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Abstract

Estimating parameters of dynamic models from experimental data is a challenging, and

often computationally-demanding task. It requires a large number of model simulations and

objective function gradient computations, if gradient-based optimization is used. In many

cases, steady-state computation is a part of model simulation, either due to steady-state

data or an assumption that the system is at steady state at the initial time point. Various

methods are available for steady-state and gradient computation. Yet, the most efficient pair

of methods (one for steady states, one for gradients) for a particular model is often not clear.

In order to facilitate the selection of methods, we explore six method pairs for computing the

steady state and sensitivities at steady state using six real-world problems. The method

pairs involve numerical integration or Newton’s method to compute the steady-state, and—

for both forward and adjoint sensitivity analysis—numerical integration or a tailored method

to compute the sensitivities at steady-state. Our evaluation shows that all method pairs pro-

vide accurate steady-state and gradient values, and that the two method pairs that combine

numerical integration for the steady-state with a tailored method for the sensitivities at

steady-state were the most robust, and amongst the most computationally-efficient. We

also observed that while Newton’s method for steady-state computation yields a substantial

speedup compared to numerical integration, it may lead to a large number of simulation fail-

ures. Overall, our study provides a concise overview across current methods for computing

sensitivities at steady state. While our study shows that there is no universally-best method

pair, it also provides guidance to modelers in choosing the right methods for a problem at

hand.

Introduction

At every step of dynamic modeling of biochemical reaction networks, from model formulation

and calibration to model quality assessment, one has to choose from a variety of methods and
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approaches [1, 2]. While some decisions can be made relatively quickly based on the scope of

the problem and available data, other decisions require an assessment of alternatives on a trial-

and-error basis. Therefore, studies that benchmark different algorithms on diverse problems

help modelers make informed decisions and recognize potential problems. Many benchmark

studies have been published that compare methods available for different modeling steps, such

as numerical integration methods for ordinary differential equation (ODE) models [3], com-

putation of derivatives of differential equation solutions [4], solving differential equations and

parameter estimation in Julia [5], optimization using different objective functions and

approaches to link data to model simulations [6], and for parameter estimation in large kinetic

models [7]. Collections of benchmark problems for model simulation or parameter estimation

are valuable resources for such method evaluations [8, 9].

Model calibration, i.e. estimation of model parameters from experimental data, is a particu-

larly challenging step that requires a large number of model simulations and, thus, can be com-

putationally demanding [2]. Therefore, for working with larger models in particular, choosing

the most efficient model simulation method is important for keeping computations tractable.

In many applications, steady-state computation is required during a model simulation. For

example, in a benchmark collection of mathematical models with experimental data curated

from the systems biology literature, 22% (7/32) require steady-state computation [9]. One can

distinguish two cases: pre-equilibration, where the system is assumed to be in a steady state at

the initial time point, then is perturbed and enters a dynamic state; and post-equilibration,

which is required if steady-state data is available, where the system is assumed to reach a steady

state having started from a dynamic state [10]. These two cases can occur together in the same

data set.

Steady-state constraints constitute important prior knowledge, or assumptions, and allow

one to reduce the search space during optimization. However, these constraints also pose a

challenge, as they often come in a form of nonlinear equalities that can cause efficiency and

convergence problems and require special treatment [11–13]. To eliminate steady-state con-

straints, various approaches have been developed to derive analytical expressions for steady

states [13–16]. Furthermore, manifold optimization techniques have been adapted for steady-

state constraints [11]. Still, the derivation of analytical expressions for steady states is only

applicable to some application problems and manifold optimization techniques can be difficult

to tune. Accordingly, most state-of-the-art implementations still rely on the numerical compu-

tation of steady states for given parameters. Often, numerical integration is run until a steady

state is reached. An alternative is to directly solve for the steady state by using Newton’s

method (and variations thereof) to find the zeroes of the ODE right-hand-side. However, the

choice is non-trivial because Newton’s method can be 100 times faster, but numerical simula-

tion is much more robust [12].

As the steady state is usually parameter dependent, multiple methods have also been intro-

duced to compute the sensitivity of the steady state and the objective function gradient. The

most widely used approaches for computing local sensitivities include finite differences, auto-

matic differentiation, forward sensitivity analysis (FSA), and adjoint sensitivity analysis (ASA).

These methods have been compared for dynamic states [4, 17]. Also, for the computation of

steady-state sensitivities, tailored FSA and ASA methods have been implemented that avoid

numerical integration and require solving a system of linear equations instead [10, 13]. Yet, a

comprehensive comparison of steady-state sensitivity analysis methods and pairs of steady-

steady computation and sensitivity analysis schemes has not been performed.

In this study, we consider steady-state and sensitivity-at-steady-state methods that are

broadly applicable, i.e. methods that: do not rely on the model structure, are applicable to both

pre- and post-equilibration, and work both with steady states alone and in combination with
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dynamic states. We study six different pairs of methods and apply them to six real-world prob-

lems, and investigate how each method pair affects computation time and failure rate. Overall,

we find that Newton’s method should be used with caution, as it is less robust than numerical

integration. We conclude that the two method pairs that combine numerical integration for

the steady state with a tailored method for the sensitivities at steady-state stand out favorably

in terms of overall efficiency and robustness.

