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Summary

� The evolution of adjustable stomatal pores, enabling CO2 acquisition, was one of the most

significant events in the development of life on land. Here, we investigate how the guard cell

signalling pathways that regulate stomatal movements evolved.
� We compare fern and angiosperm guard cell transcriptomes and physiological responses,

and examine the functionality of ion channels from diverse plant species.
� We find that, despite conserved expression in guard cells, fern anion channels from the

SLAC/SLAH family are not activated by the same abscisic acid (ABA) pathways that provoke

stomatal closure in angiosperms. Accordingly, we find an insensitivity of fern stomata to ABA.

Moreover, our analysis points to a complex evolutionary history, featuring multiple gains

and/or losses of SLAC activation mechanisms, as these channels were recruited to a role in

stomatal closure.
� Our results show that the guard cells of flowering and nonflowering plants share similar

core features, with lineage-specific and ecological niche-related adaptations, likely underlying

differences in behaviour.

Introduction

Land plants evolved from a green algal ancestor, which con-
quered dry land over 500 million years ago (Morris et al., 2018).
The adjustable stomatal pore, which enables CO2 acquisition in
cuticle-covered tissues, is a key innovation that likely helped
plants to thrive on land. The stomatal pore is usually flanked by
two guard cells that regulate stomatal aperture, found in all major
land plant lineages except liverworts (see Duckett & Pressel,
2018). In vascular plants (lycophytes, ferns, gymnosperms and
angiosperms), mature stomata are able to close and reopen in
response to internal and environmental signals and have an
important role in preventing excessive water loss. In contrast to
those of vascular plants, stomata in mosses and hornworts appear
important for drying spores and sporophyte dehiscence (Duckett
et al., 2009; Chater et al., 2016; Renzaglia et al., 2017). Moss sto-
mata may respond to some stimuli during early development,
including exogenous ABA application (Chater et al., 2011), but
develop mechanical restrictions that prevent closure at maturity

(Merced & Renzaglia, 2014; Duckett & Pressel, 2022). Mosses
in the genus Sphagnum have pseudostomata, which lack a stoma-
tal pore but possess two guard cells that collapse irreversibly, pro-
moting spore desiccation (Duckett et al., 2009; Merced, 2015).
Hornwort stomata open once only through irreversible guard cell
collapse (Renzaglia et al., 2017).

Stomata have been most thoroughly studied in angiosperm
species, which have revealed the specialised multisensory signal-
ling pathways, cell wall and membrane components that enable
guard cells to undergo rapid directed volume changes for active
stomatal movements. Stomatal closure in response to dehydra-
tion stress is mediated by the hormone abscisic acid (ABA),
synthesised in leaves and even guard cells themselves during
drought stress (e.g. Mittelheuser & Van Steveninck, 1969; Bauer
et al., 2013; McAdam et al., 2016b). In diverse angiosperms,
orthologs of the S-type anion efflux channel SLOW ANION
CHANNEL 1 (SLAC1) are activated upon phosphorylation by
the serine/threonine protein kinase OPEN STOMATA 1
(OST1) from the SNF1-related protein kinase 2 (SnRK2) family,
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in an ABA-dependent, calcium-independent manner (Vahisalu
et al., 2008; Geiger et al., 2009; M€uller et al., 2017; Y. Li
et al., 2022). In addition, SLAC1 and a member of the same ion
channel family – SLAC1 HOMOLOGUE 3 (SLAH3) – are
sensitive to calcium signals via activation by calcium-dependent
protein kinases (CPKs) and/or calcineurin B-like protein
(CBL)-interacting protein kinases (CIPKs) (Geiger et al., 2010,
2011; Scherzer et al., 2012; Maierhofer et al., 2014a; Huang
et al., 2023). ABA can also induce calcium signals in guard cells
before stomatal closure (McAinsh et al., 1990), and the CPKs
and CIPKs form an OST1-independent branch of the
ABA-signalling pathway (Mori et al., 2006; Geiger et al., 2010;
Scherzer et al., 2012; Brandt et al., 2015). Other members of the
SLAC/SLAH family – SLAH1, SLAH2 and SLAH4 – have
apparent roles in translocation of Cl� and NO3

� ions in
roots and vascular tissues for nutrition and salinity tolerance
(Maierhofer et al., 2014b; Cubero-Font et al., 2016; Qiu
et al., 2016).

Abscisic acid perception and signalling components appear lar-
gely conserved between land plants (e.g. Bowman et al., 2017;
Xiao et al., 2018; Shinozawa et al., 2019; Sun et al., 2019; Nibau
et al., 2022). However, it is currently debated whether or not
ABA also has a conserved function in stomatal closure in seedless
plant groups (see Sussmilch et al., 2019b; McAdam et al., 2021;
Clark et al., 2022; Chater, 2024). There are numerous reports of
stomatal responses to applied ABA in seedless lineages including
mosses, lycophytes and ferns, dependent on conditions (Chater
et al., 2011; Ruszala et al., 2011; H~orak et al., 2017). Coupled
with phylogenomic studies indicating gene losses in bryophytes,
these findings have led to the popularity of the theory that land
plant stomata had a complex, ABA-sensitive ancestral state (e.g.
Clark et al., 2022). In support of a more gradual evolution of
ABA-mediated stomatal control mechanisms, so far only seed
plants have been shown capable of closing stomata in response to
elevated endogenous ABA levels (Brodribb & McAdam, 2011;
McAdam & Brodribb, 2012), coinciding with the evolutionary
expansion of the gene families involved in ABA-dependent sto-
matal closure (Bowles et al., 2022). Intriguingly, experiments in
Xenopus oocytes have revealed that SLAC/SLAH channels from
the alga Klebsormidium nitens, the liverwort Marchantia polymor-
pha, the lycophyte Selaginella moellendorffii (all SmSLAC homo-
logues tested) and the fern Ceratopteris richardii (two CrSLAC
homologues tested) are not activated by OST1 kinases from the
respective species (McAdam et al., 2016a), in contrast to angios-
perm SLAC1 channels (e.g. Geiger et al., 2009; M€uller et al.,
2017; Qi et al., 2018; Sch€afer et al., 2018). However, a func-
tional OST1-SLAC pair was isolated from the moss
Physcomitrium/Physcomitrella patens, indicating that at least one
bryophyte also has a SLAC homologue that can be activated by
an ABA-sensitive kinase (Lind et al., 2015).

