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A B S T R A C T

Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several 
human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving 
leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement 
in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in 
sports (RED–S), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV- 
associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 
2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and 
present the main conclusions regarding the role of leptin in human physiology, pathophysiology and thera-
peutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight 
and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic 
steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it 
regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treat-
ment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic 
abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided 
promising results in animal studies, which should though be tested in humans in randomized clinical trials.

1. Introduction

Leptin is a hormone, which is secreted predominantly by the adipose 
tissue in proportion to the amount of energy stored as fat and which is 
recognized as a key regulator of metabolism as well as of neuroendo-
crine and immune functions. Numerous studies have focused on defining 
the role of leptin in physiology and in different disease states, a fact that 
is vividly illustrated by the >44,000 available publications in Pubmed 
on leptin since its discovery in 1994 [1]. The vast majority of the re-
ported findings have derived from cell culture and animal models, and 
secondarily from observational clinical studies. On the contrary, only a 
limited number of interventional, let alone placebo controlled leptin 
administration clinical trials (of the highest quality medical research in 
terms of methodology) have been performed to date. Based on the 

results from clinical studies, in the United States, metreleptin (a syn-
thetic analog of leptin) was approved for the treatment of hyper-
triglyceridemia and diabetes due to congenital or acquired generalized 
lipodystrophy. In Europe, metreleptin is further approved for the 
treatment of familial or acquired partial lipodystrophy in adults and in 
children older than 12 years of age with metabolic abnormalities despite 
standard treatments [2]. Celebrating the 30 years from the discovery of 
leptin, we are going to discuss in this review, the results from clinical 
studies that have administered leptin in humans, compare them with the 
findings from preclinical experiments and present the main conclusions 
regarding the role of leptin in human physiology.
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2. Effects of leptin treatment in mice

In order to understand the role of leptin in human physiology and the 
path that was followed for the development of leptin-based treatments, 
it is important to summarize the main findings from animal studies 
evaluating leptin function.

Leptin treatment in mice has been assessed both in mouse models of 
leptin deficiency (ob/ob, aP2-nSREBP-1c transgenic mice), as well as in 
mouse models of leptin excess (diet-induced obese mice, DIO). The ob/ 
ob mouse is characterized by lack of leptin due to a mutation in leptin 
gene [1]. Ob/ob mice develop severe obesity primarily due to hyper-
phagia and secondarily due to reduced energy expenditure and physical 
activity [3]. Additionally, they demonstrate several metabolic abnor-
malities, such as hyperglycemia, hyperinsulinemia, hyperlipidemia and 
liver steatosis [2,3]. They have impaired fertility and altered adaptive 
and innate immune responses. Altogether, they demonstrate a metabolic 
and endocrine phenotype that is very similar to the phenotype observed 
in humans with congenital leptin deficiency. Treatment with leptin of 
these mice resulted in reversal of all metabolic and endocrine abnor-
malities [2,3]. Specifically, it led to profound weight loss, mainly due to 
reduction of appetite by inhibiting Neuropeptide Y (NPY) and Agouti- 
related Peptide (AgRP) and by stimulating Proopiomelanocortin 
(POMC) neurons in the hypothalamus. Energy expenditure was also 
increased by activating sympathetic nervous system (SNS) and by pro-
moting thermogenesis from adipose tissue [4–6]. A stimulation of 
lipolysis and an increased utilization of lipids as energy substrates was 
also reported with leptin treatment in these mice, which is thought to 
have contributed to the observed fat mass loss [4,5]. Glucose uptake and 
turnover were increased with leptin treatment in several organs, such as 
the brain, heart and brown adipose tissue [7]. Insulin resistance, hy-
perglycemia and hepatic steatosis were consequently reduced [2]. The 
reproductive function was corrected by restoration of the hypothalamic- 
pituitary hormones through leptin administration [8].

The aP2-nSREBP-1c mouse is characterized by failure of adipocytes 
to differentially fully, which results in a profound decrease of white 
adipose tissue mass, thus representing an animal model of lipodystrophy 
[9]. The mice are hyperglycemic, hyperinsulinemic, with marked he-
patic steatosis and with mild hyperphagia. Treatment with leptin 
reduced appetite, body weight and hepatic steatosis. Additionally, it 
improved insulin sensitivity and glucose levels, with these effects being 
independent of the reduction of caloric intake [9].

Wild-type healthy C57BL/6 J mice, which their leptin levels reflect 
the leptin concentrations expected in healthy conditions, lost modestly 
body weight with the administration of high-doses of leptin due to a 
reduction in energy intake, while energy expenditure was not affected 
[10]. Furthermore, fasting of the above mice leads to profound reduc-
tion of leptin levels and downregulation of the gonadal, adrenal and 
thyroid axes, which are completely restored after leptin substitution 
[11]. During fasting, leptin substitution did not affect weight, glucose 
and insulin levels or ketone concentrations, but it led to lower food 
intake after refeeding [11]. In contrast, DIO mice, which have high body 
fat mass and high leptin levels, achieved minimal to no weight loss with 
high doses of leptin treatment [10,12].

In summary, mouse findings indicated that leptin treatment is more 
effective in restoring metabolic and endocrine abnormalities in condi-
tions of leptin deficiency (congenital leptin deficiency, lipodystrophies, 
fasting - induced hypoleptinemia) than in normo- or hyperleptinemic 
conditions.

3. Effects of leptin treatment in humans

3.1. Conditions of acute energy deprivation in healthy individuals

Circulating leptin concentrations in humans, influenced by several 
hormonal and other factors, correlate strongly with body fat percentage 
and are thus elevated in obesity and reduced in leanness [2,13,14]. 

Furthermore, leptin concentrations are higher in women than men, 
which is only partially explained by the higher body fat percentage in 
women and may reflect the effect of sex steroids on leptin levels [2]. 
Soon after the discovery of leptin, it became apparent, that leptin levels 
can decrease rapidly (within 24 h) and profoundly (by >50 %) during 
fasting both in normal-weight and obese humans [15]. Since animal 
experiments indicated an appetite – suppressant role for leptin [16], the 
reduction of leptin levels during fasting in humans has been initially 
interpreted as a compensatory mechanism aiming to increase appetite 
and to signal the urgent need for higher energy intake [11].

Fasting is additionally accompanied by several metabolic and 
neurohormonal changes [17]. LH pulsatility and overall secretion as 
well as testosterone and estradiol levels are decreased with prolonged 
food deprivation to prevent procreation, which is an energy demanding 
process. Furthermore, energy fuel utilization gradually changes. The 
SNS activity is altered as is the release of catecholamines and cortisol as 
well as of thyroid hormone levels [18]. These promote lipolysis, glyco-
genolysis, gluconeogenesis and in more prolonged cases protein catab-
olism. Initially, hepatic glycogen stores are exhausted and subsequently 
ketone bodies deriving from β oxidation of free fatty acids, fat-derived 
glycerol and ketogenic aminoacids are used as main energy fuels 
[17,18]. Animal and observational human studies have suggested that 
the decrease in leptin during fasting might be responsible for all the 
above metabolic and neurohormonal changes [11,18].

