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Abstract 

The identification of gene regulatory networks (GRNs) is crucial for understanding 
cellular differentiation. Single-cell RNA sequencing data encode gene-level covaria-
tions at high resolution, yet data sparsity and high dimensionality hamper accurate 
and scalable GRN reconstruction. To overcome these challenges, we introduce NetID 
leveraging homogenous metacells while avoiding spurious gene–gene correlations. 
Benchmarking demonstrates superior performance of NetID compared to imputation-
based methods. By incorporating cell fate probability information, NetID facilitates 
the prediction of lineage-specific GRNs and recovers known network motifs governing 
bone marrow hematopoiesis, making it a powerful toolkit for deciphering gene regula-
tory control of cellular differentiation from large-scale single-cell transcriptome data.

Background
The development of large-scale single-cell RNA-sequencing (scRNA-seq) techniques 
over the past decade has revolutionized our ability to unbiasedly discriminate cell states 
based on the transcriptome fingerprint of individual cells. Numerous computational 
methods facilitate the inference of cellular differentiation trajectories from snapshot or 
time-course scRNA-seq datasets [1]. Such approaches typically rely on differentiation 
pseudotime estimation and permit the analysis of gene expression dynamics and gene 
regulatory interactions underpinning cell fate decision and terminal differentiation.

Exploiting covariation of the expression patterns of individual genes permits the infer-
ence of gene regulatory networks (GRNs) encoding regulator-target relations in a sys-
tem of interest. Multiple approaches for systematic GRN inference have been introduced 
in the past. One of the most widely used methods, GENIE3 [2], utilizes random for-
est regression for GRN construction and has shown favorable performance in a recent 
benchmarking study [3], while another top-performing method, PIDC [4], relies on par-
tial information decomposition.
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Although these methods successfully recover known regulatory interactions, sensitiv-
ity and specificity of inferred regulatory links suffer from a high level of technical noise 
due to the sparsity of scRNA-seq data, which has been identified as one of the major 
challenges in the analysis of such data [5].

To overcome the problem of sparsity, or dropout, i.e., the absence of gene read counts 
as a consequence of prevalent sampling noise, various computational methods have 
been proposed for imputing missing readout from the gene expression information of 
each cell’s neighborhood in order to smoothen inferred gene expression across the cell 
state manifold [6–9]. However, these approaches typically induce spurious correlations 
between the expression levels of different genes, leading to a decrease in GRN recon-
struction performance [10–12].

Another solution to alleviate technical noise caused by data sparsity relies on the uti-
lization of metacells [13]. The concept of metacells relies on local groups of cells consid-
ered to be sampled from the same state, covering the cell state manifold. This approach 
was proposed as a way of maintaining statistical utility while maximizing effective data 
resolution. Although metacells are far more granular than clusters and are optimized for 
homogeneity, the metacell inference on unpruned cell k-nearest neighbor (KNN) graphs 
without explicitly testing for cell state homogeneity based on a background model cap-
turing known noise components [14, 15] may lead to a mixing of different cell states 
within individual metacells and therefore compromise GRN inference.

Finally, available methods for GRN inference do not account for differences in GRN 
architecture across distinct lineages within multilineage scRNA-seq data.

To overcome the challenge of technical noise and to facilitate accurate and scalable 
inference of lineage-specific GRNs, we introduce NetID. The NetID algorithm builds on 
the metacell concept applied to pruned KNN graphs. We demonstrate that NetID pre-
serves biological covariation of gene expression and outperforms GRN inference with 
imputation-based methods. By incorporating cell fate probability information, we enable 
the inference of cell-lineage specific GRNs, which permit the recovery of ground truths 
network motifs driven by known lineage-determining transcription factors of mouse 
hematopoietic bone marrow cells.

NetID provides a novel toolkit to infer gene regulatory networks in large-scale single-
cell gene expression data.

Results
The NetID algorithm for scalable inference of lineage‑specific GRNs

To circumvent the problem of data sparsity due to sampling dropouts of sequenced 
mRNAs in individual cells, the concept of metacells has been introduced [13]. Metacells 
are defined as disjoint homogenous groups of cells sampled from the same distribution. 
NetID provides a novel GRN inference method relying on metacells in order to (1) facili-
tate scalability of GRN inference to large single-cell datasets and (2) limit the adverse 
effect of data sparsity on the inference of gene–gene covariation underlying GRNs. In 
order to identify a limited number of metacells capturing all relevant variability govern-
ing the cell state manifold of a given scRNA-seq dataset, NetID first performs sampling 
of cells after normalization and transformation by principal component analysis (PCA) 
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utilizing a sketch-based method called geosketch with the objective to achieve homog-
enous coverage [16].

These sampled cells are defined as “seed cells.” For the inference of metacells, NetID 
starts by computing the k-nearest neighbors (KNN) of each seed cell. To only keep cells 
consistent with sampling from the same distribution for each metacell, outlier cells are 
pruned from each neighborhood based on a local background model of gene expression 
variability as implemented in VarID2 [15]. VarID2 computes the probability of observ-
ing a gene-specific transcript count for each of the neighbors according to a negative 
binomial distribution parametrized by the local mean–variance dependence across all 
genes. If the expression in a nearest neighbor cell is significantly different from the seed 
cell, VarID2 assigns a low probability to the corresponding edge to enable pruning of 
the KNN graph by applying a P-value cutoff. This procedure removes unwanted vari-
ability arising from the admixture of distinct cell states and maximizes homogeneity of 
metacells.

To avoid inflation of gene–gene covariance as a result of overlapping metacells and 
to ensure that the inferred metacells represent independent states on the manifold, we 
avoid occurrence of the same cell in the neighborhoods of different seed cells.

To achieve this, we assign a shared neighbor to the seed cell with the largest edge 
P-value. Shared neighbors remaining after this step are assigned to the seed cell with the 
lowest number of neighbors. Remaining neighbors are termed partner cells. Metacells 
with too few partner cells are removed. To obtain the expression profile of each metacell, 
normalized or raw gene counts are aggregated (Fig. 1).