In this study, we investigated the evolution of guard cell signal-
ling pathways. We performed RNA-seq experiments to find out
what makes guard cells special compared with other leaf cells in
vascular plants, and what transcriptional features separate angios-
perm and fern guard cells. For this, we used two fern species,
C. richardii and Polypodium vulgare, in comparison with the

angiosperms Arabidopsis thaliana and barley (Hordeum vulgare).
C. richardii is an aquatic fern with a long history as a model for
genetics (e.g. Hickok et al., 1987, 1995), and P. vulgare is an his-
torical stomatal research model capable of rapid, reversible sto-
matal responses to air humidity (Lange et al., 1971; Stevens &
Martin, 1977; L€osch, 1979). Our results indicate that these fern
guard cells express homologues of many important angiosperm
guard cell genes, including those encoding SLAC/SLAH ion
channels and kinases from the SnRK2, CPK and CIPK families.
We tested the activity of the guard cell-expressed fern SLAC pro-
teins and examined the evolution of SLAC activity in land plants
using additional bryophyte and seed plant models. We found
that fern SLAC proteins are not activated by the same
ABA-dependent pathways as angiosperms. Our results reveal the
diversity of guard cell regulatory mechanisms in plants alive
today, while shedding light on how these have evolved over the
past 500 million years of plant life on land.

Materials and Methods

ABA electro-infusion

Polypodium vulgare L. plants were obtained from the W€urzburg
Botanical Gardens and grown in a glasshouse with Nicotiana
tabacum L. cv SR1, under natural light extended with
HQL-pressure lamps (Powerstar HQI-E, 400 W; Philips, Eind-
hoven, the Netherlands) at a 12 h : 12 h, day : night cycle.
Extracellular application experiments (current ejection) with
microelectrodes were conducted with intact plants. The adaxial
side of leaves was attached with double-sided adhesive tape to a
Plexiglas holder in the focal plane of an upright microscope
(Axioskop 2FS; Zeiss). Stomata were visualised with a water
immersion objective (W Plan-Apochromat, 409/0.8, or
639/1.0; Zeiss) dipped into bath solution (5 mM KCl, 0.1 mM
CaCl2 and 5 mM K-citrate, pH 5.0) on the abaxial surface of
the leaf. Microelectrodes were put in contact with the cell wall of
stomata with a piezo-driven micro-manipulator (MM3A; Klein-
diek Nanotechnik, Reutlingen, Germany), as described pre-
viously (Huang et al., 2019). The microelectrodes were prepared
from borosilicate glass capillaries (inner diameter, 0.58 mm;
outer diameter, 1.0 mm; Hilgenberg) and filled with solution
containing 1 mM Lucifer Yellow (LY) and 1 mM ABA, or only
1 mM LY (control). The ABA concentration in the electrodes
was 20 times higher than that used by Huang et al. (2019) and a
�1 nA ejection current was applied, instead of �0.8 nA used by
Huang et al. (2019). In comparison with the analysis of Huang
et al. (2019), current ejection will have resulted in a local ABA
concentration of 25 lM, which decreases by 50% over 1 lm.

The stomatal movements and ejection of LY were monitored
with a charge-multiplying CCD camera (QuantEM; Photo-
metrics, Tucson, AZ, USA). The fluorescent probe was excited
with a Hg metal-halide lamp (HXP120; Leistungselektronic
JENA, Jena, Germany), through a band pass filter of 430/24 nm
(ET 430/24; Chroma Technology Corp., Bellows Falls, VT,
USA). A dichroic mirror (495 nm LP) guided the excitation light
through the objective, while the fluorescent light was filtered with
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an emission band pass filter (520/30 nm; BrightLine, Semrock,
West Henrietta, NY, USA). The filters could be rapidly moved
in and out of the light path, with filter wheels of a spinning disc
confocal unit (CARV II; Crest Optics, Rome, Italy) that was
mounted to the camera port of the upright microscope. Image
acquisition was conducted with VISIVIEW software (Visitron,
Puchheim, Germany) and analysed the IMAGE-J/FIJI software
package (Schindelin et al., 2012).

Arabidopsis RNA-seq

Arabidopsis thaliana (L.) Heynh. plants were grown in
semi-sterilised soil (treated for 20 min at 100°C), cultivated in
climate chambers (Binder KBWF 720) in a 12-h day–night
rhythm (22/16°C, 60% RH) and were illuminated with
125 lmol m�2 s�1 white light. RNA was isolated from whole
leaf samples and guard cell-enriched samples isolated by mechan-
ical disruption as described previously (Bauer et al., 2013), from
6 to 7 wk old plants. Library preparation and RNA-seq were car-
ried out as described in the Illumina TruSeq Stranded mRNA
Sample Preparation Guide, the Illumina NextSeq 500 System
Guide (Illumina Inc., San Diego, CA, USA), and the KAPA
Library Quantification Kit – Illumina/ABI Prism User Guide
(Kapa Biosystems Inc., Woburn, MA, USA).

