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Abstract 

Tumours exhibit high genotypic and transcriptional heterogeneity. Both affect cancer 
progression and treatment, but have been predominantly studied separately in follicular 
lymphoma. To comprehensively investigate the evolution and genotype‑to‑phenotype 
maps in follicular lymphoma, we introduce CaClust, a probabilistic graphical model 
integrating deep whole exome, single‑cell RNA and B‑cell receptor sequencing data to infer 
clone genotypes, cell‑to‑clone mapping, and single‑cell genotyping. CaClust outperforms 
a state‑of‑the‑art model on simulated and patient data. In‑depth analyses of single cells 
from four samples showcase effects of driver mutations, follicular lymphoma evolution, 
possible therapeutic targets, and single‑cell genotyping that agrees with an independent 
targeted resequencing experiment.
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Background
From their onset, cancers are subject to continuous evolutionary processes, during 
which tumour cells acquire mutations in their genomes, forming clones and giving rise 
to genotypic heterogeneity  [1–3]. At the same time, transcriptional heterogeneity is 
common, with various tumour cell subpopulations having different transcriptional pro-
grams. Cancer cell phenotype is thought to be predominantly driven by genetic altera-
tions. However, recent studies suggest that distinct cancer cell states may emerge due to 
non-genetic factors [4–8]. In this context, a fundamental question arises: to what extent 
the observed transcriptional heterogeneity in tumours is explainable by the genotypic 
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differences between clones, and which remaining variance should rather be attributed 
to other effects? A better understanding of the genotype-phenotype link in cancer could 
guide personalised treatment and prompt development of novel therapies [6, 9–11].

Follicular lymphoma (FL) is a malignancy of mature B-cells that are arrested at the 
germinal centre stage and usually presents as pathological lymph nodes  [12, 13]. FL is 
a paradigmatic disease with a clinical course that can range from spontaneous regres-
sion or stable disease for years, to transformation into aggressive diffuse large B-cell 
lymphoma. In addition to acquisition of mutations in BCR loci, aberrant somatic hyper-
mutation in non-BCR loci causes accumulation of somatic variants that can be clonal 
(early events, present in all clones) or subclonal (later events, specific to a subset of 
clones) [14]. Under the assumption that acquisition of a potential oncogenic subclonal 
mutation occurs alongside BCR diversification, BCRs can serve as markers in the study 
of clonal evolution in FL tumours [15]. At the same time, FL cells may display transcrip-
tional heterogeneity, with different transcriptional subpopulations displaying varying 
drug responses [16]. An example of a genotype to transcriptional phenotype link in FL 
is the presence of N-linked glycosylation motifs in BCR, which drives FL cells from a 
more light zone-like gene expression profile toward a dark zone-associated transcrip-
tional program [17]. Still, the genotype to phenotype maps of FL have not been so far 
comprehensively studied.

The major obstacle in investigating the relation between genotypic and transcriptional 
heterogeneity in tumours is the fact that simultaneous DNA and RNA profiling of sin-
gle cells is not possible using widespread experimental protocols. Indeed, innovations 
in this area emerged only very recently  [18–20] and only limited throughput methods 
such as ResolveOME are commercially available  [21]. To address this, computational 
methods were proposed that probabilistically match genomic alterations between bulk 
DNA sequencing and single cell RNA sequencing (scRNA-seq) or spatial transcrip-
tomics data [15, 22–26]. However, we see an unmet need for methods dedicated to the 
specific case of FL. Indeed, standard phylogenetic methods cannot account for the paral-
lel evolution of the exome and of the BCR sequences, where the latter proceeds with a 
high mutation rate. Dedicated methods are needed to utilise the statistical signal in the 
exome, the BCR sequences, and in the scRNA-seq to infer the evolutionary structure of 
the clones and their transcriptional phenotypes. In particular, our approach, CACTUS 
was previously applied to FL data by clustering cells by BCR sequences and perform-
ing cluster-to-clone assignment by mutation matching, benefiting from BCR informa-
tion in this task [15]. However, the clustering of cells in CACTUS was effectively limited 
to grouping of cells with identical BCRs and required defining a hyperparameter cor-
responding to the (unknown) number of clusters. As an alternative to computational 
approaches, targeted DNA resequencing of single cells previously sequenced using 
scRNA-seq can also be used for genotyping cells  [27]. Unfortunately, due to technical 
limitations it can only be performed with a very small number of variants, and is subject 
to noise in the scRNA data due to bursty gene expression.

Here, we use deep whole exome sequencing (WES), single cell RNA sequencing, sin-
gle cell BCR sequencing (BCR-seq) and probabilistic modelling to deeply investigate the 
nature of tumour evolution as well as genotype to transcriptional phenotype interac-
tions in four FL samples. To this end, we propose CaClust, a nonparametric Bayesian 
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extension of CACTUS  [15], which is able to find a confident cell-to-clone mapping, 
improve estimation of clone genotypes, and infer genotypes for single cells. CaClust 
identifies the number of BCR clusters from the data and models probabilistic profiles of 
BCR sequences characteristic of every cluster. Applying CaClust to FL samples we find 
a range of genotype to phenotype links of varying strength. Focusing on the sample with 
the largest strength, we investigate mutations that could trigger specific transcriptional 
phenotypes. Additionally, we uncover the evolutionary link between two time-separated 
samples from another FL patient. In summary, our model enables comprehensive anal-
ysis of FL cell phenotypes in the context of their clonal origin, uncovering underlying 
tumour evolutionary mechanisms and targetable dependencies.

Results
Approach overview

We performed comprehensive molecular profiling of three FL patients: K4B and K5B, 
two samples from 69 year old male subject S8934 separated by 3 years, sample K6B 
from 32-year-old male subject S13530, as well as K7B from 48 year old woman S11770 
(Fig. 1a). Each sample was profiled using WES at 1500× coverage. scRNA-seq and heavy 
and light chain scBCR-seq resulted in a total of 22,492 single cells sequenced at average 
1620 transcriptome-wide genes, and average 24 full length umis of the expressed BCR 
genes per single cell.

In the CaClust model application pipeline, we first perform variant calling and copy 
number alteration (CNA) analysis on WES data, and next we use their output to esti-
mate the input phylogenetic tree of the clones and their genotypes. From the scRNA-seq 
data, after standard alignment and mapping, we extract for each cell the variant and total 

Fig. 1 Application of CaClust in this study: a 4 samples from 3 FL patients were chosen for inclusion in 
the study; b–c data collection and preprocessing; d model application to infer the clone genotypes, BCR 
hyperclustering with assignment, and clone clusters, output cell genotypes are obtained with the mapping 
of cells to their clone of origin; e after model application an additional resequencing experiment was 
performed on samples K6B and K7B to validate the output cell genotypes; f the output cell genotypes and 
clone structure were used in downstream analyses
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read counts at the single nucleotide variant (SNV) positions. From the BCR-seq data we 
extract the BCR sequence for each cell, comprising of the concatenated heavy and light 
BCR chains (Fig. 1c).

From this input, CaClust aims to simultaneously reconstruct BCR hyperclusters of 
cells while assigning those hyperclusters to tumour clones (Fig. 1d). Each BCR hyper-
cluster is represented by its frequency profile of BCR nucleotides at different positions. 
We assume all cells in a hypercluster must come from the same clone. The tumour 
clones are represented by the SNVs present in the clone’s genotype. The BCR hyperclus-
ters are assigned to the clones by a probabilistic matching of variant reads at the SNV 
positions. Finally, clone clusters of cells are identified by tracking the clone that the BCR 
hypercluster of each cell is assigned to. Effectively, the cells are mapped to clones based 
on their shared BCR frequency profile characteristic of their hypercluster, as well as the 
genotype of its assigned clone, which then we also use to perform single cell genotyping 
(Fig. 1d). In this way, CaClust marries genotypes with phenotypes and enables detailed 
gene expression analysis of clones.

The output cellular genotypes obtained with our genotype-to-phenotype mapping 
were validated using simulated data and an independent resequencing experiment 
(Fig. 1e) and next used for downstream analyses of the evolutionary structure and the 
genotype to phenotype links in the FL samples (Fig. 1f ).

CaClust model performance is validated on simulated data and independent targeted 

resequencing experiment

Before performing detailed downstream analyses, we validated the performance of the 
CaClust model on simulation scenarios with known ground truth and evaluated its 
quality on the FL samples, comparing against a predecessor model, as well as checked 
the correctness of its single cell genotyping with an independent targeted resequencing 
experiment.