The NetID approach is designed to infer metacells capturing predominant cell state 
variation across the manifold, while reducing the sample size needed for accurate gene 
regulatory network (GRN) inference. NetID integrates GENIE3 for GRN inference, but 

Fig. 1 The NetID algorithm. NetID utilizes metacells to infer gene regulatory networks (GRNs) from large 
single-cell datasets to increase scalability and reduce technical noise. First, NetID performs seed cell sampling 
using geosketch and applies VarID2 to prune the KNN graph before building metacells. Subsequently, cells 
are ordered according to cell fate probability and regulator-target interactions are inferred by Granger 
ridge regression. By integrating the GRN inferred from the Granger causal model and GENIE3, NetID learns 
lineage-specific GRNs to identify key regulators of cell fate decision. KNN, k-nearest neighbor; NN, nearest 
neighbor; GEP, gene expression profile. RF, random forests, TF, transcription factor, g, target gene
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alternative methods can be applied on metacell profiles. However, since each cell line-
age is potentially governed by a unique GRN topology, a global GRN model may provide 
insufficient resolution or even confound lineage-specific sub-networks. To overcome 
this limitation, we utilize cell fate probability inferred from pseudotime [17] or RNA 
velocity [18, 19] to order cells along their respective lineage trajectories. This allows the 
prediction of directed regulator-target gene relations by ridge regression Granger cau-
sality tests [20]. By integrating the GRN inferred from the Granger causal model and 
GENIE3, we can learn lineage-specific GRNs that enable identification of important 
driver genes and regulatory interactions during cell fate decisions.

Testing the NetID architecture on a ground truths dataset

To investigate the contribution of each step in the NetID algorithm towards GRN pre-
diction performance, we conducted testing on a hematopoietic progenitor differentia-
tion dataset [21] using a GRN curated from nonspecific ChIP-seq data [3] as ground 
truth. Comparing random (Fig. 2A) and geosketch sampling (Fig. 2B) of seed cells dem-
onstrated that geosketch sampling led to smaller Hausdorff distance to all other cells 
(Fig. 2C) and explained more gene expression variation (Fig. 2D), consistent with pre-
vious findings [16]. We confirmed these observations on human adult hematopoietic 

Fig. 2 Validating GRN inference performance of NetID on hematopoietic ground truths data. A UMAP 
representation of Kit + hematopoietic progenitors [21] highlighting randomly sampled cells in red. B UMAP 
representation of Kit + hematopoietic progenitors [21] highlighting geosketch-sampled cells in red. C Box 
plot comparing the Hausdorff distance of randomly sampled cells (green) and geosketch-sampled cells 
(red) with 30 repeats. The x-axis denotes the fraction of sampled cells. D Box plot comparing the explained 
expression variance (Methods) of randomly sampled cells (green) and geosketch-sampled cells (red) with 
30 repeats. The x-axis denotes the fraction of sampled cells. E Violin plots showing the difference in early 
precision rate (EPR) when using GENIE3-inferred GRNs on geosketch-sampled cells or randomly sampled cells 
(left panel) with 30 repeats and when using GENIE3-inferred GRNs on pruned or unpruned KNN graphs (right 
panel). F Violin plots showing the comparison of early precision rate (EPR) between two different strategies. 
“NetID” denotes combining geosketch sampling, KNN graph pruning, and neighbor reassignments to build 
metacell profiles for GRN inference with 30 repeats. “Pruned” denotes combining geosketch and KNN graph 
pruning to build metacell profiles for GRN inference with 30 repeats. The x-axis denotes the number of 
neighbors. We benchmarked the performance on the non-specific ChIP-seq network as the ground truth. In 
E–F, the box in the violin plot represents the interquartile range (IQR). The whiskers extend to the smallest 
and largest values within 1.5 times the IQR. The black line within the box indicates the median. ***P < 0.001, 
****P < 0.0001, two-sided Wilcoxon rank sum test
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differentiation [22] and embryonic stem cell [23] datasets (Additional File 1: Fig. S1). We 
then compared the two sampling methods by directly aggregating k-nearest neighbor-
hoods of each seed cell without pruning and reassignment prior to GRN inference by 
GENIE3. Early precision rate (EPR) (Additional File 1: Fig. S2) and area-under-receiver-
operating-characteristic curve (AUROC) metrics indicated significantly improved GRN 
inference of geosketch compared to random sampling (Fig. 2E left panel, Additional File 
1: Fig. S3A).

To demonstrate the benefit of neighbor pruning, we performed direct cell aggrega-
tion on pruned and unpruned KNN graphs without additional reassignment of shared 
partner cells for geosketch-sampled seed cells and observed significantly improved GRN 
inference performance when pruning was included (Fig. 2E right panel, Additional File 
1: Fig. S3A).

We repeated these analyses using the STRING database to derive a ground truth net-
work and could confirm the observed improvement (Additional File 1: Fig. S3B,C).

Finally, we compared cell aggregation on pruned KNN graphs with and without reas-
signment of shared partner cells and benchmarked the performance at varying neigh-
borhood sizes. Together with the previous tests, this comparison indicates that NetID, 
combining geosketch sampling, KNN graph pruning, and shared partner cell reassign-
ment, improves GRN inference performance. These observations were consistent across 
datasets as demonstrated by extensive step-by-step benchmarking on the human hemat-
opoietic differentiation and embryonic stem cell datasets (Additional File 1: Fig. S4–6). 
For the latter, we included an available cell-specific ChIP-seq network (Methods) from 
BEELINE [3] as ground truth.

A critical parameter of NetID is the optimal number of seed cells. Considering the 
entire metacell inference process, we observed that increasing the seed cell sample size 
decreases the number of partner cells for each seed cell (Additional File 1: Fig. S7). The 
required number of sampled seed cells depends on the cell state heterogeneity of the 
dataset, while the number of partner cells controls the sparsity of the inferred metacell 
profiles. Optimal GRN inference from metacell profiles relies on sufficient coverage of 
the cell state manifold by seed cells with a limited degree of metacell sparsity to avoid 
sampling noise. Combining both objectives into a score (Methods) enables the inference 
of a “sweet spot” for the optimal number of sampled seed cells. We evaluated the GRN 
inference accuracy with varying numbers of seed cells and confirmed that the predicted 
“sweet spot” matched well with the performance optimum in terms of EPR and AUROC 
(Additional File 1: Fig. S8).