Briefly, 250 ng of total RNA was used for purifying the poly-A-
containing mRNA molecules using poly-T oligo-attached mag-
netic beads. Following purification, the mRNA was fragmented to
an average insert size of 200–400 bases using divalent cations
under elevated temperature (94°C for 4 min). Next, the cleaved
RNA fragments were reverse transcribed into first-strand cDNA
using reverse transcriptase and random hexamer primers. Actino-
mycin D was added to improve strand specificity by preventing
spurious DNA-dependent synthesis. Blunt-ended second strand
cDNA was synthesised using DNA Polymerase I, RNase H and
dUTP nucleotides. The incorporation of dUTP, in place of dTTP,
quenched the second strand during the later PCR amplification.
The resulting cDNA fragments were adenylated at the 3 0 ends,
the indexing adapters were ligated and subsequently specific cDNA
libraries were created by PCR enrichment. The libraries were
quantified using the KAPA SYBR FAST ABI Prism Library Quan-
tification Kit. Equimolar amounts of each library were sequenced
on a NextSeq 500 instrument using two 150 Cycles High Output
and one 150 Cycles Mid Output Kits with the single index,
paired-end (PE) run parameters. Image analysis and base calling
resulted in .bcl files, which were converted into .fastq files with the
BCL2FASTQ v.2.18 software. Library preparation and RNA-seq were
performed at the service facility ‘KFB – Center of Excellence for
Fluorescent Bioanalytics’ (Regensburg, Germany).

Barley RNA-seq

Barley (Hordeum vulgare L. cv. Barke) seeds were provided by a
commercial supplier (Saatzucht J. Breun GmbH & Co. KG,
Herzogenaurach, Germany) and cultivated at 22/16°C and
50 � 5% RH at a 12 h : 12 h, day : night cycle and a photon
flux density of 500 mmol m�2 s�1 white light (400 W; Philips

Master T Green Powers). For guard cell-enriched samples,
epidermal peels were first isolated from the abaxial side of 8- to
12-d-old leaves, and then, subsidiary cells were disrupted with
successive blender cycles in ice-cold water as described previously
(Sch€afer et al., 2018). RNA was extracted using the NucleoSpin®

RNA Plant Kit (Macherey-Nagel, Drueren, Germany). RNA iso-
lation from whole leaves was performed similarly.

The extracted RNA was treated with RNase-free DNase (New
England Biolabs, Ipswich, MA, USA). Quality control measure-
ments were performed on a 2100 Bioanalyzer (Agilent, Santa
Clara, CA, USA) and the concentration was determined using a
Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scienti-
fic, Wilmington, DE, USA). Libraries were prepared with the
TruSeq RNA Sample Prep Kit v2 (Illumina Inc.) using 1 mg of
RNA and sequenced on a HiSeq 3000 (Illumina Inc.) resulting
in a sequence depth of 35 million PE reads (29 150 bp).

Fern RNA-seq

Ceratopteris richardii Brongn. wild-type (WT) strain Hn-n
(Hickok et al., 1995) was grown in controlled-condition glass-
house facilities under a 16-h photoperiod with supplemented nat-
ural light. P. vulgare plants (Common Polypody – winter hardy;
Westdijk’s, Kwekerijen) were grown in a growth chamber under a
12 h photoperiod, with 22°C : 16°C, day : night temperatures.

Four biological replicates, each comprising up to 100 mg tis-
sues, were collected from both species for whole leaf samples
comprising fully expanded sporophyte fronds lacking sporangia
and guard cell-enriched samples. Guard cell-enriched samples
were obtained from fully expanded fronds lacking sporangia,
after removal of the main veins, by mechanical disruption of
other cell types using successive 1–2 min blending cycles in deio-
nised ice water with epidermal fragments collected by filtration
through a 210 lm nylon mesh, according to a previously pub-
lished method (Bauer et al., 2013) optimised for C. richardii
(3 cycles) and P. vulgare (5 cycles). Fluorescein diacetate staining
(Widholm, 1972) was used to confirm guard cell viability and
purity. In P. vulgare, ‘leaf without epidermis’ samples lacking
guard cells were also obtained by using fine forceps to fully
remove the abaxial epidermis from leaves.

Total RNA was extracted, treated with RNase-free DNase and
quality control measurements were performed as described above.
Library preparation and mRNA-seq after polyA-enrichment was
performed by the Core Unit Systems Medicine (University of
W€urzburg). Both species were sequenced on the Illumina Next-
Seq500 platform using a single high-output flow cell for the 8
C. richardii samples and duplicate high-output flow cells for the
12 P. vulgare samples for 150 nt PE reads (300 cycles).

Transcriptome assembly and annotation

Transcriptomes for P. vulgare and C. richardii were assembled
using TRINITY (Grabherr et al., 2011) with the trimmomatic option
(Table S1). Coding regions were predicted with TransDecoder
(https://github.com/TransDecoder/TransDecoder). Domains and
GeneOntology annotations were predicted using InterPro (Blum
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et al., 2021). To generate a level of annotation comparable to the
fern data, all proteomes (Table S2) were annotated de novo using
InterPro.

Differential expression

For the ferns, reads were mapped onto the reference transcrip-
tomes by Salmon (Patro et al., 2017). For A. thaliana and
H. vulgare, the reads were mapped onto the reference genomes
(Table S2) by RSEM (Li & Dewey, 2011). Differentially
expressed genes were identified with DESEQ2 (Love et al., 2014).

Evolutionary reconstruction

Orthology relationships over all species (Table S2) were predicted
using Orthofinder (Emms & Kelly, 2015). The last common ances-
tor for each orthogroup was calculated using the Bio::TreeIO PERL
package. Expression groupings were classified into hierarchical cate-
gories of genes ‘up’-regulated (1) expression higher in guard cells
than leaves AND higher in whole leaves than leaves without guard
cells – P. vulgare only, Padj ≤ 0.01; (2) expression higher in
guard cells than leaves, Padj ≤ 0.01; (3) expressed in guard cell sam-
ples, baseMean ≥ 10; (4) expression negligible in guard cell
samples, baseMean < 10 or ‘down’-regulated (1) expression lower
in guard cells than leaves AND lower in whole leaves than leaves
without guard cells – P. vulgare only, Padj ≤ 0.01; (2) expression
lower in guard cells than leaves, Padj ≤ 0.01 in guard cells relative
to whole leaf samples based on the presence of one or more genes
in the orthogroup meeting the category criteria (Table S3).