Two randomized, placebo controlled cross over clinical trials per-
formed by the Mantzoros Clinical Research group in individuals un-
dergoing complete fasting for three days and receiving metreleptin (the 
synthetic analogue of leptin) or placebo provided compelling evidence 
about the physiologic role of leptin in starvation in humans [19–21]. The 
first study included 8 males and 7 females who were healthy and had a 
normal BMI. They underwent three hospital 3-day admissions in a cross- 
over study design: one under isocaloric fed-state and two during com-
plete fasting-state. During fasting and in a double-blind random order, 
participants were treated either with placebo or with metreleptin, in a 
physiological dose that prevented fasting-induced hypoleptinemia 
[19–21].

The first important finding of this study was that the weight loss 
observed during the 3 day-fasting was similar under leptin replacement 
compared to placebo and was not related to the leptin levels at the start 
of the intervention. This argues against a significant impact of leptin on 
energy expenditure. In agreement with the above, although, as ex-
pected, catecholamines, cortisol and heart rate (markers of sympathetic 
nervous activity) increased during fasting, treatment with leptin had no 
impact on them or on blood pressure [19–21]. Additionally, treatment 
with leptin did not prevent lipolysis and the shift from glucose to lipid 
utilization, but it rather slightly stimulated them during the third day of 
fasting [21].

A second important finding of this study was that fasting-induced 
hypoleptinemia is associated with appetite in humans. Specifically, the 
lower the leptin levels after 72 h of fasting were, the higher the energy 
intake in a subsequent ad libitum meal was [21]. This inverse associa-
tion was though blunted for leptin levels above 10 ng/ml indicating 
possible saturation of leptin regulatory effects on appetite above a 
certain threshold [21].

The third important finding was that fasting-induced hypoleptinemia 
contributes to the suppression of the pituitary-gonadal axis. Specifically, 
maintenance of normal leptin levels during fasting, using metreleptin 
administration, prevented the loss of LH pulsatility both in men and 
women that normally occurs during fasting and it even succeeded in 
preventing the concomitant fasting-mediated testosterone reduction in 
men [19,20]. In contrast, metreleptin administration did not prevent the 
loss of growth hormone (GH) pulsatility or the decline of IGF-1 observed 
during fasting. It restored only partially TSH pulsatility in men but 
improved neither TSH nor had any major effects on thyroid hormone 
levels in men or women during short term fasting lasting a few days.

The fourth important finding was that fasting-induced 
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hypoleptinemia affects the number of cells involved in adaptive immune 
response. Specifically, maintenance of normal leptin levels during fast-
ing with metreleptin partially prevented the decline of total CD3+, 
CD4+ and CD8+ T lymphocytes and CD19+ B lymphocytes that occurs 
during fasting. On the other hand, leptin did not affect the number of 
natural killer (NK) cells, representing innate immunity, and the stimu-
lated cytokine production by peripheral blood mononuclear cells 
(PBMCs) [19,20].

In the last 15 years, a series of new hormones have been identified, 
the blood levels of which drastically change during fasting. These 
include: a) activins and follistatins, which are involved in reproductive 
function and glucose homeostasis as well as maintenance of muscle and 
bone mass [22–26], b) GDF-15 a mitokine which has been linked to 
appetite regulation, energy expenditure and immune response [27–31] 
and, c) PCSK9 and ANGPTL3 which are involved in lipid metabolism 
[32]. Maintenance of normoleptinemia with metreleptin administration 
did not prevent the fasting-induced changes in the concentrations of the 
above hormones, indicating leptin-independent mechanisms of function 
for them [25,28,33–36].

An important question remaining after the first study was whether 
administration of leptin in a very high dose, that not only prevents 
fasting-induced hypoleptinemia but increases leptin concentrations 
above the normal range, might be needed to observe more pronounced 
effects on metabolic, immune and neurohormonal changes occurring in 
starvation. This question was answered by a second clinical trial which 
included lean men and women, as well as obese men undergoing again a 
72 h - fasting, but being this time treated in each admission with a 
different leptin dose (physiologic, supraphysiologic and pharmacologic) 
[21,37]. Higher doses of leptin administration resulted in leptin con-
centrations up to 150 ng/ml, but they still had no impact on body weight 
loss, energy expenditure, SNS activity or fuel utilization during fasting 
[21,37].

In summary, based on the results of several randomized human 
clinical trials, hypoleptinemia during fasting serves two main purposes. 
The first purpose is to induce appetite as a signal for the urgent need to 
increase energy intake. The second purpose is to conserve energy by 
inhibiting energy demanding biological functions such as procreation in 
states of starvation or by regulating immune cell function.

3.2. Conditions of chronic energy deficiency

3.2.1. Relative energy deficiency in sports (RED–S)
RED-S is a condition characterized by chronic low energy availability 

due to intense exercise that can induce a wide spectrum of abnormalities 
in multiple organs [38]. These include neuroendocrine abnormalities 
that are similar to the changes observed during acute complete fasting, 
such as the insufficiency of the hypothalamic - pituitary – gonadal, −
thyroid and – somatotropic axis and the stimulation of the – adrenal axis 
[38]. RED-S can also have detrimental effects on bone health and on 
immune cell responses and it can promote anemia, endothelial 
dysfunction and gastrointestinal symptoms, as recently reviewed else-
where [38].

An important aspect of RED-S is the limited amount of energy stored 
in adipose tissue due to energy deficiency leading to low body fat mass 
[38]. Since leptin levels correlate strongly with fat mass, people with 
RED-S demonstrate a chronic mild or significant hypoleptinemia cor-
responding to the amount of negative energy balance. Women with RED- 
S often develop a secondary amenorrhea due to the insufficiency of the 
hypothalamic – pituitary – gonadal (HPG) axis but the latter remains 
frequently undetected among men. Since it was shown that acute 
hypoleptinemia during short-term fasting is causally related with the 
inhibition of HPG-axis, an important question was whether HPG-axis 
insufficiency can be restored in women with RED-S with leptin admin-
istration. This question was addressed in two clinical trials [21,39,40].

In the first open-label study, eight women with amenorrhea due to 
RED-S were treated with leptin for up to three months [40]. Mean LH 

levels increased, LH-pulse patterns improved or normalized in six 
women and three women developed an ovulatory menstrual cycle. A 
significant fat mass loss also occurred when leptin levels exceeded the 
upper limit of normal range. As we mentioned previously, in an ad 
libitum meal after three days of complete fasting in healthy individuals, 
treatment with leptin led to 18 % less caloric intake compared to pla-
cebo. Interestingly, the observed fat mass loss in women with RED-S 
treated with metreleptin matched the expected fat mass loss based on 
a 18 % reduced caloric intake [21]. This suggests that the fat mass loss 
due to leptin administration is explained exclusively by reduced energy 
intake and not increased energy expenditure.