We further observed that removal of seed cells with a low number of partner cells after 
pruning and reassignment improves GRN inference (Additional File 1: Fig. S9), suggest-
ing that careful inference of metacell gene expression improves the recovery of gene–
gene covariation.

Benchmarking NetID with available imputation methods

To benchmark the influence of NetID’s metecall generation step against other infer-
ence strategies with imputation-based methods including DCN [6], MAGIC [8], 
SAVER [7], KNN (mean expression across KNN), or with raw transcript counts, 
based on in silico generated ground truths data, we used dyngen [24] to perform 
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scRNA-seq data simulation. This allowed us to determine the ground truth GRN. We 
simulated two scRNA-seq datasets with different topological structures, i.e., bifur-
cating (Fig.  3A) and cyclical (Fig.  3C) topology. We then used EPR, area under the 
precision-recall curve (AUPRC), and AUROC to evaluate the performance of GRN 
inference. Overall, NetID exhibited superior performance reflected by all metrics and 
was always among the top methods when compared to imputation-based approaches 
(Fig.  3B, D). Overall, NetID provided competitive GRN inference performance on 
simulated datasets and was more robust compared to raw gene expression data and 
imputation-based methods.

Since simulation-based methods do not fully reflect the complexity of real scRNA-
seq data, we further utilized the BEELINE GRN benchmarking pipeline [3] to com-
pare NetID with the same imputation-based methods and MetaCell [13] based 
inference on real scRNA-seq datasets for mouse embryonic stem cell (mESC) differ-
entiation [23] and mouse hematopoietic stem cell (mHSC) differentiation [25]. For 
both systems, we selected ground truths networks inferred from ChiP-seq data spe-
cific to the respective system or from non-specific ChIP-seq or STRING datasets fol-
lowing the strategy of BEELINE [3]. In case of mESCs, we further utilized ground 
truths based on loss-of-function/gain-of-function data [3]. Overall, NetID exhibited 
superior performance compared to raw gene expression and imputation-based meth-
ods for both systems according to EPR values (Fig.  4A, B). The only exception was 
the benchmarking of mHSC differentiation based on mHSC-specific ChiP-seq data. 

Fig. 3 Benchmarking of NetID on simulated datasets. A Dimensional reduction representation of a simulated 
scRNA-seq dataset with bifurcating trajectories. B Bar plot showing the early precision rate (EPR) (left 
panel), area under the receiver operating characteristic curve (AUROC) (middle panel), and area under the 
precision-recall curve (AUPRC) (right panel) of the GRN inferred from raw gene expression profiles, imputed 
gene expression profiles using four methods (DCA, MAGIC, KNN, and SAVER), and metacell expression profiles 
inferred by NetID for data in A. NetID was run 30 times to generate error bars. For other imputation methods, 
we randomly sampled 90% of cells each time to infer performance error bars. GENIE3 was used for GRN 
inference. C Dimensional reduction representation of a simulated scRNA-seq dataset with a cycling trajectory. 
D Bar plot showing the EPR (left panel), AUROC (middle panel), and AUPRC (right panel) of the GRN inferred 
from raw gene expression profiles, imputed gene expression profiles using four methods (DCA, MAGIC, 
KNN, and SAVER) and metacell expression profiles inferred by NetID for data in C. NetID was run 30 times 
to generate error bars. GENIE3 was used for GRN inference. For other imputation methods, we randomly 
sampled 90% of cells each time to infer performance error bars
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However, none of the methods outperformed random guessing (EPR = 1) in this case, 
suggesting that this ground truth network may not fit the real underlying network in 
the tested mHSC datasets.

A critical bottleneck for GRN inference is computational speed. We compared the 
computation speed of the different imputation methods and calculated the running 
time as the sum of each algorithm’s running time and the running time of GENIE3 net-
work inference on the large-scale mouse embryogenesis atlas dataset [26]. As expected, 
metacell-based methods, i.e., NetID and MetaCell, were the fastest among all meth-
ods. In contrast, the imputation-based methods required a long time to perform both 
imputation and GRN construction (Fig. 4C, left). Specifically, NetID was 10 times faster 
than any other imputation-based method. While GENIE3 cannot handle large datasets 
with ~100k, we show that application of NetID to a ~105k mouse embryogenesis dataset 
requires < 25 min running time (Fig. 4C, right).

Overall, NetID’s strategy of generating metacell gene expression profiles facilitates 
superior GRN inference performance compared to raw gene expression profiles and 
imputation-based methods according to the benchmarking results on simulated and real 
datasets. In particular, due to its fast computation speed, NetID enables scalability of 
GRN inference to large-scale scRNA-seq datasets.

Fig. 4 Benchmarking gene regulatory network inference on real scRNA-seq datasets. A Bar plot showing 
the early precision rate of the gene regulatory network (GRN) inferred from raw gene expression, imputed 
gene expression using four alternative methods, and metacell gene expression profiles (MetaCell and 
NetID) for mouse embryonic stem cell data [23]. NetID was run 30 times to generate error bars. For other 
imputation methods, we randomly sampled 90% of cells each time to infer performance error bars. Lof/
gof, loss-of-function/gain-of-function. B Bar plot showing the early precision rate of the GRN inferred 
from raw gene expression, imputed gene expression using four alternative methods, and metacell gene 
expression profiles (MetaCell and NetID) for mouse hematopoietic stem cell data [25]. NetID was run 30 
times to generate error bars. For other imputation methods, we randomly sampled 90% of cells each time 
to infer performance error bars. C Line plot showing the running time of the GENIE3 algorithm on raw gene 
expression profiles and processed gene expression generated from six methods for a subset of 16k cells 
extracted from mouse embryogenesis data [26] with different percentages of sampled cells (left panel). The 
box plot displays the running time comparison when NetID was applied to a larger subset with 105k cells 
compared to the 16k cell dataset with 30 repeats. The benchmarking was performed on a workstation with 
16 Intel(R) Xeon(R) Gold 6242 CPUs and 128 GB RAM. In C, the box in the box plot represents the interquartile 
range (IQR). The whiskers extend to the smallest and largest values within 1.5 times the IQR. The black line 
within the box indicates the median
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Incorporating cell fate probability for lineage‑specific GRN inference

In a multilineage stem cell differentiation system such as the bone marrow hematopoi-
etic system, the GRNs governing distinct cell fates may exhibit lineage-specific archi-
tecture. Thus, it would be desirable to facilitate lineage-specific GRN inference. The 
assignment of a particular cell to a lineage can be based on inferred cell fate probabili-
ties, reflecting the likelihood of differentiating into any of the mature or terminal cell 
states present on the manifold. In the past, a number of computational methods for cell 
fate probability prediction have become available [1]. Modeling cell differentiation as 
probabilistic events allows us to regard this probability as a proximal measure of travel 
time from root cell states to terminal cell states, which we can connect with GRN con-
struction through Granger regression modeling (Methods). This strategy enables the 
inference of cell fate- or lineage-specific GRNs.

