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A B S T R A C T

Plasma protein binding (PPB) is closely related to pharmacokinetics, pharmacodynamics and drug toxicity. 
Existing models for predicting PPB often suffer from low prediction accuracy and poor interpretability, especially 
for high PPB compounds, and are most often not experimentally validated. Here, we carried out a strict data 
curation protocol, and applied consensus modeling to obtain a model with a coefficient of determination of 0.90 
and 0.91 on the training set and the test set, respectively. This model (available on the OCHEM platform https:// 
ochem.eu/article/29) was further retrospectively validated for a set of 63 poly-fluorinated molecules and pro-
spectively validated for a set of 25 highly diverse compounds, and its performance for both these sets was su-
perior to that of the other previously reported models. Furthermore, we identified the physicochemical and 
structural characteristics of high and low PPB molecules for further structural optimization. Finally, we provide 
practical and detailed recommendations for structural optimization to decrease PPB binding of lead compounds.

1. Introduction

Binding of drugs to plasma proteins is one of the important param-
eters in pharmacokinetics, as it can affect many key properties of drugs, 
e.g., distribution volume (Vss), drug-drug interaction (DDI), clearance 
rate (CL) and therapeutic index (TI) (Di, 2021; Smith et al., 2010; 
Lambrinidis et al., 2015). Drugs based on compounds with a high af-
finity to plasma proteins have an increased half-life, and in some cases 
higher doses of the drug may be required to achieve an effective con-
centration for treatment. In addition, drugs bind to plasma proteins 
competitively, and drugs with higher binding rates will occupy most of 
the plasma protein binding sites. This can give rise to DDI (Di, 2021). 
Drugs with high PPB values may influence the binding of other drugs to 
the same plasma proteins, resulting in an increase or decrease in the 
(free) plasma concentration of the other drugs, rendering them either 
toxic or ineffective. Situations like this mainly arise for drugs with 

narrow therapeutic windows, e.g., warfarin (Lambrinidis et al., 2015; Di 
et al., 2017). Thus, assessment of PPB is very important for the devel-
opment of new drugs and the safe clinical use of drugs.

The level of binding of a drug to plasma proteins is usually evaluated 
as the PPB rate (PPB%) or free fraction (fu) (Seyfinejad et al., 2021; 
Vuignier et al., 2010). There are three commonly used methods 
(Vuignier et al., 2010; Dimitrijevic et al., 2023) for determining PPB, i. 
e., equilibrium dialysis (ED), ultrafiltration (UF) and ultracentrifugation 
(UC). The ED method is the gold standard and is often used as a reference 
for UF and UC. However, each of the three methods has its own ad-
vantages and disadvantages depending on the application (Dimitrijevic 
et al., 2023). For non-specific compounds with good adsorption, UC is 
the first choice, but the measurement costs are high. For compounds that 
are not stable in plasma, UF is preferred, although non-specific 
adsorption can interfere with measurements quite drastically. ED can 
be generally applied to most compounds, but its drawbacks, such as 
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changes in initial equilibrium state, non-specific binding, volume 
transformation, Donnan effect and protein leakage, can influence the 
accuracy of measurements. In any case, experimental assays are com-
plex, time-consuming, and expensive, while in silico prediction has the 
advantages of being economical, simple, and fast, and able to facilitate 
rapid screening of a large number of compounds, including those that 
have not yet been synthesized. Therefore, PPB prediction models based 
on machine learning can play an important role in accelerating drug 
development process and drug safety.

Over the past decade, significant advances have been made in ML- 
based drug discovery (Lambrinidis et al., 2015; Vallianatou et al., 
2013). In recent years, a number of regression models using ML have 
been built for PPB prediction. Supporting Materials Table S1 summa-
rizes some of the published models and their performance metrics 
(Votano et al., 2006; Zhu et al., 2013; Wang et al., 2017; Watanabe et al., 
2018; Sun et al., 2018; Yuan et al., 2020; Jimenez-Luna et al., 2021; Lou 
et al., 2022; Khaouane et al., 2023; Pore and Roy, 2024). These models 
have made great progress in predicting PPB, but the performance of 
these models on test sets may still require improvement. Moreover, most 
of these models were not validated in prospective studies. It is also worth 
mentioning that none of the previous studies (with the exception of the 
study by Lou et al. (Lou et al., 2022) using IDL-PPBopt) discussed the 
substructure and physicochemical properties that are related to PPB 
activity.