Phylogenetic analyses for streptophyte SLAC/SLAH and
SnRK2 families

Genes were identified in the literature or by performing BLASTp
searches using Arabidopsis protein sequences against the relevant
genome or transcriptome assembly as indicated in Table S4, and
confirmed with reciprocal BLASTp searches back against Arabi-
dopsis and preliminary phylogenetic analyses. The maximum likeli-
hood phylogenetic tree for the SLAC/SLAH family was calculated
from a MAFFT alignment of full-length predicted protein
sequences using PHYML v.3.0 at http://www.trex.uqam.ca/ with
the JTT substitution model and 1000 bootstrap replicates (Guin-
don et al., 2010). The maximum likelihood phylogenetic tree for
the SnRK2 family was calculated using PHYML v.3.0 at
http://www.atgc-montpellier.fr/phyml/ with SmartModel Selection
(Guindon et al., 2010; Lefort et al., 2017), and 1000 bootstrap
replicates, from a MAFFT alignment of predicted protein
sequences trimmed using Gblocks via the online server at
http://molevol.cmima.csic.es/castresana/Gblocks_server.html (Tala-
vera & Castresana, 2007), with all options for reduced stringency
selected. Full sequence and species details are given in Table S4.

Cloning and complementary RNA generation

Full-length coding sequence from OST1, SLAC and/or CPK
homologues of C. richardii (Hn-n, obtained from J. Banks; leaf),

P. vulgare (Common Polypody – winter hardy; Westdijk’s, Kwe-
kerijen; leaf), Picea abies (L) H. Karst. (plants maintained at the
University of Tasmania; needles), Ginkgo biloba L. (plants main-
tained at the W€urzburg Botanical Gardens; leaves), Amborella tri-
chopoda Baill. (plants maintained at the University of Tasmania;
leaves), Sphagnum fallax (H.Klinggr.) H. Klinggr. (‘MN’,
obtained from S. Rensing, from an original sample from Dave
Weston, Oak Ridge National Laboratory; gametophyte) and
Anthoceros agrestis Paton (‘Bonn’, obtained from P. Szoevenyi;
gametophyte) were isolated from cDNA generated from RNA
from the tissues indicated using primers outlined in Table S5 and
cloned into pNB1uYN and pNB1uYC expression vectors by ura-
cil excision-based cloning (Nour-Eldin et al., 2006). The details
for all A. thaliana constructs, and C. richardii CrSLAC1a,
CrSLAC1b, CrGAIA1 and CrPGAI constructs have been pub-
lished previously (Geiger et al., 2009, 2010, 2011; Scherzer
et al., 2012; Maierhofer et al., 2014a; McAdam et al., 2016a).
Where indicated, site-directed mutations were introduced using a
modified USER fusion method, as previously described (Dadacz-
Narloch et al., 2011), using the primers outlined in Table S5.
For functional analysis, complementary RNA (cRNA) was pre-
pared with the AmpliCap-MaxTM T7 High Yield Message Maker
Kit (Epicentre Biotechnologies). Oocyte preparation and cRNA
injection were performed as described previously (Becker
et al., 1996). For oocyte bimolecular Fluorescence Complemen-
tation (BiFC) and electrophysiological experiments, 10 ng of
each SLAC:YFPCT (vector pNB1uYC) and 10 ng of each OST1:
YFPNT or 5 ng of CPK:YFPNT or AtCIPK23ΔEF:
YFPNT + AtCBL1:YFPNT (vector pNB1uYN) cRNA or cRNA
of the same genes cloned into the pNB1u vector without YFP
fragments, were injected into Xenopus laevis (Daudin) oocytes.

Bimolecular fluorescence complementation experiments

Expression of BiFC constructs in oocytes was performed as
described previously (Geiger et al., 2009). Images were taken
with a confocal laser scanning microscope (Leica DM6000
CS; Leica Microsystems CMS GmbH, Wetzlar, Germany)
equipped with a Leica HCX IRAPO L259/0.95 W objective.
Images were processed (low pass–filtered and sharpened) iden-
tically with the image acquisition software LAS AF (Leica
Microsystems CMS GmbH).

Double-electrode voltage-clamp studies

Oocytes were perfused with MES/Tris-based buffers containing
10 mM MES/Tris (pH 5.6), 1 mM Ca(gluconate)2, 1 mM Mg
(gluconate)2, 1 mM LaCl3 and 100 mM NaCl, NaNO3 or
Na(gluconate). To balance ionic strength, changes in chloride or
nitrate concentration were compensated with Na(gluconate). The
standard voltage protocol was as follows: starting from a holding
potential (VH) of 0 mV, single 50 ms-voltage pulses were
applied in 10 mV decrements from +70 to �150 mV, with
instantaneous currents extracted right after the voltage jump from
the holding potential.
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Results

Fern and angiosperms share conserved guard cell
expression of core genes but show lineage-specific
expression patterns for others

For insight into the transcriptional features of fern guard cells
compared with those of angiosperms, we performed RNA-seq
experiments using Arabidopsis, barley, C. richardii and
P. vulgare. For each species, we enriched guard cells by mechani-
cal isolation of epidermal fragments through disruption of other
cell types (Bauer et al., 2013) and identified genes significantly
(P ≤ 0.01) up- or downregulated in guard cells relative to whole
leaves. To reconstruct the evolutionary history of these genes, we
extended our species set with representative models from major
land plant lineages and streptophyte algae. Prediction of
orthogroups based on this diverse dataset allowed us to identify
genes derived from a single common ancestor. We classified three
types of orthogroups of interest containing genes up- or downre-
gulated in guard cell samples: (1) shared (genes differentially
expressed in all four species), (2) angiosperm-specific (Arabidop-
sis and barley only) and (3) fern-specific (C. richardii and
P. vulgare only). We found that the majority of these differen-
tially expressed orthogroups included green algal genes, suggest-
ing an ancient evolutionary origin and likely presence in an algal
ancestor of land plants before terrestrialisation, predating specia-
lisation in different embryophyte cell types including guard cells
(Fig. 1a–c).