We devised eight simulation scenarios (see the “Methods” section) varying three prop-
erties of a FL dataset: the scRNA read depth, the number of BCR hyperclusters, and 
the variance of BCR sequences within a hypercluster. A scenario with parameter val-
ues resembling the FL patient datasets used in this study was established as a baseline 
(referred to as Basic) and by varying one of these properties eight further scenarios were 
created with (i) high and (ii) low number of scRNA reads; referred to as High reads and 
Low reads, respectively; (iii) sparse BCR clustering (resulting in more BCR hyperclus-
ters, referred to as Sparse clusters); (iv) high variance BCR sequences within hyperclus-
ters (High variance BCR); and finally, four scenarios with centroid behaviour, where a 
portion x of cells within a fraction y of hyperclusters BCR sequence identical to the most 
probable of its hypercluster’s BCR profile (in four versions of (x, y) v–viii): (0.8, 0.8), (0.8
, 0.2), (0.2, 0.8), (0.2, 0.2); referred to as x centroids in y clusters). The simulation process 
and all scenario details are described in the  “Methods” section. Both CaClust and its 
predecessor model CACTUS were applied to ten datasets simulated per each scenario 
and their performance was evaluated using three metrics: cell to clone assignment accu-
racy, accuracy of clone genotype reconstruction, and the quality of the hyperclustering 
reconstruction (see the “Methods” section).
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CaClust outperformed CACTUS in all scenarios and showed near perfect scores in the 
Basic type, High reads, as well as centroid scenarios (Fig. 2a–c). In terms of cell to clone 
assignment accuracy, the only scenarios that affected its performance were Low reads, 
sparse clusters and High variance BCRs. However, in all these scenarios CaClust signifi-
cantly improved over CACTUS and kept median accuracy over 0.64 (Fig. 2a). In the task 
of genotype reconstruction CaClust showed a less pronounced improvement over CAC-
TUS (Fig. 2b). Both models performed near perfect in reconstructing the true clone gen-
otypes, with better reconstruction accuracy in scenarios with high scRNA read counts 
and worse accuracy in scenarios with degraded (sparse or high variance) BCR clustering. 
Hyperclustering reconstruction comparison again demonstrated a major advantage of 
CaClust (Fig. 2c). It achieved high adjusted rand index (ARI) scores in all but the high 
variance BCR scenario, which is specifically designed to give almost no BCR informa-
tion. CACTUS performed poorly in all scenarios with basic and degraded BCR struc-
ture, since it did not manage to reconstruct hyperclusters with varied BCR sequences. 
However, in the scenarios with centroid behaviour, which can happen for real BCR data, 
its performance improves, albeit not to the level of CaClust.

Next, we compared performance of CaClust and CACTUS methods on the FL patient 
sample datasets by their sensitivity to the possible link between clone genotypes and 
transcriptional heterogeneity, measured using ARI against an independent cell cluster-
ing by gene expression (see the  “Methods” section and Additional File 1: Fig. S1). We 
used two naive approaches as baselines: grouping cells with identical BCR sequences; 
and an ablation study with a stripped-down version of the CaClust model, which only 
produces hyperclusters with no further grouping into clones. CaClust achieved higher 
agreement with gene expression clustering as compared to CACTUS for all FL samples 

Fig. 2 CaClust validation results: a–c performance comparison on simulation scenarios vs. predecessor 
model CACTUS; d–e comparison on experimental data: d ARI agreement with gene expression clustering 
for CaClust clones, CACTUS clones, clusters of cells with identical BCR sequences, and hyperclusters from an 
ablation study that does not use scRNA variant data; e the assignment entropy of cells to clones in CaClust 
and CACTUS results. Bold dashed line: the value for the best possible clustering agreement as measured with 
ARI (d) and the value of the least entropy corresponding with the highest model certainty of assignment (e)
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(Fig. 2d). This indicates that the clustering of cells into clones found using CaClust iden-
tifies clones that are more distinct on the phenotypic level. Both models obtained higher 
ARI than the baselines, showing that the integration of both BCR and scRNA variant 
data is more accurate in finding phenotypically distinct populations of cells.

Further, we compared CaClust and CACTUS by their confidence of cell to clone 
assignment, measured with entropy. CaClust assigned cells to clones with lower entropy 
than CACTUS, indicating that the model was better able to extract information from 
the integrated data and reduce noise to make confident predictions (Fig. 2e, Additional 
File 1: Fig. S2).

Finally, we performed an additional targeted resequencing of samples K6B and K7B 
for independent experimental validation of cell genotyping performed by CaClust 
(see  the  “Methods” section). CaClust single cell genotypes show > 90% agreement for 
4/8 resequenced variants, which increases to 6/8 variants when accounting for random 
monoallelic expression in the resequencing data (see Additional File  2: Supplemen-
tary Notes and Tables S1--2).

FL samples show different strengths of genotype‑phenotype influence

To inspect the level of genotypic and transcriptional heterogeneity, and to assess the 
strength of genotype to phenotype link in the four analysed FL samples, we investi-
gated the number and proportion of inferred clones, BCR hyperclusters, as well as visual 
agreement between the gene expression similarity and clone assignment (Fig. 3).

Sample K6B from patient S13530 displayed relatively uniform gene expression across 
its cells. The clustering of cells into the three clones with confidently assigned mutation 
profiles (see Additional File 3: Output profiles) and 97 identified BCR hyperclusters did 
not coincide with gene expression similarity (Fig. 3 left). This is in agreement with the 
lowest ARI = 0.04 obtained for that sample (compare Fig. 2d).

In time-separated samples K4B (with four clones and 82 BCR hyperclusters) and 
K5B (five clones and 32 BCR hyperclusters) coming from patient S8934, we observed 
higher phenotypic variance, with K4B showing more agreement between the transcrip-
tional subpopulations and the inferred clones ( ARI = 0.37 vs. ARI = 0.24 , Figs. 2d and 3 

Fig. 3 Summary of observed strength of genotype‑phenotype link in studied samples. Bars above UMAP 
plots show clone assignment of cells (colour coded) grouped by their hypercluster assignment (each solid 
white or black bar is one hypercluster). Cells in UMAP plots of gene expression are also colour coded by clone 
assignment. Clone populations are provided in the legend. The clones are not shared between samples. The 
samples are ordered by apparent influence of the clone genotypes on their phenotypic heterogeneity
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middle). This could be the effect of specialisation in K5B, where its cells are more geneti-
cally homogeneous after genetic selection from K4B.

Sample K7B from patient S11770 (three clones and 92 BCR hyperclusters) displayed 
the strongest genotype-phenotype link ( ARI = 0.8 , Figs. 2d and 3 right), with clone C1 
forming a separate expression cluster from clones C2 and C3. This points at subclonal 
variants highly affecting their carriers expression profiles.

To investigate whether some expression differences between clones are washed out by 
expression differences coming from cycling cells we performed cell cycle scoring and 
analysed the expression of cells from phase G1 in all samples. No additional expression 
cluster for a clone of any sample was found and overall expression structure was pre-
served as compared to the results obtained for all cells (Additional File 1: Fig. S3). Addi-
tionally, to detect whether there were any effects of subclonal mutations in sample K6B, 
we performed a targeted search in REACTOME C2 pathways containing K6B subclonal 
pathogenic variants, but found none of them to be enriched.

As samples K5B and K6B showed little to no link between the clonal genotypic 
structure and expression variation, we investigated other potential sources behind the 
observed transcriptional heterogeneity. Using Gene Ontology term enrichment of the 
top 250 most variably expressed genes in each sample we found the top 10 terms in each 
sample were tied to B-cell functions such as lymphocyte activation, positive regulation 
of immune system process, and immune response (Additional File 1: Fig. S4, Fig. S5). It 
is also possible that the observed transcriptional heterogeneity was caused by differences 
in the microenvironment, epigenetic factors or plasticity; however, these could not be 
analysed in this study’s experimental setup.

In summary, our analysis revealed the clonal and BCR hypercluster structure of the FL 
tumour samples, and allowed ranking them by the strength of genotypic explanation of 
transcriptional phenotypic heterogeneity.

In depth investigation identifies four potential mutations driving clone phenotypes 

in patient sample K7B

To showcase the usefulness of our approach in the study of the genotype-phenotype 
link, we performed a detailed analysis of the results in patient sample K7B.

CaClust identified three tumour clones, with phenotypes showing the effects of known 
mutations. The output clone genotypes (Fig. 4a) included four subclonal mutations for 
which we predicted a pathogenic effect (see the “Methods” section): (i) MYD88(L265P) 
mutation, (ii) a variant in the TSPAN33 gene (both shared between clones C2 and C3), 
(iii) a missense variant in the HAT domain of the CREBBP gene (specific to clone C2), 
and (iv) an early stop variant VMA21(R93X) (specific to clone C1). Clones C2 and C3 
shared a larger number of SNVs and appeared to be evolutionally closer to each other 
than to clone C1.

The model assigned the cells to clones with a very high confidence (Fig. 4b). Only a 
small fraction of cells had their assignment probability mixed between C2 and C3. This 
was in line with the aforementioned higher genotypic similarity of C2 and C3. Among 
the resulting clone clusters, clone C2 was the most prevalent (5865 cells), with C1 and 
C3 being smaller in size (392 and 167 cells, respectively).
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When the UMAP reduction of cells’ gene expression was overlaid with clone clus-
ters (Fig. 4c; reproduced from Fig. 3), clone C1 formed its own clear expression cluster, 
whereas clones C2 and C3 appeared more mixed. This hints at gene expression being 
highly affected by a subclonal variant, either one that is characteristic to C1 or shared 
between C2 and C3.

To study the effects of subclonal variants, we first performed differential gene expres-
sion analysis between each clone and the rest (see the “Methods” section), finding 918 
differentially expressed genes. Next, to check for enriched pathways we performed 
gene set enrichment analysis (Fig. 4d). Clone C2 showed upregulated pathways linked 
to cell proliferation (E2F targets, G2M checkpoint, mitotic spindle (respective FDRs: 
< 0.001, 0.004, 0.007 ; all FDRs estimated with gene label reshuffling in GSEA) and down-
regulated tumour necrosis factor alpha signalling (FDR  0.09), both hinting at gained 
advantages over the other clones.

