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Integrative spatial and genomic analysis of
tumor heterogeneity with Tumoroscope

Shadi Shafighi1,2,3, Agnieszka Geras1,4,5,6, Barbara Jurzysta1, Alireza Sahaf Naeini1,
Igor Filipiuk1, Alicja Ra̧czkowska1, Hosein Toosi7, Łukasz Koperski8, Kim Thrane9,
Camilla Engblom 10,11, Jeff E. Mold10, Xinsong Chen 12, Johan Hartman 12,13,
Dominika Nowis 14, Alessandra Carbone 2,15, Jens Lagergren 7,17 &
Ewa Szczurek 1,16,17

Spatial and genomic heterogeneity of tumors are crucial factors influencing
cancer progression, treatment, and survival. However, a technology for direct
mapping the clones in the tumor tissue based on somatic point mutations is
lacking. Here, we propose Tumoroscope, the first probabilistic model that
accurately infers cancer clones and their localization in close to single-cell
resolution by integrating pathological images, whole exome sequencing, and
spatial transcriptomics data. In contrast to previous methods, Tumoroscope
explicitly addresses the problemof deconvoluting the proportions of clones in
spatial transcriptomics spots. Applied to a reference prostate cancer dataset
and a newly generated breast cancer dataset, Tumoroscope reveals spatial
patterns of clone colocalization and mutual exclusion in sub-areas of the
tumor tissue. We further infer clone-specific gene expression levels and the
most highly expressed genes for each clone. In summary, Tumoroscope
enables an integrated study of the spatial, genomic, and phenotypic organi-
zation of tumors.

Tumor evolution proceeds by the accumulation of mutations, result-
ing in the emergence of distinct cancer cell subpopulations, called
clones, characterized by their genotypes. The spatial distribution of
these clones may vary drastically across tumor tissue. This genetic and
spatial tumor heterogeneity are the two key determinants of patient
prognosis, survival, and treatment1–3. Characterization of the pheno-
typic heterogeneity of tumors, i.e., linking the potential differences

between expression profiles of clones and their spatial distribution,
remains largely unexplored.

Most research on intra-tumor heterogeneity relies on bulk DNA
sequencing (DNA-seq) or single-cell DNA-seq (scDNA-seq) data4,5.
However, bulk DNA-seq measures a mixture of millions of cells from a
given sample, which may contain both cancer and healthy cells,
yielding only aggregated variant allele frequency information. Several
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methods exist for clonal deconvolution of bulk DNA-seq data, aiming
to reconstruct clone genotypes, clone frequencies, and their phylo-
genetic relationships6–11. Recently, techniques for identifying clonal
evolution using mutations found in scDNA-seq12 or a combination of
bulk and single cell RNA sequencing (scRNA-seq)13–15 have emerged.
Despite technological progress16, scDNA-seq remains more labor-
intensive, less accurate, and costlier than the well-established bulk
DNA-seq17. A significant drawback of both bulk and scDNA-seq is the
requirement for tissue disaggregation, resulting in the loss of spatial
information. As DNA-seq-based methods, they are incapable of eluci-
dating phenotypic heterogeneity.

The localization of cancer clones has been previously investigated
using multi-region single-cell or bulk DNA-seq, combined with compu-
tational inference of clonal populations for each region4,18–20. However,
thismethod is inherently coarse-grained, as each region represents abulk
sample, consisting ofmultiple clones with unresolved spatial positioning
within the tissue. Currently, no experimental technique exists for large-
scale sequencing of single-cell DNA in situ. Still, the advent of spatial
transcriptomics (ST) enables spatially resolved RNA-seq from small
groups of 1–100 cells, localized within spots on an ST array21,22. The
number of cells per spot can vary due to differences in cell size, density,
and specific ST technology parameters, such as spot diameter. ST thus
allows for the investigation of spatial gene expression patterns across
tissues. Although the resolution of ST is considerably higher than multi-
region bulk sequencing, it still only provides aggregated signals fromcell
mixtures. Recent methods have been developed to map clonal copy
number alterations using ST data; however, these approaches do not
account for somatic point mutations, which are key drivers of tumor
evolution23,24. For certain cancers,minimal or no copynumber alterations
occur during disease progression, rendering these methods ineffective
fordetecting critical clonesdrivenby somatic pointmutations25. SinceST
is an RNA-seq-based protocol without single-cell resolution, inferring the
genotypes of point mutations within clones at each spot is challenging.

Finally, the phenotypes of individual tumor cells are typically studied
using scRNA-seq.However, this technologydoesnotmeasure theDNAof
these cells, leaving phenotypic data unlinked to the corresponding can-
cer clones. In conclusion, no current approach effectively integrates
tumor genetic, spatial, and phenotypic heterogeneity at near-single-cell
resolution.

To tackle this challenge, we introduce Tumoroscope, a probabil-
istic graphicalmodel that utilizes somatic pointmutation data fromST
reads, clone genotypes reconstructed from bulk DNA-seq, and cancer
cell counts in the spots annotated in hematoxylin and eosin-stained
(H&E) images to unravel the clonal compositionof each spotwithin the
tumor sample. This approach enables us to spatially locate somatic
point mutations and clones derived from DNA-seq within the tissue.
Additionally, we develop a regression model to infer gene expression
profiles of the clones. Following validation of Tumoroscope using
simulated data, we analyze newly generated breast cancer dataset and
a previously published prostate cancer dataset26 to address crucial
questions regarding co-localization and mutual exclusion patterns in
the spatial arrangement of clones and their phenotypes.

Results
Tumoroscope is a probabilistic framework designed to map cancer
clones across tumor tissues by integrating signals from H&E stained
images (Fig. 1a), bulk DNA-seq (Fig. 1b), and spatially-resolved tran-
scriptomics (Fig. 1c). The data preprocessing pipeline begins with a
two-step analysis of the H&E-stained tissue image (Fig. 1d). Initially, ST
spots situated within cancer cell-containing regions are identified.
Subsequently, we estimate the number of cells present in eachof these
ST spots (using custom QuPath27 scripts; Methods). We then proceed
to reconstruct cancer clones, including their frequencies and geno-
types. This is accomplished using somaticmutations and allele-specific
copy number data derived from bulk DNA-seq data (utilizing existing
methods: Vardict28, FalconX29, and Canopy9, see Methods, Fig. 1e).

Fig. 1 | Overview of the Tumoroscope framework. a–c Input data. d-f Data preprocessing. g Tumoroscope probabilistic model. h Regression model for inferring gene
expression profiles of the clones. i Results of Tumoroscope. j Output of the regression model. Figure is created in BioRender54.
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The binary values of these genotypes are scaled by the ratio of the
major copy number to the total copy number, yielding values between
0 and 1. Next, we analyze the data in terms of the number of alternated
reads and the total number of reads (mutation coverage), along with
gene expression observed in each tumor-indicated spot (Fig. 1f). As we
use the Binomial distribution for read counts and model the expected
ratio of alternative reads to total reads, our model remains robust
against gene expression fluctuations. Tumoroscope’s core assumption
is that each ST spot contains a hiddenmixture of clones reconstructed
from bulk DNA-seq data. The method utilizes: i) estimated cell counts
per spot as priors, ii) alternated and total read counts for mutations in
ST spots, and iii) clone genotypes and frequencies through a prob-
abilistic deconvolution model (Fig. 1g). Tumoroscope’s output identi-
fies the proportions of clones in each spot (Fig. 1i). Additionally, it
refines the prior cell counts estimated from H&E images for each spot
using ST data inference. Lastly, we employ a regression model with
gene expression data as independent variables and inferred clone
proportions in ST spots as dependent variables (Fig. 1h) to deduce
gene expression profiles of the clonal populations (Fig. 1j).

Tumoroscope accurately estimates clone proportions in each
spot and demonstrates robustness to input cell count noise
To assess Tumoroscope’s performance with known ground truth, we
evaluated its accuracy in estimating clone proportions within spots
using simulated data. We varied simulation parameters including the
number of mutations in clones, the expected number of clones per
spot, and the average spot coverage (defined as the total read count

summed over all variants per spot, averaged across all spots). We
began with a basic setup featuring five clones in the evolutionary tree,
30mutations in the genotypematrix, an average of 13.6mutations per
clone, and an expected 2.5 clones per spot. We then created four
additional setups by adjusting the average mutations per clone to 5.1
and 15, and the expected clones per spot to 1 and 4.5, respectively. To
examine the impact of average spot coverage, we further varied the
spot coverage for each of these five simulation setups, establishing
very low, low, medium, and high coverage levels, corresponding to
average read counts per spot of 18, 50, 80, and 110, respectively
(Methods). We generated 10 datasets for each of the 20 setups
resulting from the five aforementioned configurations and four cov-
erage levels, totaling 200 distinct simulated datasets for evaluation
(see Supplementary Table 1 for detailed simulation setup specifica-
tions). To test our model’s robustness to noise in cell counts per spot,
we considered three noise levels in this input and two Tumoroscope
versions, differing by how this input is processed. The model either
received true simulated cell numbers per spot as input (corresponding
to zero noise level) or we introduced small and large additive noise to
these numbers (Methods). In the default version, referred to as
Tumoroscope, provided cell counts were used as priors, and the
number of cells per spot was inferred considering all available data. In
the simplified version, Tumoroscope-fixed, cell number values were
provided to the model as fixed input. Both model variations were
evaluated for the three noise levels on each of the 200 simulated
datasets, resulting in inference for 1200 synthetic datasets in total
(Fig. 2). Performance was assessed by calculating the Mean Average

Fig. 2 | Performance of Tumoroscope on simulated data featuring 5 clones and
30mutations. a–cMean Average Error (MAE; y-axis) as a function of spot coverage
(x-axis) in different simulation setups (colors) for Tumoroscope, for different noise
levels in the cell count provided at input: no noise (a), small noise (b) and high noise
(c).d-fThe same as in a–c, but for Tumoroscope-fixed. g Pearson correlation (y-axis)
between the average spot coverage and the average error in all the setups is negative
for both model versions (x-axis), regardless of the noise in the number of cells
provided as input (colors). h-l Comparison of the accuracy (y-axis) of the model
between cardelino (gray) and two versions of the model given true and highly noisy
values for the number of cells (colors), depending on the spot coverage (x-axis), in

different simulation setups: basic (h), increased (i) and decreased (j) number of
mutations, increased (k) anddecreased (l) numberof clones. In eachpanel, the lower
and upper boundaries of the box represent the first (Q1) and third quartiles (Q3),
with the median indicated by a line inside the box. The whiskers typically extend to
themost extreme data points within 1.5 times the interquartile range (IQR) from the
quartiles. Data points outside this range are considered outliers and are plotted
individually by diamonds. The boxplots in panels (a-f) and (h-l) are based on 10 data
points each, corresponding to 10 generated datasets for each setup. In panel g, each
boxplot represents 20 data points, corresponding to the Pearson correlations cal-
culated across the 10 datasets for the 20 different setups.
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Error (MAE), representing the average difference between inferred
proportions of all clones and their true values for each spot. This
process was repeated for all spots, with resulting values averaged
across spots.