Methods

We consider dynamic models of biochemical processes that can be described by systems of

ODEs and are defined as initial value problems

_x ¼ fðxðt; θ; uÞ; θ; uÞ; xðt0; θ; uÞ ¼ x0ðθ; uÞ; ð1Þ

which determine the evolution in time, denoted by t 2 R, of a vector of state variables

xðt; θ; uÞ 2 Rnx , representing, e.g., abundances of biochemical species. The vector θ 2 Rny

denotes unknown parameters. The vector u 2 Rnu denotes known inputs that can specify

experimental conditions by directly specifying model component values that represent, for

example, various external stimuli such as growth factors, receptor ligands, drug administration

regimes or changes in cell culture medium composition. The vector field of the ODE model is

f : Rnx � Rny � Rnu ! Rnx , which is assumed to be Lipschitz-continuous with respect to x,

and the initial condition at t = t0 is x0 : Rny � Rnu ! Rnx . Depending on a specific application,

domains of x, θ, and u might be further restricted to ensure plausibility. In systems biology

applications, both state variables and unknown parameters are often constrained to be non-

negative, as x, for example, might describe species concentrations and θ might denote reaction

rate constants. This restriction, however, is not necessary for the methods described in this

study.

The connection between data and the model is provided by the observation map h :

Rnx � Rny � Rnu ! Rny and the vector of observables,

yðt; θ; uÞ ¼ hðxðt; θ; uÞ; θ; uÞ:

The experimental data for these observables are denoted by

D ¼ fðtj; �yijÞ : i ¼ 1; . . . ; ny; j ¼ 1; . . . ; ntg, with measurement time points tj and measure-

ments �yij.

Maximum likelihood estimation with forward or adjoint sensitivity

analysis

Frequently, the only way to obtain appropriate values for parameters θ is to estimate them

from experimental data D. This can be done, for example, using the maximum likelihood

approach, where the likelihood (LDðθÞ) is the probability of the measurements given the

model [2]. In the case of independent, normally distributed measurements, the negative log-

likelihood is

J ðθÞ ¼ � logLDðθÞ ¼
1

2

Xny

i¼1

Xnt

j¼1

log 2ps2

ijðθÞ
� �

þ
�yij � yiðtj; θ; uÞ

sijðθÞ

 !2 !

; ð2Þ

where �yij ¼ yiðtj; θ; uÞ þ εij are measurements with additive noise εij � N ð0; s2
ijðθÞÞ, σij(θ) are

standard deviations, and yi(tj, θ) are model simulations.
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The maximum likelihood estimate of the parameters is the solution to the optimization

problem

θ∗ ¼ argmin
θ

J ðθÞ:

This problem can be efficiently solved using gradient-based global and multi-start optimiza-

tion methods [1, 7]. These methods require the computation of the objective function gradient,

which can be achieved, e.g., by using the finite differences approach, FSA, or ASA. Both FSA

and ASA are more reliable and efficient than finite differences, which can be numerically

unstable [1, 17]. In the following, we describe both in detail and how they can be modified at

steady state.

The gradient of the objective function (2) with respect to the parameters is given by

@J
@yk

�
�
�
�
�

θ

¼
Xny

i¼1

Xnt

j¼1

1

sijðθÞ
1 �
ð�yij � yiðtj; θ; uÞÞ

2

s2
ijðθÞ

 !
@sij

@yk

�
�
�
�
�

θ

�
ð�yij � yiðtj; θ; uÞÞ

s2
ijðθÞ

@yi
@yk

�
�
�
tj ;θ;u

 !

;

where the sensitivity of the output yi with respect to parameter θk can be computed by

@yi
@yk

�
�
�
�
t;θ;u

¼
@hi

@x

�
�
�
�
xðt;θ;uÞ;θ;u

@x
@yk

�
�
�
�
t;θ;u

þ
@hi

@yk

�
�
�
�
xðt;θ;uÞ;θ;u

: ð3Þ

The term @x
@yk

is the vector of state sensitivities with respect to parameter θk, also denoted by sxk.
The state sensitivities can be tricky to compute, as x is only given as the solution of the ODE

(1).

One can calculate state sensitivities by using FSA. By differentiating the equations (1) with

respect to θ, one can get an ODE system governing state sensitivities sxk:

_sxk ¼
@f
@x

�
�
�
�
xðt;θ;uÞ;θ;u

sxkðt; θ; uÞ þ
@f
@yk

�
�
�
�
xðt;θ;uÞ;θ;u

; with sxkðt0; θ; uÞ ¼
@x0

@yk

�
�
�
�

θ;u

; ð4Þ

where k = 1, . . ., nθ and @f
@x represents the Jacobian of the system (1)

@f
@x

xðt;θ;uÞ;θ;u

¼

@f1
@x1

� � �
@f1
@xnx

..

. . .
. ..

.

@fnx
@x1

� � �
@fnx
@xnx

2

6
6
6
4

3

7
7
7
5

�
�
�
�
�
�
�
�
�
xðt;θ;uÞ;θ;u

:

�
�
�
�
�
�
�
�
�

Solving this ODE system yields state sensitivities, from which output sensitivities
@yi
@yk

can be

easily calculated by (3). Numerical integration of the state sensitivities ODEs (4) is often cou-

pled with integration of the system (1), which improves computational efficiency [18, 19].