The second study was a double blind placebo-controlled trial of 
longer duration [39]. Eleven women with RED-S were randomized to 
receive metreleptin and nine placebo over a 36-week period with an 
additional 16-week follow up after treatment completion. Similarly to 
the open – label study, levels of reproductive hormones improved and 7 
participants from the metreleptin group developed menstruation [39]. 
Although the treatment dose was adjusted in each visit on the basis of 
attained body weight (but not fat mass) in order to prevent weight loss in 
the study participants, metreleptin administration led to supra-
physiological circulating leptin levels and thus significant fat mass loss 
during the 36 weeks of treatment, which was regained after treatment 
discontinuation [21]. In this study, three of the women with RED-S 
underwent a brain fMRI one week and 24 weeks after treatment and 
were matched with nine normoleptinemic women [41]. The one-week 
leptin treatment enhanced the activation of brain areas involved in 
salience and rewarding of food during fasting. The 24-week treatment 
had though the opposite effects, i.e. it decreased the activation in brain 
areas related to food attention and rewarding value of food after feeding.

In both studies, a transient mild increase in free fatty acids was 
observed with leptin treatment, indicating a possible modest stimulation 
of lipolysis [21]. In agreement with the short-term fasting studies in 
healthy individuals, long-term leptin treatment in RED-S did not affect 
resting metabolic rate and markers of SNS activity [21], whereas it had 
significant effects on immune system [42]. Specifically, restoration of 
leptin levels with metreleptin administration in RED-S restored CD4+ T- 
cell counts and their in vitro proliferative response. Genes related to cell 
survival were upregulated and genes related to apoptosis were down-
regulated. Finally, the STAT3, AMPK, mTOR and ERK1/2 pathways, 
which are involved in cell proliferation and survival, were activated in 
CD4+ T cells [42].

Long-term leptin treatment in RED-S had also mild effects on so-
matotropic, thyroid and adrenal axis. Specifically, in the 3-month study, 
it increased transiently IGF-1 in the first month and IGFBP-3 during the 
second and third month, without affecting cortisol levels [40]. More-
over, leptin increased TSH pulse frequently and amplitude, as well as 
transiently free T3 and free T4. In the 36-week RCT, it increased fT3, 
total IGF-1 and tended to increase free IGF-1 and IGFBP-3, whereas it 
reduced cortisol levels compared to placebo [39].

Finally, long-term leptin treatment had beneficial effects on both 
health. Specifically, it increased the concentration of markers related to 
bone formation, such as osteocalcin, and decreased the concentration of 
markers related to bone resorption and osteoclastic activity, such as the 
RANKL/OPG ratio, CTX, intact PTH and the urinary N-Terminal telo-
peptide/creatinine ratio [39,43]. Notably, leptin treatment resulted in 
an increase in bone mineral content and bone mineral density of 2–3 % 
after 36 weeks of treatment. Six subjects who elected to continue on 
open-label metreleptin treatment for another 12 months demonstrated a 
4–6 % improvement in bone mineral content and bone mineral density 
[43]. The restoration of the gonadotropic axis and secondarily the 
decline of cortisol levels are considered important contributors to the 
improvements observed in bone health in these patients [43].

In summary, the findings from the clinical trials in RED-S fully agree 
with the results from the short-term acute energy deprivation studies 
about leptin. Hypoleptinemia in both conditions may stimulate appetite 
and it inhibits the HPG axis and immune function. In the long term it 
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may have additional direct neuroendocrine regulating effects (e.g. 
cortisol, IGF-1, fT3 levels) and indirect effects regulating bone mass and 
density. All the above effects aim at preserving energy, maintaining 
body weight, muscle and bone mass while promoting the use of fat from 
lipolysis and glucose from glycogenolysis and gluconeogenesis as energy 
sources. Notably, all the studies in RED-S have been performed with 
female patients. Thus, whether leptin treatment exerts the same effects 
on males with RED-S remains unclear and has to be assessed in future 
RCTs. This is though highly likely, given the similarities in response to 
leptin during short-term fasting observed in healthy males and females 
[19,20].

3.2.2. Anorexia nervosa
Anorexia Nervosa (AN) is a life-threatening mental disorder char-

acterized by severe undernutrition, beyond usual RED–S, leading to low 
body weight [44]. AN is associated with profound metabolic and 
endocrine alterations and is thus increasingly recognized as a metabo- 
psychiatric disorder [45]. Several studies have demonstrated that lep-
tin levels in patients with AN are very low (often below 1 ng/ml) due to 
the almost complete absence of fat mass [46,47]. People with AN 
demonstrate frequently an insufficiency of HPG axis which leads to 
amenorrhea in women and to low testosterone in men [48]. Addition-
ally, they demonstrate elevated GH but decreased IGF-1 concentrations, 
indicating resistance to GH possibly due to undernutrition. Patients with 
AN have also low total T3 levels and elevated cortisol levels and most 
importantly they suffer from low bone mineral density combined with 
altered bone microarchitecture and higher risk for fractures, which often 
persists even after weight recovery [49].

An interesting question is whether hypoleptinemia in AN might be 
responsible for some of the mental and somatic symptoms that patients 
with AN report [46]. In this context, case reports on seven patients with 
AN treated off-label with metreleptin have been published so far 
(reviewed in [46]). In all cases treatments were short, ranging from 9 to 
24 days and uncontrolled. According to the results, metreleptin 
administration might be able to improve mood, sleep and body image 
disturbance within a few days but these findingsshould be viewed as 
preliminary data only raising hypotheses for future studies given their 
uncontrolled design. Additionally, in some cases, improvement of con-
stipation, of low blood cell counts or of HPG-insufficiency were re-
ported. Leptin administration was combined in several of these cases 
with efforts to induce weight gain, even with nasogastric feeding [50]. 
Thus, these results should be interpreted cautiously since it is difficult to 
dissect the effects of leptin from the impact of the general management 
which these patients received. Moreover, mechanistic evidence for the 
reported effects are currently limited.

Since leptin in humans acts not only on hypothalamus, but also on 
other centers related to reward system and even after exposure to stimuli 
unrelated to eating-behavior [41,51], leptin might have effects on mood 
and psychiatric disorders. This demands though further investigation in 
patients with AN. Finally, based on the findings from patients with 
RED–S, leptin administration is expected to induce weight loss in pa-
tients with AN, if used in the long-term. If it is used in the short-term, the 
question is whether any positive effects in mental symptoms observed 
during leptin treatment will remain after its discontinuation. Nonethe-
less, a Phase II RCT (NCT06305182) with metreleptin vs placebo in 
patients with AN has been recently registered, albeit not yet recruiting, 
in clinicaltrials.gov, which is expected to provide more evidence about 
the possible impact of leptin on mental symptoms in this disease.

In summary, AN is associated with severe hypoleptinemia. The evi-
dence of the effects of leptin substitution in people with AN is very 
limited. Such studies are needed, but they should be performed 
cautiously to avoid any detrimental effects of leptin treatment, such as 
further weight loss in a population with underweight.

3.3. Syndromes of leptin deficiency

3.3.1. Congenital leptin deficiency (CLD)
CLD is a rare condition characterized in its classical form by very low 

leptin levels due to mutations in leptin gene, resulting in impaired 
synthesis and/or secretion of leptin [52]. People with CLD gain weight 
in very young age due to hyperphagia and become severely obese [53]. 
Additionally, they often develop insulin resistance, diabetes and dysli-
pidemia. Hypogonadotropic hypogonadism is frequently present as well 
as recurrent and/or severe infections, especially of the respiratory and 
gastrointestinal tract [52,54].