For both model versions, Tumoroscope and Tumoroscope-fixed,
the error increased as the spot coverage decreased (Fig. 2a-f). This
trend suggests that deeper sequencing of spots in ST data leads to
more accurate clone deconvolution. To further validate this relation-
ship, we calculated the Pearson correlation between the average spot
coverage and the average error across the 20 setups derived from the
five initial setups and four different spot coverage levels. This corre-
lation analysis was performed for both model versions, across three
noise levels, and for varying numbers of cells. The consistent negative
correlation across all 20 setups confirms a association between read
depth and model accuracy. This observation aligns with theoretical
expectations, where the probability of observing at least one read
increases as the number of reads per cell rises (Supplementary Fig. 1).
Additionally, we observed that higher noise levels weakened this cor-
relation, which is expected. Importantly, this association between read
depth and accuracy was similar for both Tumoroscope and
Tumoroscope-fixed (Fig. 2g).

Tumoroscope obtained low error (medianMAE between 0.02 and
0.15, depending on the spot coverage), regardless of the level of noise
in the input cell counts per spot (Fig. 2a-c). Notably, in the case when
the true simulated cell counts were given as input, Tumoroscope
performed equally well as Tumoroscope-fixed, despite the advantage
that the latterwas given (Fig.2a vs. d). This advantage turned into a bias
when the input cell numbers became noisy, and Tumoroscope-fixed
obtained a largerMAE than Tumoroscope (Fig. 2b,e,c,f). Similar results
were obtained when higher spot coverage was considered (Supple-
mentary Fig. 2). These results highlight the importance of using input
cell counts per spot aspriors rather than fixing them, particularlywhen
there is noise in the input, as is often the case with real data. Indeed, in
practical scenarios, these input cell counts per spot are estimated from
H&E images using nuclei detection algorithms. This task becomes
particularly challenging when the cells are densely packed and the
nuclei overlap (Methods).

Since Tumoroscope relies on matching proportions of spots to
clones by single nucleotide variants, non-expressed mutant alleles
decrease the statistical signal in the data. ST data does not capture all
mutations asonly partof the gene is actually sequenced. To investigate
the effect of missing mutations on Tumoroscope’s performance, we
additionally simulated scenarios with 0%, 25%, 50%, and 75% ofmissing
mutations. These simulations confirmed our model’s accuracy also
with missing data, indicating that it is sufficient when only a subset of
mutations is available. (Supplementary Fig. 3).

Accounting for clonal mixture within ST spots is essential for
model performance
To evaluate the importance of considering clonal heterogeneity within
individual spots, we conducted a comparative analysis between
Tumoroscope and cardelino, a methodology initially developed for
clone assignment in single-cell analysis14. We applied cardelino by
treating each ST spot as an individual cell. While cardelino was not
specifically designed for ST data, its clonal assignment efficiency for
spots would theoretically match its single-cell performance if spots
exhibited clonal homogeneity. This comparative exercise enables us to
quantify the detrimental effects of incorrectly assuming homogeneous
spot composition.

For the comparative analysis, we identified the predominant clone
in each spot (defined as the clone with the highest proportional repre-
sentation) as determined by Tumoroscope. Accuracy was quantified as
the percentage of concordance between the predicted predominant
clone and the actual predominant clone in our simulated dataset. Both
Tumoroscope and Tumoroscope-fixed variants were evaluated.

Tumoroscope demonstrated the worst-case median accuracy of
0.27 in the simulation scenarios with an increased number of clones
and very low read counts, while achieving the best-case accuracy of
approximately 0.92 in scenarios with a decreased number of clones
and very high read counts. These results substantially exceeded car-
delino’s performance, which exhibited median accuracy values span-
ning 0 to 0.09 across for all simulation scenarios (Fig. 2h-l). Consistent
with previous observations (Fig. 2a-g), Tumoroscope’s accuracy
exhibited an inverse relationship with decreasing spot coverage.

Notably, Tumoroscope achieved optimal accuracy in simulation
scenarios with decreased number of clones and lowest accuracy with
increased number of clones, suggesting that per-spot clone quantity
represents a crucial variable determining its performance. While
Tumoroscope-fixed demonstrated lower accuracy compared to the
default Tumoroscope implementation, particularly when processing
highly noisy input cell counts, it nevertheless significantly out-
performed cardelino. These findings emphasize the fundamental
importance of accounting for clonal heterogeneity within ST spots.

Tumoroscopedeconvolutes spatial clonal composition in breast
sample and reveals clone-specific spatial patternswithin distinct
sub-areas
To elucidate the spatial organization of clonal populations within
tumor architecture, we implemented Tumoroscope on a novel dataset
comprising three distinct breast carcinoma sections derived from a
single patient (Fig. 3a-f). The experimental design incorporated paired
deep whole-exome sequencing (WES) and ST analyses (10x Genomics
platform) of adjacent tissue layers for each section (Methods). The ST
analysis encompassed 4885-4992 spots per sample. During pre-
liminary data processing, we implemented neoplastic spot selection
based on expert histopathological evaluation (Fig. 3e) and quantified
cell numbers per spot through computational analysis of H&E images.
We identified 608 high-confidence somatic single-nucleotide variants
(SNVs) through WES analysis that were co-observed in the ST data
reads (Methods) and constructed a phylogenetic tree for those SNVs
(Methods). This analysis revealed seven distinct clonal populations,
including a base clone devoid of somatic mutations (Figs. 4, 3a,b;
Supplementary Fig. 4).

Wefirst investigated the obtained evolutionary tree to identify the
driver genes harboring mutations within each clone along the bran-
ches of the tree. We cross-referenced these genes with the COSMIC
dataset, identifying oncogenes, tumor suppressor, and fusion genes,
and specifically focusing on gene categories associated with breast
cancer, including ’Known hallmark of breast cancer’, ’Known breast
cancer genes’, ’Known mutated genes in cancer’, and the ’Top 20
mutated genes in breast cancer’ (Fig. 4). In total, our analysis unveiled
48 mutations that manifested in at least one of the genes within these
specified categories. Genes NF1, RBM10X, RECQL, and ERBB2 appeared
in multiple categories. For example, NF1 was recognized as both a
tumor suppressor and fusion gene and was present within the ’Known
hallmark of breast cancer’ and ’Top 20mutated genes in breast cancer’
categories. We detected two distinct mutations of NF1, one in clone 5
and another in clone 6. All identified drivermutations were sequenced
much deeper (with an average of 549 total read counts per variant in
the bulk sample) in WES compared to ST data (average 0.02 read per
variant per spot; Supplementary Fig. 5), motivating our probabilistic
approach for clone mapping.

Next, given the selected 11,461 cancerous spots, their cell counts
estimated from H&E images, total and alternated read counts at
identified mutations, and the reconstructed clone genotypes, we used
Tumoroscope to correct the initial, estimated number of cells in each
spot anddeconvolute the transcriptomicsmutationprofiles in spots to
obtain the proportions of the underlying clones. We conducted a
comparison between the corrected and the initial counts of cells
(Supplementary Fig. 6). Our analysis reveals that Tumoroscope

Article https://doi.org/10.1038/s41467-024-53374-3

Nature Communications |         (2024) 15:9343 4

www.nature.com/naturecommunications


exhibits a tendency to reduce the cell counts for spots with excep-
tionally high estimates, while simultaneously increasing counts for
spots with notably low estimates. This behavior suggests that
Tumoroscope is effectively addressing outliers, which could poten-
tially represent errors in the initial estimates.

The composition of the seven clones in the investigated breast
cancerous tissue identified by Tumoroscope revealed fascinating
patterns of spatial arrangement (Fig. 3f). Generally, no single clone

fully dominated a specific contiguous sub-area of tissue. However, we
did observe subsets of clones that coexisted within these sub-areas.
For section SB1, clone 4 was present in medium proportions in all
analyzed spots of both layers. Very interestingly, there was a clearly
separated sub-area in the right-hand part of section SB1 first layer,
where clones 2, 4, and 6 co-occurred. The rest of this layer was
dominated by clones 3, 4, and 5. In the second layer of section SB1,
clones 2, 4, 5, and 6 coexisted, although with larger proportions of

Fig. 3 | Spatial arrangement of cancer clones inferred for the breast cancer
dataset. a, b Evolutionary tree and genotypes of the inferred clones. Figure 3a is
created in BioRender55. Colors: major to total ratio, i.e., the fraction of the major
copy number to the total copy number, with values that fall within the range of 0 to
1. cDistribution of the Pearson correlation (y-axis) of the clonal composition of the
spots that are distant and adjacent, computed for 100 pairs of spots sampled at
random 20 times each (x-axis). d Distribution of the agreement of the distant and
adjacent spots in cardelino and Tumoroscope, computed for the same randomly
sampled pairs as used in c. To compute the agreement, we use the single inferred
clone by cardelino and the major inferred clone by Tumoroscope. In panel c and
d, the lower and upper boundaries of the box represent the first (Q1) and third

quartiles (Q3), with the median indicated by a line inside the box. The whiskers
typically extend to the most extreme data points within 1.5 times the interquartile
range (IQR) from the quartiles. Data points outside this range are considered out-
liers and are plotted individually by diamonds. e Pathologist’s annotation of the
cancerous areas on the H&E images for sections SB1, SB2, and SB3. f For each
section, two rows correspond to the two nearby samples and 7 columns corre-
spond to the proportion of the spots assigned to each clone. g The clonal assign-
ment of the spots inferred by cardelino for the same samples (see Supplementary
Fig. 10 for expanded cardelino results). h Assignment of spots to copy number
clones inferred by STARCH, with two clusters: gray corresponding to a normal
clone, and dark blue corresponding to a single tumor clone.
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clone 4, lowproportions of clones 2 and6, and clone 5 being present in
fewer spots thanother clones.Clone 7wasnot present ineither layer of
this section. Similarly, contiguous sub-areas that were predominantly
occupied by small subsets of clones could be found in both layers of
sections SB2 and SB3. As expected, clone 1, which lacked somatic
mutations characteristic of the remaining cancerous clones, was found
in only small proportions in the analyzed spots across all sections and
layers.