An alternative to FSA is ASA, which allows for the calculation of the objective function

gradient while avoiding calculation of output sensitivities [17]. It is achieved by

introducing the adjoint state pðt; θ; uÞ : ½t0; tnt � � R
ny � Rnu ! Rnx , such that 8j = nt. . ., 1, p

on interval (tj−1, tj] satisfies the backward differential equation

_pðt; θ; uÞ ¼ �
@f
@x

�
�
�
�
�

T

xðt;θ;uÞ;θ;u

pðt; θ; uÞ; ð5Þ
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with boundary values

pðtj; θ; uÞ ¼ lim
t!tþj

pðt; θ; uÞ þ
Xny

i¼1

@hi

@x

�
�
�
�

T

xðtj;θ;uÞ;θ;u

ð�yij � yiðtj; θ; uÞÞ
s2
ijðθÞ

; and

lim
t!tþnt

pðt; θ; uÞ ¼ 0:

The adjoint state is used to reformulate the gradient

@J
@yk

�
�
�
�
�

θ

¼
Xny

i¼1

Xnt

j¼1

1

sijðθÞ
1 �
ð�yij � yiðtj; θ; uÞÞ

2

s2
ijðθÞ

 !
@sij

@yk

�
�
�
�
�

θ

 !

�
Xny

i¼1

Xnt

j¼1

ð�yij � yiðtj; θ; uÞÞ
s2
ijðθÞ

@hi

@yk

�
�
�
�
�
xðt;θ;uÞ;θ;u

�

Z tnt

t0

pðt; θ; uÞT
@f
@yk

�
�
�
�
�
xðt;θ;uÞ;θ;u

dt � pðt0; θ; uÞ
T @x0

@yk

�
�
�
�
�

θ;u

;

ð6Þ

in which @x0/@θk denotes the sensitivity of the initial state with respect to parameter θk. As was

shown in [17], this approach is computationally more efficient than finite differences or FSA

for models with high numbers of state variables or parameters.

Steady-state computation

In this study, we focus on cases in which evaluating the objective function involves the compu-

tation of a parameter-dependent steady state x*(θ, u):

x∗ðθ; uÞ ¼ lim
t!1

xðt; x0ðθ; uÞ; θ; uÞ: ð7Þ

This is rather common, as before and after perturbations the biological systems are often in an

asymptotically-stable steady state or approach one. Exceptions are oscillating and chaotic

systems.

There are two typical cases [10]:

1. pre-equilibration, where at t = t0, x is the steady state associated with input ue; and

2. post-equilibration, where as t!1, x approaches the steady state x*(θ, u) associated with

input u.

In both cases, according to Picard-Lindelöf theorem, the system (1) has a unique steady

state for each initial condition (x0(θ, u)) [20].

To compute the steady state of the ODE system (1), one must solve for x the equation

fðxðt; θ; uÞ; θ; uÞ ¼ 0;

which is generally nonlinear and a closed-form solution is not available. The most straightfor-

ward numerical approach is to integrate the system of ODEs until time derivatives _x become

sufficiently small. For example, the integration can be performed until condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nx

Xnx

i¼1

ð _xiwiÞ
2

s

< 1; where wi ¼
1

rtol � xi þ atol
; ð8Þ

is fulfilled, where “rtol” and “atol” denote relative and absolute tolerances, respectively.
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Another well-known approach is Newton’s method, where the approximation xl of the

solution is computed iteratively by formula

xlþ1 ¼ xl �
@f
@x

�
�
�
ðxl ;θ;uÞ

� �� 1

fðxl; θ; uÞ; l ¼ 0; 1; . . . ;

until convergence criterion, e.g. (8), is fulfilled. The method is very sensitive to the initial guess

x0 and may not converge if started too far away from the solution. One can extend the radius

of convergence by modifying the step length:

xlþ1 ¼ xl � g
@f
@x

�
�
�
ðxl ;θ;uÞ

� �� 1

fðxl; θ; uÞ; ð9Þ

where γ� 1 [12]. The factor γ is increased if the error (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nx

Pnx
i¼1
ð _xiwiÞ

2
q

for condition (8)) is

reduced and decreased otherwise. When successful, Newton’s method can be orders of magni-

tude faster than numerical integration [12].

Objective function gradient computation at steady state

If either pre- or post-equilibration is required, it affects objective function gradient

computation:

1. Pre-equilibration. In this case, the initial condition is defined as the steady state corre-

sponding to a pre-equilibration input ue: x0(θ, u) = x*(θ, ue), where x* is the steady state of

_x ¼ fðxðt; θ; ueÞ; θ; ueÞ; xðt0; θÞ ¼ x0ðθ; ueÞ:

Here, x* affects x(tj, θ, u) and, consequently, the simulated observable values y(tj, θ, u).

Moreover, it influences sensitivity computation both for FSA and ASA, namely, the initial

condition in (4) and the last term in (6).

2. Post-equilibration. In this case one needs to account for steady-state measurements

�yi∗ ¼ yi∗ðθ; uÞ þ εi∗ with εi∗ � N ð0; s2
i∗ðθÞÞ;

in which yi*(θ, u) = hi(x*(θ, u), θ, u) denotes the values of the observable yi at the steady

state (7), and s2
i∗ðθÞ 2 Rþ denotes the noise variance. In practice, post-equilibration mea-

surements arise when measuring a real system that appears to have reached a steady state,

e.g. long after the last input change occurred. It is possible that both steady-state and time-

course measurements are available. Therefore, in this study we consider the most general

case.