Since CLD is extremely rare, no RCTs could have been performed so 
far but several cases treated with metreleptin have been reported 
[55–58]. In all cases, treatment with leptin led to profound reduction in 
energy intake, resulting in significant weight loss and fat mass loss 
[56,57]. Leptin replacement in CLD was found to regulate neural acti-
vation in striatal regions of the brain, suggesting reduced perception of 
food reward as well as increased response to satiety signals after food 
intake in uncontrolled studies [55]. In contrast, no changes in energy 
expenditure or in cortisol levels were observed [56]. Additionally, 
restoration of LH and FSH pulsatility were observed, as well as an in-
crease in CD4+ T cell population [56]. Leptin replacement induced also 
a change in lipidome profile consistent with increased lipolysis and fatty 
acid oxidation [58]. The slow fat mass loss led also to gradual 
improvement of insulin sensitivity and of dyslipidemia (reduction in 
triglycerides and LDL-cholesterol and increase in HDL-cholesterol). 
Interestingly and in contrast to RED–S, CLD is not associated with 
osteoporosis and treatment with leptin has no significant effects on bone 
mineral content [57,59].

In summary, leptin treatment in CLD is very effective leading to 
restoration of the observed profound metabolic abnormalities.

3.3.2. Non-HIV related lipodystrophy syndromes
Lipodystrophy syndromes comprise a rare heterogeneous group of 

disorders characterized by diminished subcutaneous adipose tissue and 
increased ectopic accumulation of fat, especially in visceral organs 
[60,61]. Lipodystrophy syndromes are classified in two major forms, the 
generalized lipodystrophy (GL) and the partial lipodystrophy (PL), 
which both can be congenital due to gene mutations or acquired. In GL, 
the absence or gradual loss of adipose tissue is severe and it affects the 
whole body, whereas in PL the adipose tissue loss is relative and it is 
related to specific body regions, such as the limbs or upper body [60,61]. 
People with GL and PL might be overweight or slightly obese, but they 
demonstrate often severe hypertriglyceridemia, insulin resistance, dia-
betes, liver abnormalities (steatosis and elevated liver transaminases) 
and reproductive dysfunction [60–62]. In GL symptoms are more pro-
found and complications manifest earlier compared to PL. Leptin levels 
are severely reduced in GL (mean levels at 1–2 ng/ml) and modestly in 
PL (mean levels at 6–7 ng/ml) [63].

Similarly to CLD, GL and PL are rare syndromes and thus no RCTs 
have been performed to date. Nevertheless, prospective, single-arm 
open-label studies with continuous enrollment since 2000 have pro-
vided several evidence about the impact of leptin treatment in these 
patients. First of all, the findings from these studies fully agree with the 
conclusions from studies in women with RED-S and healthy individuals 
in acute fasting. Patients with GL and PL treated with metreleptin had a 
mild weight loss due to decreased appetite [63–65]. Leptin treatment 
did not increase energy expenditure, but rather modestly decreased it 
[66]. Additionally, leptin improved menstrual abnormalities and low 
estradiol levels and corrected the LH response to LHRH in young women 
with lipodystrophy [67]. Finally, it normalized both the absolute num-
ber and relative percentage of T lymphocyte subsets [68]. Leptin treat-
ment had no effect on cortisol and ACTH secretion, on blood pressure 
and on thyroid hormones [67,69].

Notably, both patients with GL and PL demonstrate significant 
improvement in HbA1c (− 2.2 % in GL and − 0.6 % in PL after 12 months 
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of treatments), triglycerides (− 32.1 % in GL and − 20.8 % in PL) and 
liver volume (− 33.8 % in GL and − 13.4 % in PL) with metreleptin 
[70,71]. Since weight loss is rather modest in these patients, the 
observed improvement in glucose homeostasis and lipid metabolism 
might be mediated by mechanisms that are at least partially indepen-
dent of food intake [72]. According to a recent study, leptin might be 
able to decrease gluconeogenesis in patients with lipodystrophy by 
decreasing the availability of carbon sources deriving from glycerol, 
alanine and lactate [73]. Reduced gluconeogenesis is expected to 
decrease blood glucose levels and potentially decrease hyperinsulinemia 
and insulin resistance. In another study, leptin-mediated improvement 
in peripheral insulin sensitivity increased the uptake of glucose by pe-
ripheral tissues, which consequently reduces carbohydrate transport to 
the liver [74]. This event resulted in reduced de novo lipogenesis and 
might explain the improvement of dyslipidemia and of liver steatosis 
[74]. Furthermore, animal experiments suggest that leptin may act as an 
insulin-mimetic in muscle or it might stimulate lipid oxidation in muscle 
to produce energy while reducing intramuscular lipid accumulation 
[75].

Importantly, metreleptin can be an effective treatment not only to 
congenital but also to acquired GL and PL. Specifically, acquired GL is 
often accompanied by other autoimmune disorders, such as juvenile 
dermatomyositis, rheumatoid arthritis, Hashimoto thyroiditis or chronic 
hepatitis which manifest in young age [76]. Metreleptin administration 
in clinical case reports in pediatric patients with acquired GL, who were 
under immunosuppression due to autoimmune disorders, resulted in 
profound decrease of hyperglycemia, possibly due to the marked 
improvement of insulin sensitivity and reduction of hyper-
triglyceridemia, without altering the clinical course or the treatment 
response of the autoimmune diseases [77]. Childhood cancer survivors 
undergoing hematopoietic stem cell transplantation will often develop 
PL, characterized by impaired glucose tolerance or diabetes, hyper-
triglyceridemia and hepatic steatosis [78–80]. Metreleptin administra-
tion in such patient cases was also capable of reversing metabolic 
abnormalities [78–80].

Finally, as in CLD, patients with GL or PL demonstrate normal or 
even increased bone mineral density/content or bone mass [81,82], 
which do not change after restoration of leptin levels with metreleptin 
administration [57,81,82].

In summary, leptin treatment is very effective at improving insulin 
sensitivity, hyperglycemia, hypertriglyceridemia and hepatic steatosis 
in lipodystrophies, These beneficial effects of leptin treatment are 
observed both in congenital and in acquired lipodystrophies and are 
more profound in GL than in PL.

3.3.3. Leptin deficiency due to human immunodeficiency virus (HIV) – 
Associated lipodystrophy (HALS)

Patients with HIV treated with highly active antiretroviral therapy 
(HAART) often develop an acquired type of lipodystrophy, commonly 
referred as HALS. We have previously described four types of HALS 
depending on fat distribution and amount [83]. One of these types is the 
lipoatrophic HALS characterized by generalized fat depletion and very 
low leptin levels <1–2 ng/ml [83,84]. Patients with lipoatrophic HALS 
demonstrate insulin resistance, hypertriglyceridemia and hepatic stea-
tosis. Three placebo-controlled trials (two performed by the Mantzoros 
Lab) and one open-label study evaluated the effects of metreleptin 
administration in lipoatrophic HALS [84–87]. The findings from the 
studies agree that leptin administration improves insulin sensitivity 
(both in terms of HOMA-IR as well as of hepatic insulin sensitivity) and 
hyperglycemia. Leptin treatment had minor effects on body fat 
composition (reduction in truncal fat mass in one study) and in lipid 
metabolism (improvement of HDL-C in one study and of non-HDL-C in 
the other study) and it had no effects on hepatic steatosis but the 
duration of the studies was not sufficient to fully study SLD in the long 
term. Finally, leptin administration had no effects on viral load and T – 
cell numbers.