Fig. 4 Analysis of CaClust results on sample K7B: a output clone genotypes; b output cell‑to‑clone 
assignment probabilities, higher probability denoted with higher opacity; c UMAP reduction of cells’ gene 
expression, coloured by clone assignment; d results of GSEA analysis; e graph of predicted MYD88(L265P) 
effects compared with observed DE results; f distribution of cells in clones across cell cycle phases; g 
estimated expression of TP53 and BCL6 genes in CREBBP+ cells vs. wildtype cells; h estimated expression of 
TSPAN33 and EZR genes in TSPAN33+ cells vs. wildtype cells. * p < 0.001 ; Wt, wildtype
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Next, we investigated whether the known effects of the MYD88(L265P) mutation 
could be observed. Based on a comprehensive study  [28], we created the graph of the 
predicted effects of that mutation in tumour cells as compared to healthy B-cells, and 
indicated their agreement with our own data (Fig.  4e). Most observed effects agreed 
with the known ones, with the exception of the downregulated STAT3 expression (log-
foldchange – 0.236, adj. p-val 0.07, all log fold-change p-values obtained with LRT from 
DESeq2, see the “Methods” section). However, JAK1 affects the formation of the STAT3 
complex through protein-protein interaction, and the STAT3 downregulation in expres-
sion may be independent of that process. Moreover, the known effects relate to the com-
parison of healthy B-cells with MYD88(L265P) carriers, whereas our analysis compares 
tumour cells with multiple additional mutations against each other, which can intro-
duce confounding effects. Since the ultimate effect of the MYD88(L265P) is increased 
tumour proliferation and cell survival, we also analysed the cell cycle distribution of 
clones (Fig. 4f, Additional File~2: Table S3). As expected, cells in C2 and C3 that har-
bour this mutation proliferated faster, as measured by the fraction of the cells in those 
clones entering the S phase (hypergeometric test: p < 0.001 , see the “Methods” section). 
Additionally, since increased proliferation should require higher energy production, we 
analysed the enrichment of the beta-oxidation pathway in clones C2 and C3, and found 
20/25 genes to be upregulated (see Additional File 1: Fig. S6).

We next investigated whether cells assigned to clone C2 follow the behaviour known 
for carriers of the CREBBP variant. CREBBP proteins with a missense variant in the 
HAT domain are unable to acetylate the tumour suppressor TP53 and BCL6 oncogene, 
preventing the tumour suppression mechanisms  [29]. As expected, cells assigned to 
clone C2, even though they express more TP53 than cells in clones C1 and C3 (log fold-
change: 0.725, padj = 0.1 ) and less BCL6 (– 1.13, padj < 0.001 ; Fig.  4g), which should 
lead to cell cycle arrest, pass through the G2M checkpoint normally. In contrast, cells 
from clone 3 are stuck in in the G2M phase (hypergeometric test: p < 0.001 ; Fig. 4f ).

The TSPAN33 protein has been linked to a migratory phenotype in the B-lymphocytes. 
It forms complexes on the B-cell membrane with the EZR protein, and its overexpres-
sion was linked to an increase in B-cell migration by Navarro-Hernandez et al. [30]. In 
clones C2 and C3 showing the TSPAN33 missense variant, we observed a decrease in the 
expression of both TSPAN33 and EZR (log fold-changes: −0.613,−0.698 , padj < 0.001 , 
Fig. 4h), which could point to a decrease in migratory capabilities over C1.

The observed VMA21(R93X) mutation and was shown by Wang et al. [31] to result in 
a targetable survival dependency. Specifically, VMA21 is a chaperone protein that takes 
part in the V-ATPase assembly and the mutation p.R93X results in a premature stop and 
a loss of the C terminus at AA93-101. Consequently, VMA21 is mislocated to the lys-
osomes, leading to impaired V-ATPase ability to acidify lysosomes that is compensated 
by an increase in autophagic flux. In the Wang et al. study, treatment of VMA21(R93X) 
B-cells with an inhibitor of autophagy regulating ULK1 kinase complex led to their 
death, while wildtype B-cells remained mostly unaffected; thus, the clone C1 exhibiting 
VMA21(R93X) could also be targetable by such a therapy.

In summary, our analysis firstly identified which effects of known subclonal mutations 
can be observed in the phenotypes of specific clones; secondly, pointed to the effects of 
potentially pathogenic subclonal mutations, which have not been studied yet; lastly, can 
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potentially guide the treatment choice by identifying clones with mutations known to be 
susceptible to targetable therapy.

Inferred clone genotypes suggest evolutionary history of the time‑related samples

To further showcase the usefulness of our method in studying tumour evolution, we 
investigated the relation between samples K4B and K5B. Both of those samples were 
taken from patient S8934, 3 years apart. In CaClust results for sample K4B, we found 
evidence for a possible founder clone of the tumour in sample K5B, with both genetic 
and phenotypic similarity.

Firstly, we investigated the 69 SNV variants that were common for both samples and 
were included in the model analysis (Fig. 5a). Variant probabilities for each clone of K4B 
indicated that clone C3 contained almost all of the common variants with a high prob-
ability, while the other K4B clones were missing many of them. Most of those variants 

Fig. 5 Analysis of the link between K4B and K5B samples using CaClust results: a output probabilities of 
variants common between the samples to be present in clone genotypes; b Hamming distance between 
BCR hyperclusters in K4B and K5B, sorted by their clone assignments; c K4B variants unobserved in K5B, by 
their presence or absence in K4B clone genotypes; d Spearman correlation between gene expression of K4B 
and K5B clones. Sp. corr., Spearman correlation
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in the K5B sample were clonal (i.e., present in all clones), which is expected for a later, 
possibly descendant tumour sample. This result suggests the possible descendance of all 
clones found in the later K5B sample from clone C3 or its close ancestor in the evolution 
of the earlier K4B sample. However, three variants (two in H1-4 gene and one in H1-2) 
were absent from clones C3 and C4. Those SNVs belonged to a region (chr6 positions 
26056K–26156K) that, based on the WES CNA analysis of sample K5B, was found to 
be affected by a copy number alteration (deletion), which could have happened in the 
course of evolution of clones C3 and C4 in K5B.

Secondly, we investigated the BCR similarity of cells in hyperclusters in K4B to hyper-
clusters in K5B (Fig.  5b). It should be noted, that no exact same BCR sequence was 
shared between samples; therefore, there is no immediate candidate hypercluster that 
could be the founder of K5B. However, we again found that cells in hyperclusters belong-
ing to clone C3 in K4B showed the highest degree of similarity (number of BCR nucle-
otide mismatches) to hyperclusters in all clones from K5B, further demonstrating the 
evolutionary similarity of K4B clone C3 to sample K5B.

Thirdly, WES data of sample K4B contained SNVs that were not found in the WES 
data of sample K5B, which suggests some parallel evolution between the samples. We 
investigated the subclonality of 45 SNVs that were used in the K4B model inference but 
have not been observed in K5B WES data. For each clone, we checked how many of 
those 45 SNVs were inferred to be present in its genotype and how many were not. We 
considered a genotyping call on a variant position in a clone as reliable if the scRNA 
data of cells mapped to that clone contained at least one mutated read or three refer-
ence reads (Fig. 5c). Clone C3 has the fewest reliably called SNVs (5) not observed in 
K5B. This again highlights the similarity of clone C3 to the K5B sample, and while the 
presence of additional mutations may not make it the exact predecessor in evolution, 
their common ancestor could be very close up the evolution tree. This finding is in line 
with [14], where time-related FL samples were shown to come from a common progeni-
tor clone (CPC), rather than being direct descendants (for divergent evolution in FL see 
also [32]).

We also checked the correlation of gene expression between the clones of K4B and 
K5B. We took the union of the top 100 most variably expressed genes in each sample 
and calculated the Spearman correlation coefficient between their average expression in 
clones of K4B and clones of K5B (Fig. 5d). Here again clone C3 from K4B had the high-
est correlation of expression to clones from K5B; however, it has to be noted that the 
overall correlation scores were very high. That is expected, since it was a comparison of 
malignant B-cells, which had a single ancestor cell and a high overall similarity could be 
expected.

It is important to mention that although CANOPY is equipped with a multi-sample 
deconvolution method, it was unable to produce a phylogeny that would explain the 
evolutionary dependency between the samples. One would expect such a phylogeny 
to contain clones that have K4B specific mutations and others that have K5B specific 
mutations, with K4B clones being potentially related to K5B ancestors. However, output 
CANOPY phylogenies for both 5 and 10 clones (5 being chosen by BIC and 10 being the 
number of clones expected by single sample outputs: 1 reference clone, 4 tumour clones 
in K4B and 5 tumour clones in K5B) put sample specific mutations at all levels of the 
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evolution tree, which indicates that deconvolution based on allele frequencies is not suf-
ficient in this complex case (see Additional File 1: Fig. S7, Fig. S8).

In summary, thanks to accurate clonal mapping using CaClust, we could resolve the 
clonal structure and ancestry connections between the time-related samples, even in the 
case when the multi-sample CANOPY model was unable to reliably combine the two 
samples in a unified phylogenetic inference.