The steady-state measurements need to be included in the objective function,

J ðθÞ ¼ � logLDðθÞ ¼
1

2

Xny

i¼1

Xnt

j¼1

log 2ps2

ijðθÞ
� �

þ
�yij � yiðtj; θ; uÞ

sijðθÞ

 !2 !

þ
1

2

Xny

i¼1

log 2ps2

i∗ðθÞ
� �

þ
�yi∗ � yi∗ðθ; uÞ

si∗ðθÞ

� �2
 !

;
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and its gradient,

@J
@yk

�
�
�
�
�

θ

¼
Xny

i¼1

Xnt

j¼1

1

sijðθÞ
1 �
ð�yij � yiðtj; θ; uÞÞ

2

s2
ijðθÞ

 !
@sij

@yk

�
�
�
�
�

θ

�
ð�yij � yiðtj; θ; uÞÞ

s2
ijðθÞ

@yi
@yk

�
�
�
�
�
tj;θ;u

0

@

1

A

�
Xny

i¼1

ð�yi∗ � yi∗ðθ; uÞÞ
2

s3
i∗ðθÞ

@si∗

@yk

�
�
�
�
�

θ

þ
ð�yi∗ � yi∗ðθ; uÞÞ

s2
i∗ðθÞ

@yi∗
@yk

�
�
�
�
�

θ;u

0

@

1

A:

Tailored methods for handling steady states

The steady-state condition facilitates alternative approaches for sensitivity-at-steady-state

computation. In this section we describe how it can be used to simplify gradient computation

both in FSA and ASA.

As _sxkjx¼x∗ ¼ 0 for all k = 1, . . ., nθ, the forward sensitivities ODE system (4) simplifies to

@f
@x

�
�
�
�
x∗ðθ;uÞ;θ;u

sxkjx∗ðθ;uÞ;θ;u ¼ �
@f
@yk

�
�
�
�
x∗ðθ;uÞ;θ;u

; k ¼ 1; . . . ; ny: ð10Þ

Therefore, if the Jacobian of the system (1) has full rank, the system of nxnθ FSA ODEs (4) sim-

plifies to a system of the same number of linear algebraic equations [11, 13]. This approach is

applicable to both the pre- and post-equilibration cases.

If the adjoint sensitivities approach is used, computations can be simplified as well. In the

pre-equilibration case, one can extend ASA to the pre-equilibration time interval [−t0, t0],

where −t0 is such that the steady state has already been achieved. Then objective function gra-

dient is given by

@J
@yk

�
�
�
�

θ

¼
Xny

i¼1

Xnt

j¼1

1

sijðθÞ
1 �
ð�yij � yiðtj; θ; uÞÞ

2

s2
ijðθÞ

 !
@sij

@yk

�
�
�
�

θ

 !

�
Xny

i¼1

Xnt

j¼1

ð�yij � yiðtj; θ; uÞÞ
s2
ijðθÞ

@hi

@yk

�
�
�
�
xðtj;θ;uÞ;θ;u

�

Z t0

� t0
pðt; θ; ueÞ

T @f
@yk

�
�
�
�
x0 ;θ;ue

dt

�

Z tnt

t0

pðt; θ; uÞT
@f
@yk

�
�
�
�
xðt;θ;uÞ;θ;u

dt � pð� t0; θ; ueÞ
T @x0

@yk

�
�
�
�

θ;u

:

ð11Þ

On this time interval the system (5) is a linear ODE system with constant matrix. At t = −t0 this

system is at steady state p = 0, therefore, the last term in (11) vanishes. The third term in (11)

reduces to a matrix-vector product

pintegral �
@f
@yk

�
�
�
�
x∗ðθ;ueÞ;θ;ue

;
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where pintegral can be computed as the solution of the system of linear algebraic equations

@f
@x

�
�
�
�

T

x∗ðθ;ueÞ;θ;ue
pintegral ¼ � pðt0; θ; uÞ: ð12Þ

In the post-equilibration case the gradient is given by

@J
@yk

�
�
�
�

θ

¼
Xny

i¼1

Xnt

j¼1

1

sijðθÞ
1 �
ð�yij � yiðtj; θ; uÞÞ

2

s2
ijðθÞ

 !
@sij

@yk

�
�
�
�

θ

 !

�
Xny

i¼1

ð�yi∗ � yi∗ðθ; uÞÞ
2

s3
i∗ðθÞ

@si∗

@yk

�
�
�
�

θ

� �

�
Xny

i¼1

Xnt

j¼1

ð�yij � yiðtj; θ; uÞÞ
s2
ijðθÞ

@hi

@yk

�
�
�
�
xðt;θ;uÞ;θ;u

�
Xny

i¼1

ð�yi∗ � yi∗ðθ; uÞÞ
s2
i∗ðθÞ

@hi

@yk

�
�
�
�
x∗ðθ;uÞ;θ;u

�

Z tnt

t0

pðt; θ; uÞT
@f
@yk

�
�
�
�
xðt;θ;uÞ;θ;u

dt

�

Z t00

tnt

pðt; θ; uÞT
@f
@yk

�
�
�
�
xðt;θ;uÞ;θ;u

dt � pðt0; θ; uÞ
T @x0

@yk

�
�
�
�

θ;u

;

ð13Þ

where t0 0 is a time point at which time derivatives _x are negligible and x(t) is a good approxima-

tion of the steady-state x*.
The sixth term in (13) reduces to a matrix-vector product

pintegral �
@f
@yk

�
�
�
�
x∗ðθ;uÞ;θ;u

;

where pintegral can be computed as the solution to

@f
@x

�
�
�
�

T

x∗ðθ;uÞ;θ;u

pintegral ¼ � pðt
00; θ; uÞ: ð14Þ

The tailored ASA approach for both pre-equilibration and post-equilibration is described in

more detail in [10].