3.4. Overweight and common obesity

Despite the elevated leptin levels in obesity, which reflect the 
increased fat mass, initially there was hope that administration of leptin 
in pharmacological doses might still be able to induce weight loss. This 
hope was based on the analogous example of insulin treatment, which is 
able to reduce blood glucose levels even in individuals with hyper-
insulinemia due to insulin resistance. The first phase II randomized 
controlled trial (RCT) with leptin in people with obesity was published 
in 1999 [88]. The study failed to reach its primary outcomes, reporting 
non-significant differences between placebo vs different leptin doses. 
However, variability in treatment response and a somewhat higher 
weight loss with high doses of leptin (after 24 weeks ~8 % in on- 
treatment analysis but only ~4 % in intention-to-treat analysis) led 
the authors to conclude that leptin treatment in higher doses might be 
beneficial for a specific group of patients. A series of subsequent RCTs 
with metreleptin or pegylated human recombinant leptin (PEG-OB) in 
different doses did not show any significant effects of leptin on weight 
loss, body composition, energy expenditure, SNS activity, adrenal hor-
mones, lipid profile and macronutrient utilization [89–93]. These 
negative results created the concept of “leptin resistance” or “leptin 
tolerance” to describe the lack of significant effects of leptin in obesity.

If leptin resistance in obesity exists, leptin administration should 
result in less activation of signaling pathways in targeted tissues in 
people with obesity compared to normal-weight controls. However, it 
seems that this is not the case. In vivo and ex vivo metreleptin admin-
istration resulted in similar activation of leptin-relevant downstream 
signaling pathways (STAT3, MAPK) in human adipose tissue biopsies 
and peripheral blood mononuclear cells (PBMCs) of obese versus lean 
people, which were saturated at 50 ng/ml of leptin, thus indicating 
leptin tolerance than leptin resistance [91]. Several strategies have 
subsequently aimed to overcome leptin tolerance or resistance.

The first strategy that was tested, was “leptin sensitization” by initial 
induction of weight – loss with diet followed by leptin administration. 
This strategy was mainly evaluated in two studies performed by the 
same group in people that lost initially 10 % weight with diet and were 
subsequently treated with leptin [94,95]. The first study was single-arm 
open label and led to a 2.1 kg weight loss within 5 weeks in patients 
treated with leptin [94]. The authors concluded that the weight reduc-
tion and not weight regain after discontinuation of diet was achieved by 
restoration of energy expenditure to pre-weight loss levels by leptin. In a 
subsequent single-blind placebo-controlled trial from the same group, 
again an increase of energy expenditure and also of satiety was reported 
with leptin administration for 5 weeks following an initial 10 % weight 
loss with diet, but paradoxically no differences in weight loss were 
observed between leptin and placebo [95,96]. Thus, the observed im-
provements in energy expenditure might simply reflect physiological 
restoration of metabolic rates after completion of the dynamic phase of 
weight loss and stabilization of metabolism to a new baseline weight, 
irrespectively of leptin administration. Similarly, two RCTs with a 3- to 
4-week lead-in diet period with 500 kcal/day deficit did not show any 
differences on weight loss with subsequent leptin treatment compared to 
placebo [89,93]. Finally, another RCT evaluated leptin administration 
for 16 weeks in women that have undergone a Roux-en-Y Gastric Bypass 
at least 18 months before [97]. These women had lost in average 31 % of 
their body weight and their leptin levels were significantly lower 
compared to the pre-operation state. Even in this population, leptin 
treatment could not induce any significant weight loss compared to 
placebo [97].

Leptin binds to the leptin receptor in order to mediate its functions. 
Four membare-anchored isoforms of the leptin receptor have been 
described, which participate in downstream cellular signaling upon 
binding of leptin. Another leptin receptor isoform, the soluble leptin 
receptor (sOB-R), which derives in humans exclusively by proteolytic 
shedding of the membrane-anchored proteins, binds leptin in human 
blood [98,99]. High concentrations of sOB-R in most studies seem to 
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inhibit leptin's effects, but low concentrations of sOB-R may reflect low 
expression of the membrane-anchored isoforms [98,99]. In obesity, low 
concentrations of sOB-R are observed and in anorexia nervosa high 
concentrations. Weight loss results in an increase of sOB-R concentra-
tions [98,99]. Thus, it has been suggested that sOB-R might be involved 
either directly in leptin tolerance/resistance observed in obesity, or it 
may serve as marker of leptin sensitivity. Different strategies aiming to 
regulate sOB-R levels [100], to increase intracellular trafficking of 
membrane-anchored isoforms of leptin receptor [101] or to improve 
leptin signaling have shown promising results in animal studies [102]. 
More recent studies in obese mouse models have also reported that 
partial leptin reduction by genetic manipulation or by use of neutral-
izing antibodies is able to reduce body weight and improve insulin 
sensitivity, possibly via restoration of leptin sensitivity in hypothalamus 
[103]. Such new approaches are attractive but evidence from non- 
human primate or human studies are currently lacking and they are 
needed in order to evaluate their translational potentials.

The second strategy was a combination treatment of leptin with an 
amylin analogue. Amylin is a hormone co-secreted with insulin from 
pancreatic β cells that reduces food intake and increases satiety [104]. In 
animal studies, amylin and leptin demonstrated synergistic effects in 
reducing energy intake (up to 45 %) and body weight (up to 15 %) 
[105]. A RCT (NCT00392925) was performed combining an amylin 
analogue (pramlintide) and metreleptin. The study included a 4-week 
lead in period with pramlintide and diet that led to 4.4 % weight loss 
followed by another 16 weeks treated either with metreleptin, pram-
lintide or both medications combined [104]. At study completion, pa-
tients treated with the combination of metreleptin with pramlintide lost 
significantly more weight (− 12.7 %) compared to monotherapies (− 8.4 
for pramlintide and − 8.2 for metreleptin) [104]. These results justified 
further studies, which were initiated but early terminated due to find-
ings suggesting the development of antibodies against leptin in the 
majority of patients [106]. These antibodies seem though rarely to 
impact efficacy or safety of the medication. In a post-hoc analysis of 134 
patients with lipodystrophy and 579 with common obesity treated with 
leptin, only 4 patients with lipodystrophy and 3 patients with obesity 
may have developed neutralizing antibodies, indicated by worsening of 
their metabolic profile [106]. Meanwhile, novel and more potent amylin 
analogues (e.g. cagrilintide) have been developed, which are currently 
under evaluation as combined treatments with GLP-1 receptor ana-
logues (e.g. Cagrilintide with Semaglutide) [107,108]. In a phase II 
study, the combination of cagrilintide with semaglutide resulted in 
almost 16 % weight loss within 32 weeks [107], thus leading to the 
current evaluation of the combination treatment in a Phase III trial. 
Whether a combination treatment with new generation leptin and 
amylin receptor analogues can be efficacious for the treatment of 
obesity, remains to be addressed in future studies.