Higher confidence assignment of cells to clones by CaClust facilitates more informative 

downstream analysis as compared to CACTUS

As shown in Fig.  2e and Additional File 1: Fig.  S2, CaClust assigned cells with much 
higher confidence. The uncertainty in cell to clone assignment, characteristic for CAC-
TUS, is particularly destructive, as noise in model assignment can mix clones and harm 
downstream analyses. This is evident in the case of CACTUS results for sample K7B. Its 
assignment of cells to clones shows much higher degree of noise than CaClust, and its 
clones are more mixed by expression (Additional File 1: Fig. S9). This in turn affects DE 
analysis, where CACTUS finds fewer differentially expressed genes with smaller statisti-
cal significance (Additional File 1: Fig.  S10), and its clones no longer show significant 
differences in cell cycle distributions (see Additional File 1: Fig. S11). In the worst case 
scenario, the noise in CACTUS assignment can completely wash-out the results, as is 
the case with sample K6B, where based solely on CACTUS results we would be unable 
to tell whether a clonal structure is present at all, and what its relation to the expression 
heterogeneity is (Additional File 1: Fig. S12). These comparisons demonstrated that due 
to more confident assignments of cells to clones, CaClust is able to deliver more biologi-
cal findings and clearer conclusions from the data than CACTUS.

Analysis of CaClust clonal genotypes shows agreement with input phylogenies

During the inference procedure CaClust performs corrections of the genotypes from 
input trees obtained with CANOPY to match the observations in the scRNA data of 
the cells assigned to clones (see the “Methods” section). Since CANOPY infers the phy-
logenies and the genotypes solely based on deconvolution of WES allele frequencies, it 
may provide erroneous genotypes at input, and the corrections are an attempt to take 
into account the additional evidence in scRNA-seq data. However, no tree structure is 
imposed during those corrections and as a result the output genotypes may not form a 
phylogeny.

To check how much the corrections changed the input phylogenies behind the geno-
types for the analysed samples, we first performed hierarchical clustering (Manhattan 
distance, single linkage) on the corrected genotypes, and next compared the obtained 
trees with the input CANOPY phylogenies (see Additional File 1: Fig. S13). The phylog-
enies and the tree structures matched in all samples (up to clone reindexing, which can 
change during inference), with clone fractions at corresponding levels of the phylogenies 
differing moderately from those estimated by Canppy. This indicates that although some 
changes to the clonal structure were made in CaClust inference, the underlying phyloge-
netic relationships between clones stayed the same.

We next considered the possible reasons behind those genotype corrections made by 
CaClust that resulted in potential violations to the phylogeny.
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To this end, we investigated in detail the corrected genotypes of sample K7B (Fig. 4a). 
For this sample, the tree structure over corrected genotypes cannot be established due to 
DPYSL2, MRPS5, HMGN1, RALGAPA2, and PLEKHA4 variants. Analysis of read cover-
age for the corrected positions revealed that those positions have extremely low read 
counts in the small clone C3 (1, 3, 0, 0, and 5 reference reads respectively, no alternate 
reads), and it is possible that the model cannot make a confident and correct genotype 
call on these positions. For such low read count positions, we hypothesise that enforcing 
the phylogenetic tree structure would introduce prior knowledge to the model, helping 
it to make better calls.

As another example we investigated the output genotypes for sample K5B on the posi-
tions common with sample K4B for H1-4 and H1-2 variants (Fig. 5). These variants are 
called as absent in C3 and C4, thus breaking a phylogeny. However, as mentioned in 
the previous section, these positions are affected by a CNA in sample K5B and are thus 
probably absent due to a deletion. Therefore, the genotypes corrected by CaClust for this 
example are likely correct and the phylogenetic tree behind the clones could be recon-
structed by accounting for the CNAs in addition to SNVs.

Discussion
In this work we combined in-depth molecular profiling of patient samples with proba-
bilistic modelling to investigate the evolutionary histories and to explain the relationship 
between genomic and transcriptional heterogeneity in FL. To this end, we performed 
WES, scRNA-seq, BCR-seq and targeted resequencing and introduced CaClust, a novel 
method for clonal phenotype profiling with single cell genotyping in FL.

CaClust integrates BCR, WES, and scRNA information for increased accuracy and 
confidence. Since we consider that the evolution of BCR sequences proceeds much 
faster than and in parallel with the evolution of the rest of the genome, the CaClust 
model makes an important assumption that cells with similar BCR sequences belong 
to the same genetic clone. This assumption, combined with the use of nonparametric 
Bayesian clustering allow the new CaClust model to efficiently pool scRNA information 
on the clonal assignment of FL cells based on their BCR similarity. By pooling the sin-
gle cells together into BCR hyperclusters, the model circumvents the biggest problem in 
single-cell genotyping based on scRNA sequencing data, which is the sparsity of reads 
in each cell. Moreover, the approach used is flexible in that it infers the optimal num-
ber of hyperclusters along with their BCR profiles from the data. As we have demon-
strated both on simulated and experimental datasets, this greatly improves the clonal 
profile reconstruction, cell assignment, and genotyping accuracy over a rigid BCR clus-
tering, which was previously shown to perform best in those tasks for FL [15]. The newly 
improved clonal and single-cell genotypes obtained with CaClust enable multiple down-
stream analyses that can shed light on the effects of driver mutations, possible therapeu-
tic targets, and parallel evolution of time-related FL samples, as demonstrated on data 
from 4 samples from 3 patients.

While CaClust was specifically developed to model the concurrent evolution of BCR 
loci and mutations in other parts of the genome, it could easily be adapted to other data 
tied to the clonal evolution. That is, any other information source can be used for hyper-
clustering in the model, provided it meets the assumption that cells in one hypercluster 
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should belong to the same evolutionary clone. Additionaly, the CaClust model could be 
extended to enforce a phylogenetic structure during its genotype correction procedure, 
which could further improve the results in the case of variant positions with low cover-
age in small clones.

However, limitations of our method still exist. Firstly, the used input scRNA data is 
based on 5′  end sequencing, which does not capture the full transcriptome and thus 
some variants could be potentially missed. Secondly, even despite the high depth 
sequencing and pooling effect that the hyperclusters provide for scRNA reads, some 
variants still did not have sufficient coverage to make reliable genotyping calls in clones. 
Thirdly, not all variants will result in a major phenotypic difference in their clones, thus 
in some cases of more homogeneous FL, the analysis will bring less discoveries. Lastly, to 
carry out an adequately powerful study of FL biology for novel discoveries with CaClust 
would require collecting hundreds of patient samples, with each needing the specific 
combination of WES, scRNA, and scBCR data.

Despite these limitations, our approach brings important insights into the ongoing 
debate on the sources of intratumour heterogeneity. Comparison to previous model 
CACTUS and simpler baselines showed that with a model that is more robust to noise 
and smarter in data integration, more transcriptional heterogeneity can be explained by 
genetic causes (Fig. 2d). Only having established the more likely genotype to transcrip-
tional phenotype link should the remaining phenotypic variance be attributed to other 
effects, for which the mechanisms are less clear. With its excellent performance and rich 
output for downstream analysis, CaClust proved highly useful in the study of hetero-
geneity in FL, by extracting the phenotype-to-genotype mapping from high throughput 
sequencing data into an easily interpretable structure of hyperclusters and clone clusters.

Conclusions
In this work, we proposed CaClust, a novel method for clonal phenotype profiling with 
single cell genotyping in FL and demonstrated its potential use in the study of evolu-
tionary histories and the relationship between genomic and transcriptional heterogene-
ity in FL. To our knowledge, our approach is the first to enable the joint study of these 
two types of heterogeneity in FL and to evaluate the strength of genotype-to-phenotype 
links in the evolutionary context of BCR hypermutation. Our in-depth analysis of 22,492 
single cells and whole exomes from four FL samples using CaClust gives insights into 
effects of driver mutations, possible therapeutic targets, and FL evolution.

Firstly, as model validation we showed that CaClust outperforms a state-of-the-art 
model on simulated and patient data. Secondly, we demonstrated that CaClust single-
cell genotyping agrees with genotypes observed in an independent targeted resequenc-
ing experiment. Additionaly, our investigation of CaClust clones identified potential 
mutations driving clone phenotypes in patient sample K7B, which include two known 
pathogenic variants of MYD88 and CREBBP, a VMA21 variant causing a targetable 
dependency, and a novel TSPAN33 variant; for mutations with known pathogenecity, 
their effects were observed in the expression phenotypes of their carriers. Lastly, the 
inferred clone genotypes and BCR hypercluster profiles of the time-related samples K4B 
and K5B gave hints of the evolutionary history of their clones, that agree with the find-
ings on CPCs from [14].
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Altogether our results illustrate that CaClust greatly facilitates an effective study of the 
extensive genomic and transcriptional heterogeneity in FL and their link, by providing 
the first method for their joint analysis utilising the context of BCR hypermutation.

Methods
Data collection

Patient sample collection

Samples with histologically confirmed infiltration of follicular lymphoma (FL) grade 1–2 
were collected according to the Declaration of Helsinki and under authorization of appli-
cable biobank regulations of Leiden University Medical Center and the Ethical Commit-
tee of Leiden University Medical Center (reference HEM 008/SH/sh). Excisional lymph 
node biopsies were processed immediately by gentle mechanical disruption and mesh 
filtration. Single cell suspensions were frozen in 10% DMSO and remaining tissue frac-
tions were cultured in low-glucose (1 g/L) DMEM with 8% foetal bovine serum to obtain 
adherent cell cultures for isolation of DNA of cells representing normal counterpart.