Patterns of clonal co-occurrence and mutual exclusion could be
observed across all sections and layers, indicating a systematic
mechanism. For example, the pairs of clones 2 and 6, as well as 3 and 5,

although evolutionarily distant and with different genotypes (Fig. 3a,
b) were always present together in the same sub-areas, while clones 4
and 7 excluded each other. To further investigate the interesting pat-
tern of co-occurrence of evolutionary distant clones, we traced the
alternate read counts corresponding tomutations found in clone 2 but
not in clone 6, and conversely,mutations present in clone 6 but absent
in clone 2 in ST slides (Supplementary Fig. 7a). This analysis provides
confirmation of co-occurrence of the alternated reads for the muta-
tions specific to clone 2 and mutations specific to clone 6. Interest-
ingly, the colocalization of clones 2 and 6 also coincides with areas of
higher coverage (Supplementary Fig. 8a,b). This, however, does not

Fig. 4 | Clonal evolution of breast cancer samples inferred by Canopy. At each
branch, known oncogenes, tumor suppressor or fusion genes with mutations that
occurred along thatbranch aremarkedwithblack shapes. Colors: geneswithin 'Top
20 mutated genes in breast cancer' (green), 'Known hallmark of breast cancer'
(yellow), and the 'Known breast cancer genes' (blue) categories. Purple framing:

genes in the 'Known mutated genes in cancer' category. The branch lengths were
adjusted for the visual presentation and are not inferred by the model. The per-
centage in the brackets for the 'Top 20mutated genes in breast cancer' category is
the mutation frequency (total mutated samples / total samples analysed, in per-
cent) in the breast cancer samples in COSMIC. Figure is created in BioRender56.
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affect the identification of the clone location in Tumoroscope. Instead,
the higher coverage is accounted for in the model by inferring higher
inferred variant expression values (Φ variables) for the variants in
these clones, which we also confirmed (Supplementary Fig. 9). Simi-
larly, we investigated the second co-occurring pair of clones 3 and 5, as
well as the mutually exclusive pair 4 and 7, visualizing clone-specific
mutations for those pairs (Supplementary Fig. 7b and c, respectively).
While Tumoroscope leverages both clone-specific and common
mutations simultaneously, the presence of clone-specific mutations
confirms that the data provides the signal needed for inference to
the model.

In contrast to Tumoroscope, in the assignments of single clones
to spots inferred by cardelino, there was no detectable spatial pattern
of domination of clones in sub-areas, as all clones were present in all
sections uniformly (Fig. 3g; Supplementary Fig. 10). Also, the overall
proportions of inferred clones differed between cardelino and
Tumoroscope (Supplementary Fig. 11). Again, this underscored the
importance of spot deconvolution.

To validate the decomposition results in the absence of ground
truth, we relied on the natural expectation that adjacent spots would
exhibit high similarity in clonal composition due to the spatial growth
process of the tumor. We found that the median correlation of clone
proportions inferred by Tumoroscope between adjacent spots was
significantly higher than themedian correlation between distant spots
(computed between 100 pairs of spots each, sampled at random 20
times; Fig. 3c). Since Tumoroscope treated each spot as independent
and did not enforce any spatial similarities by design, this result
strongly supports the correctness of the deconvolution of ST spots
using Tumoroscope.

Next, we compared Tumoroscope’s and cardelino’s performances.
Since cardelino was originally designed to analyze scRNA-seq data, when
applied to ST data, it assigned only one clone to each spot. Thus, to
enable the comparison, similarly as we did for simulated data, for every
spot of interest, we determined the major clone (characterized by the
highest proportion) indicated by Tumoroscope. We then computed the
agreement for each out of 20 randomly sampled sets of adjacent and
distantpairsof spots consideredpreviously (Fig. 3d). Themedian fraction
of adjacent pairs of spotswith clonal assignment in agreementwasmuch
higher for Tumoroscope (0.41) than for cardelino (0.25). Moreover, the
difference between the agreement for the distant and adjacent pairs was
larger for Tumoroscope (distance between medians 0.14; one-sided
Wilcoxon p-value: 1.9e-06) than for cardelino (distance betweenmedians
0.03; one-sided Wilcoxon p-value: 0.063).

To investigate the level of spatial and genomic heterogeneity
contributed by CNVs, we additionally performed an analysis of the
same tissue using STARCH23, with default parameter settings. STARCH
is a statistical method used for inferring CNV-based clones and
determining copy numbers within spatial spots. Notably, it incorpo-
rates spot positions to account for the similarity of nearby spots and
assumes that the spots are homogeneous, i.e., that each contains only
one clone. As per the authors’ recommendations, we ranged the
number of CNV-based cancerous clones from 1 to 8 (excluding the
normal clone) and relied on the Silhouette score to determine the
optimal clone number (Supplementary Fig. 12). By design, STARCH
includes the normal clone to the identified cancerous clones.
Remarkably, this analysis revealed the presence of only a single CNV-
based clone, in addition to the normal clone (Fig. 3f,h). This finding
suggests that, in contrast to the significant heterogeneity identified by
Tumoroscope in SNV-based cloneswithin breast cancer samples, there
is a lack of heterogeneity in terms of CNV-based clones for this tumor.

Tumoroscopemaps ST spots to clonal populations in a prostate
tumor sample
Subsequently, we employed Tumoroscope to analyze three prostate
tumor sections from a single patient. For these sections, we had access

to deepWES and ST data (custom arrays) from adjacent tissue layers26.
Following our established protocol, from the original 968-1001 spots
per sample, we identified a total of 294 cancerous spots within tumor
regions delineated by an expert pathologist. We then enumerated the
cells in spots based on H&E images (Fig. 5c), observing between 1 and
188 cells per spot. These cell counts were subsequently refined by
Tumoroscope during the model inference stage (Supplementary
Fig. 6; Methods).

Our analysis revealed 282 high-confidence somatic SNVs found in
WES data that were also detected in ST data. Using Canopy9, we con-
structed an evolutionary tree for the tumor based on the WES data for
these shared SNVs. This analysis uncovered four distinct clones,
including a base clone devoid of somatic mutations (Fig. 6; Fig. 5a,b;
Supplementary Fig. 13). Further investigation identified 18mutations in
cancer driver genes listed in the COSMIC database, distributed across
the tree’s branches. Notably, we detected a mutation in KLK2, a gene
associated with ’Known prostate cancer genes’, which was found in
clone 3 (Fig. 6). Consistent with our observations in the breast cancer
dataset, the sequencing coverage for mutated sites in the WES data
significantly exceeded that of the ST data in this prostate dataset
(Supplementary Fig. 5).

Lastly, we employed Tumoroscope to deconvolve the tran-
scriptomic signals from 294 spots in the ST data, elucidating the pro-
portions of underlying clones. As previously observed for breast
cancer, we found a mosaic pattern of sub-regions with distinct clonal
compositions (Fig. 5d). Notably, section SP1 exhibited a clear dichot-
omy: the left portion contained a mixture of cancer clones 2, 3, and 4,
while the right portionwas predominantly populatedby clone 4,with a
minor presence of normal cells (clone 1). Although smaller in size,
sections SP2 and SP3 also displayed discrete sub-regions characterized
by varying clonal compositions.

For comparison, we again applied cardelino, by considering each
spot in the ST data as a single cell (Fig. 5e; Supplementary Fig. 14).
Interestingly, similarly to Tumoroscope, for section SP1 cardelino also
divided the tissue into twodifferent subareas, confirming their distinct
clonal composition. However, the clones assigned by cardelino did not
agree with the clones identified as taking the most proportion of the
same spots by Tumoroscope. For example, for the right-hand sub-area
of section SP1, cardelino mostly assigned spots to clone 3, and not 4.

We further verified whether Tumoroscope inferred more similar
clonal profiles for adjacent spots than for distant spots. As expected,
the correlations of the inferred clone proportions between adjacent
spots (median 0.65) were significantly higher than the correlations
between distant spots (median 0.38; computed for 100 randomly
selected pairs each and sampled 20 times; Fig. 5f).

Furthermore, we compared the percentage of the agreement of
the major clone in each spot in the adjacent and distant pairs of spots
found using Tumoroscope, with the agreement of the clones in the
same pairs of spots assigned by cardelino (Fig. 5g). With a median of
0.41, the agreement for adjacent spots was significantly higher for
Tumoroscope than for cardelino (median 0.31). Furthermore, the dif-
ference between the agreement of the adjacent and distant spots was
significant for Tumoroscope (difference between medians 0.05; one-
sidedWilcoxon p-value 0.004) and was notably greater than observed
for cardelino (0.01; one-sided Wilcoxon p-value 0.556).

To compare SNV-based clonal heterogeneity inferred by
Tumoroscope to CNV-based heterogeneity, we additionally utilized
STARCH to deduce CNV-based clones within the cancerous prostate
tissues. We conducted runs for 1 to 8 clones and, following the
recommendations outlined in the paper, utilized the Silhouette score
to ascertain the optimal clone number (Supplementary Fig. 12). Inter-
estingly, STARCH failed tofind tumorclones fornearly half of the spots
and identified them as normal. For the same spots Tumoroscope
successfully determined SNV-based clones. Here, Tumoroscope
agreed with H&E data, which clearly indicated that the vastmajority of
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cells in this region are indeed cancerous (full-size H&E images are
available for inspection; see Data Availability section). The mis-
classification of cancerous tissue as normal by STARCHmay be due to
the presence of true subclones that have evolved exclusively through
SNV events, making them undetectable by STARCH. Identification of
only a single tumor clone inother parts of cancerous tissue bySTARCH
could be due to copy number events occurring early in tumor evolu-
tion, affecting all cells in those subclones and thus lacking CNV het-
erogeneity. In contrast, SNVs could have occurred later in the
evolutionaryprocess, leading to the formation of distinct clones found
by Tumoroscope. It’s important to emphasize that within SP1, STARCH
clearly distinguished between clones on the right-hand and left-hand
sides, in agreement with Tumoroscope (Fig. 5d,f).

Spatial proximity of clones reflects similarities in gene expres-
sion patterns
We then utilized a regression model (Methods) to deconvolve clone-
specific gene expressionprofiles fromthemeasured expressiondata in
spots. This model posits that each spot’s gene expression is a com-
posite of clone-specific expressions, weighted by their Tumoroscope-
inferred proportions and adjusted for the estimated cell count per
spot. For both cancer types, we prioritized genes based on their
maximum inferred expression values across clones, selecting the top
30 genes for analysis.

In the prostate cancer dataset, 9 of the 30 selected genes (KLK2,
KLK3,MSMB, TAGLN, SPON2, KLK4, PMEPA1,MYH11, AZGP1) are known
to beenriched inprostate cancer tissues (i.e., have elevated expression
in prostate cancer according to theHumanProtein Atlas;HPA;30),while
19 are upregulated across various cancer types. For breast cancer, we
identified TPRG1, known to be enriched in breast cancer tissues, along
with 25 genes upregulated in multiple cancer types.

