (44) or 322 

Genomiser (30), making in comparison PSAP-genomic-regions an unmatched prioritization tool. As any 323 

other bioinformatics variant prioritization method, it has to be used in conjunction with other lines of 324 

evidence like the expression of the associated gene in a tissue of interest or segregation of variants if 325 
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familial data is available to ultimately lead to any genetic diagnosis of a patient. PSAP-genomic-regions 326 

does not make assumption on the type of variants and does explore the whole genome. The ranking by 327 

p-values coming from the application of PSAP-genomic-regions to an individual’s variants is a useful way 328 

to narrow-down the list of variants to further investigate for both researchers and clinicians in different 329 

scenarios. Other criteria for variant filtering will depend heavily on the type of disease studied. The clinical 330 

interpretation of pathogenicity for non-coding variants is more challenging than for coding variants and 331 

can be improved by applying modified ACMG guidelines which can help pick out potentially candidate 332 

regulatory elements to explain the phenotype of the patient (45). 333 

The method most comparable to the strategy followed by PSAP-genomic-regions is the recently-334 

developed machine-learning algorithm FINSURF (46). FINSURF aims to predict the functional impact of 335 

non-coding variants in regulatory regions and has been applied to known pathogenic variants inserted in 336 

WGS data like we did. Nonetheless it has been difficult to compare properly the two methods considering 337 

FINSURF only scores non-coding variants in predefined regulatory regions, and the set of variants used to 338 

train the method is not available.  339 

The main limitation of PSAP-genomic-regions comes from the score used to calibrate null 340 

distributions, namely the CADD score. We have observed that known pathogenic non-coding ClinVar 341 

variants that were not well-ranked by PSAP-genomic-regions had significantly lower CADD and ACS scores 342 

compared to splicing and better-ranked non-coding variants. Because such CADD score is likely to be seen 343 

in the general population, PSAP-genomic-regions will not be able to prioritize such a variant with at a low 344 

rank. We also observed that some CADD regions were badly-calibrated and resulted in the assignment of 345 

very low PSAP-genomic-regions p-values to putatively neutral variants in the 1000 Genomes Project. As 346 

allele frequencies from larger databases and more accurate pathogenicity scores become available, this 347 

will lead to an improvement of the PSAP method as well. The most recent release of the CADD score v1.7 348 
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(47) notably integrates regulatory annotations and may further improve the prioritization of non-coding 349 

pathogenic variants when integrated in PSAP-genomic-regions. 350 

Many avenues of further development and improvement are open for PSAP-genomic-regions, 351 

including the inclusion and scoring of InDel variations and structural variants. Exploring the combination 352 

of the PSAP-genomic-regions p-values with other metrics or information coming from omics analysis could 353 

also improve prediction. Finally, the flexibility of the PSAP method makes it potentially adaptable to other 354 

more complex models like digenic and oligogenic models of inheritance, considering the increasing 355 

availability of information coming from gene networks and biological pathways. 356 

 357 

 358 

Materials and Methods 359 

Construction of PSAP null distributions 360 

The first parameter is the units in which to construct the PSAP null distribution. Here we considered 361 

two unit strategies: the genes and the CADD regions (S1 Table). For the genes, the coding regions of genes 362 

were defined based on the biomaRt R package: the gene coding sequences were retrieved from Ensembl 363 

(48) by requesting the “genomic_coding_start” and “genomic_coding_end”, on both the hg19 and hg38 364 

builds. To account for splicing regions, the coding regions were extended by two bases on both sides of 365 

the gene coding regions. In total, 19,780 genes were retrieved in hg19 and 23,163 in the hg38 build. For 366 

the CADD regions, their coordinates were downloaded from https://lysine.univ-brest.fr/RAVA-FIRST/ for 367 

the hg19 build and were lifted over to hg38 using the Ensembl Assembly Converter. CADD regions 368 

coordinates in hg38 are available on Easy-PSAP GitHub (https://github.com/msogloblinsky/Easy-PSAP). 369 

There were 135,224 CADD regions in hg19 and 131,970 in hg38. For the coding CADD regions, i.e. the 370 

https://lysine.univ-brest.fr/RAVA-FIRST/
https://github.com/msogloblinsky/Easy-PSAP
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coding parts of CADD regions, we considered the intersection of the CADD regions and the gene coding 371 

regions for each build, which yielded 37,978 coding CADD regions in hg19 and 52,340 in hg38. 372 

