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data from unsolved rare disease cases
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We report the results of a comprehensive copy number variant (CNV) reanalysis of 9171 exome
sequencing datasets from 5757 families affected by a rare disease (RD). The data reanalysed was
extremely heterogeneous, having been generated using 28 different enrichment kits by 42 different
research groups across Europe partnering in the Solve-RD project. Each research group had previously
undertaken their own analysis of the data but failed to identify disease-causing variants. We applied three
CNV calling algorithms to maximise sensitivity, and rare CNVs overlapping genes of interest, provided by
four partner European Reference Networks, were taken forward for interpretation by clinical experts. This
reanalysis has resulted in a molecular diagnosis being provided to 51 families in this sample, with ClinCNV
performing the best of the three algorithms. We also identified partially explanatory pathogenic CNVsin a
further 34 individuals. This work illustrates the value of reanalysing ES cold cases for CNVs.

Rare diseases (RD) are defined in Europe as conditions that affect <1 in 2000
individuals. Nevertheless, it is estimated that more than 30 million people
across the European Union are affected by one of ~6000-8000 different
RDs". As 80% of RD are expected to have a genetic aetiology, massively
parallel sequencing approaches, in particular exome sequencing (ES), have
been widely applied over the last decade to identify variants in DNA that
cause RD. However, despite many advances in technology during this
period, more than half of all individuals affected by an RD remain without a
molecular diagnosis following such analyses, thus extending their diagnostic
odyssey. While the accurate detection of single nucleotide variants (SNV)
and short (<50nt) insertions and deletions (InDels) from ES data has
become relatively robust in recent years’, the reliable detection of larger
variants, including copy number variants (CNVs), remains a challenge, and
it is likely that undetected pathogenic CNVs account for a proportion of
undiagnosed individuals.

CNVs comprise losses, which may be heterozygous or homozygous in
autosomes, or hemizygous in gonosomes, and gains of genetic material,
which we refer to here as deletions and duplications, respectively. Identifi-
cation of CNVs from short-read ES data (i.e. 100-150nt paired-end reads) is

complicated by several factors, the most important of which being that read
length is usually shorter than variant length, and that the boundaries of the
CNV, referred to as breakpoints, are unlikely to be captured directly by the
enrichment targets, since they represent only ~1-2% of the genome. An
exacerbating factor is a marked variability in the enrichment process, in
which targets for ~200,000 exons undergo DNA hybridisation and PCR
amplification prior to sequencing, both between kits and between experi-
ments. Many methods have been developed for CNV detection from ES
data, most of which use the comparison of depth of coverage (DoC) between
the observed number of reads covering a particular exon/target in a sample
of interest and the normalised coverage for the same exon/target in a large
reference batch of matched experimental samples*. For such methods to be
successful, the sequencing data needs to be as homogenous as possible,
particularly with respect to the evenness of coverage'’, which is the key factor
in CNV detection since it directly affects the signal-to-noise ratio.

As reviewed recently in Gordeeva et al."!, these methods differ from
each other primarily in terms of the approach taken for read count nor-
malisation, assumptions regarding read-depth distribution, and the seg-
mentation process, i.e. identification of the boundaries of a variant. Despite
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the application of sophisticated normalisation techniques, the correct
separation of the signal of true CNVs from background noise remains
challenging, particularly for short CNVs that only impact one or a few
exons. This is illustrated by numerous cross-tool comparisons in which the
intersection of CNVs detected by different methods is limited, ranging from
~1-20% concordance when three or more tools are compared across
samples'*"'. Indeed, a recent benchmarking initiative involving sixteen tools
showed that the number of raw CNVs called on a single ES sample ranged
from just two to over a thousand", reflecting differing optimisation of
algorithms for specificity or sensitivity. Therefore, following identification of
a list of potential CN'Vs, subsequent filtering steps are required, including
determining which CNVs are technically valid (i.e. bona fide biological
events), and whether any of the valid CNVs are of clinical relevance with
respect to the phenotype of the affected individual. Hence, both technical
expertise and expert clinical knowledge are required if disease-causing
CNVs are to be correctly identified.

This complexity may explain why the detection of CNVs has often
been omitted from diagnostic ES workflows, with array comparative gen-
ome hybridisation (aCGH) continuing to be the preferred method in the
clinic over thelast decade, despite limitations in its sensitivity and resolution,
particularly with respect to short CNVs. However, recent studies have
indicated that ES may be a suitable replacement as a first-tier diagnostic
test”™", with the added benefit that SNVs and InDels are detected
simultaneously.