Cell processing, library preparation and sequencing

FL cells were thawed and purified by flowcytometry using anti-CD19-APC (Becton 
Dickinson, Franklin Lakes, NJ) and anti-CD10-PECy7 (Becton Dickinson) followed by 
removal of dead cells (MACS Dead Cell Removal Kit, Miltenyi Biotech, Bergisch Glad-
bach, Germany). For whole exome sequencing, DNA was isolated from 1 · 106 purified 
FL cells and from 0.5 · 106 cultured adherent cells (Allprep DNA/RNA Mini Kit, Qia-
gen, Hilden, Germany). Whole exomes were sequenced using SureSelect Human All 
Exon V7 baits (Agilent, Santa Clara, CA). Adherent cells representing normal cells were 
sequenced at 50×  coverage. To discriminate between early clonal variants and more 
recently acquired subclonal variants as putative drivers of distinct clones, FL bulk DNA 
was sequenced at 1500× coverage to allow reliable calling of rare variants down to a 
variant allele frequency (VAF) of 0.02. For 5′-based single cell transcriptome sequenc-
ing, 1 · 105 similarly purified viable cells were loaded on a Chromium X single cell device 
to generate cDNA libraries for an expected 6 · 103–8 · 103 cells per sample. (10X Genom-
ics, San Fransisco, CA) Inside the 10X Genomics chip, single cells and oligonucleotide-
covered beads are simultaneously captured as aqueous droplets in oil. Per bead, all 
oligonucleotides share an identical single cell barcode (scbc), and every single oligonu-
cleotide molecule carries a unique molecular identifier (UMI). In the droplet, cells are 
lysed and cDNA synthesis is 3′ primed with oligo-dT. After amplification of the primary 
cDNA library by using universal primers, the amplified library is split in 3 fractions for 
(1) full transcriptome sequencing, (2) enrichment of BCR transcripts followed by full 
length sequencing, (3) targeted resequencing of subclonal somatic variants. Sequencing 
for WES and single cells was performed on HiSeq2500 or HiSeq4000 devices (Illumina, 
San Diego, CA).

Variant calling

FASTQ files from whole exome sequencing (WES) were processed using the Sarek 
workflow v2.7 and aligned to the human reference genome GRCh38 using Burrows 
Wheeler Algorithm (BWA) v0.7.17.  [33, 34] Duplicated mapped reads were marked, 
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local realignment of regions flanking indels and recalibration of base quality scores were 
performed to obtain more accurate bases according to the Genome Analysis ToolKit 
(GATK) best practices version v4.1.7.0.  [35] Single nucleotide variants (SNV) and 
short insertions and deletions (INDELS) were called using Strelka2 v2.9.10.  [36] Only 
high confidence variants defined by quality scores (GQX) of at least 15 for SNV and 30 
for INDELS were kept. Pathogenecity of variants was determined using the Geneticist 
Assistant NGS Interpretive Workbench (SoftGenetics) based on publicly available vari-
ant-databases (dbSNP, ClinVar, and COSMIC) and literature, into class 1 (benign), class 
2 (likely benign), class 3 (unknown significance), class 4 (likely pathogenic), or class 5 
(pathogenic) [37–39].

Variant selection for CaClust modelling

We chose only somatic single nucleotide variants called from Strelka that could also 
be observed in the scRNA data of the cells with complete BCR heavy and light chain 
sequences, and that showed at least one alternate read across the cells.

Some germline variants were present in the Strelka output, as they had an increased 
frequency of the alternate nucleotide over the normal sample. We chose to include only 
those variants that showed over 3-fold increase in the frequency of the alternate nucleo-
tide between the normal and tumour sample. The full table of included variants per sam-
ple can be seen in Additional File 3: Output profiles.

Copy number inference (FalconX)

We use FalconX [40] for the inference of copy number alteration (CNA) events. In the 
getASCN.x method we use a threshold of 0.1; later, in the quality-filtering falconx.qc we 
set the CNA length.threshold of 107 basepairs and the delta copynumber threshold of 
0.1.

Inference of input clonal profiles

We use CANOPY [41] for the estimation of input clonal profiles for the model. We run 
5 CANOPY chains for each clone number K ∈ 3, ..., 6 , choosing the number of clones 
for each sample with the highest BIC score. The minimum number of model iterations is 
set to 20,000 and the maximum to 100,000. The input CNAs for CANOPY inference are 
obtained with FalconX.

The CaClust model formulation

CaClust can be seen as a significant extension to our previous model, CACTUS, with the 
functionality of non-parametric Bayesian clustering applied to BCR sequences (Fig. 6).

We assume we are given a cancer tissue sample with WES, scRNA, and BCR receptor 
profiling. Let i ∈ {1, ...,N } denote a position of a SNV that can be found both in WES and 
scRNA data. We assume that a set of k ∈ {1, ...,K } clones is given, each with a distinct 
genotype. We describe the given clone genotypes with a matrix � , where an entry �i,k is 
1 if variant i is present in the given genotype of clone k and 0 if it is not.
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As in CACTUS, the input matrix of clone genotypes is assumed to be imperfect, 
containing errors with rate ξ . We take ξ with a prior distribution Beta with parameters 
κ = (κ0, κ1) , obtaining P(ξ |κ) = Beta(ξ ; κ0, κ1) . We then introduce the matrix C , where 
Ci,k are the hidden variables representing the true genotype of clone k at variant position 
i, such that:

The main advantage of CaClust over its predecessor CACTUS is the way the cluster-
ing of cells by their BCR receptors is modelled. Let j ∈ {1, ...,M} be the cell indices. Tj 
denotes the BCR hypercluster to which cell j is assigned. Contrary to its predecessor, 
CaClust does not consider a fixed number of BCR hyperclusters, but rather allows it to 
be inferred, using the Chinese Restaurant Process (CRP) for the prior, i.e.:

P(Ci,k = 1|�i,k , ξ) =
1− ξ , �i,k = 1
ξ , �i,k = 0

.

P(Tj|T−j ,α0) = CRP(T−j ,α0),

Fig. 6 Graph of the CaClust model. White vertices represent hidden variables, grey vertices represent 
observed variables. Directed edges show probabilistic dependencies between variables. Vertices with no 
outline are model parameters. �i,k is the observed genotype of clone k at position i, Ci,k being the true 
genotype: Ci,k = 1 if mutation i is present in clone k and 0 otherwise. ξ is the error rate between �i,k and Ci,k . 
Ai,j is the count of observed unique molecules with an alternate nucleotide at position i in cell j, with Di,j 
being the total number of unique molecules observed at position i in cell j. θ0 is the probability of observing 
an alternate read if a cell does not carry a mutation at that position, θi is the probability of observing an 
alternate read if a cell does carry mutation i. Iq is the assignment of hypercluster q to one of the tumour 
clones. Tj is the assignment of a cell j to one of the hyperclusters and α0 is the concentration parameter of 
the CRP prior of Tj . Bl,q is the vector of nucleotide frequencies at position l in BCR sequences of cells from 
hypercluster q. Xl,j is the nucleotide present at position l in the BCR sequence of cell j. κ , ν0, ν1, g are the 
hyperparameters of the model
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where T−j is the hypercluster assignment of all cells but j to the BCR hyperclusters in the 
model, and α0 is the concentration parameter.

We characterise each BCR hypercluster q of cells with its BCR frequency profile Bq 
and with B we denote all those profiles in the model. Let l ∈ {1, ..., L} index BCR posi-
tions. Then the vector Bl,q = [BA,l,q ,BC ,l,q ,BG,l,q ,BT ,l,q] describes the probabilities, 
with which a cell belonging to hypercluster q has at position l a nucleotide A, C, G or T, 
respectively. We set a Dirichlet prior on Bl,q with parameters g = (gA, gC , gG , gT ):

For each cell j we are given its BCR sequence as Xj , where Xj,l is the nucleotide at posi-
tion l; with X we denote the matrix of all cells’ BCR sequences. Given the hypercluster-
ing and its BCR frequency profiles we treat each cell’s BCR as coming from a categorical 
distribution with probabilities described by its hypercluster’s profile. So for a cell j, its 
hypercluster Tj and the BCR frequency profile, we have:

where Nuc is one of the four nucleotides, Nuc ∈ {A,C ,G,T }.
We make the assumption that cells from the same hypercluster belong to the same 

tumour clone, so we want to find the hypercluster to clone assignment. By Iq we denote 
the tumour clone that hypercluster q is assigned to and with I the assignment of all 
hyperclusters in the model. We make no prior assumptions on that assignment and so 
we set a uniform prior distribution: P(Iq = k) = 1

K .
From the scRNA data we create matrices A and D , where Ai,j and Di,j are the numbers 

of alternate and total reads respectively, that map to position i in cell j. We then define 
observation probabilities θ = (θ0, θi) : θ0 is the probability of a read being mutated if it 
comes from a cell mapping to a clone that does not have that mutation in its genotype, 
θi is the probability of a read being mutated if it comes from a cell mapping to a clone 
that does have mutation i in its genotype. Then, the likelihood of observing Ai,j mutated 
reads from Di,j total reads is:

We pick beta priors for θ0 and θi , with parameters (a0, b0) and (a1, b1) , respectively:

where we denote ν0 = (a0, b0), νi = (ai, bi) and ν = (ν0, ν1).
Let Aq = {Ai,j}j∈q ,Dq = {Di,j}j∈q be scRNA reads from cells in hypercluster q. Since 

we assume that scRNA reads at different positions or from different cells are condition-
ally independent, then the total likelihood of these reads is:

P(Bl,q|g) = Dirichlet(Bl,q|gA, gC , gG , gT ).