In addition, the successful use of these models usually requires a 
significant amount of programming expertise, and many of the associ-
ated tools are not user-friendly. To address this issue, several web 
servers offer free PPB prediction services, e.g., ADMETlab3.0 (Li et al., 
2024), admetSAR3.0 (H.B. Yang et al., 2019), DruMAP (Kawashima 
et al., 2023), Pangu Drug (Lin et al., 2022), pkCSM(Deep-PK) (Pires 
et al., 2015), PreADMET (Lee et al., 2003) have been developed. 
Although these platforms are easy to use, it appears that the model ac-
curacies within these platforms have not been validated in prospective 
studies.

The On-line CHEmical database and Modelling environment 
(OCHEM) is an algorithm-rich, automatized, and simple model training 
and sharing platform (Sushko et al., 2011). In this study, we used 
OCHEM to train models for PPB prediction with a variety of ML 

algorithms and descriptors. Then, we selected several of the 
best-performing models to develop a consensus model (Zhu et al., 2008). 
In addition, we performed retrospective and prospective validation of 
the newly developed and previously published models on external 
datasets. Finally, we analyzed the molecular features that are associated 
with high and low PPB values. The workflow adopted in this study is 
shown in Fig. 1.

2. Data

2.1. Training and test data set

Human PPB data points were collected from several sources: (1)
published data by Lou (Lou et al., 2022), Basant (Basant et al., 2016), 
Watanabe (Watanabe et al., 2018), Ingle (Ingle et al., 2016), etc.; and (2)
from DrugBank for drugs on market and in clinical trials (https://go. 
drugbank.com/, accessed in May 2022). A total of 9500 data points were 
collected, including SMILES and multiple forms of PPB values (e.g., 
protein binding rate as 90 % or 0.9 or unbound ratio as 0.1 or 10 %). The 
compound data were carefully prepared according to the following 
steps: (1) de-duplication, and removing mixtures, inorganic and organ-
ometallic compounds; (2) stripping salts and water; (3) removing com-
pounds with molecular weights >800 Da and rotatable bonds >20.

According to the histogram of %PPB (cf. Figure S1), the distribution 
of original %PPB values was heavily skewed toward the high-PPB re-
gion. To minimize the effects of this skew, %PPB data points were 
transformed into pseudo-equilibrium constant parameter values (LogIt) 
in OCHEM automatically (see Eq. (1)) as suggested elsewhere (Gao et al., 
2008). After this conversion, the distribution became Gaussian-like (cf. 
Fig. 2A). 

Log It = Log
(

fb

1 − fb

)

(1) 

where fb is fraction bound. This transformation is better for addressing/ 
investigating differences in compounds with very small (i.e., < 1 %) and 
very large (i.e., > 99 %) PPB values.

Fig. 1. The workflow to build the PPB prediction model.
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2.2. Retrospective and prospective validation data set

The dataset containing PPB values for Per- and Polyfluoroalkyl 
Substances was used for retrospective model validation (Smeltz et al., 
2023). As the corresponding article was published in 2023, this dataset 
was not yet encountered by models published by other groups, nor by 
our own model, which collected data from earlier publications. We 
found that 5 out of 68 compounds from this dataset were also part of our 
training dataset. These molecules were excluded and the remaining 63 
molecules were used as a validation set, which we called the “PFC” 

dataset. Furthermore, 36 compounds from the PFC dataset with PPB 
>99 % formed the “PFC99” set, which was used to compare methods for 
compounds that bind very strongly to plasma proteins.

A prospective study was performed to estimate model performance 
for a set of compounds selected using an experimental design method. 
The 10 K compounds of the ChemDiv diverse subset purchased by 
Institute of Materia Medica, Chinese Academy of Medical Sciences 
(structure information can be retrieved at Zenodo: https://zenodo. 
org/records/12641856), were clustered using the “Cluster Ligands” 
module of Discovery Studio (version 2016). Specifically, the fixed 

Fig. 2. (A) Distribution of LogIt transformation dataset, and PCA distribution plots: (B) Training and test dataset, (C) Training and PFC dataset, (D) Training and new 
dataset, (E) Pairwise Tanimoto coefficients distribution of 3214 compounds.
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“Number of Clusters” was set to 25 and FCFP_6 fingerprints (Rogers and 
Hahn, 2010) were used to represent compounds. The cluster centers 
(molecules) were selected to form the external prospective dataset, 
which we called the “new dataset”. These were all new compounds and 
there was no overlap between these molecules and the modeling set 
(training, test and retrospective set). The new dataset (25 compounds) 
was determined by ED combined with HPLC or LC-MS/MS (see Sup-
porting Materials) for detailed experimental methods.