To gain insight into the function of the orthogroups differen-
tially expressed in guard cells, we compared domain content and
Gene Ontology (GO) classifications. We found that guard cells
of all four vascular plant species shared expression of genes asso-
ciated with ATP-binding, protein kinase
activity/phosphorylation and membrane components (Figs 1d,
S1; Table S3). Specific examples of shared guard cell orthogroups
included POLYGALACTURONASE INVOLVED IN EXPAN-
SION (PGX ) family genes associated with pectin degradation
and guard cell wall mechanics (Rui et al., 2017; Yi et al., 2018),
and aquaporins from the plasma intrinsic proteins (PIP) family,
which transport water and other solutes including CO2 across the
plasma membrane (Bienert et al., 2018).

Angiosperm-specific guard cell orthogroups were frequently
classified by GO terms associated with energy transfer, signalling
and/or membrane components (Fig. 1d; Table S3). This is in line
with further specialisation for these types of genes in angios-
perms, where stomatal movements are tightly regulated by com-
plex signalling pathways (see Sussmilch et al., 2019b). Examples
of angiosperm-specific guard cell orthogroups included cellulose
synthase/cellulose synthase-like (CESA/CSL) superfamily genes,
and C-type lectin receptor-like kinase genes linked to immune
responses (Sun et al., 2020).

Conversely in fern guard cells, genes associated with protein
kinase activity and phosphorylation were commonly downregu-
lated (Figs 1d, S1; Table S3), including genes from the Cytosolic
ABA Receptor Kinase (CARK) family involved in ABA signalling
in Arabidopsis (see L. Zhang et al., 2018; X. Li et al., 2022).

Instead, orthogroups associated with oxidation–reduction and
metabolic processes were over-represented in ferns, including
orthologs of Arabidopsis mitochondrial glutamate dehydrogenase
genes GDH1/2/3 which feed the tricarboxylic acid (TCA) cycle
to release stored energy (Fontaine et al., 2012), and phosphoglu-
comutases PGM1/2/3 involved in starch/sucrose/cell wall synth-
esis (Malinova et al., 2014). This may reflect the higher
abundance of chloroplasts in fern guard cells (Fig. 1c; Voss
et al., 2018), which work together with mitochondria to supply
cells with energy and metabolites.

Fern guard cells express homologues of ABA biosynthesis
and signalling genes

Genetic signalling pathways controlling stomatal movements
have been well described in angiosperms, but the extent to which
these are conserved in guard cells of other plant lineages is less
well understood. Using our angiosperm and fern guard cell
RNA-seq data, we looked specifically at homologues of key
angiosperm genes to identify those that are expressed and/or
upregulated in guard cell relative to whole leaf samples. For
P. vulgare – which has stomata limited to the abaxial leaf surface –
we also compared whole leaf samples to leaf samples with abaxial
epidermis removed (lacking guard cells), to identify which genes
were expressed at both (1) a higher level in guard cells than whole
leaves and (2) a higher level in whole leaves than leaf samples
lacking guard cells.

Consistent with angiosperms, homologues of the conserved
guard cell specification gene FAMA (Ohashi-Ito & Bergmann,
2006; Chater et al., 2016), showed significantly higher expression
in fern guard cells than whole leaf samples (Fig. 2; Table S6).
Similarly, both ferns showed expression of homologues of ABA
biosynthesis and signalling genes in the guard cell samples, similar
to the angiosperms (Figs 2, S2; Table S6). Although homologues
of ABA2 – a short chain dehydrogenase (SDR) dedicated to the
ABA biosynthesis pathway (Cheng et al., 2002; Gonz�alez-Guzm�an
et al., 2002) – are restricted to angiosperms (Moummou et al.,
2012; McAdam et al., 2015; Sussmilch et al., 2017), other SDRs
are likely able to catalyse this step, and some closely related
SDRs were expressed in the fern guard cell samples (Fig. S2;
Table S6). Among the ABA-signalling pathway, some genes
encoding phosphatases from protein phosphatase type 2C clade A
(PP2CA) and kinases from the CPK and CBL-interacting kinase
(CIPK) families were expressed at higher levels in guard cell than
whole leaf samples in the ferns (Fig. 2). Other ABA-signalling
genes including members of the OST1 subclade of the Sucrose
Non-fermenting-1-Related Protein Kinase 2 (SnRK2) family were
also nonspecifically expressed in the guard cells of the ferns, indi-
cating their presence but likely nonspecific role in guard cells.
Among the ion channels that are downstream of ABA-signalling
genes in angiosperms, S-type anion channel genes from the
SLAC/SLAH family were enriched in guard cells relative to whole
leaves in all species. Overall, these results suggest that, similar to
Arabidopsis and barley (Bauer et al., 2013; Sch€afer et al., 2018),
fern guard cells are equipped with the genetic toolkit required for
ABA biosynthesis and signalling.
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Fern SLAC homologues are not activated by ABA-signalling
kinases