The second parameter is the allele frequencies database. Here we considered the global allele 373 

frequencies from the gnomAD database to calibrate the PSAP null distributions: gnomAD genome r2.0.1 374 

for hg19 and gnomAD V3 (49) for hg38. For our purpose, we considered only single nucleotide variants 375 

(SNVs) annotated as PASS by the Variant Quality Score Recalibration (VQSR) of GATK (50) and located in 376 

well-covered regions. Well-covered regions in gnomAD genome were defined as regions for which 90% of 377 

individuals have coverage at depth 10. Variants not seen in gnomAD genome, not annotated as PASS or 378 

not located in well-covered regions (gnomAD genome version according to the build) have a frequency of 379 

0 and thus did not contribute to the construction of the null distributions. 380 

To ensure reliability of PSAP null distribution, it is crucial that the units are well covered in the 381 

database from which the allele frequencies are taken. Thus, we only considered units for which at least 382 

half of the unit was well-covered (as defined previously) in gnomAD genome (version according to the 383 

build). Coding regions of genes and well-covered regions in gnomAD genome were intersected to get the 384 

percentage of each gene’s coding regions that were well-covered in the database. The same steps were 385 

carried out with CADD regions as genomic units for PSAP, for hg19 and hg38 builds. PSAP null distributions 386 

were thus constructed for 19,283 and 18,395 genes in hg19 and hg38 respectively, 119,695 and 123,991 387 

CADD regions, and 34,397 and 35,226 coding CADD regions in hg19 and hg38 respectively. 388 

The third parameter is the pathogenicity score. Here, for the evaluation of PSAP on coding variants, 389 

we used the version 1.6 of CADD (51) for each build, accessible on the CADD website 390 

(https://cadd.gs.washington.edu/). For the evaluation on non-coding variants, which tend to have lower 391 

CADD scores than coding variants (52), we followed the strategy described in Bocher et al.(22) to adjust 392 

https://cadd.gs.washington.edu/
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the RAW CADD score v1.6 of all possible SNVs on a PHRED scale stratifying by type of genomic regions: 393 

“coding”, “regulatory” and “intergenic”, resulting in “adjusted CADD scores”, referred to as “ACS”.  394 

Easy-PSAP (https://github.com/msogloblinsky/Easy-PSAP) was used to generate null distributions 395 

according to the previously described input files and parameters. This resulted in 4 sets of null 396 

distributions for the AD and AR models for both hg19 and hg38 assemblies (S1 Table).  397 

 398 

Evaluating the performance of PSAP-genomic-regions using artificially-399 

generated disease exomes and genomes 400 

To evaluate the ability of PSAP-genomic-regions to prioritize known pathogenic variants in an 401 

individual, we leveraged artificially-generated disease exomes and genomes using available general 402 

population cohorts. These different PSAP strategies (see Table 1) were compared in terms of their 403 

performances to prioritize the known pathogenic variants.  404 

The pathogenic ClinVar (25) SNVs with coordinates in hg19 and hg38 were downloaded from the NCBI 405 

website (https://www.ncbi.nlm.nih.gov/clinvar/, accessed on the 3rd of June 2022). Some of these ClinVar 406 

variants had an annotated mode of inheritance ("moi autosomal recessive" and "moi autosomal 407 

dominant"). From ClinVar, there were 14,056 variants annotated as AD and 12,758 variants annotated as 408 

AR. Variants were filtered out to keep only autosomal pathogenic SNVs having as review status either 409 

“reviewed by expert panel” or “criteria provided, multiple submitters, no conflicts”, which are the two 410 

best review status in ClinVar. There were 1,518 AD and 1,118 AR variants meeting these criteria.  411 

