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Abstract 

Simultaneous profiling of single-cell gene expression and lineage history holds 
enormous potential for studying cellular decision-making. Recent computational 
approaches combine both modalities into cellular trajectories; however, they cannot 
make use of all available lineage information in destructive time-series experiments. 
Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles 
across time points based on lineage and gene expression information. We validate our 
approach in simulations and demonstrate on Caenorhabditis elegans embryonic devel-
opment how moslin predicts fate probabilities and putative decision driver genes. 
Finally, we use moslin to delineate lineage relationships among transiently activated 
fibroblast states during zebrafish heart regeneration.
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Background
Many central biological processes like development, disease, or regeneration play out as 
complex changes on multiple levels of biological hierarchy, including the cellular level. 
Due to their transforming nature, these changes are best captured by time-resolved 
measurements. Single-cell assays, including single-cell RNA-sequencing (scRNA-
seq), probe cellular heterogeneity at unprecedented resolution and scale at different 
time points but destroy cells in the process. Thus, previous work introduced computa-
tional approaches that link cells across time based on similar gene expression profiles 
[1–3]. While these approaches successfully uncovered trajectories and fate decisions for 
in vitro systems [1, 4] and some in vivo systems [5, 6], they require dense temporal sam-
pling and remain limited to simpler processes where expression similarity faithfully rep-
resents lineage relationships [7].

To improve the accuracy of trajectory inference, scRNA-seq has recently been com-
bined with heritable barcodes that record clonal relationships over long time scales 
in single-cell lineage tracing (scLT) assays [8–13]. For in vitro systems, we can sample 
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from the same cell population several times and use matching barcodes to relate cells 
across time points [14]. In this clonal resampling setting, an earlier method, CoSpar [15] 
(coherent sparse optimization), learns an early-to-late transition matrix by iteratively 
filtering low-probability transitions, enforcing transitions within clones, and promot-
ing overall coherence by smoothing transitions over cells with similar gene expression 
profiles. However, such strategies do not naturally generalize to in vivo lineage-traced 
systems, as each time point corresponds to a different individual, and barcodes are not 
comparable across individuals. Current analysis strategies [13, 16–20] mostly focus on 
analyzing isolated lineage-traced time points. Thus, most methods cannot use the avail-
able lineage-tracing information to connect ancestors to putative descendants at later 
time points.

A notable exception, LineageOT [21], has been introduced to link cells across time 
points for the challenging in vivo lineage tracing setting. However, LineageOT ignores 
lineage information from the earlier time point and constructs the final mapping based 
on expression similarity between early and lineage-smoothed late-stage cells. Similarly, 
CoSpar includes a variant which makes use of gene expression at both time points, but 
lineage information only at a single time point. Thus, the comprehensive integration of 
lineage and gene expression information from all available time points to estimate cellu-
lar state-change trajectories remains an open computational problem.

Here, we present multi-omic single-cell optimal transport for lineage data (moslin), 
a computational method to embed in  vivo clonal dynamics in their temporal context. 
Moslin uses expression similarity and lineage concordance to reconstruct cellular state-
change trajectories for complex biological processes. Moslin uses lineage information 
from all available time points and includes the effects of cellular growth and stochas-
tic cell sampling. Our algorithm is based on a variant of optimal transport (OT) [22], 
which allows us to compare cell pairs (as opposed to individual cells) across time 
points for their lineage history, thus overcoming the limitation of incompatible lineage 
information.

Our approach outperforms LineageOT, CoSpar, and OT-baselines on simulated data 
where ground truth is available. Further, on a scRNA-seq dataset of Caenorhabditis 
elegans embryogenesis, containing gene expression profiles across seven time points 
with known lineage relationships, we combine moslin with CellRank 2 [23], a trajectory 
inference framework, to uncover differentiation trajectories and putative decision-driver 
genes. Finally, in zebrafish heart regeneration, barcoded in single cells using evolving 
CRISPR/Cas9 recording [10] across four time points, we use moslin to predict lineage 
relationships between recently discovered activated fibroblast states that emerge after 
injury. We implemented moslin as a user-friendly Python package with documentation 
and tutorials, available at github.com/theislab/moslin.

Results
Moslin combines lineage and state information to link cells across time

Moslin is an algorithm to reconstruct molecular trajectories of complex cellular state 
changes from time-series single-cell lineage tracing [8, 24, 25] (scLT) studies. Using gene 
expression and lineage information from all available time points, moslin computes 
probabilistic mappings between cells in early and late time points. Using the computed 
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mappings, we infer ancestor and descendant probabilities for rare or transient cell states 
and interface with CellRank 2 [23] to visualize gene expression trends, uncover activa-
tion cascades, and pinpoint potential regulators of key decision events (Fig. 1a).

We designed moslin for time-series scLT studies (“Methods”). These record evolving 
clonal relationships using a variety of approaches, including Cas9/12-induced inser-
tions and deletions (indels) [10–13, 26–29] and naturally occurring mutations [30, 31]. 
Importantly, such evolving lineage tracing systems record hierarchical clonal structure, 

Fig. 1  Moslin maps lineage-traced single cells across time points. a Schematic of scRNA-seq time-course 
experiment with time points t1 (circles) and t2 (triangles). Cells are destroyed upon sequencing; this makes it 
difficult to study the trajectories of early cells giving rise to late cells. We highlight a rare population (brown 
triangles) that only appears at t2, with uncertain origin at t1. b Illustration of independent clonal evolution 
(ICE) experimental design for scLT studies, adjusted from ref [32]. ICE samples cells from different individuals 
at different time points and is applicable to in vivo settings. c Overview of moslin’s optimal-transport 
(OT)-based objective function for in vivo scLT. The gray outline shows a simplified state manifold; shapes 
and colors as in a. The dashed inset highlights lineage trees reconstructed independently for each time 
point [16]; these trees may be used in moslin to quantify lineage similarity. We use Wasserstein (W) and 
Gromov-Wasserstein (GW) terms to compare cells in terms of gene expression and lineage similarity, 
respectively. The combination of W and GW terms gives rise to moslin’s Fused Gromov-Wasserstein (FGW) 
objective function on the right (“Methods”). d The moslin workflow; based on gene expression matrices X 
and Y, marginals a and b, and lineage information across time points, we compute distance matrices CX, CY, 
and C, and use moslin to reconstruct a coupling matrix P, probabilistically matching early to late cells. The 
marginals may be used to quantify measurement uncertainty or cellular growth and death. The coupling 
matrix P may be analyzed directly or passed to CellRank 2 [23] to compute fate probabilities, driver genes and 
expression trends or cascades. Figure created in BioRender.com
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which moslin uses to estimate fine-grained lineage distances (“Methods”). We refer to 
the entirety of any such genomic lineage information in a single cell as a “barcode” and 
demonstrate moslin here over both simulated data and scLT experiments using Cas9-
induced indels.

Applying scLT to in vivo systems usually requires that each time point corresponds to 
a different individual. We relate to this experimental design as “independent clonal evo-
lution” (ICE), as barcode generation proceeds independently in each individual. In con-
trast to the clonal resampling setting introduced above, barcodes in ICE can be directly 
compared within one individual to estimate lineage trees [10–13, 16, 18, 19], but they are 
incompatible across different individuals and hence time points. However, gene expres-
sion continues to be comparable across time points, giving rise to a hybrid setting where 
we may relate lineage and gene expression within and across time points, respectively 
(Fig. 1b and “Methods”).

To link cells from an early (t1) to a late (t2) time point, we make two assumptions. First, 
we assume that cells change their molecular state gradually, a common assumption that 
forms the basis of many established pseudotime algorithms [1, 33–37]. Second, if line-
age relationships shape molecular states [10, 13], and molecular states gradually evolve 
across time points (first assumption), then we may assume that there exists (potentially 
imperfect) “lineage concordance” across time points, even if these time points corre-
spond to different individuals. Thus, according to the second assumption, cell pairs at 
t1 should be mapped to cell pairs at t2 with similar relative lineage distances. By lineage 
distance, we mean the degree to which two cells have diverged on the lineage tree. We 
designed moslin using the flexible framework of optimal transport [38, 39] (OT), which 
allows us to combine both assumptions into a single cost function (Fig. 1c, “Methods,” 
and Additional file 2: Note S1).

We include the first assumption in moslin using a Wasserstein (W) term, which 
encourages links between cells with similar gene expression. Briefly, the W term sums 
over all combinations of early and late cells, aiming to find a probabilistic mapping that 
minimizes the overall cost of transporting cells [1] (“Methods”). We include the second 
assumption in moslin using a Gromov-Wasserstein [22] (GW) term (“Methods” and 
Additional file 2: Note S1). Briefly, the GW term sums over all pairwise combinations of 
early and late cells, aiming to find a probabilistic mapping that minimizes the discrep-
ancy between pairwise lineage distances (“Methods”). Cells are allowed to violate either 
assumption at the cost of incurring a penalty in the objective function.

We balance both terms with an α parameter between 0 and 1, corresponding to W and 
GW terms, respectively [40]. This parameter allows us to tune the weight given to gene 
expression and lineage information. Further, we add entropic regularization at weight 
ǫ to our objective function to speed up the optimization and to improve the statistical 
properties of the solution [39, 41, 42]. Thus, moslin solves a Fused Gromov-Wasserstein 
[40] (FGW) problem with hyperparameters α and ǫ , jointly optimizing lineage concord-
ance and gene expression similarity (Fig. 1c, “Methods,” and Additional file 2: Note S1).

The FGW problem is non-convex and our optimization routine will in general con-
verge to a local minima of the optimization landscape. Numerous previous publications 
demonstrated that local minima of the FGW objective function give good performance 
in practice, for example, when mapping dissociated single cells to physical space [43], 
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aligning tissue slides or computing consensus slides [44, 45], integrating data across 
modalities [46], inferring cell–cell communication [47], or mapping spatial representa-
tions across time [48].

Inputs to the moslin workflow are gene expression matrices X at t1 and Y at t2, as 
well as lineage information (Fig. 1d and “Methods”). In the first step, we compute cost 
matrices C and CX, CY, representing expression and lineage distances, respectively. 
We quantify expression distance across time points using squared Euclidean distance 
in a latent space [1], computed using PCA or scVI [49]. To quantify lineage distance 
within each time point, we either work with Hamming distance among raw barcodes or 
with the shortest path distance among reconstructed lineage trees [10–13, 16, 18, 19] 
(“Methods”). The choice of lineage distance metric depends on the structure of the line-
age information, the expressibility of the barcodes, and the quality of tree reconstruc-
tion (“Methods”). In a second step, moslin solves the FGW problem to find an optimal 
coupling matrix P, relating cells at t1 and t2. The coupling simultaneously minimizes 
expression distances according to C and maximizes lineage concordance between CX 
and CY, using the W and GW terms, respectively. For each cell i at t1, the vector Pi,: 
quantifies lineage and state-informed transition probabilities towards any cell j at t2. 
Finally, we use the coupling matrix P to compute ancestor and descendant probabilities 
[1] directly in moslin and pass it to CellRank 2 for further analysis.