P(Xj,l = Nuc|B,Tj = q) = BNuc,l,q ,

P(Ai,j|Di,j , Iq ,Ci,Iq , θ ,Tj = q) =

{

Binom(Ai,j|Di,j , θ0), Ci,k = 0
Binom(Ai,j|Di,j , θi), Ci,k = 1

.

P(θ0|ν0) = Beta(θ0|a0, b0)

P(θi|νi) = Beta(θ0|ai, bi),
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Gibbs sampling

Inference in CaClust is performed using a Gibbs sampler, where each variable is itera-
tively sampled from its conditional probability given the current values of the other var-
iables in the model. Since CaClust is a probabilistic graphical model, this conditional 
probability is equivalent to the conditional probability of the variable given its Markov 
Blanket  [42]. The sampling of variables related to the CRP is performed using a dedi-
cated procedure described below. The inference is carried out until convergence, as 
measured by the Gelman-Rubin diagnostic; afterwards, the samples from iterations after 
burn-in approximate the true posterior distribution of the variables.

Conditional probabilities of variables

In the Gibbs sampler, we sample the variables from their conditional probabilities given 
their Markov Blankets (MB). Using Bayes’ rule we factor these probabilities as follows.

For the error rate ξ , we have:

The prior on ξ is a Beta distribution with parameters (κ0, κ1) and the likelihood 
P(C|ξ ,�) is a product of Binomial distribution functions over variables Ci,k for 
i ∈ 1, . . .N  and k ∈ 1, . . .K  , where a success is defined as a disagreement (since ξ is 
an error rate) between �i,k and Ci,k . Therefore, from the Beta-Binomial conjugacy, we 
obtain:

For the true genotypes Ci,k , we have:

Since we assume reads at different variant positions i and reads in different cells j are 
conditionally independent, the above probability factorises as:

For the hypercluster-clone assignment variable Iq , we have:

We use an uninformative prior on Iq , so the posterior probabilities of Iq are propor-
tional to the likelihoods of scRNA reads, which again we assume to be conditionally 
independent across positions i and cells j:

P(Aq|Dq , Iq ,C,T, θ) =
∏

j∈q

∏

i

P(Ai,j|Di,j , Iq ,Ci,Iq ,Tj = q, θ),

P(ξ |MB(ξ)) ∝ P(ξ |κ) · P(C|ξ ,�).

P(ξ |MB(ξ)) = Beta



ξ ; κ0 +
�

i,k

1(�i,k �= Ci,k), κ1 +
�

i,k

1(�i,k = Ci,k)



.

P(Ci,k |MB(Ci,k)) ∝ P(Ci,k |�i,k , ξ) · P(A|D, I,Ci,k ,T, θ).

P(Ci,k |MB(Ci,k)) ∝ P(Ci,k |�i,k , ξ) ·
∏

q,Iq=k

∏

j∈q

{

Binom(Ai,j|Di,j , θ1)
Ci,k · Binom(Ai,j|Di,j , θ0)

1−Ci,k

}

.

P(Iq = k|MB(Iq)) ∝ P(Iq = k) · P(Ai,j|Di,j , Iq = k ,Ci,k ,Tj , θ).
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For the hyperclustering variable Tj , we have:

The observations of BCR sequences across positions l and cells j are also conditionally 
independent, so the above factorises to:

We can calculate the above for all hyperclusters q that are non-empty. However, since 
we are dealing with a CRP, then during the sampling of cell j’s hypercluster assignment Tj 
we need to include the possibility of joining a new hypercluster. So during the sampling 
of Tj , if Q is the number of non-empty hyperclusters in clustering T−j , we add a hyper-
cluster Q + 1 with parameters IQ+1,BQ+1 sampled from their prior distributions. Then 
we can calculate the above for hyperclusters 1, ...,Q + 1 and sample Tj with appropriate 
probabilities.

For the hypercluster BCR frequency profiles Bl,q we have:

Since the Bl,q variable has a Dirichlet prior and the observations of nucleotides Xl,j 
come from a categorical distribution with probabilities Bl,q , then from the Dirichlet-
Multinomial conjugacy, we get:

where nNuc,l,q is the number of occurances of nucleotide Nuc at position l in BCR 
sequences of cells belonging to hypercluster q.

For the variant read observation probabilities θ , we have:

Since θ0 and θi have a Beta prior and the likelihoods of A are Binomial distributions 
with sizes D , then from the Beta-Binomial conjugacy, we get:

where ν′0 = (a′0, b
′
0) and ν′i = (a′i, b

′
i) are defined by:

P(Iq = k|MB(Iq)) ∝
1

K
·
∏

j∈q

∏

i

{

Binom(Ai,j|Di,j , θ1)
Ci,k × Binom(Ai,j|Di,j , θ0)

1−Ci,k

}

.

P(Tj = q|MB(Tj)) ∝ P(Tj = q|α0) ·
∏

i

P(Ai,j|Di,j , Iq ,Ci,k ,Tj = q, θ) ·
∏

l

P(Xl,j|Bl,q ,Tj = q).

P(Tj = q|MB(Tj)) ∝ CRP(Tj = q|α0)·
∏

i

{

Binom(Ai,j|Di,j , θ1)
Ci,k × Binom(Ai,j|Di,j , θ0)

1−Ci,k

}

·

∏

l

Categorical(Xl,j|Bl,q ,Tj = q).

P(Bl,q|MB(Bl,q)) ∝ P(Bl,q) · P(Xl,j|Bl,q ,Tj = q).

P(Bl,q|MB(Bl,q)) = Dirichlet
[

Bl,q; gA,l + nA,l,q , gC ,l + nC ,l,q , gG,l + nG,l,q , gT ,l + nT ,l,q

]

,

P(θ |MB(θ)) ∝ P(θ |ν) · P(A|D,C, I,T, θ)

P(θ |MB(θ)) = Beta
[

θ0; ν
′
0

]

×
∏

i

Beta
[

θi; ν
′
i

]

,
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The conditional probability of α0 is a special case and its sampling is described in the 
following section.

Updating the concentration parameter α0
During model inference we also sample α0 , the concentration parameter of the Chinese 
Restaurant Process behind our clustering. For sampling α0 we use a method described in 
paper [43]. It applies to mixture models in general, and in this section we explain how it 
is implemented in the CaClust model.

Firstly, we assume a Gamma prior over α0,

We have M as the number of cells, and let Q be the number of non-empty hyperclus-
ters in current sampling iteration. Since Q is not fixed, we consider Q as another random 
varable. In the Chinese Restaurant Process (CRP), we have:

Then from the probability density of CRP, we have:

where s(Q,  M) are Stirling numbers of the first kind and, more importantly, they are 
independent from α0 . For α0 > 0 (as in our case), we can rewrite the gamma functions 
from above as:

where β is the beta function. So, since Ŵ(M) is constant w.r.t. α0 , the conditional prob-
ability of α0 takes the form:

This shows that P(α0|Q,M) is a marginal probability distribution of a joint distribution 
of pairs (α0, σ) , where:

a′0 = a0 +
∑

q

∑

i,j∈q

(1− Ci,Iq ) · Ai,j

b′0 = b0 +
∑

q

∑

i,j∈q

(1− Ci,Iq ) · (Di,j − Ai,j)

a′i = ai +
∑

q

∑

j∈q

Ci,Iq · Ai,j

b′i = bi +
∑

q

∑

j∈q

Ci,Iq · (Di,j − Ai,j),

α0 ∼ Gamma(a, b).

P(α0|T) = P(α0|Q,M)

∝ P(α0) · P(Q|α0,M).

P(Q|α0,M) = |s(Q,M)| · (α0)
Q ·

Ŵ(α0)

Ŵ(α0 +M)
,

Ŵ(α0)

Ŵ(α0 +M)
=

(α0 +M) · β(α0 + 1,M)

α0 · Ŵ(M)
,

P(α0|Q,M) ∝ P(α0) · (α0)
Q−1 · (α0 +M) · β(α0 + 1,M)

∝ P(α0) · (α0)
Q−1 · (α0 +M) ·

∫ 1

0
xα0(1− x)M−1dx.
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With the Gamma(a, b) prior on α0 , we obtain the following probabilities:

which is a mixture of two gamma densities:

with weights such that πσ
1−πσ

=
a+Q

M(b−ln σ).
Lastly, by marginalising Eq. 1 w.r.t. α0 , we get the conditional distribution of σ:

Therefore, we sample α0 at each iteration as follows: 

1. Pick a new value for σ with previous values of Q and α0
2. Pick a new value for α0 with previous value of Q and new σ.