To provide a proof-of-concept for integrating cell fate probabilities for lineage-specific 
GRN inference, we ran NetID on a mouse hematopoietic cell state manifold comprising 
mHSCs and lineage-biased progenitor cells [21]. We applied Palantir [17], which utilizes 
pseudotime information, to identify two dominating terminal cell states corresponding 
to the erythrocyte and the neutrophil lineage, and calculated the probability of each cell 
to transition to either state. Using a Granger causal model, we learned cell fate/lineage-
specific networks governing erythroid and neutrophil differentiation.

Selection of the root cell is pivotal for pseudotime inference, since different root cells 
may lead to variability in cell fate probability estimation. To resolve this issue and to 
increase stability of cell fate inference, Palantir or CellRank [27] allow to specify terminal 
states, which increases stability of cell fate inference. To test the robustness of lineage-
specific GRN inference to root cell choice, we used different markers for root cell defini-
tion based on maximal expression or randomly sampled root cells from the multipotent 
progenitor population. After specifying the terminal states (neutrophils and erythroid 
cells), the inferred lineage-specific GRNs were very robust to root cell choice (Additional 
File 1: Fig. S10).

In the Granger causal model, the number of coefficients that need to be estimated for 
each gene is P × L . P denotes the number of regulators, and L denotes the maximum 
lagged time steps. To avoid overfitting, we applied L2 regularization to the Granger coef-
ficients for each gene. We demonstrate this strategy by focusing on Klf1 and the eryth-
roid lineage as example target gene and lineage, respectively. After ordering the cells 
by cell fate probabilities, we split data into training data (80%) and test data (20%). We 
trained the Granger causal model on training data and evaluated the prediction mean-
squared error (MSE) and Spearman correlation on test data. Without regularization 
( � = 0 ), the MSE becomes larger and the Spearman correlation decreases with increas-
ing P and L . As the regularization strength � is increased, the MSE is reduced and the 
Spearman correlation improves (Additional File 1: Fig. S11). Based on our trials, we set 
L = 30 and � = 150 as the default.

We next benchmarked NetID with alternative methods for lineage-specific GRN infer-
ence. We first conducted benchmarking on a simulated dataset with known ground 
truth lineage-specific GRNs (Methods). Using scVelo [19], a method that estimates the 
spliced RNA product velocity, on simulated data, we predicted the terminal states and 
the corresponding cell fate probabilities for the two lineages (CT1 and CT2, Fig. 5A, B).
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Using cell fate probability information for lineage-specific GRN inference significantly 
improved the performance in terms of AUPRC and EPR metrics (Fig. 5C, D, Additional 
File 1: Fig. S12) compared with the global GRN estimated by GENIE3 and the GENIE3-
subnetwork derived from differential gene expression analysis (DEG) across lineages 
(Methods). Furthermore, NetID outperformed other network inference methods that 
directly incorporate pseudotime rather than cell fate probabilities, including SCODE 
[28] and LEAP [29] (Fig. 5C, D and Additional File 1: Fig. S12).

For benchmarking on real data, we inferred the megakaryocyte-specific GRN for a 
human bone marrow dataset [17]. We first applied Palantir to predict megakaryocyte 
cell fate probabilities (Fig.  5E). We then inferred a megakaryocyte-specific GRN and 
compared to the GRN derived from a megakaryocyte-specific ChIP-seq dataset [30] as 
ground truth. Our results show that NetID with the Granger causal model outperforms 
all other methods. Although SCODE had a higher AUROC, its  EPR  was the lowest 
among the five methods (Fig. 5F and Additional File 1: Fig. S12).

Fig. 5 Incorporating cell fate probability improves GRN inference by NetID. A UMAP plot of a 
dyngen-simulated scRNA-seq dataset with two terminal states (CT1 and CT2). Each dot represents a cell, 
and the terminal states are colored. Terminal states are predicted using RNA velocity inferred by scVelo 
and cell fate prediction by CellRank. B UMAP plot of the dyngen-simulated scRNA-seq dataset with two 
terminal states (CT1 and CT2) in A. Each dot represents a cell, and the terminal states are colored. The 
color scale indicates cell fate probability. C Violin plot of the EPR for the five methods. The simulated CT1 
lineage-specific GRN was used as ground truth. Each method was run 30 times to derive the standard 
deviation. D Violin plot of the EPR for the five methods. The simulated CT2 lineage-specific GRN was used 
as ground truth. Each method was run 30 times to derive the standard deviation. E UMAP plot of the 
human hematopoietic differentiation dataset [17]. The color scale indicates cell fate probability towards 
Megakaryocytes. F Violin plot of the EPR of the five methods applied to the dataset in E. The GRN derived 
from a megakaryocyte-specific ChIP-seq dataset [30] was used as ground truth. Each method was run 30 
times to derive the standard deviation. In C, D, and F, the box in the violin plot represents the interquartile 
range (IQR). The whiskers extend to the smallest and largest values within 1.5 times the IQR. The black line 
within the box indicates the median. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, one-sided Wilcoxon rank 
sum test. CSN, cell-specific GRN. GN, global GRN
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NetID identifies key lineage‑specific transcription factors and network modules

The benchmarking of NetID with different data preprocessing methods has demon-
strated that using NetID-inferred metacell profiles preserves biological signals while 
also making GRN inference much more scalable. These characteristics suggest that 
NetID could enable GRN inference on large-scale scRNA-seq datasets. As a proof-of-
principle, we applied NetID to a large mouse Kit+ hematopoietic progenitor scRNA-
seq dataset with more than 40,000 cells comprising multiple lineages [31] (Fig. 6A). 