The PPB values for retrospective and prospective dataset molecules 
were predicted using different computational platforms, including 
ADMETlab3.0 (Li et al., 2024) (https://admetlab3.scbdd.com), admet-
SAR3.0 (H.B. Yang et al., 2019) (http://lmmd.ecust.edu.cn/admetsar3), 
DruMAP (Kawashima et al., 2023) (https://drumap.nibiohn.go.jp), 
Pangu Drug (Lin et al., 2022) (http://pangu-drug.com), PreADMET (Lee 
et al., 2003) (https://preadmet.qsarhub.com/), pkCSM(Deep-PK) (Pires 
et al., 2015) (https://biosig.lab.uq.edu.au/deeppk/data) and our 
OCHEM model. The prediction accuracies of these platforms were 
compared with those of the PPB model developed in this study.

3. Methods

3.1. Analysis of machine learning approaches

We initially analyzed several machine learning approaches available 
in OCHEM, including traditional methods such as Partial Least Squares, 
Multiple Linear Regression Analysis, k-Nearest Neighbors as well as 
more advanced methods based on decision trees, such as Random Forest, 
XGboost, CatBoost, shallow and deep neural networks, which develop 
models based on calculated descriptors. Among all investigated 
methods, the Associative Neural Network (ASNN) method (Tetko, 2009) 
generally provided higher performances across analyzed descriptors and 
as such this method was selected for model development. The ASNN is a 
combination of an ensemble of single-hidden-layer neural networks and 
k Nearest Neighbors. It was inspired by thalamo-cortical organization 
(Villa et al., 1999) of the brain and has been shown to improve perfor-
mance of the ensemble by correcting its bias using errors of the most 
similar records from the training set. Of the representation learning 
methods, we selected Transformer Convolutional Neural Networks 
(Transformer CNN) (Karpov et al., 2020), along with its variation, 
Transformer Convolutional Neural Fingerprint (CNF2) (Makarov et al., 
2021) as well as two Graph Neural networks methods, i.e., attentive 
fingerprint algorithm (AttFP) (Xiong et al., 2020) and ChemProp (Yang 
et al., 2019a,b), both of which are implemented as part of the KGCNN 
(Reiser et al., 2021) package in OCHEM.

3.2. Assessment of model performance

Three statistical parameters were used to evaluate model perfor-
mance (cf. Eqs. (2)-(4)). MAE and RMSE were used to evaluate the dif-
ference between the predicted values and the observed values. In 
addition to these parameters, the coefficient of determination R2, which 
measures explained variance of the model, was also used. A good model 
usually has small MAE and RMSE values, and an R2 value close to 1. 

MAE =

∑N
1 |xi − yi|

N
(2) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

1 (xi − yi)
2

N

√

(3) 

R2 = 1 −

∑N
1 (xi − yi)

2

∑N
1 (xi − x )

2 (4) 

where xi is the observed value, yi is the predicted value, x is the average 
of the observed values, N is the number of data points.

3.3. Applicability domain

The application domain (AD) is an important concept in 
quantitative-structure activity relationships (QSAR) (Weaver and Glee-
son, 2008). The measurement of AD was based on the distance to model 
(DM) of the compound, where DM is a numerical measure proportional 
to the model’s prediction uncertainty for a given compound (Tetko et al., 
2008). A large DM value corresponds to a low prediction accuracy for 
the target compound. The Consensus standard deviation (STD) of the 
predicted outcome was used to evaluate AD. On the OCHEM web site, 
the DM which covers 95 % of compounds from the training set is used to 
define AD of the model. In the PPB model, 95 % of compounds have STD 
values <0.33, so we chose 0.33 as the threshold for evaluating AD, that 
is, when STD is <0.33 for a prediction of a new compound, we consider 
the compound to be in the AD range. Each prediction was also given a 
confidence interval to help users judge the reliability of the prediction.