Data simulation methods

In this section, we describe the process of simulating data for evaluation of model per-
formance, specifying the parameter settings for different simulation runs and evaluation 
metics.

Simulation process

The input data required by the model for inference are: matrix D of read counts over 
mutations in the cells, matrix A of alternate read counts over mutations in the cells, BCR 
sequences of cells, and matrix � of observed clone genotypes.

Assume we are given: the number of clones K, the number of cells M, the number of 
variant positions N, the length of BCR sequences L. Then the simulation steps are as 
follows:

• Step 1: Hyperclustering simulation. 

1. Generate the concentration parameter α0 from its prior distribution.
2. Using the CRP with concentration parameter α0 cluster the M cells.
3. Assign each of the Q resulting hyperclusters to one of the K clones with uniform 

probability.

(1)
P(α0, σ |Q,M) ∝ P(α0) · (α0)

Q−1 · (α0 +M) · (σ )α0(1− σ)M−1 σ ∈ (0, 1).

P(α0|σ ,Q,M) ∝
ba

Ŵ(a)
αa−1
0 e−bα0 · α

Q−1
0 (α0 +M)eln σα0

∝ α
a+Q−1
0 e−(b−ln σ)α0 +Mα

a+Q−2
0 e−(b−ln σ)α0

∝
Ŵ(a+ Q)

(b− ln σ)a+Q
Gamma(α0; a+ Q, b− ln σ)

+M
Ŵ(a+ Q − 1)

(b− ln σ)a+Q−1
Gamma(α0; a+ Q − 1, b− ln σ),

P(α0|σ ,Q,M) ∝ πσGamma(α0;Q + a, b− ln σ)

+ (1− πσ )Gamma(α0;Q + a− 1, b− ln σ),

P(σ |α0,Q,M) ∝ σα0(1− σ)M−1 ∝ Beta(σ ;α0 + 1,M).
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• Step 2: BCR sequence ( X ) simulation. 

1. For each hypercluster q and each BCR position l, sample its BCR frequency pro-
file Bl,q from the Dirichlet distribution with prior parameters gl.

2. For each cell j simulate its BCR sequence at position l from a categorical distri-
bution with the frequencies Bl,q that we obtain for its hypercluster q from the 
previous step. In simulation scenarios with centroid behaviour (see simulation 
types), we additionally randomly select hyperclusters with rate rclust and within 
them rcell cells to express identical BCR sequences, equal to the sequence that is 
most probable given their hypercluster’s profile Bl,q.

• Step 3: � and C simulation. 

1. Simulate θ0, θi, ξ from their prior distributions with desired parameters.
2. Pick a variant rate v.
3. For each clone simulate its mutation profile Ck : at each variant position i we 

have a chance of v that clone k exhibits a variant at that position, i.e., Ci,k = 1.
4. Simulate the observed matrix � by randomising C with error rate ξ.

• Step 4: scRNA-seq variant data ( A and D ) simulation: 

1. For each cell j and variant position i sample the total number of observed reads 
mapping to that position ( Di,j ) from a Poisson distribution with mean µD.

2. For each cell j and each position i sample the number of observed variant reads 
Ai,j from its conditional probability distribution.

Choosing simulation parameters

In the simulation process, we have control over the values of several parameters, which 
influence the simulated structure in different ways. We can divide those parameters into 
three groups: data dimensions, simulation type agnostic, and simulation type specific.

Data dimension parameters

Data dimension parameters are fixed for all simulation types and affect primarily the 
computational times.

We set the number of tumour clones K = 3 , the number of variant positions N = 100 
in the tumour genotypes (fixed according to the numbers of variant positions after filter-
ing in the analysed real patient data), the number of cells M = 1000 . Finally, we set the 
number of mutated BCR positions L = 300 , since in the experimental data we observed 
between 200 and 400 positions that contain at least one alternate nucleotide. Note that 
this number is smaller than the combined length of the BCR heavy and light chain 
sequences, which is around 600–700 nucleotides.

Simulation scenario‑agnostic parameters

These parameters are shared between all simulation scenarios. Firstly, the variant rate v 
used to generate the clone genotypes; for each clone k and each variant position i we set 
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a probability v = 0.3 that Ci,k = 1 . Secondly, the parameters ν = (ν0, ν1) of error rate ξ ’s 
beta prior distribution; we set ν0 = 1 , ν1 = 19.

Lastly, the prior parameters of alternate nucleotide observation probabilities θ0 and θi . 
In the model we use only somatic variants, so θ0 reflects the probability that an alternate 
nucleotide from a different position was mismapped. We assume high quality of posi-
tion analysis, thus θ0 should be low. Secondly, we assume we are dealing with heterozy-
gotic somatic variants; therefore, the probability of observing a variant nucleotide from 
the mutated allele is on average 50%, but can vary due to the random nature of mRNA 
expression and sequencing. To reflect the above, we choose the prior parameters of θ0 to 
be a0 = 0.2, b0 = 99.8 , and the prior parameters of θi to be ai = 4.5, bi = 5.5.

Simulation scenarios

We wanted to test model performance on datasets with three varying characteris-
tics: scRNA read depth, controlled with µD ; number of BCR hyperclusters, controlled 
with α0 ; and intracluster variance of BCR sequences, controlled with sg , rclust , rcell . 
To do this, we created a base scenario modelling medium read depth ( µD = 0.01 ), 
low number of BCR hyperclusters ( α0 = 5 ), and medium intracluster BCR variance 
( sg = 0.01, rclust = 0, rcell = 0 ). Then, in each simulation type we changed one of these 
parameters, while keeping the rest at base values.

Apart from the base scenario we created eight following simulation scenarios. Two 
scRNA read depth scenarios with high, or low average numbers of reads per variant in a 
cell; these scenarios reflect a high and low quality sequencing experiments with high and 
low scRNA information respectively. One sparse hyperclustering scenario with numer-
ous BCR hyperclusters in the data; this models a tissue with multiple BCR clusters 
evolving in parallel. A scenario with high variance BCR sequences within hyperclusters; 
this models cells with highly mutated BCR sequences that give low information. And 
lastly, four scenarios with x% of cells within y% of hyperclusters sharing their hyperclus-
ters’ prevalent BCR sequence (with x, y ∈ {20, 80} ); this accounts for BCR hypercluster 
tendencies observed in real data, in which most hyperclusters contain a large subset of 
cells with identical BCR sequences. All simulation types are shown in Additional File 
2: Table S4 along with the values of the varied parameters.

Performance metrics

To measure the performance of CaClust and CACTUS on simulated datasets we define 
three performance metrics: cell to clone assignment accuracy, genotype reconstruction 
accuracy, and hyperclustering reconstruction agreement.

We calculate the cell to clone assignment accuracy as the fraction of cells that were 
assigned to their correct clone in the MLE assignment after model inference.

Secondly, the genotype reconstruction accuracy measures how well the model cor-
rects the input matrix of clonal profiles � , which contains errors with rate ξ . To calculate 
it, we take the MLE of the true clone genotypes C from the model and compute the frac-
tion of entries that it agrees on with the hidden clonal profiles from the simulation.

Finally, with the hyperclustering reconstruction agreement we measure the similarity 
between the hyperclustering from the data generation process and the hyperclustering 
reconstructed by the model. For this, we calculate the adjusted Rand index between the 
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final hyperclustering of cells in the model and the hyperclusters from the data genera-
tion process.

Model application process

Inference parameters

For model inference, we need to choose the following prior parameters.
Firstly, the parameters of the beta priors of θ0, θi , which are ν0 = (a0, b0), νi = (ai, bi) . 

Since θ0 should be the small probability of an observed read being variant in a clone not 
containing that mutation in the genotype, we set the prior parameters a0, b0 such that 
a0

a0+b0
= 0.002 and that their magnitude a0 + b0 is equal to the number of total reference 

reads in the sample. θi is the probability of an observed read at position of SNV i being 
variant in a clone containing SNV i. To account for bursty expression and harder map-
ping of variant fragments, we set ai, bi such that ai

ai+bi
= 0.45 and their magnitude ai + bi 

to be equal the total number of variant reads of SNV i in the cells.
Secondly, the prior parameters of the BCR frequency profiles. At each BCR position 

we use a low strength uninformative prior of g = (0.01, 0.01, 0.01, 0.01) , which influ-
ences more data-driven frequency profiles.

For the beta prior on the input genotype error rate ξ , we use parameters κ0, κ1 with val-
ues such that κ0

κ0+κ1
= 0.8 and their magnitude κ0 + κ1 = N · K  , where N is the number 

of SNVs and K is the number of clones used for the sample. In that way, the genotype at 
each clonal position is a priori weighed κ0 : κ1 in favour of the input genotype call; dur-
ing the inference that ratio changes with the numbers of agreements and disagreements 
between � and C in the model, which are on the level of N · K .

For the gamma prior of α0 , we use a non-informative prior with parameters (1, 1).

Model initialisation

We initialise the hyperclustering in the model (T variable) with the clustering of cells 
with identical BCR sequences. This is to promote faster convergence and is in line with 
the assumption, that hyperclusters of cells with identical BCR sequences should come 
from the same evolutionary clone. The model can also be initialised with random hyper-
clusters or hyperclusters containing singular cells.