Fig. 6 NetID infers lineage-specific GRNs for large-scale mouse hematopoiesis scRNA-seq data. A UMAP 
plot of mouse hematopoietic progenitor scRNA-seq data [31] (~ 40,000 cells) colored by cell types. B UMAP 
plot highlighting cell fate probabilities predicted by diffusion pseudotime analysis with Palantir. Cells are 
colored by the probability of giving rise to each of the four terminal states. C Top 10 transcription factors (TFs) 
with the highest connectivity in lineage-specific gene regulatory networks inferred by NetID. Connectivity 
is defined as the mean of the absolute regulatory weights for each TF. D Receiver operating characteristic 
(ROC) curve plots of five TF ranking methods for the erythroid (left) and neutrophil (right) lineages: Gene 
Expression, log2-fold change (Log2fc) Ery vs Stem Cells, Log2fc Ery vs Others, and two network-based 
methods using the global network estimated by GENIE3 or NetID. Gene Expression: Ranking TFs according to 
the TF expression in the terminal Ery/Neu cell state. Log2fc, Ery/Neu vs Stem Cells: Ranking TFs according to 
the absolute log2-fold change of erythroid cells/neutrophils to stem cells. Log2fc, Ery/Neu vs others: Ranking 
TFs according to the absolute log2-fold change of erythroid cells/neutrophils to other cells. E Bar plot of the 
average AUROC of the five TF ranking methods in D. F Visualization of the module centered on the TF Irf8 (left 
panel) and the histogram of the modularity score after 1000 permutations of the GRN structure (right panel). 
The red line indicates the modularity score of the original Irf8 module. Stem, hematopoietic stem cells; Mk, 
megakaryocyte lineage; Ery, erythrocyte lineage; Neu, neutrophil lineage; Mo, monocyte lineage; Lymph, 
lymphocyte lineage; Baso, basophil lineage; B, B cell lineage



Page 11 of 22Wang et al. Genome Biology          (2024) 25:275  

After running NetID, we found that metacell-derived gene expression profiles of tran-
scription factors (TF) cluster into distinct modules, which were not detectable from 
raw gene expression values due to sparsity (Additional File 1: Fig. S13A). Zooming 
in on specific pairs of TFs revealed that the covariation of metacell-based expression 
facilitates the recovery of TF regulation from sparse data. For instance, we meas-
ured a positive correlation between Gata1 and Klf1 (R = 0.875) or Trp53 and Pa2g4 
(R = 0.795) (Additional File 1: Fig. S13B), consistent with experimentally validated 
regulatory relationships [32, 33].

As RNA velocity inference is known to be problematic for hematopoietic cell differ-
entiation datasets, predicting inverted trajectories, we used Palantir to infer cell fate 
probabilities and identified four major terminal states in this dataset, corresponding 
to erythrocytes, megakaryocytes, neutrophils, and lymphocytes (Fig. 6B). To support 
the identification of key lineage-specific TFs by NetID, we calculated the regulator 
connectivity within each cell fate-specific network and ordered the TFs accordingly. 
The regulator connectivity reflects the importance of each gene in regulating other 
genes in the network. We found that the top-ranked TFs in the two main lineages, 
erythroid (Ery) and neutrophil (Neu), were distinct and comprised many well-known 
regulators of the respective lineage (Fig. 6C). For instance, in the Ery branch, the top-
ranked TF genes Fli1 and Klf1 are known as the master regulators of the megakaryo-
cyte (Meg) and the Ery lineage, respectively [34]. The self-activation of FLI1 biases 
human stem or progenitor cells towards the Meg lineage, while KLF1 regulates differ-
entiation towards the Ery lineage [34, 35]. The balance between Ery- and Meg-lineage 
cells is regulated by mutual antagonism of FLI1 and KLF1 [35]. For the Neu branch, 
the top-ranking gene Spi1 encodes the well-studied TF PU.1, a critical regulator of 
lymphoid-myeloid progenitor differentiation [36]. This TF and other key lineage-
determining factors among the top-ranking TFs, such as Cebpa, are critical regulators 
of neutrophil differentiation [37, 38].

To systematically assess the performance of NetID in identifying key lineage factors 
compared to alternative methods, we used previously curated regulators of eryth-
roid and neutrophil fate from the literature as ground truth [38–50] (Additional File 
2: Table  S1). We then computed the ranking of TFs based on regulator connectiv-
ity learned from NetID and other methods and scored these rankings based on the 
ground truth (Fig. 6D). According to this benchmarking, NetID outperforms all other 
methods, with an AUROC of 0.96 for the erythroid and 0.88 for the neutrophil line-
age. Using one global network learned from GENIE3 only ranks erythroid-associated 
TFs highly but shows reduced performance for the neutrophil lineage (AUROC of 
0.73), suggesting that NetID’s inferred lineage-specific GRNs capture lineage-specific 
features. Notably, we also found that using network-based ranking performs better 
than expression-based ranking, which supports the benefit of using gene regulatory 
network analysis for identifying lineage-specific regulators (Fig. 6E).

Zooming in on a particular network module may reveal the regulatory underpin-
ning of cell differentiation. By applying a permutation test (Methods), we could iden-
tify TF modules regulating differentiation. For instance, we identified a significant 
module centered on Irf8 controlling neutrophil differentiation (P < 0.001, Fig. 6F). Fur-
ther examination of this module revealed that Irf8 interacts with Cebpa and Cebpb, 
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forming a negative feedback loop with Cebpb  (Fig.  6F, Additional File 1: Fig. S14). 
This feedback loop has been experimentally validated to control the chromatin state 
in dendritic cells. Additionally, we found that Irf8 negatively regulates Cebpa (Fig. 6F, 
Additional File 1: Fig. S14), in line with experimental evidence that Irf8 blocks the 
activity of  Cebpa  to prevent myeloid progenitor differentiation towards neutrophils 
[46]. We identified further examples of regulatory links predicted by NetID that have 
been validated experimentally in the past [51–55] (Additional File 1: Fig. S14).

Discussion
GRN inference is a core objective of scRNA-seq data analysis for generating hypotheses 
on gene regulatory mechanisms underlying cell state transitions. However, GRN recon-
struction for large scRNA-seq datasets is hampered by the requirement of computing 
gene–gene covariances across tens to hundreds of thousands of cells and scales with the 
square of the number of genes.