Following previous approaches that link cells across time points using OT [1, 21] or 
related approaches [2], we optionally include prior information about cellular growth 
and death into our objective function. We accomplish this by adjusting the marginal 
distributions passed to moslin, such that cells likely to proliferate or die can distribute 
more or less probability mass, respectively (Fig.  1d). We calculate growth and death 
rates based on prior knowledge or curated marker gene sets [1]. Our implementation 
additionally includes an unbalanced formulation [39, 50, 51] governed by a hyperpa-
rameter τa, which accounts for uncertain growth and death rates as well as for varying 
cell type proportions across time points when sampling cells from different individuals 
(Additional file 2: Note S1 and “Methods”).

Moslin accurately reconstructs simulated trajectories

We start by assessing moslin’s performance in two simulated settings, with a total of five 
different datasets. As an initial verification, we consider simulated single-cell transcrip-
tome trajectories using a previously suggested setting [21]. In this simplified setting, all 
meaningful dynamics occur in two dimensions, representing two genes. A biologically 
plausible trajectory structure is prescribed via a vector field that cells follow through dif-
fusion and occasional cell division. A lineage barcode, including random mutations, is 
assigned to each cell and inherited by its descendants.

We consider four different trajectories of increasing complexity: (i) bifurcation (B), 
where a single progenitor cell type splits into two descendant cell types, (ii) partial con-
vergent (PC), where two initial clusters split independently, and following the split, two 
of the resulting four clusters merge for a total of three clusters, (iii) convergent (C), where 
two initial clusters converge to a single final cell type, and (iv) mismatched clusters (MC), 
where two initial clusters each split into two late-time clusters and cells from two of the 
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resulting late-time clusters are transcriptionally closer to early cells that are not their 
ancestors (Fig. 2a).

We benchmark the performance of moslin against LineageOT [21] and CoSpar [15] 
(“Methods”). We also test two extreme cases of moslin: (i) using only gene expression 
information in a W term (W; α = 0 ) and (ii) using only lineage information in a GW 
term (GW; α = 1 ). We test all methods with two types of lineage-distance computation: 

Fig. 2  Moslin obtains accurate couplings for simple and complex trajectory topologies. a Visualization of 
the four different kinds of simulated trajectories in gene expression space for the 2D setting. b Each subplot 
presents the evaluation of a different simulated trajectory. Per trajectory, the mean error (the mean value 
of the ancestors and descendants error) is evaluated for the true tree or a reconstructed fitted tree for all 
methods, LineageOT, CoSpar, W, GW, and moslin (“Methods”). Error bars depict the 95% confidence interval 
across 10 random simulations. c–e Simulated tree and expression using TedSim [52]. The cell state tree (c) 
defines the underlying trajectories of cell differentiation. TedSim simulations yield gene expression (d) and a 
cell division tree (e), which represents the true lineage and barcode for each cell. f Mean prediction error of 
moslin compared to CoSpar and LineageOT, as a function of the stochastic silencing rate. Error bars depict the 
95% confidence interval across 10 random simulations
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(i) using the ground truth tree and (ii) using a fitted tree based on the simulated bar-
codes (Additional file 1: Fig. S1a, b, “ Methods”). We perform a grid search for each case 
over the relevant hyperparameters (Additional file 1: Fig. S1c, d, “Methods”). To quantify 
method accuracy, we compare gene expression of predicted and ground-truth ancestors 
and descendants in terms of Wasserstein distance [21] (“Methods”). We normalize this 
value by the Wasserstein distance we obtain from an uninformative coupling, given by 
the marginal-outer product, to obtain ancestor and descendant errors. Each value lies 
between 0 (ground truth) and 1 (uninformative). Finally, to obtain a single number quan-
tifying method accuracy, we average over ancestor and descendant errors to obtain the 
“mean error.”

Across all tested settings, moslin achieves the lowest mean error across all trajec-
tory structures and distance variants (Fig. 2b). On average across all trajectories, mos-
lin attains an improvement of 10% (true trees) and 12% (fitted trees) over LineageOT 
and 56% (true trees) and 52% (fitted trees) over CoSpar (“Methods”). Of note, GW per-
forms well using ground-truth tree distances, outperforming W in three of four cases 
and demonstrating the value of ground-truth lineage information. However, as expected, 
pure GW is heavily affected by noise in tree distances and shows the largest mean error 
across all trajectories on more realistic, fitted tree distances.

These results demonstrate the power of the moslin approach: while pure GW is heav-
ily affected by noisy lineage information, moslin compensates for this noise using gene 
expression information. Thus, the manner of interpolation between gene expression and 
lineage information in moslin allows it to perform well on realistically fitted tree dis-
tances (Fig. 2b).

Next, we consider a more complex simulation using TedSim [52], which simulates cell 
division events from root to terminal cells. It generates two data modalities for each cell, 
gene expression and a lineage barcode, defining a much more complex setting than the 
two-dimensional regime considered above. The cell lineage tree is simulated as a binary 
tree that encodes cell division events, where a predefined cell state tree dictates the 
allowed transitions towards terminal cell states. We cut the lineage tree at an interme-
diate depth to simulate an early time point and use leaf nodes for the late time point 
(Fig. 2c–e and “Methods”). We map cells from the early to the late time point, providing 
only lineage relationships within time points to moslin and using the lineage relation-
ships across time points to score the quality of our reconstructed mapping.

scLT datasets often suffer from barcode detection issues, and it is, therefore, crucial 
to assess the performance of computational pipelines on partially detected barcodes. In 
our simulations, we introduce a stochastic silencing rate (ssr), the rate at which individ-
ual elements of the barcode remain undetected (“Methods”). In this example, we test an 
alternative to lineage tree reconstruction and directly use the scaled Hamming distance 
between barcodes to measure lineage distances in moslin and to construct clonal rela-
tions for CoSpar (Additional file 1: Fig. S2a, b and “Methods”). We perform a grid search 
for each case over the relevant hyperparameters (Additional file 1: Fig. S2c, “Methods”). 
As expected, as we increase the ssr, the lineage information becomes less reliable hence 
the optimal GW scaling parameter, α , decreases.

For lower ssr values, performance is substantially improved by moslin compared 
to LineageOT and CoSpar. Namely, at ssr values 0.0, 0.1, and 0.2, moslin improves 
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LineageOT’s mean error by 0.46, 0.39, and 0.32 and CoSpar’s mean error by 0.44, 0.30, 
and 0.20, respectively (Fig.  2f ). At larger ssr’s the improvement over CoSpar reduces, 
though still visible, while LineageOT struggles with tree reconstruction in that regime 
(“Methods”).

At last, using the ground truth coupling, we validate that moslin faithfully captures 
transitions to emergent states that appear only at the later time point and that it is robust 
to subsampling of cells at the later time point (Additional file 1: Fig. S2e–f, “Methods”).

Mapping gene expression across C. elegans embryonic development

To showcase moslin’s performance in a realistic setting where ground truth is available, 
we consider C. elegans embryonic development. The adult animal consists of only 959 
somatic cells [53, 54], generated following a sequence of deterministic lineage decisions. 
This species’ ground truth lineage tree is known [54] and available to assess moslin’s 
reconstruction performance. Further, this well-studied system is a good test case to vali-
date biological insights gained by combining moslin with CellRank 2 for fate mapping, 
gene dynamics, and driver gene prediction.

Previous work mapped time-series gene expression profiles of approx. 86k single cells 
to individual tree-nodes [7], providing a setting where joint lineage, state, and time infor-
mation is available. Not all cells in this study could be mapped unambiguously. Thus, we 
focus on the well-annotated ABpxp lineage, which produces mostly ciliated and non-
ciliated neurons, glia, and excretory cells [55]. AB is one of the founding lineages of C. 
elegans; “p” (“a”) indicates the posterior (anterior) ancestor, and “x” replaces “l” (left) or 
“r” (right), indicating a left/right symmetry [7, 55] (Additional file 1: Fig. S3a). The data-
set consists of 6476 ABpxp cells across 7 time points from 170 to 510 min past fertiliza-
tion (Fig. 3a, Additional file 1: Fig. S3b, c, and “Methods”). We treat the original author’s 
mapping [7] of cells to the C. elegans lineage tree as ground truth and use it to evaluate 
our algorithm.

We benchmark the performance of moslin, its two extreme variants, W ( α = 0 ), GW 
( α = 1 ), and LineageOT across time points on the ABpxp lineage using a similar set-
up as for the TedSim [52] data, and as suggested in ref [21]. (Fig. 2c–f and Additional 
file 1: Fig. S4a). Specifically, we provide within time point lineage distance to those meth-
ods that account for them (moslin, GW, and LineageOT). We evaluate performance by 
comparing predictions with ground-truth lineage relations across time points, using the 
mean prediction error over ancestor and descendant states (“Methods”).

For all time point pairs, moslin outperforms other methods and achieves a lower mean 
error (Fig. 3b). As expected from the high resolution lineage information in this dataset, 
we find that moslin performs best for large values of α , reflecting strong influence of the 
lineage term (Additional file 1: Fig. S4a). Considering the same setup, we test method 
performance on another, distinct subset of C. elegans cells, for which complete line-
age information is available (Additional file 1: Fig. S3a). Note that cells from the ABpxp 
sublineage do not have complete lineage information because “x” can replace either “r” 
or “l” (“Methods”). Moslin performs second best, only outperformed by the extremal 
GW, on all time point pairs but 330/390 min (Additional file 1: Fig. S4b and Additional 
file 1: Fig. S5a). On this pair of time points, moslin outperforms GW by a large margin. 
We hypothesize that GW might get stuck in a local minima, which moslin can avoid 
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due to gene expression regularization. Indeed, when we use the W solution to initial-
ize GW, its mean error decreases by a large margin (Additional file  1: Fig. S5d). This 
example illustrates that even with perfect within-time point lineage information, using 

Fig. 3  Moslin accurately captures C. elegans embryogenesis. a UMAP [56] of approx. 6.5k C. elegans ABpxp 
cells, colored by time point (left) and cell type (right) [7]. b Bar chart of the mean error for different methods 
across time points (“Methods”). c Left: UMAP of 330–390 min cells, colored in gray (390 min cells) or by the 
difference in descendant error between moslin and LineageOT (330 min cells). Black inset highlights RIM 
parent cells, which transition towards RIM cells [7]. Right: ground-truth, moslin and LineageOT couplings 
for the RIM parent population; “error” indicates the aggregated descendant error over this population 
(Additional file 1: Fig. S6 and “Methods”) d UMAP, showing the top 30 cells per moslin/CellRank 2 (ref [23]) 
computed terminal state. e UMAPs of aggregated fate probabilities towards ciliated neurons, non-ciliated 
neurons, and glia and excretory cells (Additional file 1: Fig. S11 and “Methods”), computed via absorption 
probabilities in CellRank 2 (“Methods”). f Scatter plot, showing the correlation of gene expression (GEX) with 
non-ciliated (x-axis) and ciliated (y-axis) neuronal fate probabilities. Annotated TFs are known to be involved 
in the developmental trajectory they correlate with (Additional file 3: Table S1). Right: UMAPs, showing 
expression of exemplary TFs. g Left: heatmap showing expression values for the top 50 predicted driver 
genes of non-ciliated neurons (all gene names shown in Additional file 1: Fig. S15). Each row corresponds to 
a gene, smoothed using fate probabilities (e) and the Palantir pseudotime [57] (x-axis; Additional file 1: Fig. 
S9). We annotate a few TFs, including cnd-1 [58, 59], fax-1 [60], and zag-1 [61–63] (black), and other genes, 
including syg-1 [64–66], madd-4 [67–69], and flp-1 [60, 70] (gray), which are known to play important roles in 
establishing non-ciliated neurons (Additional file 3: Table S1). Right: UMAPs, showing expression of previously 
unknown predicted driver TFs
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moslin with gene expression regularization is more robust than relying purely on lineage 
information.