It is currently debated whether or not ABA has a role in stomatal
closure in seedless plant groups including ferns (see Sussmilch
et al., 2019b; McAdam et al., 2021; Clark et al., 2022). To

examine the stomatal responses of the fern P. vulgare to ABA,
relative to those of the angiosperm tobacco (N. tabacum), we
adapted a current-ejection method (Huang et al., 2019) to apply
ABA directly to guard cell walls in intact fern plants and monitor
stomatal movements with an upright fluorescence microscope.
Microelectrodes, filled with ABA and/or LY, were put in contact
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Fig. 1 There are core sets of genes shared between angiosperm (Arabidopsis thaliana, Hordeum vulgare) and fern (Ceratopteris richardii, Polypodium
vulgare) guard cell transcriptomes with some lineage-specific differences. (a) Plant species included in RNA-seq experiments (bold) and orthology analyses,
with phylogenetic relationships indicated (branch lengths not to scale). (b) Last common ancestor (LCA) nodes of orthogroups with significantly different
expression between guard cell (GC) and whole leaf (L) samples in all angiosperm and fern species examined (‘shared’; black), both angiosperm but neither
fern species (‘angiosperms’; grey), and both fern but neither angiosperm (‘ferns’; white). (c) Photographs of guard cells of the species included in RNA-seq
experiments (bar, 50 lm). (d) The top 15 most common Gene Ontology (GO) terms of orthogroups up- or downregulated in guard cell relative to whole
leaf samples, with counts normalised to the total number of genes per orthogroup. Abbreviations are as follows: …1 – ‘DNA templated’, …2 – ‘hydrolase
activity’. See Supporting Information Fig. S1 for the most common annotated domains and Table S3 for all GO terms/annotated domains related to these
orthogroups.
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with the apoplast, close to an open stoma. Application of
a � 1 nA current for 1 min caused the appearance of fluores-
cence in guard cell walls of P. vulgare and tobacco (Fig. 3a),
showing that negatively charged molecules can be applied to
guard cells with this approach. The current ejection of LY into
the guard cell walls did not provoke stomatal closure, while ABA
provoked rapid stomatal closure in tobacco stomata (Fig. 3b,c).
Based on the data in Huang et al. (2019), this procedure is esti-
mated to result in a local concentration of 25 lM ABA at the tip

of the electrode, which was in contact with the guard cell wall,
with ABA concentration likely decreasing by 50% over c. 1 lm.
To verify that stomata prechallenged with the control LY solution
had not lost ABA responsiveness, we applied the stress hormone
in a second ejection. ABA-induced stomatal closure was similar
between guard cells pretreated with LY and those that were not
(Fig. 3c). This confirmed that apoplastic application of ABA with
microelectrodes causes rapid closure of tobacco stomata, just as
previously reported for Arabidopsis (Huang et al., 2019). In
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contrast with tobacco, no response to ABA could be observed for
P. vulgare (Fig. 3b,c). These results indicate that, unlike angios-
perms, stomatal response in the fern P. vulgare is not sensitive to
ABA. These findings are consistent with those of others who have
found a lack of stomatal responsiveness to ABA in ferns grown in
glasshouse conditions (Brodribb & McAdam, 2011; McAdam &
Brodribb, 2012; Cândido-Sobrinho et al., 2022). Previous stu-
dies that have found a response of fern stomata to exogenous

ABA applied to epidermal peels (Cai et al., 2017) or by spraying
onto leaves in plants under specific growth conditions (H~orak
et al., 2017; Plackett et al., 2021), have found the magnitude of
response to be substantially smaller than that of angiosperms,
indicative of a difference in ABA sensitivity between ferns and
angiosperms.

We further investigated the molecular mechanism underlying
this difference between fern and angiosperm stomatal ABA
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responses. In angiosperms, orthologs of the anion channels
SLAC1 and SLAH3 play a key role in stomatal closure responses
to ABA, after activation by OST1-, CPK- or CIPK-type kinases
(see Hedrich & Geiger, 2017). We previously found that two
C. richardii SLAC/SLAH family members – CrSLAC1a and
CrSLAC1b – were not activated by Arabidopsis kinase AtOST1
or the fern OST1-subclade kinases GAMETOPHYTES ABA
INSENSITIVE ON ACE1 (CrGAIA1) and PARALOG OF
GAIA1 (CrPGAI) using the Xenopus oocyte expression system
(McAdam et al., 2016a). In this study, we identified four addi-
tional SLAC/SLAH family members (CrSLAC1c-f) expressed in
C. richardii sporophytes (Fig. 2) and/or gametophytes (Atallah
et al., 2018). CrSLAC1a-c are expressed at higher levels in
guard cells than whole leaf samples, as are two SLAC/SLAH
family members in P. vulgare (PvSLAC1a and PvSLAC1b;
Figs 2, S3, S4).

Using the Xenopus oocyte expression system together with the
double-electrode voltage-clamp technique, we tested whether any
of the newly isolated fern C. richardii and P. vulgare SLAC
homologues are activated by kinases that activate AtSLAC1 from
the angiosperm Arabidopsis. Specifically, we tested Arabidopsis
ABA-signalling kinases, all guard cell-expressed kinases from the
SnRK2 OST1-subclade in the two fern species, and a guard cell-
enriched CPK from C. richardii (Figs 3d, S5). Each of these
kinases interacted with the fern SLAC homologues (Fig. S6) and
induced strong anion channel currents when co-expressed with
AtSLAC1, but did not trigger increased currents with any of the
P. vulgare guard cell-enriched SLAC homologues, or any of the
C. richardii SLAC homologues expressed in currently available
transcriptomes (Figs 3d, S3).

To confirm that the fern SLAC genes encode anion channels,
we constructed CrSLAC1a F592A channel mutants, wherein the
channel is gated open, similar to AtSLAC1 F450A (Chen
et al., 2010; J. Zhang et al., 2018). We measured strong currents
for the CrSLAC1a F592A mutant when co-expressed with
AtOST1, but only very small background currents
with CrSLAC1a F592A expressed alone (Fig. S3). This confirms
that the fern anion channel can be activated in the absence of gat-
ing restrictions.