The third strategy to maximize benefit from a potential leptin 
treatment focused on identifying and treating patients with common 
obesity that had relatively low leptin levels. The rational supporting this 
approach was based on a post-hoc exploratory analysis in people with 
obesity treated with leptin showing better response in terms of weight 
loss in men with leptin levels <5 ng/ml and women <16 ng/ml [109]. 
This was further supported by genetic studies suggesting that some of 
the observed variations in leptin levels in obesity might be the result of 
previous unknown genetic mutations controlling indirectly leptin gene 
expression and subsequently leptin blood concentrations [110]. This 
approach though does not take into consideration the findings from 
patients with relative leptin deficiency due to RED-S or partial lip-
odystrophy, which showed that the magnitude of response to metre-
leptin cannot be predicted by the endogenous leptin levels [21,111]. 
Nevertheless, a very recent study aimed to evaluate the above hypoth-
esis by using a new monoclonal antibody (REGN4461, mibavademab) 
that activates leptin receptor and does not induce drug-related anti-
bodies [112]. In this phase I double blind placebo controlled trial, 
overweight or obese patients with relatively low leptin levels were 

treated for 12 weeks [112]. The low leptin levels were defined in two 
cohorts as below 5 ng/ml and in two separate cohorts as 5–8 ng/ml for 
males and 8–24 ng/ml for females, with the upper limit corresponding to 
the 25th percentile for the respective gender. Placebo-corrected weight 
loss after 12 weeks of leptin treatment was significantly higher in pa-
tients with leptin levels <5 ng/ml compared to patients with >8 ng/ml, 
but in both groups the effects were marginal (− 3.1 % vs +0.1 % weight 
change) [112].

Given that the new anti-obesity treatments (GLP-1 receptor agonists 
such as semaglutide and GLP-1/GIP receptor co-agonists such as tirze-
patide) are leading to profound weight loss while demonstrating an 
acceptable risk/side effects profile, any monotherapies with leptin an-
alogues or leptin receptor agonists have to be at least equally potent and 
safe as the above treatments in order to have chances to be included in 
the treatment armamentarium against obesity. This seems to be at the 
moment extremely challenging. Thus, the question is whether combi-
nation treatments with the new gut hormone (poly) agonists and leptin 
analogues might be able to demonstrate additive or synergistic effects. 
Treatment with GLP-1 receptor agonists has been associated with a 
reduction of leptin concentrations, including free leptin levels, and an 
increase in soluble leptin receptors [113,114]. Similarly, treatment with 
tirzepatide led to robust reduction of leptin concentrations [115]. Such 
changes are also expected, since leptin levels correlate strongly with fat 
mass, which decreases during the treatment with GLP-1 and GLP-1/GIP 
receptor agonists. Whether leptin analogues or leptin receptor agonists 
are affecting gut hormonal function remains unclear. Nevertheless, a 
phase study II (NCT06373146) that has recently been initiated, is 
planning to evaluate the effect of mibavademab in combination with 
tirzepatide, a GLP-1 and GIP receptor coagonist approved for obesity 
and type 2 diabetes on weight loss in people with obesity.

Altogether no study so far could demonstrate significant weight loss 
with metreleptin administration in common obesity which will justify its 
further clinical development. Strategies aiming to overcome leptin 
resistance have generated positive findings in animal studies, which 
need though to be confirmed in human trials. Similarly, combination 
treatments with leptin receptor agonists and anti-obesity drugs are 
attractive approaches, which have though to prove their superiority 
compared to monotherapies in RCTs.

3.5. Diabetes

The impact of leptin administration on glucose homeostasis and in-
sulin resistance has been tested in patients with type 2 diabetes [91], 
with type 1 diabetes [116], with diabetes or hyperglycemia due to lip-
odystrophies [70,71,84–87] and in patients with insulin-resistant dia-
betes due to mutations in the insulin receptor gene (Rabson-Mendenhall 
syndrome, RMS) [117].

In a placebo-controlled trial performed from our group in obese 
patients with type 2 diabetes, metreleptin administration over 16 weeks 
reduced only marginally HbA1c (from 8.01 % to 7.96 %) [91]. Similarly, 
in another independent study in obese patients with newly diagnosed 
type 2 diabetes, in which hyperinsulinemic-euglycemic clamp and 
tracers were used, leptin treatment had no effect on insulin sensitivity 
[90]. Several other studies in obese insulin-resistant populations could 
not show any improvement on markers of insulin sensitivity with leptin 
treatment, even in obese patients with “relative” leptin deficiency 
[93,118,119]. Altogether, leptin treatment had no effects on glucose 
homeostasis in common, non-syndromic obesity with type 2 diabetes or 
insulin resistance.

In a small open – label single arm study, the effects of metreleptin on 
glucose homeostasis in patients with type 1 diabetes mellitus were tested 
[116]. Metreleptin did not improve HbA1c, but it reduced body weight 
by 6.6 % and total insulin dose by 15 % after 20 weeks of treatment. 
Metreleptin administration did not prevent hyperglycemia after inten-
tional reduction of the dose of basal insulin by 50 % in these patients. 
Given the lack of a placebo group, results have to be interpreted 
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cautiously since they might simply reflect the effects of increased 
attention from patient or of more intensive provided care by examiner 
during the study.

As mentioned above, metreleptin administration demonstrated pos-
itive effects on glucose homeostasis in patients with lipodystrophies 
[70,71]. It could significantly reduce blood glucose levels and HbA1c 
both in GL and in PL. Postprandial glucose levels were also decreased in 
HALS. The effects of metreleptin on glucose homeostasis were mainly 
achieved by improvement in insulin sensitivity. The exact mechanisms 
responsible for this improvement are not clear. Metreleptin adminis-
tration in people with lipodystrophies had no direct effects on insulin 
secretion or β-cell function, in contrast to the effects that have been 
previously reported in rodent studies [120].

Finally, leptin treatment was evaluated in people with RMS. This 
syndrome is caused by homozygous or compound heterozygous patho-
genic variants in insulin receptor (INSR). People with RMS have 
dysfunctional adipose tissue development and low leptin levels (by 1–5 
ng/ml) and they develop insulin-resistant type 2 diabetes [117]. In an 
open-label controlled study, treatment with leptin resulted in lower 
HbA1c levels compared to the untreated group. This reduction was 
attributed to the concomitant weight loss observed in these patients 
[117].

In summary, leptin treatment was efficacious in improving glucose 
homeostasis by reducing insulin resistance and promoting weight loss 
only in patients that demonstrated some degree of leptin deficiency.

3.6. Steatotic liver disease (SLD)

Steatotic liver disease (SLD) is a condition characterized by increased 
accumulation of fat in the liver [31,121]. This is often the result of high 
caloric intake leading to increased de novo lipogenesis from carbohy-
drates in the liver as well as to insulin resistance resulting in enhanced 
hepatic uptake of free fatty acids deriving from lipolysis of adipose tissue 
[121]. When fat storage capacity is exhausted in the liver, lipotoxic 
species are formed which can induce liver inflammation and in later 
stages liver fibrosis and cirrhosis [121].