Moreover, gene expression quantification in individual cells is affected by substantial 
technical noise. Sampling of metacells or alternative imputation strategies represent 
potential solutions to this problem, but available methods suffer from the emergence of 
spurious gene–gene correlations not supported by the actual data [10]. To avoid such 
problems, it is critical to ensure cell state homogeneity within metacells and to make 
sure that each particular cell only contributes to a single metacell. Another key require-
ment is sufficient coverage of all cell states by metacells.

NetID addresses these challenges by optimizing metacell coverage of distinct states 
across the cell state manifold by geometric sketching [16] and ensures cell state homo-
geneity of each metacell by KNN graph pruning with VarID2. Overlap between distinct 
metacells is eliminated by a link probability-based reassignment strategy. Together, these 
steps permit scalable and accurate GRN inference and are not confounded by spurious 
correlations induced by common imputation strategies.

We validated the performance contribution of each step of the NetID algorithm using 
a hematopoietic progenitor differentiation dataset. By combining geosketch sampling, 
KNN graph pruning, and reassignment of partner cells, maximal GRN inference per-
formance could be achieved. The optimal sample size for metacell inference was deter-
mined by balancing the number of sampled seed cells and the sparsity of the inferred 
metacell profile.

NetID was benchmarked against other imputation-based methods on simulated and 
real scRNA-seq datasets and exhibited superior accuracy at substantially reduced runt-
ime. Thus, NetID permits accurate GRN inference on large-scale scRNA-seq datasets 
and overcomes scalability limitations of available methods.

We demonstrate that incorporation of cell fate probabilities enables lineage-specific 
GRN inference for multilineage scRNA-seq datasets. Our modeling approach, which 
relies on Granger causal regression, enables the inference of directed regulator-target 
relationships and was able to recover known TF network motifs driving differentiation 
of hematopoietic progenitors towards the erythrocyte and neutrophil lineages.
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We note that future extensions of NetID could draw from previous approaches to 
overcome the issue of sparsity of scRNA-seq data for identifying lineage-specific regula-
tors. In particular, incorporation of orthogonal datasets that are less affected by spar-
sity, such as bulk RNA- and ATAC-seq as well as ChiP-seq data, to infer regulon activity 
could help to prioritize key transcription factors driving lineage-specific GRN modules 
[56, 57].

In conclusion, NetID overcomes several limitations of currently available GRN infer-
ence approaches and provides a tool for interrogating the gene regulatory circuitry gov-
erning cell fate decisions in multilineage systems.

Methods
Inference of a pruned KNN network with VarID2

NetID requires the inference of a pruned KNN network from a single-cell gene expression 
matrix ( M ∈ Rn×m ) through VarID2 (using the R package RaceID v0.3.1) [15]. In short, 
VarID2 normalizes count data by negative binomial regression of total transcript counts, fol-
lowed by principal component analysis (PCA) for initial dimensionality reduction. Subse-
quently, a fast KNN search is performed based on the Euclidean metric in PCA space to 
build the initial KNN network. For each cell in this network, VarID2 estimates the parame-
ters of local negative binomial background distributions predicting the expected unique 
molecular identifier (UMI) count distribution for each gene. For cell j , the probability Pi

jl of 
the observed transcript count of gene i in each KNN l l = j1, . . . , jk  is computed from this local 
distribution. The resulting link probabilities Pjl between cell j and each neighbor l are derived 
as the geometric mean of the count probabilities Pi

jl of the three genes i with the lowest count 
probabilities. A larger probability Pjl indicates a stronger connection between cell j and its 
neighbor l . This calculation is performed for all links in the KNN network to obtain a link 
probability matrix P ∈ RK×m between each of the m cells and their K  neighbors.

Sampling seed cells from the transcriptomic manifold

As the next step of NetID, a representative subset of cells is sampled from the transcrip-
tomic space with the objective that the sampled cells reflect the overall geometry of the 
dataset and cover both rare and abundant cell states. This strategy aims at preserving 
the transcriptional variation within the dataset and at the same time facilitates fast GRN 
computation. NetID implements two different sampling methods for dataset sketching: 
the first method is “geometric sketching” (geosketch), which performs sketching on the 
principal component (PC) space. In the present analysis, we selected the top 50 PCs to 
reduce dimensions prior to running geosketch. The selected subset of sampled cells, 
termed “seed cells,” is expected to capture the major transcriptome variation across the 
cell state manifold. The second method samples cells randomly.

Construction of metacells by aggregating pruned neighborhoods of seed cells

Conventional gene expression imputation methods rely on information sharing across 
neighborhoods in order to remove technical noise and achieve a more accurate estimate 
of gene expression for each cell. However, common imputation methods induce spuri-
ous correlations between the expression patterns of individual genes [12]. NetID relies 
on the inference of homogeneous, non-overlapping metacells. To achieve this, we first 



Page 14 of 22Wang et al. Genome Biology          (2024) 25:275 

prune the neighborhood of each seed cell based on the link probability matrix P ∈ R
K×m 

inferred by VarID2 as described. The probabilities are compared to a probability thresh-
old ( ptr = 0.01 by default), and all neighbors with Pjl < ptr are pruned. Subsequently, 
remaining neighbors, termed partner cells, shared by different seed cells are assigned to 
the seed cell with the largest link probability. If the link probabilities with more than one 
seed cell are equal, the respective partner cell is assigned to the seed cell with the mini-
mal number of neighbors to improve gene expression estimation accuracy. Finally, after 
all neighbors are pruned or assigned, we aggregate gene expression across all neigh-
bors of each seed cell and filter out the seed cells with too few partner cells (< 5 part-
ner cells). This procedure yields the metacell gene expression profiles as input for GRN 
construction.

Using non‑linear methods to build global GRN skeleton

Using the metacell gene expression profiles, NetID can accommodate any GRN con-
struction method. According to a previous benchmarking study, PIDC [4], GENIE3 [2], 
and GRNBoost2 [58] were the top performing methods on real datasets. PIDC char-
acterizes statistical dependencies between pairs of genes based on mutual information 
(MI), and the reliable estimation of pairwise joint probability distributions generally 
requires a large sample size, i.e., a large number of cells. GENIE3 estimates gene–gene 
dependencies based on importance scores obtained by a random forest regression [59]. 
GRNBoost2 is based on the GENIE3 architecture but utilizes gradient boosting. For 
consistency and comparability, we use GENIE3 (v1.20.0) to conduct GRN construction 
throughout the manuscript.