One should note that, if the (transposed) Jacobian is not full rank, the tailored approaches

are not applicable. In this case, none of the systems (10), (12) and (14) has a unique solution

and standard integration must be carried out. A possible reason for a singular Jacobian is the

presence of conserved quantities in the model [21]. Various algorithms are available for identi-

fication of conserved quantities that facilitate applicability of the tailored methods [22–24].

Implementation

The six test problems (Table 1) were downloaded from the PEtab benchmark collection [25].

Model simulations and sensitivity computations were performed using AMICI [26]. For

numerical integration, an algorithm based on the backward-differentiation formula (BDF) was

used. Optimization was performed using the Fides trust-region optimizer [27] via pyPESTO

[28]. Simulator options and further details are provided in Section “Implementation” of the S1

Text.
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Results

The combination of computing steady states by numerical integration or by Newton’s method

with FSA, ASA, or their tailored-to-steady-state versions gives rise to eight different method

pairs (Fig 1). In this study, we consider the six pairs that are feasible and meaningful (in the fol-

lowing, we use a shorthand notation to refer to the method pairs, where each method pair is

represented by a tuple of steady-state and sensitivities-at-steady-state method,
R

signifies

numerical integration, whereas ϕ signifies solving an algebraic equation):

• numerical integration for both steady-state and sensitivities computation (h
R
x;
R

J y;FSAi

and h
R
x;
R

J y;ASAi);

• numerical integration for steady-state computation combined with the sensitivities compu-

tation approach tailored to steady-state case (h
R
x; �J y;FSAi and h

R
x; �J y;ASAi); and

• Newton’s method for steady-state computation combined with the sensitivities computation

approach tailored to steady-state case (h� x; �J y;FSAi and h� x; �J y;ASAi).

Note that with FSA, it is not possible to use Newton’s method for steady-state computation

together with numerical integration approach for sensitivities, as numerical integration of the

state sensitivities ODEs (4) is coupled with integration of the system (1) [18]. While the ASA

variant of this method pair is feasible, it is not practical, as the tailored method for sensitivities

is always applicable when Newton’s method can be used for steady-state computation. There-

fore, we do not consider these two method pairs in this study.

As it is not immediately clear which of the six method pairs are best in practice, we assess

their performance on a selection of real-world problems of varying complexity that required

steady-state computation. These models describe epigenetic [29, 30] and signal transduction

processes [31–34]. Four of the problems possess pre-equilibration constraints and two possess

post-equilibration constraints. The number of states ranges from 6 to 1396 and the number of

parameters from 9 to 4088. For details we refer to the information on Table 1. The original

Table 1. Overview of the models and optimization problems considered in this study. Here, nx is the number of state variables, nθ is the number of unknown parame-

ters, n�y is the number of data points, nu is the number of inputs u and “x*type” is the equilibration type.

Problem nx nθ n�y nu x*type Description Ref.

Blasi 15 9 252 1 post The model describes acetylation of the histone H4 N-terminal tail domain. Contains 1 conserved quantity that is

automatically removed by AMICI, which means that nx was reduced from 16 to 15.

[29]

Brännmark 6 22 43 8 pre The model describes early insulin signalling. Contains 3 conserved quantities that were removed prior to the

analysis to ensure a full-rank Jacobian. Consequently, the nx was reduced from 9 to 6.

[31]

Fröhlich 1396 4088 143 143 post The model describes major cancer-associated signaling pathways and facilitates analysis of various cancer types

and drug treatments. In this study we used only a subset of data used in the original publication to reduce

computation time required for model simulation and thereby optimization too. Specifically, we only used the

control conditions, which are 143 out of the total 5281 inputs u. Therefore, the number of inputs nu as well as

the number of data points used in this study is equal to 143.

[32]

Isensee 18 44 216 58 pre The model describes the activity, in response to various treatments, of the cAMP-dependent protein kinase A,

which is crucial for pain sensitization and other biological functions. We used only a subset of data, specifically,

58 out of the total 123 inputs u in the original publication, which corresponds to 216 data points out of total

687. The model contains 7 conserved quantities that were removed prior to the analysis to ensure a full-rank

Jacobian, which means that nx was reduced from 25 to 18.

[33]

Weber 7 36 135 2 pre The model describes phosphorylation-dependent CERT protein-mediated regulation of ceramide transfer

between endoplasmic reticulum and Golgi membranes.

[34]

Zheng 15 46 60 1 pre The model describes histone methylation dynamics. [30]

https://doi.org/10.1371/journal.pone.0312148.t001
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Blasi, Brännmark and Isensee models contain conserved quantities that lead to a rank-

deficient Jacobian, which is not compatible with the Newton’s method and the tailored sensi-

tivities-at-steady-state methods. The conserved quantities were removed prior to the analysis

details are given in Section “Conserved quantities” of the S1 Text.