Overall, these results indicate that fern anion channels from
the SLAC/SLAH family are not activated by the same kinases as
angiosperm SLAC1 and SLAH3 orthologs that facilitate ABA-
mediated stomatal closure. This finding is consistent with the
lack of stomatal response to ABA we measured in P. vulgare.
These results suggest that mechanisms for activation of these
anion channels by ABA-dependent signalling kinases either (1)
evolved after divergence of ferns from a common ancestor with
seed plants, or (2) evolved earlier and were lost in ferns.

Moss and hornwort SLAC homologues can be activated
by OST1

Given the previously published finding of an active SLAC1-
OST1 pair from the moss P. patens (PpSLAC1-PpOST1.2; Lind
et al., 2015), we further examined the evolution of SLAC activity
using the distantly related moss Sphagnum fallax and the

hornwort Anthoceros agrestis to determine whether other bryo-
phytes share kinase-activated SLAC homologues. There has long
been doubt over the phylogenetic relationship between hornworts
and other land plants, but numerous recent studies have sup-
ported a monophyletic relationship between bryophytes (e.g.
Leebens-Mack et al., 2019; Harris et al., 2020, 2022; Su
et al., 2021). We searched available genome sequences and identi-
fied the presence of a single SLAC/SLAH family member in
A. agrestis, and two orthologs of PpSLAC1 and three members of
the OST1 subclade of SnRK2s in S. fallax (Table S4;
Figs S4, S5), and were able to isolate all of these genes from
gametophyte tissues. We found that both S. fallax and A. agrestis
each possess a SLAC homologue that can be activated by ABA-
signalling kinases in the Xenopus system (Fig. 4), similar to P.
patens (Lind et al., 2015). This indicates that among bryophytes,
moss and hornwort species possess kinase-activated SLAC homo-
logues, consistent with either an early origin for this mechanism,
or independent gain/s in bryophytes.

Activation in gymnosperm and ‘basal angiosperm’ lineages
requires auxiliary factors

Seed plants (gymnosperms and angiosperms) are the only plants
to possess separate orthologs of Arabidopsis SLAC1, SLAH2/3
and SLAH1/4 that are strongly supported by phylogenetic ana-
lyses (Fig. S4; Dreyer et al., 2012; Sussmilch et al., 2019a). So
far, the only seed plant SLAC1 channels to be examined have
been from the core angiosperm lineages – dicots and monocots;
SLAC1 activation has not previously been studied in gymnos-
perms and ‘basal angiosperm’ lineages. To further examine the
evolution of SLAC1 activity in seed plants, we made use of
the model gymnosperm Picea abies, which shows stomatal sensi-
tivity to ABA, similar to angiosperms (Mayr et al., 2012). The P.
abies genome encodes four SLAC/SLAH proteins – PaSLAC1a,
PaSLAC1b (co-orthologs of AtSLAC1), PaSLAH1 (an ortholog
of AtSLAH1 and AtSLAH4) and PaSLAH2 (an ortholog of
AtSLAH2 and AtSLAH3; Fig. S4; Table S4). Surprisingly, the
P. abies SLAC1 co-orthologs failed to show S-type anion channel
currents when co-expressed with OST1 in Xenopus oocytes
(Fig. 5a).

We examined the protein sequences for amino acid differences
that could account for the difference in activity between angios-
perm and P. abies SLAC1 co-orthologs. We found that serine
and threonine residues that are required (although not sufficient)
for activation of SLAC1 proteins by OST1 and CPKs (Geiger
et al., 2009; Brandt et al., 2015; Deng et al., 2021) are missing in
PaSLAC1a in the region corresponding to AtSLAC1 S120, and
in PaSLAC1b in the region of AtSLAC1 S59 (Fig. 5b). Further
examination showed that SLAC1 ortholog sequences of other
species from the gymnosperm Pinaceae family similarly lack
S120 (Fig. 5b). However, in species from other gymnosperm
families, including Ginkgo biloba, a serine is present at these
important positions. We tested the activity of this G. biloba
SLAC1 (GbSLAC1a) and found that it could be activated by
OST1 and CPKs (Fig. 5a,c). In contrast to the P. abies SLAC1
co-orthologs, WT PaSLAH2 (an ortholog of AtSLAH2 and
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AtSLAH3) yielded substantial currents in nitrate-based media in
the presence of a CPK (Fig. 5a), similar to AtSLAH3 (Geiger
et al., 2011). These results indicate that mechanisms for kinase
activation of SLAC1 channels are present in some gymnosperms
but have been lost from the Pinaceae family, where ABA-
signalling kinases activate SLAH2/3 orthologs only.

To further examine the evolution of SLAC1 activity in seed
plants, we made use of the single living representative of the
Amborellales – the sister lineage to all other extant flowering
plants – Amborella trichopoda (Albert et al., 2013). The A. tricho-
poda genome encodes a single SLAC1 ortholog (AmtrSLAC1),
two orthologs of SLAH2/3 and a single ortholog of AtOS-
T1/AtSnRK2.2/AtSnRK2.3 (AmtrOST1; Figs S4, S5; Table S4).
We examined the activity of AmtrSLAC1 when co-expressed
with AtOST1, AmtrOST1 or AtCPK6, and found that it was
insensitive to activation from any of these ABA-signalling kinases
(Fig. 5a).