3.4. Feature analysis related to PPB

3.4.1. Physicochemical descriptors analysis
At first, the physicochemical descriptors of all compounds (3214) 

were calculated using the Mordred package (1.2.0) (Moriwaki et al., 
2018), and then the Person correlation coefficient (r2) of each descriptor 
with PPB was calculated. Lastly, top 17 descriptors with r2>0.4 were 
used to plot the heat map.

In order to gain insight into the model’s interpretability, the re-
lationships between some of the representative descriptors with high, 
medium and low PPB values were analyzed, respectively. All compounds 
were divided into three categories according to their PPB values, i.e., 
low PPB class (≤ 50 %), medium PPB class (50–90 %), high PPB class 
(≥90 %). In each class, the compounds were further divided into 3 
groups according to the descriptor being studied. Then, the number of 
compounds in each descriptor group in the categories of low, medium 
and high PPB was counted. The number of compounds in a certain 
category was defined as 100 %, and the percentage of molecules in each 
descriptor group in all compounds in this category was calculated. The 
data were converted into graphs for visualization after calculation. 
Taking the descriptor of SlogP as an example, the high PPB compounds 
were divided into three subgroups (SLogP≥3, 1<SLogP<3, SLogP≤1), 
and the proportion of compounds in each subgroup was determined. 
This facilitated the identification of physicochemical properties associ-
ated with high and low-PPB compounds.

3.4.2. Privileged substructures analysis with similarity map and 
SetCompare in OCHEM

A PPB classification model was built and was used to produce a 
similarity map (Riniker and Landrum, 2013). Specifically, the com-
pounds from the initial set (n = 3128) were divided into high and low 
PPB sets with thresholds of PPB >90 % and PPB<50 % respectively. The 
compounds with PPB values between 50 % and 90 % were removed. 
Each compound was represented with Morgan2 fingerprints. The clas-
sification model was built based on the training set and was evaluated on 
the test set. In the similarity map (Riniker and Landrum, 2013), the 
atoms of each compound were marked with different colors according to 
the contribution value of the atom. The substructures composed of 
atoms with positive contributions or negative contributions were 
visualized.

The high/low PPB data were also analyzed using the SetCompare 
utility (Vorberg and Tetko, 2014) in combination with the Extended 
Functional Groups (Salmina et al., 2016) descriptor type. SetCompare 
uses hypergeometric distribution with Bonferroni correction to identify 
overrepresented descriptors amid compounds with high/low PPB data.
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4. Results and discussion

4.1. The data set

After careful pre-processing, 3214 PPB data points were obtained. 
These data were randomly split into training (2571) and test (643) sets. 
The LogIt-transformed data exhibited a Gaussian-like distribution, as 
shown in Fig. 2(A). The chemical space of the training, test, PFC and new 
datasets are shown in Fig. 2(B-D) based on principal component analysis 
(PCA) of the 17 Mordred (Moriwaki et al., 2018) descriptors (see Sup-
porting Materials). The scatter plot shows substantial overlap in chem-
ical space between training and test, PFC, new compounds dataset. The 
Tanimoto coefficient (Tc) (Bajusz et al., 2015) based on Morgan2 fin-
gerprints (implementation of ECFP4 (Rogers and Hahn, 2010) in RDKit 
package (open-source cheminformatics. https://www.rdkit.org/ 
(accessed 3 July 2024)) values were <0.2 (cf. Fig. 2(E)), indicating high 
chemical diversity in the PPB data set.

4.2. Models constructed in OCHEM

OCHEM offers a number of ML algorithms and various molecular 
representations. Almost all ML algorithms implemented in the platform 
were tested in this study. ASNN (Tetko, 2009) provided on average 
better performance compared to other descriptor-based machine 
learning methods and was used for further analysis. Amid ASNN models, 
the model based on Mordred descriptors achieved the highest accuracy 
for the training set (cf. Table 1). After comparing all models constructed 
in OCHEM, we selected those with RMSE equal or <0.33 to build the 
consensus model. They were five ASNN models developed with 
ALogPS-OEstate (Tetko et al., 2001), EPA (https://www.epa.gov/-
comptox-tools/toxicity-estimation-software-tool-test), Fragmentor 
(Varnek et al., 2008), MOLD2 (Hong et al., 2008) and Mordred (2D) 
(Moriwaki et al., 2018) descriptors as well as four models based on 
representation learning, i.e., Transformer CNN (Karpov et al., 2020), 
CNF2 (Makarov et al., 2021), ChemProp (Yang et al., 2019a,b) and 
AttFP (Xiong et al., 2020) (as implemented in KGCNN (Reiser et al., 
2021) package). The performance of the consensus model, calculated as 
a simple average of these selected models, was superior to any indi-
vidual model for both training and external test sets (cf. Table 1 and 
Fig. 3). The use of simple average method was based on our previous 
efforts (using a much larger set with melting point data (Tetko et al., 
2016)), which did not demonstrate a significant improvement in the 
performance of methods when using a weighted average of models. 
Nevertheless, we also analyzed the weighted average of models in this 
study, but we did not observe any changes in the model prediction 
accuracy.