The deconvolved expression profiles varied among genes and
clones (Fig. 7). Notably, we observed genes highly expressed in specific
clone subsets. In breast cancer, for instance, MT-CO1 and MT-CO3,
associated with promoting cancer phenotype31,32, and RPL19, linked to
poor patient survival33, were predominantly expressed in clones 2, 6,
and 7. In prostate cancer, KLK3, a prostate-specific antigen and key
prostate cancer clinical biomarker34, was active in clones 2 and 3. These
findings suggest that individual cancer cell clones may have distinct
roles in tumor progression and development.

Lastly, we clustered the clones based on their gene expression
profiles (Fig. 7). Fascinatingly, in both cancer types, clones with similar
inferredphenotypes, as evidencedby their clusteredexpressionprofiles,
also exhibited spatial co-localization across the tissue (cf. Figs. 3 and 5).

In the breast cancer analysis, we observed a notable correlation
between the proportions of clones 2 and 6 across spots (Pearson
correlation r = 0.64; Supplementary Fig. 15). Given this correlation, the
regression model was expected to yield similar gene expression pro-
files for these clones. Interestingly, clones 3 and 5, despite showing
small negative correlation in their spot fractions (Pearson correlation
r = − 0.28; Supplementary Fig. 15), exhibited spatial proximity, co-
occurring in adjacent spots (Fig. 3; average correlation of fractions in
adjacent spots r = 0.16; Supplementary Fig. 16). This spatial arrange-
ment was not inherently accounted for in the regression model’s
construction, yet these clones were inferred to have the second most
similar expression profiles.

For the prostate cancer sample, clones 2 and 3, which displayed
spatial co-localization in the tissue (Fig. 5), also demonstrated the
highest similarity in their inferred gene expression profiles.

Notably, in both cancer types, the pairs of clones showing corre-
lated spatial distribution and gene expression were not closely related
in terms of their mutational profiles (Fig. 3b). Consequently, these

Fig. 5 | Results obtained for the prostate cancer dataset. a-b Evolutionary tree
and genotype of the clones. Figure 5a is created in BioRender57. Colors: major to
total ratio, i.e., the fraction of the major copy number to the total copy number,
with values that fall within the range of 0 to 1. c Pathologist’s annotation of the
cancerous areas on the H&E images for sections SP1, SP2, and SP3. d For each
section (rows), 4 columns correspond to the proportion of the spots assigned to
each clone. e The clonal assignment by cardelino (see Supplementary Fig. 14 for
expanded cardelino results). f Assignment of spots to copy number clones as
inferred by STARCH, with two clusters: gray corresponding to a normal clone (with
no copy number changes), and dark green corresponding to a single tumor clone.
gDistribution of the Pearson correlation of the clonal composition of the spots that

are distant and adjacent, computed for 100 pairs of spots sampled at random 20
times each. In panel g and h, the lower and upper boundaries of the box represent
the first (Q1) and third quartiles (Q3), with themedian indicated by a line inside the
box. Thewhiskers typically extend to themost extreme data points within 1.5 times
the interquartile range (IQR) from the quartiles. Data points outside this range are
considered outliers and are plotted individually by diamonds. hDistribution of the
agreement (y-axis) of the distant and adjacent spots for cardelino and Tumoro-
scope, computed for the same randomly sampled pairs as used in g. For the
computation of the agreement, we use the single inferred clone by cardelino and
the major inferred clone by Tumoroscope.
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clones were positioned in distinct branches of the evolutionary tree
(Fig. 3a). This observation suggests that even clones that are distant in
their evolutionary history may converge on similar phenotypes and
potentially fulfill comparable roles in tumor progression.

To investigatewhether Tumoroscope is negatively affected by the
copy number events, we investigated whether our regression model
infers expression levels in accordance with copy number

(Supplementary Figs. 17, 18 and 19). Indeed,weobserved that for genes
with higher copy number inferred by STARCH, Tumoroscope also
tended to infer higher expression values. This clear trend further
confirms that ourmodel is not adversely affected by the occurrence of
CNVs and can correctly infer clone-specific expression profiles irre-
spective of their copy number. However, this observed concurrence
might be attributed to the relatively low influence of CNV events in

Fig. 7 | Genes are expressed differently in various cancer clones. The expression
of the 30 genes that were inferred by the regression model as the most active in at
least one clone, clustered in rows and columns, for breast (a) and prostate cancer
(b) tissues. * cancer gene found in all cancer tissues (not cancer type specific)
according to the HPA database30; + cancer gene with nTPM (normalized gene
expression value) in the desired cancer type (either breast in a or prostate in b) at

least four times higher than in other cancer tissues, according to30; ++ cancer gene
with nTPM in a group of cancer tissues including the desired cancer type, at least
four times higher than in other cancer tissues, according to30; - not detected in
cancer tissues, or nTPM at least four times higher in another cancer tissue than the
desired one, according to30.

Fig. 6 | Clonal evolutionof prostate cancer samples inferredbyCanopy.At each
branch, known oncogenes, tumor suppressor or fusion genes with non-
synonymous mutations that occurred along that branch are marked with black

shapes. Blue color marks the gene that belongs to the 'Known prostate cancer
genes'. The branch lengths were adjusted for the visual presentation and are not
inferred by the model. Figure is created in BioRender58.
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shaping theevolutionary trajectoryof the analyzedprostate andbreast
cancer data. We hypothesize that if multiple CNV tumor clones were
present, potentially leading to the divergence of SNV-based clones
during evolution, the agreement between these two factors would
likely be less pronounced.

Phenotypic similarity of phylogenetically distant
clones is confirmed by independent scRNA-seq
data analysis
To further validate gene expression profiles inferred by Tumoroscope
for the breast cancer samples, we analysed scRNA-seq data from the
same patient and tissue sections. To this end, we selected the top 100
highly variable genes in the profiles inferred by Tumoroscope and
analyzed their expression in 120 cells in the scRNA-seq dataset. The
dimension of scRNA-seq expression vectors was reduced using Prin-
cipal Component Analysis (PCA) and next clustered using the K-means
algorithm. The Dunn Index measure was used to identify the optimal
number of 3 scRNA-seq clusters (see Supplementary Fig. 20). Finally, to
render the seven expressionprofiles inferred fromSTdata comparable
with the expressionmeasurements of individual cells in the scRNA-seq
data, the centers of expression vectors were harmonized (Methods).
Next, we mapped each of the seven inferred clone gene expression
profiles to the closest out of the 3 scRNA-seq clusters in terms of
Euclidean distance to its centroid.

As a result, clones 1, 2, 3, 4, 5, 6, and 7 were assigned to two of the
three scRNA-seq clusters: 1, 2, 1, 1, 1, 2, and 2, respectively. Inspectionof
the clones’ assignment to these three expression clusters gives com-
pelling evidence for their phenotypic similarities. In particular, clones 2
and 6, which were shown to be distant phylogenetically but found by
Tumoroscope as colocalized in breast tissue (Fig. 3) and having similar
inferred expression profiles (Fig. 7), were assigned to the same scRNA-
seq cluster 2. Similarly, clones 3 and 5 found as co-localized and similar
in expression by Tumoroscope, were assigned to the same scRNA-seq
cluster 1 (Supplementary Fig. 21). Thus, the similarity of expression
profiles for these pairs of clones was confirmed by independent clus-
tering of scRNA-seq data from the same tissue.

Discussion
Tumoroscope is the first approach for mapping cancer clones based
on point mutations in tissue space and resolving their expression
profiles in close to single-cell resolution. This resolution amounts to
the diameter of the deconvoluted spots, ranging from 100 μm (for the
prostate cancer dataset26) to 55 μm (for the breast cancer dataset),
depending on the ST technology. Effectively, this means the model is
able to assign clone proportions for spatially resolved mini bulks of a
typical range of 1-100 cells. Tumoroscope achieves this result by
innovative integration of data from technologies that were not ori-
ginally developed for this task: H&E, WES, and ST. The primary signal
leveraged by Tumoroscope to identify the clonal composition of ST
spots is the alignment of mutations present in the genotypes of the
clones to the mutations found in the RNA sequencing of the spots.
Moreover, the method estimates additional variables, such as the
number of cells in each spot and the average expressionof each variant
site per single cell. Finally, with the inferred proportions of the spots
coming from specific clones, alongside the gene expression observed
in spots in hand, we solve the problem of clone-specific gene expres-
sion deconvolution using a dedicated regression model.

Our comprehensive study on simulated data demonstrates
Tumoroscope’s robustness to noise in the estimation of the number of
cells in ST spots. The results clearly indicate that the deconvolution
task becomes easier with increasing coverage of mutations in ST spots
and with a decreasing number of coexisting clones in each spot. In
application to breast and prostate cancer data, Tumoroscope reveals
spatial patterns of clonal arrangement, indicating a well-mixed coex-
istence of small subsets of all clones in subareas of the tumor tissue.

Applying our regressionmodel to infer gene expressionprofiles in
the different clones allows us to identify the distinct phenotypes of the
clones, effectively assigning spatial resolution to the function of the
different tumor subpopulations, and thus profiling the functional
heterogeneity of tumors. Moreover, our findings in both analyzed
cancer types indicate that it is the phenotypic, and not genotypic
similarity, which could drive the spatial co-occurrence of clones.
However, this result should be further validated in additional patient
samples and using independent data.

To the best of our knowledge, no existing technology matches
Tumoroscope’s capacity to resolve spatial clonal heterogeneity in
tumors at a comparable resolution. Spatial capturing of DNA sequen-
ces is still at the very early stage of development35, with current
methods yielding low-resolution data that necessitates merging adja-
cent beads, effectively producing spatial mini-bulk data similar to ST
spots.Moreover, approaches that disregard the evolutionary origins of
clones and cluster beads without considering variant allele fre-
quencies, as performed in35, oversimplify the complex task of spatial
clonal deconvolution.

Given the inherent challenges of spatial DNA-seq data, high-
resolution ST data emerges as a compelling alternative for spatially
inferring clonal evolution. Recent methodologies like STARCH23 com-
bine ST RNA-sequencing with DNA-sequencing from adjacent tumor
tissues to deduce clonal spatial arrangements based on copy number
profiles. Similarly, Erickson et al.24 developed a technique to infer copy
number variations (CNVs) from spatially resolved in situ mRNA pro-
files, revealing distinct CNV-based clonal patterns within tumors.
However, unlike Tumoroscope, these methods do not account for the
impact of point mutations on tumor heterogeneity.

Our comparative analysis of STARCH and Tumoroscope results
onbreast andprostate cancer data underscores the critical importance
of considering clones formed by point mutations. CNV-based models
prove inadequate when clones arise solely from SNV events or when
copy number alterations occur early in tumor evolution, resulting in
their presence across all cells and minimal spatial CNV heterogeneity.
Furthermore, current CNV-based models lack spot deconvolution
capabilities, potentially compromising their performance when mul-
tiple clones coexist within individual ST spots.