The number of cells per time point and the difference in cell number between adjacent 
time points are not main factors determining moslin’s performance (Additional file  1: 
Fig. S5b, c). Focusing on moslin’s robustness to inaccuracies in lineage-tree distances, we 
find that the mean error typically increases by less than 0.1 when we permute up to 20% 
of non-diagonal cost matrix elements (Additional file 1: Fig. S5d and “Methods”).

On the ABpxp lineage, the mean error difference between moslin and LineageOT is 
largest on the 330/390 min pair of time points. To illustrate this point, we zoom in on 
the difference between moslin and LineageOT per 330 min cell (Fig. 3c and Additional 
file 1: Fig. S6a, b). As an example, we pick a pre-terminal population of RIM (non-cil-
iated) neurons for which moslin’s descendant error is much smaller compared to Lin-
eageOT’s. We find that moslin and GW correctly link these cells to RIM neurons, while 
LineageOT and W predict many erroneous connections with ASH (ciliated) neurons 
(Fig. 3c, Additional file 1: Fig. S6c, and “Methods”). The case of pre-terminal RIM cells 
is an example where only methods that consider lineage information at both time points 
(moslin and GW) are able to predict descendants correctly. Note that moslin achieves a 
lower descendant prediction error compared to GW, and moslin’s predicted RIM-ances-
tor distribution is more similar to ground-truth (Additional file 1: Fig. S6c, d).

Going beyond a single pair of time points, we combine moslin’s couplings across all 
time points to study C. elegans embryogenesis using CellRank 2 [23], a computational 
fate mapping tool. To account for developmental asynchrony within each time point, 
CellRank 2 computes, for each time point, a transition matrix reflecting undirected gene 
expression similarity. These within-time point transition matrices are combined with 
moslin’s across time point coupling matrices to yield the final transition matrix, reflect-
ing cellular dynamics within and across time points (“Methods”). When we use the final 
transition matrix to simulate 500-step random walks from the 170 min time point, we 
find that these terminate in the known terminal cell types, recapitulating the established 
developmental hierarchy (Additional file 1: Fig. S7a, b). This result remains robust when 
we vary the length of random walks (Additional file 1: Fig. S7c).

Using this transition matrix, we set out to study gene dynamics and fate choice among 
ABpxp cells. As a first step, we use moslin/CellRank 2 to compute seven terminal states 
and recover known ciliated-neuronal, non-ciliated-neuronal, glia, and excretory sub-
types [7] (Fig. 3d). The terminal states we identify are among the best-resolved cell types 
for ciliated-neuronal, non-ciliated-neuronal, glia, and excretory groups in terms of cell 
number (Additional file 1: Fig. S3d). Thus, we capture representative candidates of each 
group. As expected, predicted terminal states mostly consist of late-stage cells, and each 
only contains cells from a single cell type (Additional file  1: Fig. S8a). When we vary 
the number of terminal states from five to ten, these terminal states continue to consist 
mostly of late-stage cells from a single cell type (except for one terminal state when we 
compute 10 terminal states).

Next, using the flexibility of CellRank 2, we turn to compare moslin with general 
trajectory inference methods which rely solely on gene expression, Palantir [57] and 
CytoTRACE [71, 72] (Supplementary Fig. 7a–c). As expected, pseudotime assignments 
in both approaches are correlated with experimental time (Supplementary Fig. 7d) [72]. 
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We supply CellRank 2 with W, GW, and LineageOT couplings, as well as with the Pal-
antir [57] and CytoTRACE [71, 72] pseudotimes. For each approach, we compute seven 
terminal states, as described above, and calculate the mean time point assignment of 
cells in terminal states and the mean state purity [72] (“Methods”). We expect both the 
mean time point assignment and the mean state purity to be high, as terminal states 
should consist mostly of late-stage cells, and terminal states should each represent one 
defined phenotypic state, respectively. We find that approaches which have access to 
lineage information (moslin, GW, LineageOT) or time point information (W) perform 
much better in terms of the time point metric as they are biased to assign late-stage cells 
to terminal states (Additional file 1: Fig. S10). Out of these approaches, only moslin and 
LineageOT achieve perfect state purity, with moslin achieving a higher mean real time 
(475 vs. 466 min; Additional file 1: Fig. S8b and Additional file 1: Fig. S10).

We aggregate the seven terminal states into three groups: ciliated neurons, non-cil-
iated neurons, and glia and excretory cells and use CellRank 2 to compute fate prob-
abilities towards these groups (Fig. 3e and Additional file 1: Fig. S11). In agreement with 
known biology, moslin/CellRank 2 predict that most progenitors in the ABpxp lineage 
transition towards non-ciliated neurons [7] (Additional file  1: Fig. S12a, b). For each 
of the three terminal cell groups, our approach correctly assigns the largest mean fate 
probability to the corresponding pre-terminal group of cells (Additional file 1: Fig. S12c, 
d). We repeat this analysis for competing OT-based (W, GW, and LineageOT) and gen-
eral trajectory inference (Palantir, CytoTRACE) approaches and find that only moslin 
can uniquely identify the correct pre-terminal population for all of our three terminal 
cell groups (Additional file 1: Fig. S12). We also find that moslin/CellRank 2 aggregated 
fate probabilities are robust with respect to changes in the number of terminal states 
from five to ten (Additional file 1: Fig. S8).

Using our moslin results, we correlate fate probabilities with gene expression to iden-
tify putative driver genes for each of the three trajectories. Focusing our attention on C. 
elegans transcription factors [73] (TFs), we automatically recover known drivers for each 
trajectory, including sptf-1 for ciliated neurons [74], cnd-1 for non-ciliated neurons [58, 
59], and pros-1 for glia and excretory cells [75–77] (Fig. 3f, Additional file 1: Fig. S14, 
Additional file 3: Table S1, and “Methods”).

Finally, to study the temporal dynamics of fate decisions during C. elegans embryo-
genesis, we combine moslin’s predictions with the Palantir-derived pseudotime (Addi-
tional file 1: Fig. S9a, b). Focusing on the non-ciliated neuron trajectory, we compute the 
50 top-correlated genes with non-ciliated fate probabilities. For each of these genes, we 
combine the Palantir pseudotime with moslin/CellRank 2 fate probabilities to compute 
smooth expression trends (“Methods” and Additional file 3: Table S1). Sorting expres-
sion trends by their pseudotime-peak and plotting them in a heatmap reveals a sequen-
tial activation pattern (Fig. 3g and Additional file 1: Fig. S15). Our results show that some 
TFs with known function in non-ciliated neuron generation, including cnd-1 [58, 59] or 
unc-3 [78, 79], are activated before others, including fax-1 [60] and zag-1 [61–63] (Addi-
tional file 3: Table S1). In particular, our activation pattern predicts that fax-1 is activated 
before flp-1, a known regulatory interaction in (non-ciliated) AVK cells [60].

While many moslin/CellRank 2 predicted driver genes had known functions in non-
ciliated neuron generation, we also identify candidate driver genes that are novel, to the 
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best of our knowledge. In particular, our results predict ceh-27, hlh-13, and hlh-15 as 
putative drivers (Fig. 3g). ceh-27 is a homeobox TF, a class of TFs known to be crucial 
for C. elegans neurogenesis [80, 81]. While previous work [80] reported ceh-27 expres-
sion in non-ciliated neurons, the TF has no known function in fate specification towards 
these neurons. hlh-13 and hlh-15 are basic helix-loop-helix TFs; hlh-15 is known to be 
involved in C. elegans aging [82].

In summary, we find that moslin accurately recovers ancestor and descendant relation-
ships and may be combined with CellRank 2 to obtain biologically meaningful terminal 
states, fate probabilities, and driver genes. While competing approaches perform well in 
individual comparisons, moslin is the only approach to consistently perform well across 
all of them.

Moslin determines the dynamics of transient fibroblasts in heart regeneration

The zebrafish heart regenerates after injuries, such as ventricular resections [83] or cryo-
injuries [84–86]. A previous study used the integrated lineage-tracing and transcriptome 
profiling technique LINNAEUS [10] to generate a dataset of approximately 200,000 sin-
gle cells in the zebrafish heart across four time points: before injury (control), 3 days 
after injury (3 dpi), 7 days after injury (7 dpi), and 30 days after injury (30 dpi). This 
dataset includes inferred lineage trees and cell type annotations for each time point [32] 
(Fig. 4a, Supplementary Fig. 15).

One key result from this study was the emergence of several transcriptionally distinct 
fibroblast substates during regeneration. Analysis of lineage trees created with LIN-
NAEUS showed that some transient states originate from the endocardial layer and oth-
ers from the epicardial layer. The persistent constitutive fibroblasts share a lineage with 
the epicardial layer as well. One state from the epicardial layer, a fibroblast subtype char-
acterized by a high col12a1a-expression, called col12a1a fibroblasts, was shown to be 
essential for regeneration: ablation of col12a1a fibroblasts strongly reduces the regen-
erative capacity of the zebrafish heart. Another epicardial-based transient state, the 
col11a1a fibroblast state, characterized by high col11a1a expression, only occurs at 3 dpi, 
and its role is unclear. This state could lead to col12a1a fibroblasts, or it could be inde-
pendent. Since the original analysis was restricted to individual time points, this ques-
tion could previously not be resolved, which precluded further analysis of the underlying 
regulatory interactions. We reasoned that we could characterize this relationship by 
combining time points using moslin.

We apply moslin on all single cells in this dataset with lineage information—approxi-
mately 44,000 single cells from 20 individual animals across ctrl, 3 dpi, and 7 dpi. We 
embed the transcriptomic readout of all single cells with lineage information into a joint 
latent space using scVI [49], retaining the original cluster annotations. We calculate 
lineage distances as shortest path distances along the original reconstructed trees and 
use moslin to calculate couplings between cells at consecutive time points for a grid of 
hyperparameters values for hyperparameters α , ǫ , and τa. For method comparison, we 
also calculate those couplings using W and LineageOT (“Methods”).