We apply the six method pairs on these six real-world problems to assess robustness, accu-

racy, and speed, which are crucial for gradient-based parameter estimation.

Fig 1. Method pairs considered in this study. Columns correspond to two methods for steady-state computation:

numerical integration and Newton’s method. Rows correspond to different approaches for sensitivities computation at

steady state: both for forward sensitivity analysis and adjoint sensitivity analysis one can either use numerical

integration or an approach tailored to the steady-state case that only requires solving a linear system of equations. Two

method pairs are not feasible or not meaningful (see main text). Each method pair is represented by a tuple of steady-

state and sensitivities-at-steady-state method,
R

signifies numerical integration, whereas ϕ signifies solving an algebraic

equation.

https://doi.org/10.1371/journal.pone.0312148.g001
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Numerical integration is more robust than Newton’s method

Model analysis, parameter estimation and related tasks require robust model evaluations. To

assess whether this is achieved by the different pairs of steady-state and sensitivity-at-steady-

state computation methods, we evaluated their failure rates. Therefore, for each model, we

sampled 1000 parameter vectors log-uniformly within the parameter bounds specified in the

PEtab files, then performed simulation and gradient computation with each vector. Only for

the Fröhlich model the h
R
x;
R

J y;FSAi case was not considered since it has already been

shown to be computationally prohibitive [32]. We consider a model simulation for a given

parameter vector as failed if for any input u the simulation (a) fails due to any numerical

errors, or (b) returns negative state variables in the solution. The latter accounts for the fact

that the state variables of all six real-world problems represent physically non-negative

quantities.

We observed a broad range of failure rates. For the Blasi and Zheng models, we did not

encounter any failures for the 1000 parameter vectors. For the Brännmark, Isensee and

Weber models, the failure rate for the six method pairs ranged from 31.5% with

h
R
x;
R

J y;ASAi and h
R
x; �J y;ASAi to 48.8% with h� x; �J y;FSAi (Fig 2a), from 7.7% with

h
R
x; �J y;FSAi to 54.3% with h� x; �J y;ASAi (Fig 2c), and from 22.4% with h

R
x; �J y;ASAi to

48.3% with h� x; �J y;FSAi (Fig 2d), respectively. The experimental conditions for the Weber
model are described using a discontinuous function, which caused numerical problems in

about 17% of the simulations for each of the six method pairs (S1 Fig in S1 Text). With the

Brännmark model, we observed that for about 30% of sampled parameters simulations failed

independently of the applied method (S1 Fig in S1 Text). This suggests that the model does not

exhibit a steady state for those parameter sets. For the Fröhlich model, h� x; �J y;FSAi and

h� x; �J y;ASAi failed for 100% of the parameter vectors, while the three remaining pairs had a

failure rate less than 2.5% percent (Fig 2b).

The reason for the high failure rate with Newton’s method varied between models. The

most common reason for all models is that the factor γ in (9) reached a lower bound while the

Fig 2. Failure rates for different method pairs based on model simulations with 1000 randomly sampled

parameter vectors. We did not encounter any failures for the Blasi and Zheng models.

https://doi.org/10.1371/journal.pone.0312148.g002
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condition (8) was not fulfilled, i.e. the steady state could not be computed because the initial

guess was too far away from it, and even the modification described in (9) could not resolve

the issue. For the Fröhlich model, Newton’s method failed with every parameter vector due

to numerical errors in at least one of the nu steady-state computations. Indeed, only 6.6%

(9,454/143,000) of the attempts to compute a steady state using h� x; �J y;FSAi and

h� x; �J y;ASAi did not have numerical errors. The hypothesis that the failure rate for Newton’s

method depends on the number of state variables could not be confirmed based on the given

set of problems—both the Fröhlich model with a large number of state variables and the

Brännmark model with very few state variables exhibited high failure rates. For the

Brännmark, Isensee and Weber models, some steady-state concentrations computed

with Newton’s method had negative values, some of which were several orders of magnitude

away from zero, which is not biologically feasible. This issue did not occur when numerical

integration was used. For example, for the Fröhlich model, concentrations computed with

Newton’s method had negative values for most inputs u simulations that did not have any

numerical issues (9,437/9,454). In other words, only 0.01% of inputs u (17/143,000) could be

simulated successfully with method pairs h� x; �J y;FSAi and h� x; �J y;ASAi.

In summary, this assessment revealed that numerical simulation allows for a higher fraction

of successful simulations than Newton’s method.

All method pairs provide accurate steady-state and gradient computation

Given that a computation is successful, the most important factor is accuracy. To assess the

accuracy, we compared the steady-state values obtained by applying the method pairs with the

sampled parameter vectors.

For all successful simulations, the steady-state values computed using either numerical inte-

gration or Newton’s method were similar (S2, S3 Figs in S1 Text). Having confirmed that the

different methods yielded approximately equal steady states, we assessed the agreement of

computed objective function gradient values. For all models, the objective function gradient

values computed using different approaches were similar (Fig 3 and S4 Fig in S1 Text).

In summary, this assessment revealed that for successful simulations the results for different

method pairs are highly comparable. We generally saw improved accuracy (increased similar-

ity between method pairs) with stricter simulation tolerances. The minor differences between

method pairs seen in Fig 3 may be resolved by tolerance tuning.