As mentioned in the above relevant sections, both in non-HIV and 
HIV-related lipodystrophy syndromes, the presence of SLD is very 
common. Specifically, the subcutaneous lipoatrophy results in increased 
deposition of lipids in visceral organs, low leptin and adiponectin levels 
and severe insulin resistance, aggravating the elevated triglyceride 
concentrations and increasing the risk for development of diabetes 
[122]. In HIV-related lipodystrophy, either the virus itself or the anti-
retroviral treatment may additionally affect directly hepatocyte function 
by stimulating mitochondrial dysfunction and oxidative stress [122].

We have previously reviewed the effects of metreleptin administra-
tion on lipodystrophy syndromes [122]. The findings for non-HIV- 
related lipodystrophies derive exclusively from open-label uncon-
trolled studies – case reports and for HALS from two RCTs (described 
above in HALS section) [122]. Metreleptin administration for one- and 
up to three years decreased hepatic lipid content, liver volume and liver 
transaminases in most cases and hepatocyte ballooning and inflamma-
tion (in histology) in some cases of non-HIV-related lipodystrophy, with 
the effects being more profound in GL than in PL [118,122–124]. 
Metreleptin did not improve liver fibrosis [118,122–124]. In HALS, 
treatment with leptin did not reduce liver fat % and liver volume despite 
improving insulin sensitivity and decreasing body fat mass in the first 
RCT [84], whereas in the second RCT leptin did not improve liver 
transaminases [85].

The hepatic effects of metreleptin were also evaluated in an open- 
label study in patients with “relative leptin deficiency” (RLD) and 
biopsy-proven metabolic-dysfunction associated steatohepatitis (MASH) 
[118]. RLD was defined as leptin in the lower 25th percentile for BMI 
and patients with MASH and RLD were treated with metreleptin for one 
year. Paired liver biopsies existed for 7 of these patients showing 
improvement in steatosis and NASH score in 5 of them, in ballooning in 

4, in lobular inflammation in 3 and in fibrosis in 1 one of them. The 
authors concluded that patients with MASH and RLD have reductions in 
hepatic steatosis and injury with leptin administration. However, a very 
important limitation of the study, apart from its small size, is its open- 
label uncontrolled character. According to RCTs evaluating medica-
tions for the treatment of MASLD, an improvement in NAS score and 
liver fibrosis is very frequent even in placebo group (up to 33 % of the 
population) [125]. Thus, the reported findings should be interpreted 
cautiously. Moreover, the mechanism mediating such effects remains 
largely unknown. A recent study has suggested that leptin can increase 
hepatic triglyceride export through vagal stimulation [126]. In this 
placebo-controlled study with cross-over design, a single leptin dose was 
administrated in lean individuals after overnight fasting which induced 
VLDL-TG export and tended to inhibit the fasting-induced increase in 
liver fat content. Furthermore, improvement in insulin sensitivity and 
reduction of appetite might reduce carbohydrate and free fatty acid flux 
to the liver, resulting in reduction of de novo lipogenesis and conse-
quently of hepatic steatosis [74].

Nevertheless, even if such effects can be verified in larger studies, 
they may still not be sufficient for the approval of leptin or leptin re-
ceptor analogues in MASLD in patients with relative leptin deficiencies. 
The reason is that for such an approval, a medication has to show sig-
nificant resolution of MASH without worsening of fibrosis or conversely 
improvement of fibrosis without worsening of MASH, which none of the 
studies with leptin were able to show it so far, even in an open-label 
design and even in severe leptin deficiencies.

In summary, leptin treatment is effective at reducing hepatic stea-
tosis in lipodystrophies but not in people with common obesity. Leptin 
treatment might also reduce liver inflammation in lipodystrophies, 
whereas it does not improve liver fibrosis.

4. Mechanisms

Human interventional clinical studies in different metabolic condi-
tions have provided robust and consistent evidence about the role of 
leptin in human physiology. Summarizing, restoration of hypo-
leptinemia observed by fasting or in syndromes associated with low 
and/or dysfunctional adipose tissue mass, leads to (s. Fig. 1):

4.1. Body weight loss due to reduction of appetite and consequently of 
energy intake

Animal studies have shown that leptin can act on the arcuate nucleus 
of hypothalamus to activate POMC neurons to produce αMSH and to 
inhibit AgRP and NPY neurons [127]. Thus, leptin may act directly on 
the homeostatic centers of appetite in hypothalamus. This is further 
supported by studies in humans with RED-S or lipodystrophy showing 
changes after treatment with metreleptin in hypothalamic activity, as 
well as in functional connectivity with other important feeding-related 
areas [41,128,129]. Mechanisms regulating appetite and energy intake 
are though much more complex in humans than in rodents, since they 
strongly involve the hedonic - and reward system - related areas of the 
brain. In individual cases and case series of patient with CLD and in 
response to food vs non-food images, administration of leptin was shown 
to decrease activity in regions related to hunger (insula, parietal and 
temporal cortex) as well as to modify the activity in several areas of 
reward system, i.e. decreasing activity in amygdala, the nucleus 
accumbens, caudate and putamen (areas related to perception of food 
reward) and increasing activity in prefrontal cortex (area of inhibition 
and satiety) [55,130,131]. Similarly, in women with RED–S, treatment 
with leptin reduced the activity in areas related to food attention and 
rewarding, such as the precuneus, bilateral parietal, dorsolateral, and 
midbrain cortices [41]. Treatment with leptin seems also to modify 
resting state connectivity in insula, superior temporal gyrus and medial 
prefrontal cortex in patients with lipodystrophy, thus also indicating 
decreased feeling of hunger and lower incentive value of food in these 
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patients [129].

4.2. Restoration of LH pulsatility leading to normalization of sex 
hormonal profile and recovery of ovulatory menstruations

Two main mechanisms have been proposed so far to explain the ef-
fects of leptin on LH pulsatility. Of note, GnRH neurons do not express 
the leptin receptor, which excludes direct effects of leptin on these cells 
[132]. The first mechanism involves the neuropeptide kisspeptin, 
encoded by KISS1 gene, which can induce GnRH secretion from the 
hypothalamus. Leptin seems to stimulate neurons in the ventral pre-
mammillary nucleus (PMN) which are connected to kisspeptin neurons 
in the anteroventral periventricular and caudal arcuate nuclei, resulting 
in higher Kiss1 expression [133,134]. Additionally, AgRP and NPY 
neurons, which their activity decreases with leptin, can inhibit GnRH 
and Kiss1 neuron activity [133,135]. Thus, leptin deficiency might 
result in reduced expression of Kiss1 both directly through less activa-
tion of PMN neurons as well as indirectly through increased activation of 
AgRP and NPY neurons. The second mechanism suggest direct effects of 
leptin on pituitary gonadotropes. According to this mechanism, gona-
dotropes express LEPR and its activation might lead to increased 
expression of GnRH receptor (GnRHR) and FSH, thus acting synergisti-
cally with GnRH pulses in gonadotropic pituitary function 
[133,136,137]. Nevertheless, it should be noted that leptin adminis-
tration in RED-S restored HPG axis and menstruation in many but not all 
women. This indicates that additional mechanisms, independent of 
leptin, participate in the regulation of reproductive function in 

conditions of energy deficiency.