Initially, we validate the performance of moslin and other methods in this challenging 
regeneration setting. We design a test around the assumption that most persistent cell 
states should be their own precursor; for example, precursors of atrial endocardial cells 
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at 7 dpi should be atrial endocardial cells at 3 dpi. Thus, while ground-truth lineage rela-
tionships across time points are unknown in this setting, we initially restrict our atten-
tion to a subset of persistent cell states, which we assume to evolve into themselves. This 

Fig. 4  Moslin recovers lineage relations among transient fibroblast subsets. a Underlying data describes 
zebrafish heart regeneration, measured through single-cell transcriptomic and lineage profiling before injury 
(n = 4), at 3 dpi (n = 9), and 7 dpi (n = 7) [32]. Right-hand side projections show transcriptomic data over time 
(top) and a representative lineage tree for each time point (bottom). b Cell type persistence test: for each cell 
at t2, determine if the t1 cell with the highest transition probability to it is of the same cell type (“Methods”). 
Annotation colors indicate cell types as in a. c Transient fibroblast test: calculate proportion of ground truth 
ancestor cell types for transient col12a1a and nppc fibroblasts. Annotation colors indicate cell types as in 
a. Performance on transient fibroblast tests correlates with cell type persistence accuracy: col12a1a (d) and 
nppc (e). f Flow diagram of cell type transitions. Colors indicate cell types as in a. g Flow diagram of transient 
epicardial fibroblasts corroborates col11a1a fibroblasts as an intermediary state between constitutive and 
col12a1a fibroblasts. Colors indicate cell types as in a 
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methodology is applicable in human and model organisms such as mouse and zebrafish, 
where lineage relationships are not deterministic as they are in C. elegans. We used this 
test to select optimal hyperparameter values. Briefly, for each cell at t2 and for each 
method, we select the most probable t1 ancestor and calculate the accuracy between the 
t2 and t1 cell types, jointly for cells at 3 and 7 dpi (Fig. 4b and “Methods”). For moslin, 
the maximal cell type persistence accuracy is 0.79, for W, 0.79, and for LineageOT, 0.41 
(Additional file 1: Fig. S17). The low performance of LineageOT may reflect an inability 
to correct for strong cell type frequency imbalances between time points. For moslin, 
we observed robustness in accuracy values across the bulk of hyperparameters values 
(Additional file 1: Fig. S18).

To test moslin’s ability to predict complex temporal relationships between cell types 
outside its training regime of persistent cell types, we evaluated its performance in a set-
ting where cell types are not identical between time points. This contrasts to the cell 
type persistence test used for hyperparameter tuning. Earlier research has shown that 
the transient col12a1a fibroblasts are of epicardial origin, and the transient nppc fibro-
blasts are of endocardial origin [32]. We calculated the percentage of mass transferred 
to transient fibroblasts from their ground truth origins (Fig. 4c and “Methods”). For the 
optimal hyperparameter values determined by the cell type persistence test, we found 
that moslin predicted that 77% of col12a1a fibroblasts are of epicardial origin, and 87% 
of nppc fibroblasts originate from endocardial cell types. On nppc fibroblasts, moslin 
outperformed W by a small but significant margin of 1.2% (p = 0.00027) (Additional 
file 1: Fig. S19 and “Methods”). Over the range of hyperparameters tested, we observed 
a strong correlation between method performance on transient fibroblasts and on cell 
type persistence (Fig. 4d, e). This suggests that the cell type persistence test, which relies 
on minimal prior knowledge of the biological system, can be used to find optimal hyper-
parameter values for moslin.

We next investigate the origins of transient fibroblast substates, including col11a1a 
and col12a1a fibroblasts. In particular, the previously published analysis [32] had left 
room for two hypotheses: either col11a1a fibroblasts are an intermediary state between 
constitutive and col12a1a fibroblasts, or these two fibroblast states arise from constitu-
tive fibroblasts independently. To approach this, we calculated couplings with moslin, 
took weighted averages of cell type frequencies over separate organisms, and aggregated 
couplings between cell types to quantify cell type transitions during regeneration (Addi-
tional file 1: Fig. S20 and “Methods”). As expected from the cell type persistence test, we 
observe that cell types have strong aggregated couplings with themselves between time 
points (Fig. 4f ).

Furthermore, we observe that constitutive fibroblasts preferentially generate col11a1a 
fibroblasts, and that most col12a1a fibroblasts originate from col11a1a fibroblasts: 24% 
(95% confidence interval: 19–32%) of the mass generated by constitutive fibroblasts at 
control goes towards col11a1a fibroblasts, whereas only 11% (95% confidence interval: 
6–17%) goes directly towards col12a1a fibroblasts. At 3 dpi, 57% (95% confidence inter-
val: 30–69%) of the mass generated by col11a1a fibroblasts goes towards col12a1a fibro-
blasts, which constitutes 31% (95% confidence interval: 18–41%) of the mass col12a1a 
fibroblast receive at 7 dpi (Fig.  4g). Confidence intervals for the frequencies and cou-
plings were constructed by subsampling (“Methods”).
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Taken together, this suggests that the majority of col12a1a fibroblasts is generated 
by constitutive fibroblasts that transition through a col11a1a-expressing state (Fig. 4g). 
We hypothesize that the 3 dpi col12a1a fibroblasts that seem to originate directly from 
constitutive fibroblasts have actually transitioned through a col11a1a fibroblast state 
between injury and 3 dpi. Our findings demonstrate the added value of temporal lineage 
models like moslin in analyzing scLT time-course data.

Discussion
We introduce moslin, an approach that combines intra-individual lineage similarity with 
inter-individual gene-expression similarity for trajectory reconstruction from single-
cell lineage-traced data. Moslin outperforms competing methods on simulated and C. 
elegans data by interpolating between Wasserstein and Gromov-Wasserstein regimes 
and by using lineage information from all available time points. We highlight in simu-
lations that moslin compensates for noisy lineage relations through gene expression 
information, an important property for real scLT data. We illustrate moslin’s capability 
to recover cell-state trajectories from real scLT data in zebrafish heart regeneration [32], 
where we predict a new origin for regenerative activated fibroblast states. We anticipate 
moslin to enable similar discoveries in the future for accumulating time-structured line-
age-tracing datasets.

In contrast to many previous analysis paradigms for in vivo scLT data, moslin relates 
cells across time points rather than focusing on individual, isolated time points. While 
tree reconstruction from a single time point of lineage-traced cells can uncover shared 
lineage ancestry [10–13, 16, 18, 19], it falls short of characterizing the molecular prop-
erties of these ancestors. Moslin links putative ancestors to their descendants based on 
lineage and gene expression information; this enables us to relate the different activated 
fibroblast states as a function of the time past injury, a hypothesis that remains to be 
validated experimentally. Cell states undergo far-reaching changes over time in many sit-
uations such as cancer, cardiovascular, and neurodegenerative diseases. To understand 
the gene regulatory events that underlie these changes, it is crucial to identify the corre-
sponding sequence of state transitions. As engineered mouse lines with built-in lineage 
recorders enable more labs to perform in vivo lineage tracing [28, 29], moslin serves as 
an easy-to-use toolkit to uncover these sequential state transitions.

We have tested moslin in scenarios with and without a known ground truth. An 
advantage of moslin is that we can easily interpret the role of each hyperparameter: α 
weights the importance of gene expression compared to lineage information, ε controls 
the strength of entropic regularization, and τa (only used for the zebrafish dataset) deter-
mines the level of unbalancedness at the source marginal, i.e., the earlier time point. 
Importantly, this knowledge provides guidelines for the directionality of adapting these 
per setting but does not assist in selecting the actual value, which is dataset dependent. 
We have addressed this in the analysis of the zebrafish dataset, where we lack ground 
truth. Specifically, we suggest setting initial marginals using growth rates and selecting 
the hyperparameters α, ε, and τa using a grid search, evaluating over a proxy task “cell 
type persistency.” Performance on this proxy task strongly correlates with performance 
on the actual target task, the transient fibroblast precursor predictions, suggesting the 
cell type persistence test can be applied to other datasets without a known ground truth.
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Through our analyses, we have identified guiding principles on the choice of hyperpa-
rameters: First of all, the entropic regularization parameter ǫ should be chosen small as 
long as this does not lead to convergence issues or overfitting. The GW scaling parame-
ter α should have higher values if the datasets have a high degree of lineage information, 
and lower values if the lineage information is of lower resolution. The exact value of the 
unbalancedness parameter τa does not seem to be of strong impact on the performance 
in our analysis; however, this particular parameter was only used in one dataset.

Under the hood, moslin is based on moscot [48], a versatile framework for OT applica-
tions in single-cell genomics. As such, it benefits from moscot’s interoperability with the 
scverse [87, 88] ecosystem and can take advantage of future moscot improvements con-
cerning scalability and usability. Moslin’s interface with CellRank 2 [23] grants it access 
to a range of established, constantly growing downstream-analysis functions. We dem-
onstrate the power of combining moslin with CellRank 2 on the C. elegans data, where 
their combination reveals long-range state-change trajectories, driver genes, and tempo-
ral dynamics. Moslin’s couplings could further be employed to regularize the inference 
of gene regulatory networks [89, 90], or to improve perturbation predictions [91].

In this study, we focus on the independent clonal evolution experimental design 
because it allows us to apply our method to in vivo scLT data. In this setting, lineage 
relationships are not directly comparable across time points, and we revert to assum-
ing lineage concordance for pairs of cells. In contrast, for in vitro experiments and some 
regenerative or transplantation in vivo experiments, cells from the same population can 
be sampled at different time points, rendering their lineage information directly compat-
ible across time points (“Methods”). Previously, OT-like approaches [14, 15] have been 
suggested for this clonal resampling experimental design [25]. Moslin could be extended 
towards this setting by adjusting the cost matrix definition.

While moslin consistently outperformed competing approaches in two simulation 
setups as well as on C. elegans embryogenesis data, we only achieved a small perfor-
mance gain on zebrafish regeneration compared to a gene-expression-only baseline. We 
hypothesize this result to be a consequence of the lower lineage resolution offered in this 
experiment, compared to our simulations and to the ground-truth lineage tree used for 
C. elegans analysis. Recent innovations, including mitochondrial lineage tracing [30, 31, 
92, 93] and base/prime editing [94–97], represent compelling use cases for moslin that 
might reveal the full potential of combining lineage with gene expression information. 
Improved lineage resolution will allow our method to yield highly accurate trajectory 
reconstructions in challenging disease contexts like cancer or inflammation.

Currently, moslin is limited to one replicate per time point. In the zebrafish data [32], 
where several replicates per time point are available, we address this by computing pair-
wise replicate linkages across time points and aggregating our insights across these. With 
the increasing popularity of scLT approaches, we expect more complex, multi-replicate 
time series to become available. For these, as an alternative to the aggregation approach 
above, we envisage a two-step process, first computing a consensus lineage representa-
tion per time point across replicates, and second, linking the consensus representations 
across time points.

Moslin could further be extended towards multi-modal scLT data [98, 99] to link 
molecular layers across time. For example, this could reveal how epigenetic changes 
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manifest in altered gene expression dynamics [100, 101]. Additionally, spatially resolved 
lineage tracing data [102–104] would enable moslin to regularize the coupling computa-
tion further using spatial neighborhoods. In this setting, moslin’s inferred trajectories 
could be used to interrogate the relative contribution of internal state versus external 
signals towards observed fate decisions. scLT is a fast-moving field; we believe that 
development of novel simulation frameworks, which are capable of modeling diverse 
temporal dynamic regimes, will allow major advancements and further validation of 
suggested analysis tools. We further anticipate computational tools like moslin to play a 
crucial role in analyzing and interpreting novel lineage-traced datasets.