Using tailored sensitivity-at-steady-state methods significantly reduces

simulation time

After ensuring the accuracy of the steady-state and gradient values, we assessed the computa-

tion time for different method pairs. For all models, the total simulation time is comprised of

equilibration time (pre- or post-), including sensitivities computation, and some overhead (Fig

4a). Additionally, the Brännmark, Isensee, Weber and Zheng models had dynamic sim-

ulation time, because these problems also include dynamic-state measurements. Therefore, we

considered again the successful simulations for the previously sampled 1000 parameter vec-

tors, for which we recorded the total equilibration time, and the overall total simulation time

(Fig 4b).

The method pairs considered in this work address equilibration. Therefore, the effect of the

method pairs on total equilibration time is substantial (Fig 4b, right half of the violins), but it

doesn’t always translate to the total simulation time (Fig 4b, left half of the violins). The reason

is that the difference in the considered method pairs relates only to equilibration time, but not

the dynamic simulation, which is a part of model simulations for the Brännmark,
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Isensee, Weber and Zheng models. For example, for the Weber model the pre-equilibra-

tion speedup of h
R
x; �J y;FSAi over h

R
x;
R

J y;FSAi is 28.7, while the total simulation time

speedup for the same method pairs is 4.2.

In most cases, using Newton’s method instead of numerical integration to compute steady

states, as well as using tailored sensitivity-at-steady-state methods, reduced simulation time.

Fig 3. Comparison of objective function gradients obtained from different method pairs. The heatmaps show Pearson correlation coefficients

between objective function gradient values computed with the six different method pairs. Data was log-transformed prior to the computation of

the coefficients. Scatter plots visualize the difference between objective function gradient values for selected method pairs. Points on the diagonal

indicate a good agreement, darker points indicate higher density. The maximum and median deviations were computed as defined Section

“Accuracy of gradient computation” of the S1 Text.

https://doi.org/10.1371/journal.pone.0312148.g003
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Speedups of total simulation time ranged from 3.5 to 7.3 for h
R
x; �J y;FSAi over h

R
x;
R

J y;FSAi

(1.2 to 3.6 for h
R
x; �J y;ASAi over h

R
x;
R

J y;ASAi), from 1.05 to 1.2 for h� x; �J y;FSAi over

h
R
x; �J y;FSAi (1 to 2.2 for h� x; �J y;ASAi over h

R
x; �J y;ASAi). Our analysis shows that, while

h
R
x;
R

J y;FSAi was the slowest approach for all problems, the fastest approach was model-

dependent. For all models (except for the Fröhlich model) the fastest method pair was

either h� x; �J y;FSAi or h� x; �J y;ASAi.

Using sensitivity-at-steady-state methods significantly reduces

optimization time

Simulation efficiency is especially important when large numbers of simulations have to be

performed. This is often the case during parameter estimation where thousands to millions of

objective function evaluations, and thus, model simulations are required. Accordingly, total

optimization time is comprised of the cumulative total simulation time over all optimization

steps, the time taken by the optimizer, and any additional overhead (Fig 5a).

Therefore, to assess how the choice of steady-state and sensitivity-at-steady-state methods

affects optimization efficiency and robustness, we ran 1000 local optimizations for the Blasi,

Brännmark, Isensee, Weber and Zheng models for each method pair. With the

Fröhlich model, only 50 local optimizations were performed with a maximum of 30 opti-

mizer steps, due to the need for massive computational resources. Furthermore, for the

Fröhlich model we disregarded h� x; �J y;FSAi and h� x; �J y;ASAi due to high failure rates

and h
R
x;
R

J y;FSAi due to inefficiency.

Fig 4. Comparison of total simulation times and equilibration times for different combinations of problems and

steady-state sensitivity methods. (a) Composition of total simulation time. The main components are, depending on

the model, pre- or post-equilibration including sensitivities computation and dynamic simulation (only for

Brännmark, Isensee, Weber and Zheng models). (b) Violin plots comparing simulation efficiency of the

method pairs. The left side on the violin plots shows total simulation time, the right side—total equilibration time.

https://doi.org/10.1371/journal.pone.0312148.g004

PLOS ONE Local sensitivities in ODE models at dynamic and steady states

PLOS ONE | https://doi.org/10.1371/journal.pone.0312148 October 23, 2024 14 / 19

https://doi.org/10.1371/journal.pone.0312148.g004
https://doi.org/10.1371/journal.pone.0312148


The assessment of the optimization results revealed that the number of optimization fail-

ures correlated with the number of simulation failures (S5 Fig in S1 Text) and all method pairs

had comparable efficacy (S6 Fig in S1 Text). Therefore, we focused on comparing the method

pairs efficiency. The speedups of h� x; �J y;FSAi compared to h
R
x;
R

J y;FSAi were 2.1, 5.6, 8.2,

8.6, 2.6 for Blasi, Brännmark, Isensee, Weber and Zheng models, respectively, and

the speedups of h� x; �J y;ASAi compared to h
R
x;
R

J y;ASAi were 2.7, 1.7, 2.0, 1.7, 1.1 for

Blasi, Brännmark, Isensee, Weber and Zheng models, respectively. The speedups of

h
R
x; �J y;FSAi compared to h

R
x;
R

J y;FSAi were 2.0, 2.9, 3.3, 4.4, 3.5 for Blasi, Brännmark,

Isensee, Weber and Zheng models, respectively, and h
R
x; �J y;ASAi compared to

h
R
x;
R

J y;ASAi was 1.3, 1.2, 1.4, 2.0, 1.0, 1.4 times as fast for the Blasi, Brännmark,

Isensee, Fröhlich, Weber and Zheng models, respectively.