The output of these GRN construction methods is a matrix W  of interaction coef-
ficients between regulators and their predicted target genes. We further binarized the 
network by applying a threshold (0.001) on the weights and keeping the top n (default: 
50) targets with the highest weight for each TF. To further improve the reliability of the 
predicted interactions, NetID allows intersecting the network skeleton with another 
network derived from bulk/single-cell ATAC-seq data obtained by combining predicted 
peak co-accessibility relationships and TF binding motif information. This prior skeleton 
matrix could be derived through scanning the open chromatin region within the pro-
moter ( ±2kb ) of each target. The correlation between the aggregated accessibility of this 
region and the target gene expression value could be used to filter out the regions that 
exhibit low correlation. A motif scanning method could then be used on these regions 
to identify the possible TFs that bind to it, to build a prior gene regulatory network skel-
eton from the epigenome dataset.

These GRN construction methods provide a non-linear view of global network struc-
ture in the single-cell datasets, without considering lineage-specific architecture. Hence, 
we initially build a global GRN skeleton network and then utilize inferred cell fate/line-
age information to identify lineage-specific networks.

Inferring lineage‑specific GRNs from the global skeleton network by leveraging cell fate 

probabilities

Differentiation can be modeled as a probabilistic process. Existing approaches such 
as Palantir (v1.2) [17] model cell differentiation as a Markov process on KNN graphs 
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inferred from transcriptome similarity. Alternative strategies rely on RNA velocity 
estimation [18] to infer vector fields representing differentiation trajectories on cell 
state manifolds. CellRank (v1.5.2) [27] combines similarity-based Markov models 
with RNA velocity to enhance cell fate probability estimation. In general, these meth-
ods predict each cell’s probability to differentiate towards any of the mature fates, or 
lineages, in the system. We leveraged cell fate probability predictions obtained by 
these approaches to build cell fate-specific GRNs from the skeleton network.

NetID integrates CellRank or Palantir for cell fate probability prediction. These 
methods output a cell fate matrix F ∈ Rm×k , where each row represents a cell and 
each column represents a cell fate (or terminal state) and the entries correspond to 
cell fate probabilities. First, cells are assigned to fates/lineages in the manifold through 
clustering based on cell fate probabilities. Specifically, we applied a Gaussian mixture 
model with an optimal cluster number selected by Bayesian information criterion 
(BIC) to cluster cells using the cell fate probability matrix. A cluster is then assigned 
to a given lineage if the mean cell fate probability of the cluster towards this lineage is 
k-fold (k = 2 by default) higher than for any other lineage. Clusters with comparable 
cell fate probabilities towards all lineages are regarded as uncertain states. For the 
clusters with comparable cell fate probabilities towards multiple lineage, we assign 
the cluster to the lineages they are biased to. Each cell lineage is defined as the union 
of cells in clusters assigned to that lineage and the uncertain states.

For each lineage k , we order the metacells (the metacells we use to construct the 
global GRN in the last step) according to their average cell fate probability, yielding 
time series of N  genes with timestamps t = 1,2, . . . ,T  where T  corresponds to the 
number of metacells in the lineage. The expression of gene i at timepoint t is denoted 
as xi(t) . Using the global skeleton network to determine the target and regulator 
genes, we can build a Granger causal regression model for each target gene i through 
minimizing the loss function.

where aki,j(l) corresponds to the l-th lagged Granger coefficient from the time series 
of regulator gene expression xj to the time series of the target gene expression xi in 
lineage k . P denotes the number of regulators of target gene i . L denotes the maxi-
mum lagged time steps. The estimated P × L coefficient matrix aki  represents the 
Granger coefficients governing the time series of gene expression readout. � denotes 
the regularization parameter. In this study, we used L = 30 and � = 150 to conduct all 
Granger regression analyses.

Furthermore, we quantify the edge weight of regulator gene j to target gene i for 
lineage k as follows:

(1)min[aki ]

T
∑

t=L+1

| xi(t)−
P
∑

j=1

L
∑

l=1

aki,j(l) · xj(t − l) |2 +�

P
∑

j=1

|| aki,j ||2

(2)Gk
ij =|

∑

l
aki,j |
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The output weight matrix Gk represents the Granger score-based GRN learned for 
lineage k . We rank-transformed the interaction weights between a regulator and its 
targets. More precisely, we transformed each row of Gk , by replacing each interaction 
weight by 1/i2 where i denotes the rank of the interaction weight between a particular 
regulator and its targets ordered by decreasing interaction weights. Entries for non-
interacting genes are replaced by zeroes. The final interaction weights represent the 
learned lineage-specific GRN ˜Gk.

Identification of the optimal number of sampled seed cells

Analyzing the tradeoff between the number of sampled seed cells and the resulting effec-
tive size of metacells (the number of partner cells) allows us to determine an optimal 
sampling size. Suppose S is the sample size, ns is the average effective size of metacells 
(average number of neighbors across all seed cells) given a specific sampling size S . We 
vary S from 50 to 1000 cells (or up to all cells). The resulting score for sample size S is 
defined as follows:

The optimal sample size is defined as:

Metrics for GRN benchmarking

Explained expression variance

A good cell sampling method maximizes the recovered variance of the original data at a 
given sample size. We define the explained expression variance metric (EEV) to bench-
mark different sampling methods according to this objective: first, we apply PCA to 
decompose the original expression matrix into the top K (K = 10 by default) principal 
components (PCs). For each PC, we evaluate a regression model with the sampled cells 
as predictors and calculate the goodness-of-fit (R2). The EEV value is defined as follows:

where �i is the eigenvalue of ith PC.

(3)S∗ = S−min(S)
max(S)−min(S)
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√
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√
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)
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)
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Early precision rate (EPR)

Early precision is defined as the fraction of true positives in the top k edges (k denotes 
the number of edges in the ground truth network by default) where the top k edges are 
regarded as the positive predictions. Then, the early precision rate (EPR) represents the 
ratio of the early precision value and the early precision for a random predictor for this 
network. A random predictor’s precision is the edge density of the ground  truth net-
work. The EPR measures how well an algorithm is able to identify true positive interac-
tions early on in the ranking. A detailed explanation of the EPR is shown as a conceptual 
schematic in Additional File 1: Fig. S1.