For variants which did not have an annotated mode of inheritance, we used a curated version of the 412 

database OMIM, hOMIM (53) to retrieve a mode of inheritance, and kept variants that were always 413 

associated with an AD or AR mode of inheritance in hOMIM. The same filtering was applied, which left 414 

https://github.com/msogloblinsky/Easy-PSAP
https://www.ncbi.nlm.nih.gov/clinvar/
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3,641 additional variants for the AD and 1,706 for the AR model. In total, we had a set of 5,159 variants 415 

for the AD model and 2,824 variants for the AR model. Among these ClinVar variants, 4,965 and 2,680 416 

variants were coding SNVs respectively for the AD and AR models. Similarly, 175 and 96 variants were 417 

non-coding variants for the AD model and AR models, among which 48 variants for the AD model and 64 418 

for AR model fell within the boundaries covered by FREX exomes. The list of pathogenic ClinVar variants 419 

and their mode of inheritance can be found in S1 File.  420 

We inserted each variant from our curated list of pathogenic ClinVar variants successively in each of 421 

the 533 high coverage NFE genomes and each of the 574 exomes from the FREX project. An individual-422 

focused QC was applied on both datasets using the RAVAQ R package (54): we performed a genotype and 423 

variant QC with default parameters corresponding to standard GATK hard filtering criteria, mean allele 424 

balance computed across heterozygous genotypes and call rates, except for MAX_AB_GENO_DEV = 0.25, 425 

MAX_ABHET_DEV, MIN_CALLRATE and MIN_FISHER_CALLRATE "disabled".  426 

We conducted the artificially-generated disease genome and exome evaluation with PSAP null 427 

distributions in hg19 and hg38 respectively, to match with the build of the data. We then applied the 3 428 

PSAP strategies mentioned previously (PSAP-genes-CADD, PSAP-genomic-regions-CADD and PSAP-429 

genomic-regions-ACS). For each strategy, we kept the maximal pathogenicity score (CADD or ACS) for each 430 

unit (gene or CADD regions) and then ranked the units according to their PSAP p-value or to their 431 

pathogenicity score alone within each genome or exome. We compared the PSAP-genes-CADD and PSAP-432 

genomic-regions-CADD strategies to using the maximal CADD score alone by gene or CADD regions, 433 

respectively; and the PSAP-genomic-regions-ACS strategy to using the maximal ACS score by CADD region. 434 

For each ClinVar variant, we retrieved its rank within each genome or exome. Coding ClinVar variants were 435 

evaluated with the 3 PSAP strategies whereas non-coding ClinVar variants were evaluated with the novel 436 

PSAP-genomic-regions-CADD and PSAP-genomic-regions-ACS strategies (see S2 Table for more details).  437 
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 438 

Patient data analysis  439 

The PSAP strategies were applied to real WES data from six unrelated patients affected by a CSVD for 440 

which the causal variant is known, which allowed a comparison of performance between the different 441 

strategies. The full description of the dataset can be found in [Aloui et al. 2021] (32), with the exception 442 

of the QC process. For this analysis, the same QC as for the FREX and 1000 Genomes Project datasets was 443 

performed. We applied PSAP-genes-CADD and PSAP-genomic-regions-CADD in hg19 to the six resolved 444 

CSVD patients’ exome data. The other PSAP parameters were the ones by default as described previously. 445 

Two of the individuals had a causal pathogenic variant in the gene NOTCH3 (19:15303053 G/A and 446 

19:15303260 G/A), one individual in the gene COL4A2 (13:111132702 G/T) and three individuals in the 447 

gene HTRA1 (10:124266285 T/G, 10:124266281 C/A and 10:124266885 G/A). The rank of the known CSVD 448 

variants among other heterozygote variants in the patient’s exome according to its PSAP p-value for the 449 

2 strategies was then retrieved.  450 

The PSAP strategies were also applied to WGS data of three families with clinically diagnosed forms 451 

of male infertility (33) and for which a pathogenic recessive variant was prioritized using a computational 452 

pipeline featuring the initial PSAP-genes implementation. Three affected individuals were analyzed for 453 

each family. The description of the whole dataset and candidate variant filtering process can be found in 454 

[Khan and Akbari et al. 2023] (33), except for the QC that was performed in the same way as for the CSVD 455 

data. Two other families were resolved from the same dataset, but considering that the causal variants 456 

were deletions we did not include them in the current analysis. The prioritized pathogenic variants were 457 

in the genes: SPAG6 (chr10:22389235 C/T) for family 3, TUBA3C (chr13:19177247 C/T) for family 7 and 458 

CCDC9 (chr19:47260609 C/T) for family 4. We applied PSAP–genes-CADD and PSAP-genomic-regions-459 
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CADD in hg38 to the 9 cases and retrieved the rank of the known male infertility variants among other 460 

homozygote variants in the patient’s genomes according to its PSAP p-value for the 2 strategies.  461 
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