4.3. Prospective and retrospective study: model performance and 
comparison with other models

For the prospective study, the PPB values of 25 new compounds were 
determined by ED experiment and predicted by each model. The 
structures and measured PPB values of these 25 compounds are shown in 
Fig. 4. The predictive performance parameters of the different platforms 
are listed in Table 2. The OCHEM consensus model ("Consensus in 
LogIt") achieved the highest accuracy compared to other published 
models, with the highest R2 and the lowest MAE and RMSE.

For the retrospective study, we also compared the predictive per-
formances of the models based on the “63 PFC” dataset (cf. Table 2 and 
Supporting Materials for more details) and found that the consensus 
model developed in this study also achieved higher accuracy for this set 
than the other platforms. In addition, the results for compounds with 
PPB>99 % (“36 PFC99” set) predicted by the OCHEM model had 
significantly better RMSE values (0.4 %) compared with the results 
obtained by other models, which had RMSE values 3 to 100 times higher 
for the same compounds. Accurately predicting compounds with 

Table 1 
Performance of individual and the consensus models.

ID Method 
[Descriptors]

Data Set R2 RMSE MAE

1 ASNN [ALogPS, 
OEstate]

Training 0.835 ±
0.006

0.328 ±
0.005

0.254 ±
0.004

  Test 0.85 ±
0.01

0.304 ±
0.01

0.232 ±
0.007

2 ASNN [Fragmentor] Training 0.842 ±
0.006

0.321 ±
0.005

0.251 ±
0.004

  Test 0.86 ±
0.01

0.29 ±
0.01

0.228 ±
0.007

3 ASNN [Mordred] Training 0.85 ±
0.006

0.312 ±
0.005

0.242 ±
0.004

  Test 0.85 ±
0.01

0.305 ±
0.009

0.24 ±
0.007

4 ASNN [MOLD2] Training 0.832 ±
0.007

0.330 ±
0.006

0.255 ±
0.004

  Test 0.83 ±
0.01

0.33 ±
0.01

0.25 ±
0.008

5 ASNN [EPA] Training 0.845 ±
0.006

0.318 ±
0.005

0.244 ±
0.004

  Test 0.85 ±
0.01

0.31 ±
0.01

0.24 ±
0.008

6 Transformer-CNN Training 0.866 ±
0.005

0.292 ±
0.004

0.236 ±
0.004

  Test 0.873 ±
0.009

0.283 ±
0.007

0.227 ±
0.007

7 AttFP Training 0.841 ±
0.006

0.317 ±
0.005

0.253 ±
0.004

  Test 0.850 ±
0.010

0.310 ±
0.009

0.245 ±
0.008

8 ChemProp Training 0.862 ±
0.005

0.299 ±
0.005

0.236 ±
0.004

  Test 0.883 ±
0.008

0.277 ±
0.007

0.222 ±
0.006

9 CNF2 Training 0.853 ±
0.006

0.308 ±
0.005

0.247 ±
0.004

  Test 0.860 ±
0.010

0.298 ±
0.008

0.240 ±
0.007

10 Consensus in LogIt Training 0.901 ±
0.004

0.252 ±
0.004

0.202 ±
0.003

  Test 0.907 ±
0.007

0.240 ±
0.007

0.196 ±
0.005

11 Consensus in % unit Training 0.902 ±
0.006

7.0 ± 0.2 4.3 ± 0.1

  Test 0.90 ±
0.01

6.6 ± 0.4 4.1 ± 0.2

Fig. 3. The measured PPB vs the PPB predicted by the consensus model for the 
training and test sets.
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PPB>99 % is very important and significant for drug discovery projects, 
because for binding rates of 99 %, 99.9 % or 99.99 %, the free drug 
concentrations will differ by a factor of 10 or 100. Thus, despite the fact 
that existing models had a relatively good overall prediction perfor-
mance when using %PPB as an overall performance measure, most of 
them were not able to correctly predict compounds with very high PPBs.