Future technological advancements could further enhance the
quality of results obtained through our approach. For instance,
substituting WES with scDNA-seq data would enable more precise
inference of cancer clones, their evolutionary relationships, and
genotypes using dedicated computational methods36,37. Also, as ST
technology progresses, we anticipate smaller spots, which would
limit the number of clones per spot and simplify the deconvolution
process.

Currently, Tumoroscope depends on external methods to pro-
vide clone information as input. This allows for the application of new
state-of-the-art SNV clonal inference models as they become available.
However, given the potential inaccuracies in suchmodels, a promising
avenue for improvement lies in directly incorporating the clonal
inference within the model itself.

Additionally, while in the current Tumoroscope framework
pathologists initially identify cancerous spots, the possibility of
immune cell infiltration in some spots highlights the need for a more
refined approach to preprocessing and cancerous spot selection.
Theoretically, themodel could address this by classifying such spots as
belonging to the ’normal clone’, as immune cells infiltrating solid
tumors typically lack mutations.

At present, only the first 300 bp of gene sequences are sequenced
in ST data generation. Ideally, whole gene bodies should be sequenced
to allow all mutations detectable from WES to be observed in ST,
enablingmoreaccurate deconvolutionof spots into clones.While such
sequencing has recently been demonstrated38, it was not available for
the data we analyzed and is not part of standard ST protocols.
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Despite these technological limitations, Tumoroscope represents
a significant advancement in the integrated analysis of spatial, geno-
mic, and phenotypic tumor heterogeneity through its novel fusion of
data and modeling. It provides unprecedented insights into clonal
composition, mutational genotypes of the clones, and their gene
expression patterns in tissues, surpassing the capabilities of existing
experimental or computational methods in terms of spatial, genetic,
and phenotypic characterization.

Themodel’s potential extends to future studies profiling adjacent
tumor samples, enabling the creation of 3D clonalmaps. By computing
gene expression profiles of clones, we could predict the most pro-
liferative areas and likely expansion sites within the 3D tumor struc-
ture. Furthermore, large-scale studies combining H&E, WES, and ST
data across patient cohorts could explore relationships between clin-
ical features and spatial clonal patterns identified by Tumoroscope.

When integrated with cell-type deconvolution approaches for ST
data in the tumor microenvironment39–41, our framework has the
potential to provide unprecedented insights into the interactions
between specific cancer clones, their phenotypes, and the surrounding
microenvironment. In conclusion, Tumoroscope opens up new ave-
nues in cancer research, with broad applications for both fundamental
understanding of the disease and its clinical applications.

Methods
Breast cancer samples
The breast tumor samples originating from an untreated invasive
ductal carcinoma patient, specifically identified as HER2 positive, were
obtained from the Department of Clinical Pathology and Cancer
Diagnostics at Karolinska University Hospital, Stockholm, Sweden.
Experimental procedures and protocols were approved by the regio-
nal ethics review board (Etikprövningsmyndigheten) in Stockholm
(2016/957-31, amendment 2017/742-32, 2021-00795, and 2022-05245-
02). Before surgery, informed consent was given to the patient for
signature. The extracted tissue was promptly embedded in OCT for
preservation, facilitating subsequent gene expression analysis through
spatial transcriptomics. The residual material from each tumor section
was allocated for comprehensive whole exome sequencing and single-
cell RNA sequencing analysis42.

ST experiments for breast cancer samples
For the three breast cancer sections, H&E images and ST datasets were
generated as detailed by Engblomet al.43. Specifically, each sectionwas
extracted from a different region of the tumor, and for each section,
two nearby samples were collected. Single samples from sections SB2
and SB3 were already analyzed by Engblom et al.43, and the corre-
sponding gene expression measurements were published there. Data
for all six samples analyzed here are referenced in the Data and Code
Availability section.

Whole-exome sequencing for breast cancer samples
Concurrently, bulk DNA-seq procedures, as elucidated by Jun et al.42,
were conducted on closely adjacent samples for each section of the
breast samples. Specifically, the collected tissues were manually
homogenized and genomic DNA samples were isolated by using the
QIAamp DNA mini kit (QIAGEN). The library was prepared by using
Twist Bioscience Human Core Exome kit (Twist Bioscience) according
to the manufacturer’s protocol. The bulk DNA samples were then
sequenced at 300x coverage depth in an S4 flow cell lane by the
NovaSeq 6000 platform (Illumina) at the National Genomics Infra-
structure, Science for Life Laboratory, Uppsala. Data for the WES
samples is referenced in the Data and Code Availability section.

ScRNA-seq experiments for breast cancer samples
The collected breast cancer samples were prepared for single-cell RNA
sequencing as described by Jun et al.42. Next, for scRNA-seq libraries,

the Smart-Seq3method was used according to the published protocol
(PMID: 32518404). The list of used oligonucleotides is provided as
supplementary data of Jun et al.42. Data for the scRNA-seq is referenced
in the Data and Code Availability section.

We employed a 384-well plate for single-cell RNA sequencing. Out
of the total 384 cells, 224 were collected from the ST sections utilized
in this study. We filtered the data based on the following criteria:
mitochondrial expression fraction < 0.1, gene expression sum >
10,000, and the number of captured genes > 3,000, resulting in a final
dataset of 120 high-quality cells for subsequent analysis.

Prostate cancer samples
The prostate cancer dataset was generated and published by Ber-
glund et al.26. This dataset consists of twelve sections, with H&E
images, bulk DNA-seq, and spatial transcriptomics provided for each
section. The data were generated and processed using protocols as
described in26.

Identifying the spots that contain tumor cells
To select the spots that contain tumor cells, we took advantage of H&E
staining images of the analyzed tissues. For both breast and prostate
cancer, regions containing cancer cells were annotated by an expert
pathologist, Dr. Łukasz Koperski, using QuPath27. We further selected
spotswhose area overlappedwith the pathologist’s annotated regions,
using a custom script in QuPath27.

Counting cells in spots
We developed a custom script in QuPath27 to count cells in each ST
spot visible in the H&E images27. The script takes as input coordinates
and diameters of spots to define target areas. Then, we employ
QuPath’s built-in cell counting algorithm to detect and count nuclei. In
order to adjust parameters of the algorithm, we examined random
spots by manually counting cells to verify the accuracy of the results.

Spatial transcriptomics data preprocessing
For prostate cancer samples, the ST data bam files were provided by
Berglund et al.26. For breast cancer samples, to create the genome
index, we used the STAR program44 with the GRCh38 reference gen-
ome as input. Next, we applied the ST Pipeline with default setting45,
providing the genome index, FASTQ files, barcodes and array coordi-
nates as input. This pipeline ensures data integrity through quality
checks, artifact removal, and genome alignment. We obtained the
gene expressionmatrix as counts of reads for each gene, which the ST
Pipeline produces by default. In addition, we modified the default
settings to obtain bam files with the mapped reads.

Bulk DNA-seq and somatic mutation calling
We identified somatic mutations that appeared in at least one of the
bulk DNA-seq samples, by calling the mutations using Vardict28 for
each sample with a p-value threshold equal to 0.1. Then, we used their
unionover sections as the set ofmutations called in bulkDNA-seqdata.
This procedure was performed in the same way for the prostate and
the breast dataset.

Selection of somatic mutations that are detected both in bulk
DNA-seq and ST data
Next, we identified the bulk DNA-seqmutations that were also present
in ST data with the same alternated nucleotide. To calculate the total
and alternated reads over the mutations in ST data, we located the
selected bulk DNA-seq mutations in the ST bam files and counted the
corresponding mapped reads with our script. The reads with a differ-
ent nucleotide as compared to the reference genome were called the
alternated reads. For ST data, we use the terms spot coverage and
mutation coverage to refer to the number of reads found in a spot or
over a mutation, respectively.
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Finally, we selected the mutations for which there existed at least
one alternated read in at least one section. The alternated and total
read counts in bulk DNA-seq data for the selected mutations were
given as input for phylogenetic inference, while the alternated and
total read counts in ST data for the samemutationswere given as input
to Tumoroscope. The median mutation coverage for the selected
variant sites in bulk DNA-seq data for breast and prostate cancer were
214.5 and 134.75, respectively.

Phylogenetic tree analysis
To identify the phylogenetic tree and infer the genotype and pre-
valence of each clone in the tree, we used a statistical method called
Canopy9. The input to Canopy are variant allele frequencies of somatic
single nucleotide alterations (SNAs), along with allele-specific muta-
tion coverage ratios between the tumor and matched normal sample
for somatic copy number alterations (CNAs). We used FalconX for
producing the allele-specific mutation coverage ratio between tumor
and normal sample29. We used the multi-sample feature of Canopy to
infer the clonal evolution across the sections for both prostate and
breast datasets.

Mapping fractions of cells in ST spots to cancer clones using
Tumoroscope
Tumoroscope is a probabilistic graphical model for estimating pro-
portions of cancer clones in ST spots given alternated and total read
counts over the analysed somatic mutations, genotypes and fre-
quencies of the clones, and estimated cell counts per each spot
(Fig. 1f). Let i ∈ {1, …, M} index the selected mutation positions, iden-
tified both in bulk DNA-seq and ST data. We are given a set of K cancer
clones, indexed by k ∈ {1,…, K} as input, which has been derived from
bulk DNA-seq data. The genotypes of the input clones are represented
as a matrix C with entries between 0 and 1 corresponding to the zyg-
osity.Ci,k equals 0 if there is nomutation onposition i in clone k, equals
1 in case all alleles of that position carry the mutation, and equals 0.5
when the half of the alleles of that position carry the mutation. Note
that there can bemultiple alleles for position i. In general, the zygosity
is defined as the ratio of the number of mutated alleles to the total
number of alleles and we estimate it by the ratio of the major allele
frequency to the total read count. The prevalence of the clones in the
bulk DNA-seq is represented by the vector F = (F1, . . . , FK), with values
summing up to one. Let s ∈ {1,…, S} index the spots. We use a feature
allocation model to account for the presence of clones in spots46.
Specifically, we define Zs,k ∈ {0, 1} as an indicator of the presence of
clone k in spot s. We assume a Bernoulli distribution over Zs,k and a
Beta prior over its parameter Π with hyper-parameter ζs:

PðZs, k jΠs, kÞ � BernðΠs, kÞ, ð1Þ

PðΠs, k jζ s,KÞ � Beta
ζ s
K
, 1

� �
: ð2Þ

Let 1 = {1}K denotes a K-dimensional vector with all elements equal to 1.
Bearing inmind the assumption aboutBeta prior overΠs,k, wecalculate
the expected number of nonzero entries in each spotE½ZT

:, k1� using the
formula for the mean of the Beta distribution as47,48

E½ZT
:, k1�=

XK
k = 1

E½Zs, k �=KE½Zs, k �=K
ζ s
K

ζ s
K + 1

=
Kζ s

ζ s +K
: ð3Þ

Given this formula and the number of the clones K, we are able to
control the expected number of clones in each spot by tuning shape
parameter of the beta distribution, ζ s

K .
Our main goal is to estimate the proportions of clones in the

spots, which are represented by the variable H, a matrix with S rows

and K columns. The value of an element Hs,k is the fraction of spot s
coming from clone k. We consider a Dirichlet distribution over
Hs,. = (Hs,1, …, Hs,K),

PðHs, 1, . . . ,Hs,K jF0, F0,Zs, :Þ � DirichletðF0
1
Zs, 1F0

1�Zs, 1 , . . . ,F0
K
Zs,K F0

1�Zs,K Þ: ð4Þ

Here, F0 corresponds to a ”pseudo-frequency”, and results in non-zero
proportions for all clones for each spot. We set F0 to a small number,
effectively assigning small proportions to clones that arenot present in
the spot. The F0 = ðF0

1, :::,F
0
K Þ are obtained as discretized frequencies F.