4.3. Improvement of immune system function by restoration of T cell 
populations

The main effect observed with leptin treatment is the restoration of 
CD4+ T cells. These cells express high levels of the long isoform of the 
leptin receptor, which activates the JAK – STAT pathway. Activation of 
these pathways in T cells increases their proliferation, survival, differ-
entiation and cytokine production (reviewed in [138]). This might 
explain why people with lipodystrophies that have severe leptin defi-
ciency also suffer frequently from respiratory and gastrointestinal in-
fections. More recent studies have suggested that the effects of leptin on 
T-cells might expand also to follicular helper T cells, involving the 
STAT3 and mTOR pathways. Notably, lower leptin levels might be a risk 
factor for vaccine failure [139].

4.4. Modest and transient increase in lipolysis

The mechanisms behind these effects of leptin are unclear and may 
involve both direct and indirect effects of leptin. Of note, animal studies 
have suggested that hypoleptinemia due to fasting induces lipolysis by 
activating the hypothalamic-pituitary-adrenal axis [140]. This seems 
not to be the case in humans, since restoration of leptin levels in fasting- 
induced hypoleptinemia as well as in RED–S, CLD and in lip-
odystrophies did not inhibit lipolysis but it rather stimulated it, whereas 
it had mild to no effect on adrenal hormones.

Fig. 1. Summary of the effects of leptin administration on humans 
In CLD, metreleptin is a very effective treatment at reducing body weight through inhibition of appetite and consequently at improving metabolic abnormalities. 
Metreleptin has been also approved for the treatment of GL and PL, since it reduces hypertriglyceridemia, hyperglycemia and hepatic steatosis. In women with RED-S 
and hypothalamic amenorrhea, metreleptin improves the function of gonadotropic axis by restoring LH pulsatility leading to recovery of menstruation in these 
patients. Metreleptin did not improve body weight or glucose homeostasis in common obesity and type 2 diabetes, which are conditions characterized by elevated 
leptin levels due to leptin tolerance/resistance. Novel leptin receptor analogues, combination treatments with amylin-analogues or incretin-based therapies, genetic 
manipulation or use of neutralizing antibodies to target hyperleptinemia in obesity are novel strategies that have provided promising results in animal studies, but 
require further evaluation in clinical trials. 
CLD: Congenital leptin deficiency, GL: Generalized lipodystrophy, PL: Partial lipodystrophy, RED–S: Relative energy deficiency in sports, HF: Healthy state during 
fasting, HALS: HIV-associated lipodystrophy, OB: Obesity, FFA: Free Fatty Acids. 
Bold Green: Strong to very strong effects, Green: moderate to strong effects. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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4.5. Improvement in insulin sensitivity, glucose levels, triglycerides and 
hepatic steatosis (especially in leptin deficient GL and PL)

The mechanisms behind the regulatory effects of leptin on glucose 
and lipid homeostasis are not fully understood. In contrast to animal 
experiments, it seems that leptin has no direct effects on insulin secre-
tion by pancreatic β cells. Leptin might inhibit gluconeogenesis by 
providing less carbon sources and thus decreasing blood glucose levels. 
Weight loss and fat mass loss with leptin might also improve insulin 
sensitivity resulting in reductions in glucose levels but also in carbo-
hydrate and lipid fluxes to the liver [73]. This can lead to a decrease in 
de novo lipogenesis and consequently to reduced hepatic fat accumu-
lation [74]. Additionally, leptin might stimulate VLDL-TG export which 
can also contribute to the reversal of steatosis [126].

Importantly, the effects of leptin administration on energy intake, 
HPG axis, T-cell composition, lipolysis, glucose and lipid metabolism are 
more profound in conditions of absolute/severe leptin deficiency (e.g. 
CLD, GL) than in conditions of severe/moderate leptin deficiency 
(RED–S, PL and HALS). However, baseline leptin levels in each condi-
tion cannot predict the level of response to leptin treatment.

4.6. Improvement in bone mineral density (in leptin deficient RED–S)

As described above, leptin treatment of women with RED-S led to an 
increase in bone mineral content and density. In contrast, leptin 
administration has no effects on bone health in patients with CLD, GL or 
PL. A possible explanation for this paradox is that patients with GL or PL 
have normal or even elevated bone mineral density and content, 
apparently due to their insulin resistance and the resultant hyper-
insulinemia as well as higher IGF-1 levels, and thus no signs of osteo-
porosis as in RED–S. The increased lean mass, tall stature in CLD and 
lipodystrophies and overweight or even severe obesity in CLD provide 
higher mechanical loads, which might protect bones.

Leptin might regulate bone metabolism both through central and 
peripheral pathways [141,142]. Regarding the peripheral pathways, 
leptin might directly interact with bone marrow mesenchymal stem cells 
(BMSCs), osteoblasts, osteoclasts and chondrocytes. Through these in-
teractions, leptin might stimulate BMSCs to differentiate to osteoblasts. 
Moreover, leptin might directly enhance the proliferation of osteoblasts, 
the synthesis of collagen and bone mineralization [143], whereas it 
might inhibit osteoclasts by decreasing RANKL secretion [144,145]. 
Metreleptin treatment has been also shown to decrease parathormone, a 
hormone that promotes bone absorption through indirect activation of 
osteoclasts [144]. Regarding the central pathways, restoration of HPG 
axis and consequently of estradiol levels by leptin is expected to 
contribute significantly to improvement of bone mass in women with 
RED–S. Additionally, leptin can modestly reduce cortisol levels, which 
might also act beneficially on bone mineral content. On the other hand, 
it has been also suggested that leptin may have detrimental effects on 
bone through its binding to hypothalamus. This has been suggested to 
stimulate sympathetic nervous system (SNS) which activates β2-adren-
ergic receptor on osteoblasts resulting in lower bone mass in mice [146]. 
However, metreleptin administration in patients with hypoleptinemia 
did not seem to stimulate SNS, thus questioning the importance of the 
above mechanism in humans.

4.7. No changes in energy expenditure, blood pressure, heart rate and 
body temperature.

These findings from human studies are in complete contrast to pre-
clinical experimental data which suggested regulatory effects of leptin 
on energy expenditure and SNS activity and adrenal hormone secretion 
[5,21,66]. This is an important point to take also into consideration in 
the evaluation of any results from preclinical models with leptin in the 
future.

Finally, leptin treatment in metabolic diseases without leptin 

deficiency (common obesity, type 2 diabetes) has no metabolic effects. 
Similarly, leptin treatment in patients with common obesity and leptin 
levels below the 25th percentile of the BMI-corresponding population 
creates no significant metabolic benefit. Finally, approaches to improve 
leptin sensitivity before treating obese patients with leptin have failed so 
far.

5. Conclusion

Human clinical trials administering leptin have provided unique 
insights about the role of leptin in energy homeostasis, glucose and lipid 
metabolism, endocrine function, bone health and immune system 
response. Metreleptin has thus found its place in our therapeutic 
armamentarium as leptin replacement therapy for leptin deficiency 
states such as CLD and congenital lipodystrophies [35].

Given the limited translation of findings from animal studies with 
leptin to humans, more clinical trials are needed in order to further 
define the role of leptin in human physiology and in different disease 
states. The development of new leptin analogues and leptin receptor 
agonists that do not induce leptin antibodies offer a great opportunity 
for such studies. Thus, current efforts focusing on the evaluation of these 
medications alone or in combination with other drugs (e.g. incretin 
analogues) are of great importance.
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