After hypercluster initialisation we obtain the initial assignment of hyperclusters to 
clones by performing initial Gibbs sampling iterations only for I,C, ξ , θ0, θi variables, 
while keeping the initial BCR hyperclustering constant. This is done to ensure that 
before relaxing the BCR hyperclustering in full model interations we resolve any major 
disagreement between the input clonal profiles and the scRNA variants observed in the 
initial BCR hyperclustering.

Afterwards, the α0 and B variables are initialised from their conditional probabilities 
and the full model sampling iterations are ready to be performed.

Convergence assessment

The model is run for a set number of initial and full sampling iterations; then, for assess-
ing the model convergence we use the Gelman-Rubin diagnostic with stable variance 
estimators  [44] on the variables with continuous values in the model ( θ0, θi,α0 ). The 
model is assumed to have converged if between the chains in a sample we observe the 
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multivariate potential scale reduction factor (MPSRF) lower than 1.001. If not con-
verged, the next set of full sampling iterations is carried out and the convergence is reas-
sessed. We use 5000 initial and 500 full sampling iterations.

Result extraction

For each sample, we choose the model chain with the highest likelihood; then, from that 
chain we take the maximum a posteriori (MAP) of cell-clone assignment and clone gen-
otypes, and the output hyperclusters are taken to be the hyperclustering with maximum 
likelihood through the iterations.

Independent gene expression clustering

Gene expression clusters were obtained by PCA dimensionality reduction to 30 dimen-
sions and next Leiden clustering on the reduced profiles with resolution parameter of 0.3 
m using Seurat package [45].

Pathogenecity prediction

All variants were annotated within the Geneticist Assistant NGS Interpretive Work-
bench (SoftGenetics) by public variant-databases (dbSNP, ClinVar, and COSMIC) 
and available literature, into class 1 (not pathogenic), class 2 (potentially not patho-
genic), class 3 (unknown significance), class 4 (potentially pathogenic), or class 5 
(pathogenic). [37–39]

Differential gene expression analysis

We use the DESeq2 package [46] for differential gene expression analysis in the samples. 
For each clone, we use its cells as a test group and the rest of the cells as a reference 
group. The analysis is carried out on the SCT counts, with size factors estimated using 
the scran package  [47]. For significance we use the likelihood-ratio test (LRT) imple-
mented in the package, with Benjamini-Hochberg correction for multiple testing.

From the DE analysis, we exclude genes with a total read count < 1% of the cell count 
in the data; the ribosomal protein L and S genes; the immunoglobulin IG[HKL] genes; 
and the mitochondrial MT- genes.

Gene set enrichment analysis

We perform Gene set enrichment analysis (GSEA) as described in [48] on the 50 hall-
mark genesets [49]. For each clone we use as input the list of genes ranked by their fold-
change found in the DE analysis. For FDR in the GSEA we use gene label reshuffling with 
10,000 permutations.

Cell cycle analysis

Cell cycle phase was assigned to cells using the CellCycleScoring function from the Seu-
rat package. To analyse the cell cycle distribution differences in sample K7B, we used 
Pearson’s chi-squared test. The minimal expected value in the contingency tables was 
10.1 for the differences between cycles of C2 and C3, which is in line with best practices 
for the test, where the minimal expected value cannot be lower than 5 [50].
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Targeted resequencing

Variant selection for targeted resequencing

Variants with subclonal VAF (0.05 < VAF < 0.4 or 0.6 < VAF < 0.8) in genes that were 
detectable in ≥ 2.5% of single cells based on single cell transcriptome data were selected. 
Variants that were synonymous, located outside exons, in immunoglobulin genes or 
more than 2000 bp from start of transcripts were excluded.

Targeted resequencing procedure

Pools of 10X Genomics cDNA that were remaining after GEX and BCR sequencing were 
used as template for targeted resequencing. A semi-nested 2-step amplification strategy 
was designed based on a reverse outer and a reverse nested inner primer both located 
3′ of the target variant position (see Additional File 4: Primer information). For primer 
validation, an additional forward primer in the 5′ region of the gene was designed and 
used on cDNA that was generated from bulk-sorted FL cells as described previously 
with modifications: initiation of reverse transcription using oligo-dT and 5′ extension 
with an alternative 5′ template switching oligo  [51]. Validation PCRs were performed 
with 10 μL bulk FL derived cDNA template using Phusion Flash High Fidelity PCR Mas-
ter Mix (Thermo Fisher Scientific, Waltham, MA) with the reverse outer gene specific 
primers and enrichment primer I both at 1 μM. As PCR program was used: melting 45 
s 98  °C, amplification for 20 cycles: melting 20 s 98  °C, annealing 30 s 67  °C, elonga-
tion 120 s 72  °C, followed by a final elongation step of 120 s 67  °C. Aliquots of 10 μL 
PCR product were run on 1% agarose gel and visualised. If bands were visible, remaining 
40 μL PCR products were purified using AMPure XP Beads (BeckmanCoulter, Indian-
apolis, IN). The nested PCR was performed under identical conditions with the inner 
gene specific primer and enrichment primer II. If no bands were visible, alternative 
primers were designed and tested. Using validated primer sets, aliquots of 1.5 μL of 10X 
Genomics single cell cDNA pools were amplified with enrichment primers I and II and 
the validated outer and inner 3′ reverse primers under identical conditions as in primer 
validation. After the second amplification, PCR products were run on preparative 1% 
agarose gel, visible bands were excised, purified using Promega Wizard PCR Preps 
DNA Purification System (Thermo Fisher Scientific) and run on Bioanalyzer (Agilent) 
for accurate quantification of obtained PCR products. Equimolar amplicon pools were 
generated and single molecule sequencing was performed on PacBio Sequel II platform 
(PacBio, San Diego, CA).

PacBio full length sequence data processing

Circular consensus sequence fastq files were used as input for filtering and genotype 
calling. PacBio polymerizes circularised single strand DNA templates and dependent 
on the start of the reaction results in either the forward or reverse sequence. To obtain 
all reads in the forward direction, a copy of every read was reverse complemented and 
added to the data. Using the 5′ end PCR adapter sequence AAT GAT acg, also allowing 
deletion of 1–3 nt thus accepting aATG ATA cg, aaTGA TAC g, and aatGAT ACG , were 
used to keep only reads in the forward direction. For reads that were not correctly split 
during circular consensus generation and thus consisted of the forward linked to the 
reverse sequence, mean quality score of nt 5–100 of each sequence end was calculated. 
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The read part with lower quality was clipped. Next, alignment scores were obtained for 
read nucleotides (nt) 47 to 60 with the distal PCR adapter motif CTT CCG ATCT, and 
read nt 82 to 100 with TSO+G motif TTT CTT ATATG. The space between adapter and 
TSO comprises the single cell barcode (scbc) of 16 nt and the unique molecular identifier 
(umi) of 10 nt, and thus should be 26 nt. Reads with adapter motif alignment score ≥ 9 
and, TSO+G alignment score ≥ 10 and a scbc-umi space of 24 to 28 nt were accepted. 
The latter filter taking into account potential insertions and deletions within polyhomol-
ogous stretches. In the second step, reads were aligned with wildtype and mutant refer-
ence sequences of 41 nt with 20 up- and downstream nt flanking the nt substitution or 
insertion/deletion. Reads that aligned with a single reference with alignment score ≥ 30 
of max 41 and nt quality score ≥ 120 of max 126 at the variant position were accepted. In 
the third step, reads were assigned to cells using as reference scbc from valid cells from 
CellRanger default output for gene expression profiling and BCR VDJ/VJ sequencing. 
Nt from end of adapter − 1 to + 18, thus a stetch of 19 nt was aligned with all reference 
scbc. Matches with a single scbc and alignment score ≥ 14 and an average quality score 
of ≥ 110 of max 126 were accepted. Two potential umis were extracted, one of exactly 
10 nt downstream of the scbc (umi10), and the second one between the end of the scbc 
until the last nt before the TSO start (umiTso). No reference for umis is available, and we 
expect due to amplification and sequencing errors an overestimation of the repertoire of 
umis. We therefore collapsed highly similar umis as follows: Per scbc and gene, identical 
umis were counted and arranged by decreasing count. With the most dominant umi as 
reference, for all other umis a pairwise alignment score was calculated. A discrepancy 
of max 3 nt was allowed for a umi to be collapsed into the more dominant umi. Inde-
pendently for umi10 and umiTso, the process was iterated over all umis. If the resulting 
umi of both umi10 and umiTso was identical, collapsed umis were corrected towards 
the dominant umi. If the resulting umi of umi10 and umiTso were not identical but their 
Levenshtein distance was ≤ 3 , umi10 was chosen as the final umi. At Levenshtein dis-
tance >3, the read was rejected. Genotyping of umis and scbc was performed as follows: 
In case more than 1 umi was detected per single cell and gene, we counted the number 
of duplicates and evaluated if all umis had the same genotype. If all reads had identical 
genotypes, the umi genotype was called accordingly. As a result of amplification errors 
however, chimeric PCR products can be formed resulting in mixed wildtype and mutant 
reads withing 1 umi. Umi genotypes were called based if mutant or wildtype read counts 
were at least 0.67 of the total umi read count. Single cells were called mutant if at least 
1 mutant umi was detected. Wildtype was called only if no mutant umis and at least 4 
wildtype umis were detected in the absence of mutant umis.
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