4.4. Importance of LogIt function for predicting compounds with high PPB 
values

We used LogIt units to develop the individual and consensus models, 
and to estimate their performances. Of course, one can use different 
units, e.g., percentage or fraction, to estimate performance of the 
developed models by converting predicted and experimental values to 
the respective unit. For the consensus model, we first converted LogIt 
predicted by each individual model to a percentage (%) and then built a 
consensus model by averaging predictions of individual models given in 
percentage, i.e., “LogIt-% model”. As shown in Table 1, this conversion 
had a generally negative impact on the models: it decreased R2 and also 
led to widened confidence intervals for both RMSE and MAE (cf. 
Table 1).

OCHEM allows users to select a different target unit when creating a 

consensus model. We also developed individual models directly using 
the % unit and created a consensus model with % or LogIt units, 
respectively (cf. Table 3). The consensus model based on individual 
models developed with the same unit (LogIt-LogIt model) had a signif-
icantly lower RMSE compared to the consensus model based on the in-
dividual models developed with the % unit (%-LogIt model) for all but 
the PFC set. For the latter set, RMSEs of both consensus models were not 
significantly different due to their large confidence intervals. There were 
no significant differences for all but the PFC99 subset (see discussion 
below) when we compared performances of LogIt-% and %-% models 
using the percentage as the final unit.

The results for the PFC set had significantly large errors (RMSE=0.79 
and 0.74 in LogIt unit) compared to the training set compounds 
(RMSE=0.25 and 0.29) for LogIt-LogIt and %-LogIt models, thus indi-
cating that this set was particularly difficult to predict. This was the 
expected result, since the distribution of the compounds in the PFC set 
was markedly different to that of the training set, as shown on PCA plot 
(cf. Fig. 2C). However, there were no significant differences in RMSEs 
for the training and test sets when predicted values were compared using 
percentage units. However, for the subset of the PFC set with PPB>99 % 
(PFC99, n = 36), the consensus model LogIt-(LogIt or %) models yielded 
significantly smaller errors than the %-(LogIt or %) consensus model for 

Fig. 4. The structures and measured PPB values of 25 new compounds. (*MV: measured value).

Table 2 
The tested platforms’ prediction performance for external validation sets using %PPB.

Dataset Coefficient ADMETlab v. 3.0 admetSAR v. 3.0 DruMAP Pangu Drug Deep-PK PreADMET OCHEM

25 (new) R2 0.71 0.79 0.77 0.80 0.45 0.57 0.93
 RMSE 10.49 9.01 12.23 9.08 18.33 14.20 5.80
 MAE 5.51 5.77 6.32 6.54 13.76 9.70 3.21
63 PFC R2 0.36 0.45 0.27 0.30 0.19 0.53 0.72
 RMSE 11.76 11.66 14.47 17.24 45.77 14.79 9.28
 MAE 4.84 8.10 11.23 9.67 43.55 7.63 3.56
36 PFC99 R2 0.13 0.22 0.05 0.03 0.01 0.02 0.17
 RMSE 1.50 9.32 12.67 9.82 48.32 5.28 0.40
 MAE 1.09 5.72 10.07 6.21 47.18 3.27 0.27
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both unit types (cf. Table 3). Thus, the LogIt-(LogIt or %) consensus 
models were much better at predicting the PPB of compounds with very 
high binding. The ability to differentiate compounds with high PPB 
values is important for drug discovery, and we have shown that devel-
oping models using LogIt units allows for a deeper exploration of the 
data and more accurate predictions of PPB.

4.5. Physicochemical descriptors highly related to PPB

We calculated the physicochemical descriptors of the molecules, 
along with their corresponding Person correlation coefficients r2 with 
PPB using the Mordred program (Moriwaki et al., 2018). A total of 397 
related physicochemical descriptors (r2 > 0.05) were obtained. Among 
them, 17 descriptors (cf. Supporting Materials Table S3) were highly 
correlated to PPB, with r2 values greater than 0.4. The heatmap below 
(cf. Fig. 5) illustrates the correlations between the selected descriptors 
and PPB.