Conclusions
Moslin is a method for inferring differentiation trajectories from time-series single-
cell studies, jointly making use of gene expression and lineage-tracing information at 
all available time points. These trajectories reveal terminal states of cellular differentia-
tion, fate probabilities, lineage-correlated genes, and their temporal activation, and they 
allow pinpointing ancestor and descendant relationships in complex cellular processes 
like regeneration. Across two simulation studies, C. elegans embryogenesis and zebrafish 
regeneration, moslin either outperformed or was on-par with alternative approaches. 
Thus, we anticipate moslin to play an important role in unlocking the full potential of 
upcoming lineage-tracing technologies by combining their readout with molecular 
information across time points.

Methods
The moslin algorithm

Introduction and model overview

Moslin is an algorithm aimed at linking single-cell profiles across experimental time 
points. Computational linkage is required as sequencing is destructive; moslin thus 
allows linking molecular differences among cells at early time points with their eventual 
fate outcome at later time points. Critically, moslin uses molecular similarities and line-
age tracing information to solve this challenging reconstruction problem. Specifically, 
moslin is applicable to dynamic, CRISPR-Cas-based approaches [10–13, 20, 105] that 
record lineage relationships in vivo. While previous analysis approaches for this type of 
lineage tracing data remained limited to individual, isolated time points [16–18, 20, 106, 
107], moslin embeds clonal dynamics in their temporal context.

Moslin’s inputs. The input to moslin are pairs of state matrices and lineage informa-
tion ( X ∈ RN×G , ξ ) and ( Y ∈ RM×G , ζ ) corresponding to N  and M observed cells at early 
( t1 ) and late ( t2 ) time points. State matrices X and Y  typically represent gene expres-
sion (scRNA-seq) across G genes; however, moslin can also be applied to modalities like 
chromatin accessibility through adapted cost function definitions. The lineage informa-
tion arrays ξ and ζ contain the lineage tracing outcome for every cell; their exact nature 
depends on the lineage tracing technology (“In vivo single-cell lineage tracing (scLT)” 
section). Optionally, moslin takes marginal distributions a ∈ �N and b ∈ �M over cells 
at t1 and t2 for probability simplex �N := {a ∈ RN

+|
N
i=1ai = 1} . These marginals can 

represent any cell-level prior information; we use them to incorporate the effects of cel-
lular growth and death.
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Moslin’s outputs. The output of moslin is a coupling matrix P ∈ U(a, b) where U(a, b) 
is the set of feasible coupling matrices given by

for constant one vector 1N = [1, ..., 1]⊤ ∈ RN . The coupling matrix P links cells at t1 with 
cells at t2 ; the i th row Pi,: tells us how cell i from t1 distributes its probability mass across 
cells at t2 and the j th column P:,j tells us how much probability mass cell j at t2 receives 
from cells at t1 . The set U(a, b) contains all matrices P which are compatible with the 
prescribed marginals a at t1 and b at t2.

With these definitions at hand, we can formalize the aim of moslin: we seek to find the 
coupling matrix P ∈ U(a, b) which simultaneously minimizes the distance cells have to 
travel in phenotypic space between t1 and t2 while respecting lineage relationships. We 
explain how we find such a matrix in the “Moslin’s objective function for in vivo ICE” 
section.

In vivo single‑cell lineage tracing (scLT)

Moslin uses lineage tracing data to guide the reconstruction of a coupling matrix P 
between t1 and t2 cells. Early methods for lineage tracing were labor-intensive, limited 
to transparent organisms, and relied on manual observation of individual cells in time-
lapse microscopy [25, 54]; recent approaches are sequencing-based and use heritable 
genetic barcodes [8, 108–110]. While a multitude of such techniques exists, moslin is 
geared towards those that achieve single-cell resolution, yield joint lineage and gene 
expression readout, and can be applied in vivo.

Clonal resampling (CR) versus independent clonal evolution (ICE). Critically, mos-
lin is able to describe non-steady state biological processes like development or regen-
eration that require time-series experimental designs to capture cell-state trajectories. 
Experimentally, this can be achieved using either clonal resampling (CR) or independent 
clonal evolution (ICE) designs, which assay cells from the same or different clones across 
several time points, respectively.

In clonal resampling (CR), the aim is to observe the same clone (cells sharing the same 
barcode) across several time points, i.e., for a single phylogenetic tree, we aim to observe 
some ancestral nodes besides the leaf nodes. As this approach relies on the repeated 
sampling of clonally related cells, it applies primarily to in  vitro settings [9, 19, 111], 
in vivo transplantation settings [112], or in vivo regenerative systems like human PBMC 
and CD34 + samples [92, 113] or the zebrafish fin [11]. Beyond these transplantation 
and regenerative settings, applying time-series scLT in vivo requires independent clonal 
evolution (ICE), i.e., different individuals, sequenced at different time points with inde-
pendent clonal evolution proceeding in each animal. This represents an additional chal-
lenge since the lineage of cells in different individuals cannot be compared directly. We 
designed moslin for the challenging ICE setting that allows us to model in vivo systems.

Moslin’s objective function for in vivo ICE

With the definition of ICE at hand, we return to moslin’s key task: finding a coupling 
matrix P ∈ U(a, b) which simultaneously minimizes the distance cells have to travel 
in phenotypic space while respecting lineage relationships. Mathematically, we cast 

U(a, b) := {P ∈ RN×M
+ |P1M = a, P⊤1N = b},
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this task as an optimal transport (OT) problem [39]; in particular, we use a Fused 
Gromov-Wasserstein [40] (FGW) formulation which allows us to include terms for 
across and within time point similarity (Additional file 2: Note S1). Previous single-
cell methods successfully used OT to map cells across time points without lineage 
information [1, 3, 48], impute gene expression in spatial data [43, 48], predict per-
turbation response [114], learn patient manifolds [115, 116], integrate data across 
modalities [46], and infer cell–cell communication [47]. In particular, we make the 
following assumptions (A):

•	 A1: cells change their state gradually; overall, they minimize the distance traveled 
in phenotypic space between t1 and t2.

•	 A2: on average, lineage relations are concordant across time points; cells with sim-
ilar lineage history at t1 are likely to transition into cells with similar lineage his-
tory at t2.

All three assumptions may be challenged in practice:

•	 Batch effects and incomplete molecular information challenge A1.
•	 Rapid transcriptional convergence and divergence, as well as noisy or incomplete lin-

eage readout, challenge A2.

Thus, rather than enforcing A1 and A2 exactly, we design custom cost functions to 
balance them in our FGW objective function; individual cells may violate any combina-
tion of assumptions at the cost of incurring a penalty.

Note that A2 does not require deterministic development, where each individual 
develops according to the exact same lineage tree. Instead, we require a relaxed version 
of this setup, where different individuals develop according to different lineage trees 
which may be related at the level of pairwise distances.

A combined approach for in vivo scLT data. In ICE, gene expression information is 
comparable across time points but lineage information is not (“In vivo single-cell lineage 
tracing (scLT)” section). Our FGW setting allows us to define terms that handle both 
type of information:

•	 A linear Wasserstein (W) term for comparable features, encouraging A1. This term 
quantifies gene expression similarity.

•	 A quadratic Gromov-Wasserstein (GW) term for incomparable features, encourag-
ing A2. This term quantifies lineage distance concordance.

The W term for individual comparisons. To encourage A1, we consider a W term [39] 
which compares individual cells in the source ( t1 ) and target ( t2) distributions in terms 
of their gene expression vectors. Given gene expression vectors 

(
xi, yj

)
∈ X × Y  , we con-

struct a cost matrix, C ∈ RN×M
+  with Cij = c

(
xi, yj

)
 for cost function c . An entry in the 

cost matrix, Cij , depicts the distance between cells i and j according to the cost function 
c . We define the cost function to represent squared euclidean distance in a joint latent 
space over X and Y  , computed using PCA or scVI [49]. Formally, the mapping problem 
is defined as
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for optimal coupling matrix P∗ . This objective function defines a convex linear program; 
the optimal P∗ will be the one accumulating the lowest cost according to C when trans-
porting cells from t1 to t2.

The GW term for pairwise comparisons. To encourage A2, we consider a GW term 
[22] which compares cell pairs in the source ( t1 ) and target ( t2) distributions in terms 
of their lineage information. Given lineage information at two time points, we define 
two independent cost matrices, CX ∈ RN×N

+  and CY ∈ RM×M
+  with CX

ij = cX
(
xi, xj

)
 and 

CY
kl = cY

(
yk , yl

)
 for cost functions cX and cY .

Focusing on the early time point, consider lineage information ξi . Define the t1-cost 
function

for mapping function f X , providing a representation of the lineage information at t1 , 
and lineage distance function cl . Moslin supports two ways of representing lineage 
information:

•	 Barcode representation: f X is the identity and cl quantifies hamming distance 
between raw barcodes.

•	 Lineage tree representation: f X is a lineage-tree reconstruction computed using 
a method like Cassiopeia [16] or LINNAEUS [10] and cl quantifies shortest path 
distance along reconstructed trees.

We employ an analogous set of definitions for the t2-cost function cY  . We apply 
these cost functions to all (pairs of ) cells to yield the cost matrices CX ∈ RN×N  and 
CY ∈ RM×M . With the cost matrices at hand, we define a quadratic GW term that 
compares pairwise distances across time points,

for some distance metric L that compares cost-matrix entries. By default, we use the l2 
distance in moslin. Intuitively, this term encourages similar cells at t1 to be matched to 
similar cells at t2.

Moslin’s Fused Gromov-Wasserstein (FGW) approach. To simultaneously encour-
age A1 and A2, we combine the W with the GW term to yield moslin’s objective func-
tion for in vivo ICE data,

which is known as a Fused Gromov-Wasserstein (FGW) problem [40] (Additional file 2: 
Note S1). The parameter α ∈ (0,1) controls the interpolation between the W and GW 
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terms. Using this interpolation, we jointly optimize the coupling with respect to gene 
expression and lineage information.

Entropic regularization and optimization. The combined objective of Eq. 1 defines a 
quadratic programming problem; to introduce a notion of uncertainty and to speed up 
the optimization, we follow previous approaches [1, 41] and include and entropy regu-
larization term,

and the regularized FGW objective reads

for regularization strength ǫ . Intuitively, the entropy term H(P) favors probabilistic over 
deterministic couplings. We optimize the entropy-regularized FGW objective func-
tion using a mirror descent scheme; each inner iteration of the algorithm reduces to 
well-known Sinkhorn iterations [41] (Additional file 2: Note S1). To determine conver-
gence, we check whether the current and previous regularized OT costs are close using 
jax.numpy.isclose(..., rtol = R_TOL) , with R_TOL = 1e − 3 by default.

Marginals encode prior biological information. If additional information about sam-
pled cells is available, e.g., growth and death rates and uncertainty, we incorporate 
them via the marginals a and b . If no additional information is available, we assign 
them uniformly. By default, in moslin, we choose the right marginal b uniformly, 
bj = 1/M ∀j ∈ {1, ...,M} , and adjust the left marginal to accommodate cellular growth 
and death between t1 and t2,

where g : RD → R is modeled as the expected value of a birth–death process with pro-
liferation at rate β(x) and death at rate δ(x) , thus g(x) = eβ(x)−δ(x) for β(x) and δ(x) esti-
mated from curated marker gene sets for proliferation and apoptosis, respectively [1].