Overall, as with total simulation time, we observed that both using Newton’s method

instead of numerical integration, and using tailored sensitivities-at-steady-state approaches,

substantially reduces total equilibration time, i.e. cumulative equilibration time over all optimi-

zation steps, (Fig 5b, right half of the violin plots). The effect on total optimization time is not

as pronounced, because the difference in methods is only in relation to simulation time, partic-

ularly equilibration time, but not the time taken in the optimizer itself, or other overhead. For

most model, the fastest method pair was either h� x; �J y;FSAi and h� x; �J y;ASAi. One should

keep in mind, however, that for some models these method pairs may not be applicable or

result in many multi-start failures at the starting point. Fortunately, the more robust method

pairs h
R
x; �J y;FSAi and h

R
x; �J y;ASAi are more efficient compared to h

R
x;
R

J y;FSAi and

h
R
x;
R

J y;ASAi.

Fig 5. Optimization efficiency, total time vs. equilibration time. (a) Composition of total optimization time, where n
is the number of optimization steps. Multiple simulations are required during an optimization, each, depending on the

model, might include equilibration and dynamic simulation. (b) Violin plots comparing optimization efficiency of the

method pairs.

https://doi.org/10.1371/journal.pone.0312148.g005
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Discussion and conclusion

In this study, we explored six combinations of methods for computing steady states and sensi-

tivities at steady state, and evaluated their accuracy, efficiency and robustness based on six

real-world problems. All those methods have been introduced before, but have not yet been

evaluated on a joint set of problems [1, 10, 12, 17]. The considered methods are widely applica-

ble and do not require any specific model properties. However, it should be taken into account

that the standard FSA approach is the least scalable and becomes prohibitively computationally

expensive for large-scale models, while the more scalable ASA approach avoids computation

of state sensitivities that may be needed for further analysis. Our results indicate that tailored

sensitivities computation methods are more robust and more efficient than the standard FSA

or ASA approaches that rely on numerical integration. In contrast, we found that using

numerical integration for steady-state computation was more robust than using Newton’s

method. However, when Newton’s method worked reliably, it was more than twice as fast.

An important issue we encountered was that computing steady states using Newton’s

method led to non-physical solutions, in our case negative concentrations. This is a general

problem with Newton’s method and alternative approaches able to respect non-negativity con-

straints, or better general constraints on the steady-state, while maintaining much of the effi-

ciency would be valuable. However, we are not aware of any such implementation in the

context of ODE model simulators.

Different subsets of the methods evaluated here have also been investigated in earlier stud-

ies [10–12]. Using Newton’s method for steady-state computation was demonstrated and eval-

uated in [12]. While we also observed a speedup when using Newton’s method, we found it

only to be roughly twice as fast, instead of 100 times as fast as in the earlier study for the same

model. This might be explained best by the comparatively small distances of the initial states

from the steady state in [12]. The high failure rate we observed for the Fröhlich model is in

line with the earlier observations. The tailored ASA method for computation of steady-state

sensitivities (h
R
x; �J y;ASAi) was introduced and compared to the standard ASA approach

(h
R
x;
R

J y;ASAi) in [10]. Simulation and optimization speedup values we observed in this

study are in line with the previous results for the same models.

While we would like to derive general guidelines for choosing the best method for a given

model, we have to note that our results might not generalize fully. Our study showed that the

impact of the explored approaches on failure rates and speedup are quite problem-dependent.

We based our analysis on six of the seven models available in the PEtab benchmark collection

[9]. Further extension of the model collection, in particular by models that require steady-state

computation, would allow for a more comprehensive analysis. Furthermore, much of the

robustness and efficiency will depend on the exact implementation of the different algorithms

and the chosen hyperparameters. It has been demonstrated elsewhere in the context of optimi-

zation, how different implementations of the supposedly same algorithm can perform quite

differently [27]. Our results are based on AMICI [26]. We were not able to find another tool

that would have allowed us to compare all the different methods explored here.

In summary, we illustrated different approaches for computing sensitivities for ODE simu-

lations involving steady-states and demonstrated their advantages and disadvantages. While

we focused here on systems biology applications, we think that these results mostly transfer to

other fields, and can give modelers at least a first orientation on which methods to choose. Our

comparison suggests one should be cautious when using Newton’s method for steady-state

computation, as it might lead to a high number of failures or unphysical solutions. On the

other hand, using tailored sensitivity-at-steady-state methods (h
R
x; �J y;FSAi or
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h
R
x; �J y;ASAi) is advantageous as these methods are robust and lead to a significant computa-

tional speedup.
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26. Fröhlich F, Weindl D, Schälte Y, Pathirana D, Paszkowski L, Lines GT, et al. AMICI: high-performance

sensitivity analysis for large ordinary differential equation models. Bioinformatics. 2021; 37(20):3676–

3677. https://doi.org/10.1093/bioinformatics/btab227 PMID: 33821950

27. Fröhlich F, Sorger PK. Fides: Reliable trust-region optimization for parameter estimation of ordinary dif-

ferential equation models. PLOS Computational Biology. 2022; 18(7):1–28. https://doi.org/10.1371/

journal.pcbi.1010322 PMID: 35830470
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