Discussion

We have found that guard cells of the fern models C. richardii
and P. vulgare are equipped with ABA biosynthesis and signalling
pathways (Figs 2, S2). Previous studies have suggested that the
expression of ABA signalling and ion channel homologues in

stomata-bearing tissues indicates a potential conserved role in
ABA-mediated stomatal closure (e.g. Cai et al., 2017; Plackett
et al., 2021). However, we have found that ABA-signalling
kinases are unable to activate guard cell SLAC homologues from
the ferns P. vulgare and C. richardii (Fig. 3). These results are
consistent with our own results showing P. vulgare stomata to be
insensitive to ABA application (Fig. 3), and previous findings of
a lack of stomatal closure response to endogenous ABA levels in
ferns (Brodribb & McAdam, 2011; McAdam & Brodribb, 2012;
Cândido-Sobrinho et al., 2022).

Furthermore, these results account for the lack of stomatal
phenotype for ABA-insensitive fern mutants (McAdam et al.,
2016a). These fern mutants show sharp contrast to the wilty phe-
notypes characteristic of ABA biosynthesis and signalling mutants
in angiosperm species with rapid stomatal closure in response to
increases in endogenous ABA levels (Merlot et al., 2002; Mustilli
et al., 2002; Merilo et al., 2013; McAdam et al., 2015). Further
emphasising differences between the stomatal responses of seed
plants and other vascular plant groups, there has been found to
be a lack of ABA-mediated K+ efflux from the guard cells of fern
and lycophyte species (Gong et al., 2021). Together, these results
suggest that SLAC-like channels are not required for drought-
induced stomatal closure in nonflowering plants, but instead may
be involved in nutrient movement, similar to SLAH channels in
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angiosperms (Maierhofer et al., 2014b; Cubero-Font et al., 2016;
Qiu et al., 2016).

Ferns synthesise ABA in response to dehydration stress, similar to
all other land plant groups (e.g. Hartung et al., 1987; Hellwege
et al., 1994; Qin & Zeevaart, 1999; McAdam & Brodribb, 2012;
Xiao et al., 2018; Xu et al., 2018), consistent with an ancient role
for ABA in desiccation tolerance (e.g. Khandelwal et al., 2010; Tou-
gane et al., 2010; Komatsu et al., 2013; Jahan et al., 2019; Shino-
zawa et al., 2019). In response to slow dehydration, ABA triggers
the upregulation of proteins that function in osmoregulation to pro-
tect fragile cellular components during desiccation, including

metabolic enzymes, sugar transporters and aquaporins, in diverse
plant species including bryophytes, lycophytes, ferns and angios-
perms (e.g. Reynolds & Bewley, 1993; Hellwege et al., 1994; Cum-
ing et al., 2007; Wang et al., 2010; VanBuren et al., 2017; Jahan
et al., 2019; Shinozawa et al., 2019). In line with this function,
ABA does induce changes in gene expression in ferns including in
guard cells (Plackett et al., 2021). Thus, although our results indi-
cate that ABA signalling is not involved in rapid stomatal closure
via ion channel activation as occurs in seed plants, it is likely that
ABA signalling is involved in slow dehydration tolerance mechan-
isms in ferns, similar to other land plant lineages.
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(ABA)-signalling kinases. (a) Mean whole-oocyte
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We find kinase-sensitive SLAC homologues in the moss
S. fallax and the hornwort A. agrestis (Figs 3–5), where they
might serve plant anion transport functions. It is not physically
possible for SLAC homologues to play any role in stomatal clo-
sure in S. fallax and A. agrestis, as stomata ‘open’ by irreversible
guard cell collapse in line with a predominant role for moss and
hornwort stomata in promoting desiccation for spore drying
and dispersal in these species (Duckett et al., 2009; Merced, 2015;
Renzaglia et al., 2017). In line with an ancient role for ABA in
vegetative desiccation tolerance (see McAdam & Sussmilch,
2021), application of exogenous ABA improves desiccation survi-
val in S. fallax (Nibau et al., 2022). Although future mutant stu-
dies will be required to determine the precise roles of SLAC
homologues in bryophytes, it is possible that a role for
SLAC homologues in nutrient movement – similar to SLAH
channels in angiosperms (Maierhofer et al., 2014b; Cubero-Font
et al., 2016; Qiu et al., 2016) – may have been co-opted for
ABA-dependent ion movement associated with desiccation toler-
ance in gametophyte tissues in mosses and hornworts.

We have found sensitivity to ABA-signalling kinases to be lack-
ing for SLAC homologues from the alga K. nitens, liverwort
M. polymorpha and lycophyte S. moellendorffii, in addition to the
ferns C. richardii and P. vulgare and SLAC1 orthologs of seed
plants P. abies and A. trichopoda (Figs 3–5; Lind et al., 2015;
McAdam et al., 2016a). The lack of activation of the seed plant
SLAC1 orthologs was particularly unexpected, given the shared
ABA-mediated stomatal closure response in these angiosperm
and gymnosperm species (Mayr et al., 2012; McAdam &

Brodribb, 2015). However, it is possible that activation of
SLAH2/3 orthologs by ABA-signalling kinases is sufficient for
this response in these species.

Overall, we find evidence of a complex evolutionary history for
SLAC sensitivity to ABA-signalling kinases with either (1) multi-
ple gains or (2) an early gain for a nonguard cell-specific func-
tional origin and subsequent losses (Fig. 6). Given the lack of this
trait in lycophytes and ferns, we propose that bryophytes and seed
plants may have separately co-opted SLAC/SLAH channels for
different roles downstream of the ABA-signalling pathway, with
seed plants using ABA to trigger rapid stomatal closure and some
bryophytes using ABA for osmoregulation more generally in
other cell types, including vegetative tissues that lack stomata.
Our results explain differences in ABA sensitivity between some
seed plants and ferns, while giving new insight into the transcrip-
tional features of fern guard cells. These findings highlight the
importance of studies directly testing if the roles of genes and the
signal-dependent activation of encoded proteins are conserved in
different plant species, in order to understand the evolution of
plant signalling processes.
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