Accommodating uncertainty in the inputs. As we estimate growth and death rates 
from marker genes, they represent a noisy estimate of the underlying ground truth 
growth and death rates. In addition, we randomly sample cells from a population, which 
leads to deviations from the ground-truth cell-type proportions. In our case, different 
time points typically correspond to different individuals, which amplifies differences in 
cell type proportions across time points.

Accordingly, we allow small deviations from the exact marginals a and b in an unbal-
anced FGW framework [51] where we replace the hard constraint P ∈ U(a, b) with soft 
Kullback–Leibler (KL) divergence penalties, giving rise to moslin’s final objective func-
tion for time-series scLT data. To control the weight given to left ( a ) and right ( b ) mar-
ginal constraints, we use two parameters τa, τb ∈ (0,1)(Additional file  2: Note S1). For 
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the optimization, we employ the algorithm presented by ref [51]. which is based on a 
bi-convex relaxation leading to alternate Sinkhorn iterations.

Implementation. Moslin is available at https://​github.​com/​theis​lab/​moslin. Under the 
hood, moslin is based on moscot, our open-source framework for multi-omic single-cell 
optimal transport. moscot is a scalable, easy-to-use, open-source solution for OT-based 
analysis in single-cell genomics; it interfaces with optimal transport tools [117] (OTT) 
in the backend to support GPU acceleration and just-in-time compilation via JAX [118].

Downstream usage of coupling matrices

Once we have identified the optimal coupling matrix P , we use it to link observed cells 
between t1 and t2 . Note that the coupling matrix P combines the information from 
molecular similarity and lineage history; thus, all downstream analysis is lineage and 
state informed.

Consider a t1 cell state P of interest. This state could represent, e.g., a rare or tran-
sient population with unknown position in the differentiation hierarchy. Define the cor-
responding normalized indicator vector,

where x is a cell from t1 and |P| corresponds to the number of cells in state P . Following 
ref [1]., we compute t2 descendants of cell state P by a push-forward operation of pt1,

where pt2(x) is the probability mass that cell state P distributes to cell x at t2 . Similarly, to 
compute ancestors of a cell state Q at t2 , consider the corresponding normalized indica-
tor vector qt2 . To compute the ancestor distribution, we use a pull-back operation,

where qt1(x) is the probability mass that cell x contributes towards cell state Q at t2 . For 
further downstream analysis, e.g., to identify initial and terminal states, driver genes of 
fate decisions, and gene expression trends, we interface with CellRank 2 (ref [23].), a fate 
mapping toolkit that analyzes our coupling matrices using a Markov framework.

Coupling cells across more than two time points. Moslin relates cells across more 
than two time points; consider a time-series experiment with sequencing at time points 
{t1, ..., tT } . Following ref [1]., we solve for individual pairwise couplings between adjacent 
time points; this yields coupling matrices {Pt1,t2 , ...,PtT−1,tT } . We construct longer-range 
couplings by matrix-multiplying individual couplings. For example, to couple initial-day 
cells to final-day cells, we obtain

We compute ancestors and descendants for multi-day couplings in the same way as 
above (Eqs. 2 and 3).

pt1(x) := {
1

|P|
x ∈ P , 0 else,

(2)pt2 = P⊤pt1 ,

(3)qt1 = Pqt2 ,

Pt1,tT = Pt1,t2Pt2,t3 ... PtT−1,tT .

https://github.com/theislab/moslin
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Datasets

2‑gene simulations

We use a simulation setting suggested by ref [21]. which constructs a vector field to recre-
ate a biologically plausible trajectory structure. Under the simulation, cells follow the vector 
field with diffusion and occasional cell division. The simulation assigns a heritable line-
age barcode that is randomly mutated, to each cell. Four different types of trajectories, of 
increasing complexity, are considered in this simulated setting:

1.	 Bifurcation (B): a simple bifurcation of a single progenitor cell type into two descend-
ant cell types.

2.	 Partial convergent (PC): two initial clusters split independently, following the split, 
two of the resulting four clusters merge together for a total of three clusters.

3.	 Convergent (C): two initial clusters converge to a single final cell type.
4.	 Mismatched clusters (MC): two initial clusters both split into two late-time clusters, 

and cells from two of the resulting clusters are transcriptomically closer to early cells 
that are not their ancestors.

The simulated data provides us with what ref [21]. defines as an embedded lineage tree, 
referring to the collection of branching paths due to cell divisions within a population 
(whereas a lineage tree denotes the coordinate-free tree structure). For each of the tra-
jectories, we simulate 10 different data sets with a different random seed and measure 
the embedded lineage tree at two time points (with 64 and 1024 cells, respectively). All 
simulations were performed using the default settings provided in the LineageOT code 
package: https://​github.​com/​aforr/​Linea​geOT.

Given the simulated data, which consists of gene expression, barcodes, and the true 
lineage tree, we compute couplings between time points in two manners, considering 
the true tree or a fitted tree. For the latter, the tree is inferred using the neighbor-joining 
algorithm as implemented in LineageOT [21]. We compare the performance of moslin 
to LineageOT, CoSpar [15], and two extreme cases of the moslin formulation: using only 
gene expression in a W term ( α = 0 ) and using only lineage information in a GW term 
( α = 1 ). For CoSpar, we test two settings, one relying only on gene expression and one 
which includes lineage information as well. We quantify method performance using the 
ancestor and descendant errors introduced in LineageOT. Lineage information is incor-
porated differently by each method:

1.	 Moslin: we set the lineage costs by computing distances between cells along the tree. 
The distance is defined as the length of a weighted shortest path found using Dijk-
stra’s algorithm with weights associated to edges according to “time” between two 
nodes.

2.	 LineageOT: the tree (true or fitted) is used directly to compute the couplings.
3.	 CoSpar: given the tree (true or fitted) the clonal assignment of cells at the later time 

point is done based on their ancestor at the earlier time point. That is, given cell i 
from the earlier time point, its descendants at the later time point are associated with 
clone i.

https://github.com/aforr/LineageOT
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For ground truth coupling P∗ and predicted coupling P , we compare their predicted 
ancestors and descendants per cell using a Wasserstein-2 distance (Additional file  2: 
Note S1). To obtain the descendant error ED(P) , we compute

for squared Wasserstein-2 distance W 2
2  (Additional file 2: Note S1) and right marginal 

ai =
∑

jPij . Similarly, to obtain the ancestor error EA(P) , we compute

for left marginal bj =
∑N

i Pij . Note that we compare rows for ED(P) and columns for 
EA(P) , scaled by the corresponding marginal to adapt the weight we give to each cell. 
Thus, a value of zero in either metric means that we are on par with the ground-truth 
coupling. Additionally, we independently normalize ancestor and descendant errors 
using the outer product of the marginals, P̂ = ab⊤ , corresponding to an uninformative 
coupling with the same marginals as the predicted coupling P . Specifically, we compute 
ED(P)/ED

(
P̂
)
 and EA(P)/EA

(
P̂
)
 , such that a value of one corresponds to an uninforma-

tive result. Our final error metric is given by the mean of the two quantities [21]. Cru-
cially, this distance takes the geometry of the underlying phenotypic landscape into 
account. Couplings to cells that are not the actual ancestors or descendants of the refer-
ence cell incur a larger penalty in mean error if they are further away from the true 
ancestors or descendants in terms of their gene expression states.

We perform a grid search to find the optimal parameters for each data set and method 
independently. For moslin and LineageOT, the entropy parameter is optimized over 15 
values of ǫ log-spaced between 1e − 4 and 1e + 1 . For moslin, we also perform a grid 
search for the interpolation parameter, α ∈ {0.1,0.2,0.3,0.4,0.5,0.7,0.8,0.9,0.95,0.98,0.999} . 
To run CoSpar, we use “cospar.tmap.infer_Tmap_from_state_info_alone()” (only gene 
expression) and “cospar.tmap.infer_Tmap_from_one_time_clones()” (with lineage infor-
mation) using hyperparameters reported in the tutorial Transition map inference. For 
proper evaluation, as the obtained transition matrix is not a valid transport map we row 
(column) normalize it and ensure a total mass of one for descendant (ancestor) error 
evaluation.

Of note, we hypothesize CoSpar’s poor performance can be explained by the simplic-
ity of the simulated trajectories and CoSpar’s reliance on state information when applied 
using clonal information only from the latest time point. In this setting CoSpar first con-
structs a coupling based only on state heterogeneity, obtained using optimal transport 
(similarly to the moslin extreme using gene expression only, α = 0 , W). The initial cou-
pling is used to back-propagate the initial state likelihood and infer initial clones used 
as input to run CoSpar assuming “full” clonal knowledge. With this, the limited perfor-
mance of the W solution over these trajectories (Fig. 2b) hints on an error which is prop-
agated in the couplings inferred by CoSpar.
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TedSim simulated data

We utilize TedSim [52] (single-cell temporal dynamics simulator), which simulates cell 
division events from root cells to present-day cells, simultaneously generating two data 
modalities for each cell, gene expression, and a lineage barcode. The cell lineage tree 
is simulated as a binary tree that models the cell division events. In order to simulate 
diverse cell types, the notion of asymmetric divisions [119–121] is used. The asymmetric 
divisions allow cells to divide into cells with different cellular fates. One cell evolves into 
a new state and the other preserves the ancestor state. The evolution of cells is governed 
by a cell state tree. Two user-defined parameters control this simulation process:

1.	 step_size : defines the distance between two adjacent sampled states on the cell state 
tree. Larger step_size implies more distinct cell states along the tree.

2.	 pa : the probability for a division in the sampled tree to be asymmetric. Larger pa 
implies rapid transitions in the sampled tree.

In accordance with the original publication [52], we noticed that these parameters 
have a small effect on the mapping accuracy hence report results for pa = 0.4 and 
step_size = 0.4.

For the lineage information, barcodes are simulated as an accumulation of CRISPR/
Cas9-induced scars along the paths from the root to all the leaf cells. Here, we add to 
the TedSim simulated barcodes a stochastic silencing rate, corresponding to the rate at 
which entire segments (cassettes) are removed from the barcode. In the TedSim simula-
tion, each cassette has 4 characters and there are 8 cassettes per barcode. With this, we 
aim to simulate the expected dropout due to low sensitivity of assays.

To obtain the datasets, we follow the TedSim published tutorial, Simulate-data-multi.
Rmd. Setting pa = 0.4 and step_size = 0.4 and creating 10 different data sets using dif-
ferent random seeds.

Given the simulated gene expression and barcodes, we define moslin’s lineage costs 
as the scaled hamming distance between the barcodes, as defined by ref [21].. The 
scaling is defined such that (i) the number of sites where both cells were measured 
is taken into account and (ii) the distance between two scars is twice the distance 
from scarred to unscarred sites. To benchmark moslin, we ran a grid search over 
α ∈ {0.1,0.25,0.5,0.75,0.9,1} and ǫ ∈ {1e − 3,1e − 4} . For LineageOT, we tested with 
ǫ ∈ {1e − 1,1}.

Similarly to the previous setting, for LineageOT, the barcodes are used internally to 
construct a fitted tree. At high ssr values ( ssr > 0.2 ), LineageOT fails at the tree recon-
struction procedure. Specifically, the failure occurs once it encounters a cell with a com-
pletely nullified barcode.