Specifically, we discretize the values of F by dividing the range from 0
to 1 into 20 equal-sized bins and then roundup the values to the upper-
bounds of the bins and scale them by multiplicative factor l

F0
k = l ×

20×Fk

� �
20

, ð5Þ

where we used l = 100, but it can be specified by the user.
To sample H, we take advantage of the relation between Dirichlet

and Gamma distribution49 and draw K independent random samples
(Gs,1, …, Gs,K) from K Gamma distributions,

PðGs, k jF0
k , F0,Zs, kÞ � GammaðF0

k
Zs, k F0

1�Zs, k , 1Þ, ð6Þ

and then we calculate the proportions H:

Hs, k =
Gs, kPK
l = 1 Gs, k

: ð7Þ

The total read count at position i in spot s is represented by
observed variable Di,s. We assume a Poisson distribution over Di,s,

PðDi, sjHs, :,Φi, :,NsÞ � Pois Ns

X
k

Hs, kΦi, k

 !
, ð8Þ

where Φi,k is the average mutation coverage for the position i across
the cells from clone k, and Ns is the number of cells in spot s. The
variables Ns can be fixed to a priori known values.

However, in most practical applications, the number of cells per
spot is not known. This gives a compelling reason to estimate themas a
part of model inference. We assume a Poisson distribution over Ns,

PðNsjΛsÞ � Pois Λs

� �
, ð9Þ

where Λs is the expected number of cells in spot s. Also, we assume a
Gamma distribution over Φi,k,

PðΦi, k jr,pÞ � Gammaðr,pÞ, ð10Þ

where r and p are the shape and rate hyperparameters, respectively.
Ai,s represents the number of alternated reads for position i in

spot s. We assume a Binomial distribution over Ai,s,

PðAi, sjDi, s,Hs, :Φi, :Ci, :Þ � Binom Di, s ,

PK
k = 1Hs, kΦi, kCi, kPK

k = 1 Hs, kΦi, k

 !
: ð11Þ

Where the success probability of Binomial distribution is the prob-
ability of observingAi,s alternated reads out ofDi,s reads in total. Given
the variables Ns, Hs,. and Φi,., we calculate the expected number of
alternated reads and the total reads in spot s using
Ns
PK

k = 1 Hs, kΦi, kCi, k andNs
PK

k = 1 Hs, kΦi, k , respectively. Therefore, to
calculate the success probability, we determine the fraction of
expected alternative reads to the total reads, which remains constant
despite fluctuations in gene expression levels.
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Metropolis-Hasting inside Gibbs Sampling
In the Gibbs sampling, we iteratively generate samples from each
hidden variable’s conditional distribution, given the remaining vari-
ables, in order to estimate the posterior distribution of the hidden
variables. Each hidden variable given the variables in its Markov Blan-
ket is conditionally independent of all variables outside its Markov
Blanket in the graphical model50. A variable’s Markov Blanket includes
its parents, children, and children’s parents. If the conditional dis-
tribution does not have a closed analytical form, we use a Metropolis-
Hasting step inside theGibbs sampler. In the following,wedescribe the
sampling steps for each hidden variable.

The variables with the closed-form sampling distribution
Πs,k and Zs,k are the only variables with analytical sampling distributions.

Sampling Πs,k

For sampling Πs,k, we take advantage of the conjugacy of Beta and
Bernoulli distributions:

PðΠs, k jζ s ,K ,Zs, kÞ / PðΠs, k jζ s,KÞPðZs, k jΠ s, kÞ
=Beta Πs, k j ζ s

K , 1
� 	

BernðZs, k jΠs, kÞ=BetaðΠs, k j ζ s
K +Zs, k , 2� Zs, kÞ:

ð12Þ

Sampling Zs,k

For sampling Zs,k, we utilize the fact that this variable only accepts
binary values. Therefore, we sample 0 or 1, proportional to their cor-
responding calculated probabilities.

PðZs, k jΠk ,Gs, k ,Fk , F0, lÞ / PðZs, k jΠkÞPðGs, k jFk , F0, lÞ
=BernðZs, k jΠkÞGammaðGs, k jF

Zs, k

k F1�Zs, k
0 , 1Þ:

ð13Þ

Metropolis-Hasting adaptive steps inside Gibbs sampler
In our model, there is no closed analytical form of conditional dis-
tribution for variablesΦi,k,Gs,k andNs. Therefore, we take advantageof
Metropolis-Hasting inside Gibbs sampler. We compute the acceptance
ratio A as the following

A=
f ðxcÞQðxnjxcÞ
f ðxnÞQðxcjxnÞ

: ð14Þ

Where f(x) is a function that is proportional to the desired density
function P(x) and Q is the proposal distribution. Bearing in mind the
non-negativity of the variables of our interest, we choose a Truncated
Normal distribution forQwith themean value of the current sample xc
and variances σΦ, σG and σN corresponding to each variable. The
variance of the Truncated Normal distribution determines the
proximity of thenew sample from the current one,which is interpreted
as the step size. The choice of the step size has a major impact on the
acceptance rate of the Metropolis Hasting. We tune the σΦ, σG and σN
every b steps starting with an arbitrary value based on the feedback
from the acceptance rate. Firstly, we choose an optimal acceptance
rate Ro for each variable. Secondly, we modify the variance by δ
percent of the current variance, and δ is calculated by the difference
between the optimal and current acceptance rate Rc. Ultimately,
during the sampling steps,we learn the optimal variance value for each
variable.

δt =Ro � Rc ð15Þ

σt + 1 = σt ð1 + δ + tÞ ð16Þ

In the following, we describe the conditional distribution for each
variable.

Conditional distribution for Φi,k

PðΦik jr,p,Ai, :,H:, k ,Ci, :,Di, :,N:Þ
/ PðΦik jr,pÞ

Q
s
PðAi, sjHs, k ,Φi, k ,Ci, k Þ

Q
s
PðDi, sjΦi, k ,Hs, k ,NsÞ

=Gammaðr,pÞQsBinom Ai, sjDi, s,
PK

k = 1
Hs, kΦi, kCi, kPK

k =0
Hs, kΦi, k

� �Q
s
Pois Di, sjNs

P
k
Hs, kΦi, k

 !
:

ð17Þ

Conditional distribution for Gs,k

PðGs, k jF0
k , F0,Zs, k ,A:, s,D:, s,Φ:, k ,C:, k ,NsÞ

/ PðGs, k jFk , F0,Zs, k Þ
Q
i
PðAi, sjHs, k ,Φi, k ,Ci, kÞ

Q
i
PðDi, sjΦi, k ,Hs, k ,NsÞ

=GammaðF0
k
Zs, k F0

1�Zs, k , 1ÞQ
i
Binom Ai, sjDi, s,

PK

k = 1
Hs, kΦi, kCi, kPK

k =0
Hs, kΦi, k

� �Q
i
Pois Di, sjNs

P
k
Hs, kΦi, k

 !
:

ð18Þ

Sampling Ns

PðNsjΛs,D:, s ,Φ,Hs, :Þ / PðNsjΛsÞ
Q
i
PðDi, sjΦi, :,Hs, :,NsÞ

= Pois NsjΛs

� �Q
i
Pois Di, sjNs

P
k
Hs, kΦi, k

 !
:

ð19Þ

Parameter setting for different simulation setups
First, we calculate the parameter of the Beta distribution over variable
Πs,k based on the assumed expected value of the number of clones:

ζ s

k
=

E ZT
:, k1

h i

K �E ZT
:, k1

h i : ð20Þ

Considering expected values of 1, 2.5, and 4.5 for the number of clones
found in each spot, weobtain 0.25, 1, and 9 anduse these values for the
Beta distribution parameter.

Second, we exploit Φi,k that represents the expected number of
reads for mutation i in each cell for generating different read coverage
for total and alternated read counts. We set p = 1. With this, we control
the expected value of Φi,k using parameter r.

PðΦi, k jr,pÞ � Gammaðr,pÞ, ð21Þ

E½Φi, k �=
r
p2 : ð22Þ

For the very low, low, medium and high number of reads, we consider
r = 0.02, r = 0.07, r = 0.09 and r = 0.19, respectively, leading to the 18,
50, 80, and 110 average total reads for each spot.

Last, we generate three datasets for the number of cells with dif-
ferent levels of noise to compare our two models, which have the
number of cells as observed and hidden variables. We add the noise
value ϵ to the true values.

Ns =Ns + ϵ: ð23Þ

We consider ϵ = 0, ϵ ~ Pois(1) and ϵ ~ Pois(10) for generating without
noise, noisy and highly noisy number of cells.

Parameter estimation obtained for the real data
For the higher accuracy of the graphicalmodel reflecting the real data,
we estimate the input parameters of the model based on the char-
acteristics of the data. The first parameter is λs, the expected number
of the cells in spot s, which affects the estimation of the number of cells
and, ultimately, the number of reads we are expecting, which is a
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crucial element for estimating the fraction of the clones. Therefore, we
estimate the number of cells using the H&E images and a customized
script in QuPath and use them as the mean parameter for the Poisson
distribution over N(described above)27. Next parameters are r and p,
the shape and rate in the Gamma distribution over variableΦ. We use
mixed type log-moment estimators for calculating r and p51.

r̂ =
I
PI

i = 1xi

I
PI

i = 1xilnðxiÞ �
PI

i= 1lnðxiÞ
PI

i= 1xi

: ð24Þ

p̂=
I2

I
PI

i= 1xi lnðxiÞ �
PI

i= 1 lnðxiÞ
PI

i= 1 xi

: ð25Þ

Where xiwith i∈ {1,…, I} are the sample fromGammadistribution. We
generate these samples using the total number of reads D. We calcu-
late the average number of reads from every cell, dividing the reads
from the spots by the number of estimated cells as input, which gives
us I samples, equal to the number of mutations.

xi =
1
S

X
s

Di, s

ns
: ð26Þ

Clonal composition resemblance in adjacent spots
The evolutionary process imposes the similarity of the clonal composi-
tion in the adjacent spots. Therefore, we expect to have a higher corre-
lationbetween theclonal compositionof theadjacent spots as compared
to distant spots. Tomake this comparison, we randomly generate N pair
of adjacent spots ½ðX1,Y1Þ, ðX0

1,Y
0
1Þ� . . . ½ðXN ,YNÞ, ðX0

N ,Y
0
NÞ�

� �
with X and

Y corresponding to their coordinates. These adjacent pairs satisfy two
constraints ofXj � X0

j ≤ 1 andYj � Y0
j ≤ 1 indexed by j∈ {1,…,N}. We also

generateNpair ofdistant spotswith the twoconstraints ofXj � X0
j>1 and

Yj � Y0
j>1. We define ½Vk, j ,V

0
k, j � as the fraction of clone k in spots cor-

responding to the jth pair in the adjacent spots. Then we calculate the
Pearson correlation for the vector ½ðVk, 1,V

0
k, 1Þ, . . . , ðVk,N ,V

0
k,NÞ�. The

procedure is repeated for all the clones and distant spots for the sake of
comparison.