As mentioned in the Methods section, we investigated which of the 
representative descriptors were correlated with high, medium and low 
PPB values. We observed that the SLogP (predicted lipophilicity) and 
LogS (predicted solubility) were very important physicochemical in-
dicators for PPB, with R2 values greater than 0.6. When considering 
three subgroups of SLogP (SLogP≥3, 1<SLog P < 3, SLog P ≤ 1) and 
three subgroups of LogS (LogS<− 6, − 6≤logS<− 4, − 4≤logS), we 
observed that a large proportion (around 80 %) of high-PPB compounds 
had high SLogP (≥3) and low LogS (<− 4), as shown in Fig. 6A and 6B. In 
medium- or low-PPB compounds, the proportion of compounds with 
SLogP≥3 and LogS<− 4 decreased significantly. Therefore, SLogP was 
positively correlated with PPB and LogS were negatively correlated with 
PPB. If The SLogP is greater and the groups are more lipophilic, the 
hydrophobic effect is stronger. If the LogS is smaller, the groups are less 
hydrophilic, the bonding between the drug and plasma protein as well as 
hydrophobic binding is stronger, and thus the plasma protein binding 
rate is higher.

The number of AromAtom or nAromBond was also correlated with 
PPB (cf. Fig. 6C.). A reduction in the number of AromAtom or nAr-
omBond led to a significant decrease in the value of PPB – not a 

surprising observation, as it is generally known that the increase in the 
number of aromatic rings can improve the lipophilic properties of a 
drug, leading to greater SLogP value and thus higher PPB. In addition, 
we found that a higher number of halogen atoms (nX) may be associated 
with higher PPB values (cf. Fig. 6D), which may be related to an 
increased propensity for hydrogen bonding, as the introduction of hal-
ogens increases electronegativity.

The number of acid (nAcid) or basic (nBase) groups is closely related 
to the pKa of compounds. It was found that, for compounds with 0–1 
acid groups, nAcid had no effect on PPB. For nAcid ≤ 2, the increase of 
nAcid may lead to lower PPB values. As for nBase, the effect of basic 
groups on PPB was more significant than that of acidic groups. In gen-
eral, more basic groups may lead to lower PPB values (cf. Fig. 6E and F).

Atom-bond Connectivity Index (ABC Index) refers to the strong 
interaction between two or more adjacent atoms, including covalent, 
ionic and metallic bonds. The study found that lower ABC Indices were 
associated with lower PPB values, as shown in Supporting Materials 
Figure S2A. Hydrogen bonding is known to be a very important inter-
molecular force, and our results showed that the more hydrogen bond 
donors a molecule contained (i.e., >2), the more likely it was to have a 
lower PPB, whereas the number of hydrogen bond acceptors had no 
significant influence on PPB (cf. Supporting Materials Figure S2B and 
S2C). In addition to the above mentioned descriptors, we identified 
other physicochemical descriptors that showed positive correlations 
with PPB, e.g., KappaShapeIndex, sum of atomic volume parameters 
(McGowanVolume), atomic polarizability, rotatable bond (nRot), van 
der Waals volume (VdwVolumeABC), and some topological indicators, 
such as Wiener index and ZagrebIndex, cf. Supporting Materials 
Figure S2D-J.

4.6. Substructures that affect PPB

To identify structures that significantly affect PPB, we built a clas-
sification model (PPB>90 % and PPB< 50 %) using Morgan2 finger-
prints and generated a similarity map for several representative 
compounds (Riniker and Landrum, 2013). The representative similarity 
maps of 3 low-PPB and 3 high-PPB compounds are displayed in Fig. 7. 
For low-PPB compounds (cf. Fig. 7A-C), we can conclude that: (1) amino 
groups often existed in low-PPB compounds, while secondary and pri-
mary amines were dominant. It was exactly consistent with the obser-
vation from the descriptor analysis (e.g., more basic groups may lead to 
lower PPB). Also, the presence of five-membered nitrogen heterocyclic 
rings, saturated polycyclic rings, carbonyl groups, hydroxyl groups and 
carboxyl groups appeared to play an important role in the reduction of 
PPB. (2) For high-PPB compounds (cf. Fig. 7D-F), the presence of aro-
matic rings, halogen atoms (F, Cl, Br) in a benzene ring or alkyl chain, 
alkyl chains, sulfonyl groups, thiazoles, oxazoles and oxadiazoles were 
associated with higher PPB values. More details are shown in Supporting 
Materials Figure S3 and Figure S4.