For CoSpar, we rely on barcode distances to construct the clonal information. Formally 
we cluster the barcode distance matrix to define n clones, where n is chosen to be the 
number of cells in the early time point. Of note, we use the barcode distance to limit 
dependency on external reconstructions tools (as these may fail at high ssr as observed 
for LineageOT), whereas using barcode distance moslin attains good performance. 
We have validated this choice by comparing CoSpar’s performance using ground truth 
tree (for ssr = 0 ) and using LineageOT’s reconstruction (for ssr ≤ 0.2 , Supplementary 
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Fig. 1e). Fitting is done using provided functions as in the previous setting. Again, for 
proper evaluation, as the obtained transition matrix is not a valid transport map we 
row (column) normalize it and ensure a total mass of 1 for descendant (ancestor) error 
evaluation.

Judging the performance of LineageOT and CoSpar over all ssr s, in comparison to 
moslin’s performance. We hypothesize that both fail to extract valuable structure from 
the provided lineage information, regardless of ssr as their performance is not harmed as 
the ssr increases and is comparable to moslin’s at largest ssr at which lineage information 
is noisy.

Robustness analysis 

•	 Mapping of emergent states: We evaluate method’s ability to accurately identify 
ancestors of emergent states. That is cell states that appear only in the late time point. 
For a cell at a late time point, an accurate mapping is a mapping in which the most 
probable ancestor corresponds to its ancestor in the ground truth tree.

•	 Subsampling: To preserve the notion of ground truth, we limit subsampling to the 
removal of a fraction f  of cells in the late time point. In this setting, considering a 
range of f ∈ {0.1,0.2,0.4,0.6} we evaluate the mean error of the obtained mapping.

C. elegans embryonic development

The C. elegans development dataset [7] contains gene expression for approx. 86k sin-
gle cells, sequenced using 10 × genomics. The original authors [7] mapped these cells 
towards the known C. elegans lineage tree [54] and obtained lineage information for a 
subset of cells. Additionally, they mapped their data towards a bulk time-series dataset 
[122] to estimate the developmental stage of individual cells. Binning these estimated 
cell times gave rise to several pseudo-experimental time points, spanning 150–580 min 
past fertilization.

Pre-processing. To evaluate moslin’s performance, we required ground-truth lineage 
information. The original study’s mapping inferred partial lineage information for a sub-
set of approx. 46k cells. To obtain complete lineage information, we implemented two 
suggestions by ref [21].:

1.	 Strategy 1: subsetting to the ABpxp lineage. This is a symmetric lineage where “x” 
indicates either the right (“r”) or the left (“l”) cell.

2.	 Strategy 2: subsetting to all cells with complete lineage information.

As the lineage for cells obtained from strategy 1 is not fully specified due to “x,” the 
two strategies lead to disjoint subsets of cells, allowing us to test moslin’s performance in 
two different scenarios.

For either cell subset, we pre-processed the data using SCANPY [87] and used default 
parameters if not indicated otherwise. In particular, we normalized total counts, log-
transformed the data, annotated the top 3k highly variable genes using the “seurat” fla-
vor [123], and computed 50 principal components in the space of highly variable genes. 
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To have a sufficient number of cells per time point, we removed time points that con-
tained less than 100 cells. This left us with the following 7 time points: 170, 210, 270, 330, 
390, 450, and 510 min past fertilization.

Embedding and cell-type labels. Using the top 10 principal components, we com-
puted a k-nearest neighbor (kNN) graph for 30 nearest neighbors and visualize it by 
computing a UMAP embedding [56]. To reduce complexity and focus on the main 
groups of terminal cell states, we aggregated original cluster annotations slightly to 
arrive at the annotations we show in Fig. 2 and Supplementary Fig. 2. Our aggregation 
entailed the following steps:

•	 Summarize AIM, AIY, AVB, DB, PVP, RIB, RIC, SIA, and RIV as “other terminal 
non-ciliated neurons.”

•	 Summarize Neuroblast_PVC_LUA and Parents_of_U_F_B_DVA as “other pre-
terminal non-ciliated neurons.”

•	 Summarize pm7, DVA, GLR, DA, and Pharyngeal_neuron as “other terminal 
cells.”

•	 Summarize AIN_parent, M1_parent, PVQ_parent, RME_LR_parent, Parents_
of_Y_DA6_DA7_DA9, Parent_of_tail_spike_and_hyp10, and Parents_of_PHsh_
hyp8_hyp9 as “other pre-terminal cells.”

The vast majority of cells we labeled “other terminal cells” are pharyngeal neurons 
(24/30 cells), and the vast majority of cells we labeled “other pre-terminal cells” are 
pre-terminal hypodermis cells (Parent_of_tail_spike_and_hyp10 with 53/90 cells and 
Parents_of_PHsh_hyp8_hyp9 with 25/90 cells). We show the original cluster annota-
tions, prior to aggregation, in Supplementary Fig. 2.

We labeled cells that had neither terminal nor pre-terminal cell-type label (but line-
age annotation) as “progenitors.” These correspond to earlier cells in the lineage tree, 
for which terminal identity has not been established yet.

Benchmarking descendant and ancestor reconstructions  Unless stated otherwise, we 
use default method parameters.

Shared method parameters and settings. We benchmarked moslin with LineageOT, 
and the two extreme cases of our method W (just gene expression in a Wasserstein term, 
corresponding to α = 0 ) and GW (just lineage information in a Gromov-Wasserstein 
term, corresponding to α = 1 ) on the two cell subsets (strategies 1 and 2), using the 
pre-processing described above. We use the marginals a and b to capture the effects of 
cellular growth and death, and calculate them using the lineage tree following ref [21]. 
Gene-expression distances among cells from different time points were measured using 
squared Euclidean distance in the PCA space and passed to all methods in the mean-
scaled cost matrix C.

Additional moslin, W, and GW parameters. We did not allow for deviations from the 
marginals via unbalancedness in this application, as the marginals are lineage-informed 
and thus more accurate compared to other applications. To construct the lineage cost 
matrices CX and CY  for moslin and GW, we compute distances between same-time 
point cells along the lineage tree. The distance is defined as the length of a weighted 
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shortest path found using Dijkstra’s algorithm. The weights represent the temporal dif-
ference between a node and its parent. Additionally, we mean-scaled the CX and CY  
cost matrices. We set a maximum iteration budget of 30k (inner) Sinkhorn iterations for 
moslin, W, and GW.

Additional LineageOT parameters. We run LineageOT following the original authors’ 
reproducibility repository. LineageOT runs the Sinkhorn algorithm as implemented 
in Python optimal transport (POT) [124] under the hood; their convergence criterion 
checks that the constraints imposed by the marginal distributions are satisfied within a 
certain threshold. We set this threshold to 10−3.

Grid search. To identify the best hyperparameters for either method per time point 
pair, we run a grid search over the following parameter grid:

•	 W and GW:

◦ǫ ∈ [0.001,0.01,0.05,0.1,0.5].

•	 Moslin:

◦ǫ as above.
◦α ∈ [0.01,0.1,0.25,0.5,0.75,0.9,0.95,0.98].

•	 LineageOT:

◦ǫ as above.

For each method, the performance we report corresponds to the best performance 
found across this grid.

Mean error computation. To quantify method performance per time point, we com-
puted the ancestor and descendant errors over the PCA space, as described above for 
our simulation study. We used the mean over ancestor and descendant errors as our final 
accuracy metric.

Studying the effect of errors in lineage distances on moslin’s performance. We wanted 
to evaluate how inaccuracies in lineage distance information affect moslin’s performance 
in terms of the mean error. Separately for a set of time point pairs from the two data 
subsets (ABpxp and cells with complete lineage information), we used ground-truth lin-
eage information to compute symmetric lineage-distance cost matrices CX and CY  , cor-
responding to cells at early and late time points, respectively. Throughout this analysis, 
we used optimal moslin hyperparameters as identified in our grid search.

In order to simulate tree reconstruction errors, we perturbed a certain fraction of the 
information in CX and CY  , separately for early and late cells. In particular, given a tar-
get percentage c , we extracted the indices corresponding to the upper matrix triangular 
and picked c % of these indices. Next, we randomly permuted lineage distance informa-
tion for these c % of indices by sampling without replacement. As some cells might by 
chance receive the same lineage information through sampling, we computed the actual 
percentage of permuted cost matrix elements c′ %. To maintain cost matrix symmetry, 
we mirrored the perturbed upper matrix triangular to the lower matrix triangular. We 
repeated these calculations for cells at early and late time points and averaged their 
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corresponding percentages of actual perturbed matrix elements c′ % to arrive at a final 
measure for the degree of lineage-distance cost matrix perturbation. Separately for each 
pair of time points and for each data subset, we iterated over target permutation per-
centages c between 0 and 100%, applied moslin, and recorded the mean error.

Zoom in to the 330/390 min time point pair. To visualize the predicted transitions 
for RIM_parent cells, we selected 330 min RIM_parent cells and further restricted our 
attention to those cells assigned to the ABpxppaapa lineage; these cells represented the 
vast majority (80/85) of the RIM_parent population. We considered the corresponding 
rows in predicted coupling matrices. To focus on the most confident predicted links, 
we only retained matrix elements exceeding 10% of the maximum coupling value, i.e., 
we required Pij > 0.1maxijPij , separately for all predicted couplings and for the ground-
truth coupling. We visualized the remaining matrix elements in a UMAP embedding 
by connecting each RIM_parent cell to its confidently predicted descendants. To quan-
tify method performance over the RIM_parent population, independent of the UMAP 
embedding and of any thresholding scheme, we computed the descendant error for 
RIM_parent cells, as described in our simulation study. Additionally, we computed the 
ancestor error for RIM cells at the later time point.

Combining different methods with CellRank 2 for comparative fate mapping analy-
sis  We focused on the ABpxp lineage (strategy 1) and ran moslin, W, GW, and Linea-
geOT with the optimal hyperparameters identified in our grid search. We filtered out 
cells assigned a zero value in the marginal distributions to arrive at 6476 cells used for 
this analysis.

Computing pseudotimes with Palantir and CytoTRACE. Additionally, we included two 
state-of-the-art methods for general trajectory inference that do not make use of lineage 
tracing information: Palantir [57] and CytoTRACE [71].

Palantir computes a pseudotime based on iteratively reweighted random walks in 
the space of multi-scale diffusion components. Using Palantir, we computed a pseudo-
time from a randomly selected cell from the earliest embryo stage in our data. We used 
30-nearest neighbors and sampled 1200 waypoint cells.

CytoTRACE computes a measure of developmental potential based on the number 
of genes expressed per cell and refines this score through k-NN smoothing. The algo-
rithm is based on the assumption that less mature cells, on average, express more genes 
because they regulate their chromatin less tightly compared to more mature cells. In the 
original study [71], the authors validated this assumption across different species, exper-
imental technologies, and developmental stages. While the original CytoTRACE score 
S captures developmental potential and is thus high for naive cells and low for mature 
cells, we scale S to the [0,1] range and employ 1− S as a pseudotime. As the original 
CytoTRACE implementation does not scale to large cell numbers, we used the CellRank 
2 implementation [23] with k-NN imputation over a 10-dimensional PCA space with 30 
neighbors.