Clonal assignment of the spots using cardelino
Cardelino14 is a statistical method originally developed for inferring the
clone of origin of individual cells using scRNA-seq. It integrates infor-
mation from imperfect clonal trees inferred from WES data and sparse
variant alleles expressed in scRNA-seq data. However, here, we applied it
to ST instead of scRNA-seq to validate the assumption of a mixture of
clones in each ST spot instead of assuming homogenous spots contain-
ing only one clone. We used clone_id function with “sampling" inference
mode,minimum iteration of 100000andmaximum iteration of 250000.
We used 3 parallel chains for prostate cancer data and 1 chain for breast
cancerdatadue to thehighRAMdemandof cardelino. TheRAMdemand
of cardelino grows with the number of spots. With 294 spots in the
prostate datasets and 11,461 spots in the breast cancer dataset, it is nearly
39 times larger andrunning3chainsbecomescomputationally infeasible.

Assigning spots to copy number clones using STARCH
To perform the ST data analysis using STARCH, we have used the
default code configuration, as recommended by the authors. Specifi-
cally, we used the run command

python run_STARCH.py -i gene_expression_matrix.csv
(or 10X_directory/)

––output name ––n_clusters K ––outdir output/directory/

where K is the number of clusters (corresponding to the number of

identified copy number clones). As suggested by the Authors, we
selected the number K of clones by computing the average silhouette
score for a range of K and selecting the value of K with the highest
average silhouette score.

Estimating gene expression of the clones
Having the proportions of the clones in each spot inferred using
Tumoroscope and gene expression data from ST, we estimate average
clonal gene expressionusing a regressionmodel. Let g∈ {1,…,G} index
genes and Y be a matrix with S rows and G columns, where Ys,g is the
measured gene expression of gene g in spot s. We are interested in
estimating Bk,g - average gene expression of gene g in one cell of clone
k. We useH and N variables inferred by Tumoroscope, and we rewrite
N as an S × S diagonal matrix N0, where N0

s, s is the number of cells in
spot s and other elements of the matrix are equal to zero. We describe
the relationship between the variables with an overdetermined system
of equations N0HB=Y. Then we try to find the optimal solution of this
equation using linear regression with a lower bound of Bk,g ≥0 and no
intercept. For this purpose, we apply a Python function scipy. opti-
mize. lsq_linear to the data.

Validation of gene expression profiles via independent single-
cell RNA-seq data
The scRNA-seq dataset comprised 302 cells and captured the expres-
sion of 24,300 genes. We selected the top 100 genes with the highest
variance across the clone-specific gene expression profiles inferred by
Tumoroscope.

To mitigate potential biases arising from the use of two dis-
tinct technologies for gene expression measurement, we harmo-
nized the data by aligning the centers of both the scRNA-seq data
and our inferred profiles. This alignment involved adding the dis-
tance between these two centers to the Tumoroscope-inferred
profiles, followed by Z-score normalization on both cells
and genes.

Subsequently, we employed PCA to project the data into a space
of reduced dimension. Next, we performed K-means clustering on the
reduced gene expression profiles of individual cells. To determine the
optimal number of clusters for K-means, we tested a range from 5 to 25
clusters and evaluated each clustering solution using the Dunn Index
measure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data for the prostate cancer samples are published by
Berglund et al.26 and deposited at the European Genome-Phenome
Archive (EGA), hosted by the European Bioinformatics Institute (EBI),
under the accession number EGAS00001003001. Berglund et al.
referred to sections SP1, SP2, and SP3 as p3.3, p2.4, and p1.2. Sequen-
cing data for all breast cancer samples analyzed here (SB1, SB2, and
SB3, two samples each) are deposited at EGA by accession number
EGAD00001011061. In this repository, the ST samples fromSB1 section
are referred to as ’112_C1’ and ’112_D1’, samples from SB2 section are
referred to as ’114_D1’ and ’114_C1’, and samples from SB3 section are
referred to as ’113_A1’ and ’113_B1’. Single breast cancer samples fromST
sections SB2 and SB3 are analysed and published by Engblom et al. in
Zenodo43,52. ThebulkDNA-seqdata and single-cell RNA-seqdata for the
breast cancer data arepublished in Jun et al.42 anddeposited at the EGA
with accession number EGAS00001006851. The processed datasets
supporting the conclusions of this article, including the evolutionary
tree, frequency of the clones, alternated and total read count for the
subset of somatic mutations found both in bulk DNA-seq and ST data
for both breast and prostate cancer samples, as well as the scRNA-seq
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count data for breast cancer is available at https://github.com/
szczurek-lab/Tumoroscope. Additionally, the simulated data pre-
sented in this paper, along with the high-resolution H&E images for
breast cancer data are available in Zenodo53. Source data are provided
with this paper.

Code availability
Tumoroscope can be obtained as an installable Python package, via
‘pip install tumoroscope’, and is available under the GNU General
Public License v3.0. Tumoroscope implementation and package
updates will be maintained at https://github.com/szczurek-lab/
Tumoroscope. The scripts for ST read counting are available at
https://github.com/szczurek-lab/st_read_counter and the script for the
cell counting using QuPath from annotated H&E images is available at
https://github.com/szczurek-lab/qupath-spot-utils.

References
1. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in

cancer. Nature 575, 299–309 (2019).
2. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance

to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).
3. Sun, X.-x & Yu, Q. Intra-tumor heterogeneity of cancer cells and its

implications for cancer treatment. Acta Pharmacol. Sin. 36,
1219–1227 (2015).

4. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor
evolution: past, present, and the future. Cell 168, 613–628 (2017).

5. Yu, Z., Du, F. & Song, L. SCClone: Accurate clustering of tumor
single-cell DNA sequencing data. Front Genet 13, 823941 (2022).

6. Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F.
Cancer Evolution: Mathematical Models and Computational Infer-
ence. Syst. Biol. 64, e1–e25 (2015).

7. Beerenwinkel, N., Greenman, C. D. & Lagergren, J. Computational
Cancer Biology: An Evolutionary Perspective. PLOS Comput. Biol.
12, e1004717 (2016).

8. Vandin, F. Computational Methods for Characterizing Cancer
Mutational Heterogeneity. Front. Genet. 8, 83 (2017).

9. Jiang, Y., Qiu, Y., Minn, A. J. & Zhang, N. R. Assessing intratumor
heterogeneity and tracking longitudinal and spatial clonal evolu-
tionary history by next-generation sequencing. Proc. Natl Acad. Sci.
113, E5528–E5537 (2016).

10. Roth, A. et al. PyClone: statistical inference of clonal population
structure in cancer. Nat. methods 11, 396–398 (2014).

11. Deshwar, A. G. et al. Phylowgs: reconstructing subclonal compo-
sition and evolution from whole-genome sequencing of tumors.
Genome Biol. 16, 1–20 (2015).

12. Kuipers, J., Jahn, K. & Beerenwinkel, N. Advances in understanding
tumour evolution through single-cell sequencing. Biochim. et.
Biophys. acta 1867, 127–138 (2017).

13. Shafighi, S. D. et al. Cactus: integrating clonal architecture with
genomic clustering and transcriptome profiling of single tumor
cells. Genome Med. 13, 1–16 (2021).

14. McCarthy, D. J. et al. Cardelino: computational integration of
somatic clonal substructure and single-cell transcriptomes. Nat.
methods 17, 414–421 (2020).

15. Malikic, S., Jahn, K., Kuipers, J., Sahinalp, S. C. & Beerenwinkel, N.
Integrative inference of subclonal tumour evolution from single-
cell and bulk sequencing data. Nat. Commun. 10, 2750 (2019).

16. Pellegrino, M. et al. High-throughput single-cell DNA sequencing of
acutemyeloid leukemia tumorswith dropletmicrofluidics.Genome
Res. 28, 1345–1352 (2018).

17. Lähnemann, D. et al. Eleven grand challenges in single-cell data
science. Genome Biol. 21, 31 (2020).

18. Swanton, C. Intratumor Heterogeneity: Evolution through Space
and Time. Cancer Res. 72, 4875–4882 (2012).

19. Gerlinger, M. et al. Intratumor Heterogeneity and Branched Evolu-
tion Revealed by Multiregion Sequencing. N. Engl. J. Med. 366,
883–892 (2012).

20. Miller, C. A. et al. SciClone: Inferring Clonal Architecture and
Tracking the Spatial and Temporal Patterns of Tumor Evolution.
PLoS Comput. Biol. 10, https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4125065/ (2014).

21. Ståhl, P. L. et al. Visualization and analysis of gene expression in
tissue sections by spatial transcriptomics. Science 353,
78–82 (2016).

22. 10x genomics website. https://kb.10xgenomics.com/.
23. Elyanow, R., Zeira, R., Land,M. &Raphael, B. J. Starch: Copynumber

and clone inference from spatial transcriptomics data. Phys. Biol.
18, 035001 (2021).

24. Erickson, A. et al. Spatially resolved clonal copy number alterations
in benign and malignant tissue. Nature 608, 360 (2022).

25. Harbers, L. et al. Somatic copy number alterations in human can-
cers: an analysis of publicly available data from the cancer genome
atlas. Front. Oncol. 11, 700568 (2021).

26. Berglund, E. et al. Spatial maps of prostate cancer transcriptomes
reveal an unexplored landscape of heterogeneity.Nat. Commun. 9,
2419 (2018).

27. Bankhead, P. et al. Qupath: Open source software for digital
pathology image analysis. Sci. Rep. 7, 1–7 (2017).

28. Lai, Z. et al. Vardict: a novel and versatile variant caller for next-
generation sequencing in cancer research. Nucleic acids Res. 44,
e108 (2016).