AUPRC, AUROC

We computed areas under the precision-recall and receiver operating characteristic 
curves using the edges in the respective ground truth network and ranked edges from 
each method as the predictions.

Both AUPRC and EPR are metrics to evaluate precision. However, in contrast to 
AUPRC, which considers all predictions in the ranking, the EPR focuses on the early pre-
dictions only. In experimental scRNA-seq data, the number of cells and the expression 
variability can vary widely across genes, which can affect the performance of GRN infer-
ence algorithms. The EPR metric may be more robust to such variability, as it focuses on 
the top predictions that are most likely biologically relevant.

Therefore, in simulated datasets with known ground truth regulatory networks, we 
computed EPR, AUPRC, and AUROC for benchmarking. For real datasets, we used 
ChIP-seq or STRING networks as the proxy for ground truth and only computed EPR 
for benchmarking.

Simulated datasets for benchmarking

We utilized dyngen [24] to conduct simulations of gene expression in single cells. Specif-
ically, we generated two separate single-cell gene expression manifolds featuring either 
a cycling or bifurcating topology (Fig. 3). These datasets were chosen specifically to be 
used as benchmarks for the evaluation of gene regulatory networks (GRNs). Each data-
set simulates 50 TFs, 200 targets, and 50 housekeeping genes, in 4000 cells. For all other 
parameters, we applied the default settings of dyngen.

In Fig.  5, we utilized dyngen to simulate bifurcating topology scRNA-seq data with 
cell-specific ground truth GRNs. To define lineage-specific GRNs, we aggregated all cell-
specific GRNs for lineages CT1 or CT2, respectively. To obtain the aggregated GRN for 
a cell type, e.g., CT1, we sum up the cell-specific networks of all cells belonging to this 
lineage:

S(CT1) denotes the set of all cells belonging to the CT1 terminal state, and CSNi 
denotes the cell-specific network of cell i.

See https:// github. com/ WWXke nmo/ NetID_ packa ge/ blob/ main/ dyngen_ simul ation_ 
netID.r for the code of the dyngen simulations.

(8)GRNCT1 =
∑

i∈S(CT1)CSNi

https://github.com/WWXkenmo/NetID_package/blob/main/dyngen_simulation_netID.r
https://github.com/WWXkenmo/NetID_package/blob/main/dyngen_simulation_netID.r
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Lineage‑specific GRN inference through differential gene expression analysis

Assuming that the GENIE3-inferred global network already contains all lineage-specific 
regulatory information, one alternative strategy for extracting lineage-specific GRNs in 
our benchmarking leverages differential gene expression (DEG) analysis. Here, we iden-
tify the highly up-regulated genes in each terminal state using the Wilcoxon rank-sum 
test. We keep only those genes with an adjusted P-value < 0.05 in the GENIE3 network, 
thereby deriving a lineage-specific GRN for each terminal state.

GRN inference and ground truth for real datasets

To benchmark GRN inference performance for real datasets, after processing of raw 
gene expression data according to each method, we applied the same GRN inference 
algorithm, GENIE3, to build a GRN for each method. We only constructed the GRNs for 
the TFs in the top 3000 highly variable genes. The TF list was curated from the BEELINE 
pipeline (https:// github. com/ Murali- group/ Beeli ne) [3].

For each dataset, we selected two categories of biological networks from BEELINE 
as ground truth. The first category is a general network with no contextual specificity, 
which includes non-specific tissue ChIP-seq networks and STRING [60] functional net-
works. The non-specific ChIP-seq networks were extracted from three resources: DoRo-
thEA [61], RegNetwork [62], and TTRUST [63]. In DoRothEA, we only considered two 
levels of evidence: A (curated/high confidence) and B (likely confidence).

The second category comprises the cell type-specific networks. For the mESC data-
set, we selected loss-of-function/gain-of-function (lof/gof ) networks and mESC-specific 
ChIP-seq networks, while for the mHSC dataset, we selected mHSC-specific ChIP-seq 
networks. These cell type-specific ChIP-seq networks were extracted from three sources: 
ENCODE[64], ChIP-Atlas [65], and ESCAPE [66].

The scRNA-seq datasets and ground truth GRN resources used in this work are pro-
vided in Additional File 2: Table S2.

Cell fate prediction with Palantir or CellRank

Palantir and CellRank are used for predicting cell fate probabilities. When applying Pal-
antir to mouse hematopoietic progenitor data from Tusi et al. [21], we specified the cell 
with the highest Runx2 expression as root cell. When applying Palantir on the bone mar-
row dataset from Setty et  al. [17], we used precomputed Palantir pseudotime and the 
terminal states specified as “CLP,” “Mono 1,” “DCs,” “Ery_2,” and “Mega.” When apply-
ing Palantir to mouse hematopoietic data from Dahlin et  al. [31], we selected the cell 
with the highest Procr expression as the root cell and specified the terminal states as “7/
Lymph,” “4/Ery,” “10/Neu,” and “3/Mk.” When applying CellRank on the simulated data-
set [67], we used the dynamical model to calculate velocity in scVelo.

Regulatory module identification and statistics significance test

First, we ranked the transcription factors (TFs) by their gene connectivity, which is 
defined as the sum of the regulatory coefficients of each TF. We ordered the connectiv-
ity values to derive the top k most important TFs. Using these TFs as seeds, we ran the 
spinglass clustering algorithm [68] on the gene regulatory network (GRN) to identify the 
module closest to these TFs.

https://github.com/Murali-group/Beeline
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To evaluate the statistical significance of each module, we permuted the gene IDs of 
the GRN 1000 times, resulting in 1000 different permuted GRNs with the same topo-
logical structure as the original network. For each module, we calculated the modular-
ity score, which is defined as the average regulatory coefficient within that module, for 
both the original network and each of the randomized networks. We then calculated the 
permutation P-value for each module. The permutation P-value is calculated by compar-
ing the modularity score of the module in the original network with the distribution of 
modularity scores obtained from the randomized networks.
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