Interfacing different methods with CellRank 2. CellRank [125] is a fate mapping 
framework originally designed for RNA velocity [126, 127] data. In version 2 (ref [23].), it 
has been extended towards other data modalities, including time-series and pseudotime 
information. We make use of these extensions here to compare different methods in a 
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systematic way, with consistent downstream processing enabled by CellRank 2. In the 
following, we used CellRank 2 with default parameters if not indicated otherwise. 

Transition matrix construction with the RealTimeKernel. For LineageOT, W, GW, 
and moslin, we use CellRank 2’s RealTimeKernel to compute a joint transition matrix T  
across all time points for downstream CellRank analysis. Starting from an all-zero matrix 
T  , containing cells from all time points, we execute the following steps:

1.	 First, we place coupling matrices on the superdiagonal of T  for transporting cells 
from early to late time points.

2.	 Second, we compute transition matrices within each time point based on gene 
expression similarity. We place these matrices on the diagonal of T .

3.	 Third, we compute a global transition matrix T ′ across all time points based on gene 
expression similarity. We combine T  with T ′ with weights 0.9 and 0.1, respectively. 
This step improves matrix conditioning and yields the matrix T ′′.

We row-normalize T ′′ to arrive at the final CellRank 2 transition matrix, which we 
interpret as a Markov chain. For moslin’s CellRank 2 transition matrix, we simulated 200 
random walks, each containing 500 steps, to visualize the predicted cell dynamics, start-
ing from randomly selected 170 min cells. We repeated this analysis for 200, 300, 400, 
600, and 700 steps to demonstrate method robustness.

Transition matrix construction with the PseudotimeKernel. For Palantir and 
CytoTRACE, we use CellRank 2’s Pseudotime and CytoTRACEKernels, respectively, 
to compute a joint transition matrix T  across all time points for downstream CellRank 
analysis. Both kernels combine their corresponding pseudotime with a k = 30 near-
est neighbor graph, computed over 10-dimensional PCA space, to direct graph edges 
into the direction of increasing pseudotime. Thus, both kernels yield directed transition 
matrices, which reflect the developmental dynamics encoded through pseudotime and 
gene-expression similarity in the k-NN graph.

Identifying terminal states and computing aggregated fate probabilities. For all meth-
ods, we used CellRank 2’s GPCCA estimator [128, 129] to compute 7 terminal states. We 
represented each terminal state by the 30 cells most confidently assigned to it. We aggre-
gated individual terminal states to represent ciliated neurons, non-ciliated neurons, and 
glia and excretory cells, by combining the 30 cells identified per state. We computed 
absorption probabilities on the Markov chain towards these combined cell sets per ter-
minal state group and interpreted these as fate probabilities. In other words, for each 
non-terminal cell, we initialized several random walks and recorded the terminal cell set 
they reached. Taking the number of random walks to infinity, these “arrival frequencies” 
converge to absorption probabilities, which can be computed efficiently in CellRank 2 
[23].

Comparing terminal states across methods. We used two methods to compare termi-
nal states across methods:

1.	 The mean time point assignment over cells assigned to terminal states.
2.	 The mean macrostate purity.
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For the first metric, we compute a mean time point assignment per terminal state by 
averaging over the time point assigned to each cell within that terminal state, and we 
further average this quantity over all terminal states. For the second metric, we follow 
the implementation in CellRank 2 and compute, for each terminal state, the fraction of 
cells assigned to the largest cell population within that terminal state. If all cells within 
one terminal state come from the same underlying cluster, this quantity would be 1. We 
further average this quantity over all terminal states.

Comparing fate probabilities across methods. We compare different methods by aver-
aging their fate probabilities towards ciliated neurons, non-ciliated neurons, and glia and 
excretory cells, over groups of pre-terminal and progenitor populations.

Predicting driver genes. Using CellRank 2’s transition matrix for moslin, we correlated 
each gene’s expression with the computed fate probabilities across all cells and subset-
ted to known C. elegans transcription factors [73] (TFs). We focused on the top 20 most 
strongly correlated TFs per terminal cell group and treated these as predicted driver TFs.

Visualizing expression trends in a heatmap. To visualize expression trends towards the 
non-ciliated neuron terminal state group, we selected the top 50 genes most strongly 
correlated with the corresponding fate probabilities (not subsetting to TFs). We imputed 
gene expression using MAGIC [130] and fitted generalized additive models (GAMs) to 
each gene’s imputed expression as a function of the Palantir pseudotime, supplying non-
ciliated neuron fate probabilities as cell-level weights to the loss function. Specifically, 
we used a spline basis and fitted GAMs with the mgcv package, through the CellRank 2 
interface.

Zebrafish heart regeneration (LINNAEUS)

The zebrafish heart regeneration dataset [32] consists of hearts from 25 organisms: four 
uninjured hearts (ctrl), nine at 3 days after injury (3 dpi), and seven at 7 days after injury 
(7 dpi). We use moslin to calculate couplings Pab

ik  , with a and b denoting datasets at con-
secutive time points. For ease of reading, we will suppress indices a and b in the follow-
ing unless necessary.

Mapping datasets  We embed the transcriptomic readout of all single cells with lin-
eage information into a joint latent space using scVI [49], retaining the original clus-
ter annotations. We calculate tree distances as shortest path distances along the origi-
nal reconstructed trees. We use the moslin unbalanced FGW setting to calculate 
couplings between cells at consecutive time points for a hyperparameter grid where 
α ∈ {0.01,0.1,0.15,0.5} , ǫ ∈ {0.01,0.05,0.1,1} , and τa ∈ {0.4,0.5,0.6,0.9,1} . For method 
comparison, we calculate the same couplings using just gene expression in a W term 
(W) (with hyperparameters ǫ ∈ {0.01,0.1,1} and τa ∈ {0.4,0.6,0.9,1} ) and LineageOT 
(with hyperparameter ǫ ∈ {0.001,0.01,0.1}).

In our calculations, we provide growth rates as initial marginals. To calculate growth 
rates, we use cell cycle marker genes typically used in single cell data [123] and the GSEA 
Hallmark apoptosis geneset (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​human/​genes​
et/​HALLM​ARK_​APOPT​OSIS.​html).

https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_APOPTOSIS.html
https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/HALLMARK_APOPTOSIS.html
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These are converted to their zebrafish orthologs using orthologs from Alliance, as pre-
viously described [32]. Next, we use these two gene sets to calculate growth rates [1]. 
For cells at 3 dpi that are in the regeneration process, we use the growth rates as calcu-
lated. However, cells at control are not in a regenerating heart and the calculated growth 
rates may not correlate with the actual injury response. Instead, we use cell type average 
growth rates as an approximation of the tendency of cell types to proliferate.

Cell type persistence test  We constructed a cell type persistence test to select optimal 
hyperparameter values. We expect that cells of the same, non-transient, type are persis-
tent over time; cells cj2 of a non-transient (more than ten cells of type A in a single t1 and 
t2 dataset, see below) type A at time t2 should, for the most part, stem from cells ci1 of 
type A at time t1 . This means that for every cell at t2 of type A , the t1 cell with the highest 
coupling should also be of type A . In other words, for every cell at t2 we have both a real 
cell type and a “predicted” cell type: the cell type of its maximally coupled t1 ancestor. 
We then calculate the accuracy of this prediction and select the combination of hyper-
parameters that leads to the highest accuracy. For moslin, the maximal cell type persis-
tence accuracy is 0.793 ( α = 0.01 , ǫ = 0.05 , τa = 0.4 ), for W, 0.785 ( ǫ = 0.01 , τa = 0.4 ), 
and for LineageOT, 0.406 ( ǫ = 0.01).

We calculate confidence intervals on these accuracies in two ways. For Fig. 4c, we cal-
culate the standard error of the mean accuracy over all dataset combinations, weighted 
by the number of cells wi in the Nt2 t2 datasets:

where w′
i =

wi
∑Nt2

i=1wi

 the normalized weights. For Supp. Figure 14a, we subsampled 25% 

of the total number of t2 cells 100 times and calculated the 95% confidence interval based 
on that.

We call a cell type non-transient if it has more than ten cells in at least one dataset 
at t1 and t2 . In particular, that means that the cell type does not have to be present in 
all t1 datasets. However, we feel this constitutes a conservative but fair way of testing 
persistence: due to sampling noise, low-frequent cell types can be missed in single cell 
sequencing, and without thorough system knowledge it is hard to distinguish between 
low-frequency and absent cell types.

Transient fibroblast test  We used transient fibroblasts to compare method perfor-
mances on non-equal cell types. The transient col12a1a fibroblasts are of epicardial ori-
gin and could originate from the epicardium (ventricle), epicardium (atrium), fibroblasts 
(const.), fibroblasts (cfd), fibroblasts (cxcl12a), and fibroblasts (proliferating) cell types, 
and the transient nppc fibroblasts are of endocardial origin and could originate from the 
endocardium (ventricle), endocardium (atrium), and fibroblasts (spock3) cell types.

We tested the significance of the performance difference between moslin and W by 
calculating the difference in ground truth ancestors per dataset combination, and then 

σ
_
= σ

√√√√√
Nt2∑

i=1

w′
i,
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used a t-test to calculate the significance of the mean moslin performance being greater 
than the mean W performance.

Calculating cellular flows  Given a coupling Pik between a t1 dataset a and a t2 dataset b , 
cell type transitions from type A to type B can be quantified as

which satisfies 
∑

AB PAB = 1 since 
∑N ,M

ik Pik = 1 . We construct weighted averages of 
these cell type transitions over all dataset combinations, weighing by the product of #a 
and #b , with #a the number of cells in a:

This definition satisfies 
∑

AB P̃AB = 1.
We similarly obtain cell type frequencies at every time point by a weighted average of 

cell type frequencies f aA  in each dataset a with weights #a:

Again, 
∑

A f̃A = 1 since 
∑

A f aA = 1 for each a.
To calculate the proportion sAB of cells of type A becoming cells of type B , we divide 

P̃AB by the total mass outgoing from A:

while the proportion tAB of cells type B being generated by cells of type A is similarly 
calculated as

Finally, we subsampled the datasets used to calculate the proportions sAB , and then 
used the range of obtained values to determine confidence intervals. To reduce the 
amount of data roughly by half, we randomly selected three out of four control datasets, 
six out of nine 3 dpi datasets, and five out of seven 7 dpi datasets, meaning 18 instead 
of 36 couplings between control and 3 dpi datasets, and 30 instead of 63 couplings 
between 3 and 7 dpi datasets. This method of random selection allows for a total of 7056 
combinations:

We explicitly calculated sAB for all 7056 combinations to determine confidence 
intervals.

Pab
AB =

∑

i∈A,k∈B

Pab
ik ,

P̃AB :=
∑

ab

(
Pab
AB

#a ∗ #b∑
a #a ∗

∑
b #b

)
.

f̃A :=
∑

a

#a∑
a #a

f aA .

sAB :=
P̃AB∑
C P̃AC

,

tAB =
P̃AB∑
C P̃CB

.

(
4

3

)
∗

(
9

6

)
∗

(
7

5

)
= 7056.
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