29. Chen, H., Jiang, Y., Maxwell, K. N., Nathanson, K. L. & Zhang, N.
Allele-specific copy number estimation by whole exome sequen-
cing. Ann. Appl. Stat. 11, 1169 (2017).

30. Pontén, F., Jirström, K. & Uhlen, M. The human protein atlas-a tool
for pathology. J. Pathol.: A J. Pathol. Soc. Gt. Br. Irel. 216,
387–393 (2008).

31. Cavalcante, G. C., Ribeiro-dos Santos, Â. & de Araújo, G. S. Mito-
chondria in tumour progression: a network of mtdna variants in
different types of cancer. BMC Genom. data 23, 1–10 (2022).

32. Singh, R. K., Saini, S. K., Prakasam, G., Kalairasan, P. & Bamezai, R. N.
Role of ectopically expressed mtdna encoded cytochrome c oxi-
dase subunit i (mt-coi) in tumorigenesis. Mitochondrion 49,
56–65 (2019).

33. Ebright, R. Y. et al. Deregulation of ribosomal protein expression
and translation promotes breast cancer metastasis. Science 367,
1468–1473 (2020).

34. Uniprot: the universal protein knowledgebase in 2021.Nucleic acids
Res. 49, D480–D489 (2021).

35. Zhao, T. et al. Spatial genomics enablesmulti-modal studyof clonal
heterogeneity in tissues. Nature 601, 85–91 (2022).

36. Kang, S. et al. Sieve: joint inference of single-nucleotide variants
and cell phylogeny from single-cell dna sequencing data. Genome
Biol. 23, 248 (2022).

37. Kozlov, A., Alves, J. M., Stamatakis, A. & Posada, D. Cellphy: accu-
rate and fast probabilistic inference of single-cell phylogenies from
scdna-seq data. Genome Biol. 23, 1–30 (2022).

38. Lebrigand, K. et al. The spatial landscape of gene expression iso-
forms in tissue sections. Nucleic Acids Res. 51, e47 (2023).

39. Geras, A. et al. Celloscope: a probabilistic model for marker-gene-
driven cell type deconvolution in spatial transcriptomics data.
Genome Biol. 24, 120 (2023).

40. Biancalani, T. et al. Deep learning and alignment of spatially
resolved single-cell transcriptomes with tangram.Nat. methods 18,
1352–1362 (2021).

41. Li, B. et al. Benchmarking spatial and single-cell transcriptomics
integration methods for transcript distribution prediction and cell
type deconvolution. Nat Methods 19, 662–670 (2022).

Article https://doi.org/10.1038/s41467-024-53374-3

Nature Communications |         (2024) 15:9343 15

https://github.com/szczurek-lab/Tumoroscope
https://github.com/szczurek-lab/Tumoroscope
http://doi.org/10.5281/zenodo.10255434
https://github.com/szczurek-lab/Tumoroscope
https://github.com/szczurek-lab/Tumoroscope
https://github.com/szczurek-lab/st_read_counter
https://github.com/szczurek-lab/qupath-spot-utils
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125065/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125065/
https://kb.10xgenomics.com/
www.nature.com/naturecommunications


42. Jun, S.-H. et al. Reconstructing clonal tree for phylo-phenotypic
characterization of cancer using single-cell transcriptomics. Nat.
Commun. 14, 982 (2023).

43. Engblom, C. et al. Spatial transcriptomics of b cell and t cell
receptors reveals lymphocyte clonal dynamics. Science 382,
eadf8486 (2023).

44. Dobin, A. et al. Star: ultrafast universal rna-seq aligner. Bioinfor-
matics 29, 15–21 (2013).

45. Navarro, J. F., Sjöstrand, J., Salmén, F., Lundeberg, J. & Ståhl, P. L. St
pipeline: an automated pipeline for spatial mapping of unique
transcripts. Bioinformatics 33, 2591–2593 (2017).

46. James, L. F. Bayesian poisson calculus for latent feature modeling
via generalized indian buffet process priors. Ann. Stat. 45,
2016–2045 (2017).

47. Bernardo, J. et al. Bayesian nonparametric latent feature models.
Bayesian Stat. 8, 1–25 (2007).

48. Ghahramani, Z., Jordan, M. I. & Adams, R. P. Tree-structured stick
breaking for hierarchical data. In Proceedings of the 24th Annual
Conference on Neural Information Processing Systems (NIPS’10),
19–27 (2010).

49. Wikipedia contributors. Dirichlet distribution — Wikipedia, the free
encyclopedia (2019). https://en.wikipedia.org/w/index.php?title=
Dirichlet_distribution&oldid=918785537. [Online; accessed 18-
October-2019].

50. Bishop, C. M. Model-based machine learning. Philos. Trans. R. Soc.
A: Math., Phys. Eng. Sci. 371, 20120222 (2013).

51. Wikipedia contributors. Gamma distribution — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Gamma_
distribution&oldid=1067698046 (2022). [Online; accessed 2-Feb-
ruary-2022].

52. Engblom, C. et al. Spatial transcriptomics of b and t cell receptors
uncovers lymphocyte clonal dynamics. Zenodo; https://doi.org/10.
5281/zenodo.7326538 (2022).

53. Darvish Shafighi, S. The ST simulated data and High-resolution H&E
images used in Tumoroscopehttps://doi.org/10.5281/zenodo.
10255434 (2023).

54. Ewa Szczurek. Biorender figure (2024). BioRender.com/q06a169.
55. Ewa Szczurek. Biorender figure (2024). BioRender.com/s52t167.
56. Ewa Szczurek. Biorender figure (2024). BioRender.com/v94g254.
57. Ewa Szczurek. Biorender figure (2024). BioRender.com/o74q811.
58. Ewa Szczurek. Biorender figure (2024). BioRender.com/g61u657.

Acknowledgements
We acknowledge Andrew Roth for suggesting the feature allocation
model as part of Tumoroscope. We also acknowledge the support from
theNational Genomics Infrastructure in Stockholm andUppsala, funded
by Science for Life Laboratory, the Knut and Alice Wallenberg Founda-
tion, the Swedish Research Council, and SNIC/UppsalaMultidisciplinary
Center for Advanced Computational Science for assistance with mas-
sively parallel sequencing and access to the UPPMAX computational
infrastructure. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 766030 and 844712, the
Polish National Science Centre PRELUDIUM grant no. 2021/41/N/ST6/
03619, the Polish National Science Centre OPUS grant no. 2019/33/B/
NZ2/00956, the Polish National Science Centre SONATA BIS grant no.
2020/38/E/NZ2/00305, The Swedish Cancer Society, The Institut Uni-
versitaire de France (AC) and the Swedish Research Council Projekt
2018-06217VR.

Author contributions
S.S., E.S., J.L. and A.G. developed the probabilistic model. S.S. imple-
mented the model and carried out the application of the model, super-
vised by E.S. B.J. applied the regression on gene expression data and
performed GSEA analysis. J.H. extracted the breast cancer tumor. X.C.
prepared the sample and performed the DNA extraction for whole-exome
sequencing of breast cancer dataset. K.T. and C.E. performed spatial
transcriptomics. J.E.M. and C.E. performed the cell sorting. A.S.N. per-
formed st pipeline and bulk DNA-seq mutation calling. H.T. and S.S.
conducted the pre-processing of scRNA-seq data formutation calling and
gene expression analysis. S.S. performed the post analysis of the scRNA-
seq data.S.S., J.L. and E.S. conceived the study. S.S., E.S., A.C., A.G. and
J.L. wrote the paper. S.S. carried out the benchmarking of alternative
methods. Ł.K., A.R. and I.F. analysed the H&E images. S.S., A.C., D.N., Ł.K.
analysed and interpreted the model results. All authors provided critical
feedback; helped shape the research and analysis; edited, reviewed and
approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
Projects in Szczurek lab are co-funded by Merck Healthcare. C.E., K.T.,
and J.E.M. are scientific consultants for 10xGenomics Inc. Other authors
declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-53374-3.

Correspondence and requests for materials should be addressed to
Ewa Szczurek.

Peer review information : Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-53374-3

Nature Communications |         (2024) 15:9343 16

https://en.wikipedia.org/w/index.php?title=Dirichlet_distribution&oldid=918785537
https://en.wikipedia.org/w/index.php?title=Dirichlet_distribution&oldid=918785537
https://en.wikipedia.org/w/index.php?title=Gamma_distribution&oldid=1067698046
https://en.wikipedia.org/w/index.php?title=Gamma_distribution&oldid=1067698046
https://doi.org/10.5281/zenodo.7326538
https://doi.org/10.5281/zenodo.7326538
https://doi.org/10.5281/zenodo.10255434
https://doi.org/10.5281/zenodo.10255434
http://BioRender.com/q06a169
http://BioRender.com/s52t167
http://BioRender.com/v94g254
http://BioRender.com/o74q811
http://BioRender.com/g61u657
https://doi.org/10.1038/s41467-024-53374-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Integrative spatial and genomic analysis of tumor heterogeneity with Tumoroscope
	Results
	Tumoroscope accurately estimates clone proportions in each spot and demonstrates robustness to input cell count noise
	Accounting for clonal mixture within ST spots is essential for model performance
	Tumoroscope deconvolutes spatial clonal composition in breast sample and reveals clone-specific spatial patterns within distinct sub-areas
	Tumoroscope maps ST spots to clonal populations in a prostate tumor sample
	Spatial proximity of clones reflects similarities in gene expression patterns

	Phenotypic similarity of phylogenetically distant clones is confirmed by independent scRNA-seq data analysis
	Discussion
	Methods
	Breast cancer samples
	ST experiments for breast cancer samples
	Whole-exome sequencing for breast cancer samples
	ScRNA-seq experiments for breast cancer samples
	Prostate cancer samples
	Identifying the spots that contain tumor cells
	Counting cells in spots
	Spatial transcriptomics data preprocessing
	Bulk DNA-seq and somatic mutation calling
	Selection of somatic mutations that are detected both in bulk DNA-seq and ST data
	Phylogenetic tree analysis
	Mapping fractions of cells in ST spots to cancer clones using Tumoroscope
	Metropolis-Hasting inside Gibbs Sampling
	The variables with the closed-form sampling distribution
	Sampling Πs,k
	Sampling Zs,k
	Metropolis-Hasting adaptive steps inside Gibbs sampler
	Conditional distribution for Φi,k
	Conditional distribution for Gs,k
	Sampling Ns
	Parameter setting for different simulation setups
	Parameter estimation obtained for the real data
	Clonal composition resemblance in adjacent spots
	Clonal assignment of the spots using cardelino
	Assigning spots to copy number clones using STARCH
	Estimating gene expression of the clones
	Validation of gene expression profiles via independent single-cell RNA-seq data
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