We further analyzed the frequency of occurrence of substructures of 
high/low PPB compounds using SetCompare tool in the OCHEM plat-
form. It was found that several functional groups were strongly associ-
ated with one of the two analyzed classes (cf. Fig. 8a). Aromatic and 
halogen derivatives occurred significantly more often in high-PPB 
compounds. Additionally, arenes and aryl chlorides derivatives were 

Table 3 
RMSE of consensus models developed with LogIt and percentage units.

Unit of individual 
models

Consensus model 
unit

Model 
name

Training set CV, n =
2571

Test set, n =
643

New set n =
25

Test set PFC, n =
63

Test set PFC99, n =
36

LogIt LogIt LogIt-LogIt 0.252 ± 0.004* 0.24 ± 0.007* 0.68 ± 0.1* 0.79 ± 0.08 0.49 ± 0.05*
 % LogIt-% 7 ± 0.2 % 6.6 ± 0.4 % 6 ± 2 % 9 ± 3 0.5 ± 0.1 %*
% LogIt %-LogIt 0.293±0.004 0.273±0.008 0.78±0.1 0.74±0.07 0.9 ± 0.1
 % %-% 7.1 ± 0.2 % 6.4 ± 0.4 % 7.1 ± 2 % 7.5 ± 1 3.6 ± 0.9 %

PFC99 – dataset comprising compounds with PPB>99 %. *indicates significantly lower RMSE (p < 0.05) using the respective consensus unit.

Fig. 5. A heatmap of r2 between any two descriptors or between any descriptor 
and PPB. The heatmap was plotted based on the absolute value of r2.
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overrepresented in the high PPB dataset. At the same time, primary 
amines and secondary aliphatic amines occurred more often in the low 
PPB dataset (cf. Fig. 8b). Other groups associated with low PPB are 
secondary alcohols, heterocycles, α, β-unsaturated carboxylic acids and 
tetrahydrofuran. The results from this analysis can provide useful 

suggestions for chemists seeking to design compounds with low PPB. 
The full list of calculated groups is shown in Supporting Materials.xls 
(SetCompare results).

The model was developed and made publicly available at OCHEM 
platform. OCHEM is a pretty good online service platform. After 15 years 

Fig. 6. The differences in physicochemical properties of high-, medium- and low- PPB compounds. (A) SLogP, (B) LogS, (C) AromAtom or nAromBond, (D) nX, (E) 
nAcid, (F) nBase.

Fig. 7. Similarity maps of representative low-PPB (A-C) and high-PPB compounds (D-F). Atoms colored in red may increase PPB, while atoms colored in green are 
associated with lower PPB values.
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of development, the platform can be very convenient for data manage-
ment and processing, model training and prediction, model tuning and 
optimization, data analysis and a whole chain of other services, which 
are all free of charge. More importantly, OCHEM is easy to use, espe-
cially for chemists who have little computational expertise. However, 
for some chemists, they may want to understand the details of models. In 
such a situation, the convenience of OCHEM may not be a merit for 
them. Additionally, some users may concern about the data privacy. In 
this regard, we recently made OpenOCHEM https://github.com/open-
ochem publicly available. The users can install it on their computers and 
develop models locally. In the future, we will add a way to both export 
and import OCHEM models, allowing the same model to be run online or 
as standalone version.

5. Conclusions

In the present study, we established a highly accurate PPB consensus 
model using the OCHEM platform with high-quality datasets. In the 
retrospective and prospective validation, our model demonstrated 
higher performances compared to the mainstream prediction platforms. 
Accurate prediction of a compound’s PPB value is of high importance for 
drug development and clinical use, especially when the PPB of a com-
pound is >99 %, and our model showed excellent predictive perfor-
mance for such compounds. More importantly, we analyzed the 
chemical features closely related to PPB, including physicochemical 
properties and substructure features and functional groups, which are of 
great significance for structural optimization. Nevertheless, there is still 
room for improvement. For example, the current prediction accuracy for 
high-PPB compounds is generally not satisfactory. In addition, though 
our PPB prediction model demonstrated good performance for most 
compounds, more experimental measurements are required to further 
improve model performance, in particular for compounds with high PPB 
values.
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