A key goal of the EU Horizon 2020 Solve-RD project is to raise the
diagnostic rate of individuals with an RD for whom ES analysis and
variant interpretation have previously been undertaken, but without a
conclusive diagnosis having been reached. This is being achieved by
undertaking massive pan-European data collation and complete rea-
nalysis of raw data, followed by expert technical and clinical inter-
pretation and validation of variants'®. The CNV analysis conducted
here, was an integral part of a larger re-analysis effort undertaken on
the same dataset, covering most other variant types (Laurie et al.”).
Here we describe the workflow applied in a comprehensive reanalysis
of this heterogeneous sample of ES data from 9171 individuals per-
taining to 5757 families, including 6143 individuals affected by an RD,
to identify (likely) pathogenic CNVs. The ES data was generated using
28 different enrichment kits in multiple sequencing centres. Hence, to
maximise the accuracy and sensitivity of CNV detection we applied
three different algorithms, ClinCNV, Conifer, and ExomeDepth, and

analysed experiments in 28 different batches, comprising data gener-
ated using the same enrichmentkit. We filtered the raw call set, initially
consisting of over two million CNV calls (average of ~300 per indivi-
dual), to a manageable number of 0-2 potentially pathogenic rare
CNVs per affected individual requiring interpretation by the clinical
experts who submitted the cases to Solve-RD. This extensive endeavour
has led to the closure of many diagnostic odysseys, some of which had
been ongoing for decades, of which we provide some illustrative
examples.

Results

Technical results

Prior to the initiation of CNV calling, minimal quality control was
undertaken, which took the form of requiring that data from each
submitted family included at least one affected individual with
accompanying Human Phenotype Ontology (HPO) terms. Further-
more, following the alignment of sequencing reads, it was required that
at least 70% of the target region of the enrichment kit had a depth of
coverage (DoC) of ten reads. After the removal of 143 experiments that
did not meet these criteria, CNV calling was undertaken on data from a
total of 9171 individuals from 5757 families, of whom 6143 had a rare
condition. Initial investigations indicated the presence of a large var-
iance in sequencing depth both within and between the 28 enrichment
kit batches, reflecting the heterogeneity of the sequencing data sub-
mitted to Solve-RD (Fig. 1).

Following the identification and removal of likely false positive
calls based upon tool-specific QC metrics, the removal of commonly
observed events, and restriction to events overlapping genes in the
custom gene lists from the corresponding European Reference Net-
work (ERN), a total of 7849 calls in 3436 affected individuals from 3300
families remained for interpretation (Table 1). The number of pro-
bands with atleast one CNV call to be interpreted by clinical specialists
from the ERN ranged from 113 for GENTURIS (33% of families) to
1239 for ITHACA (69% of families) (Supplementary Table 3). No CNV
of interest was detected in 2707 affected individuals from the
remaining 2457 families. In addition, a further 393 pairs of potential
CNV-SNV double-hit compound heterozygous variants in 226 affected
individuals were returned to clinical experts for interpretation. Overall,
a mean of 1.3 CNVs per proband was returned for interpretation.
However, as CNVs of potential interest were only identified in 55% of

200- 439 290 32 59 67 18762078 572 523 15 7 1032 299 479 434 39 38 85 14 45 4 28 117 76 172 371 12 148
150+
20T ' @ 6
¢ ad ‘ 0
0-
T T T T T T T T T T T T T T T r T T T T T T T T T T T T
Qo el el Qo e el o el Q2 el 2 2 [+0] 2 Fe) e el Q2 o 1] [+e] o 2 o 2 e el Qo
= = = = = = = = = = = = = = = = = = = = = = = = = = = =
< ~ I3 o — — =] =] © N ] ] > ~ N n ~ o ~ > o © ~ < ~ ~ - ~
lﬂ‘ 13‘ ("7‘ V‘ ID‘ \D‘ lﬂ‘ \D‘ ("J‘ V‘ f’)‘ &D‘ (2] «")‘ D‘ V‘ ("J‘ @‘ v—4‘ © o (’J‘ <l‘ 13‘ 'Q‘ V‘ V‘ f")‘
o o o [\ ® b 0 © ~ - - o T)‘ ) 1) o~ ) [} o N Lo [\ o @ ] = z o
> > > > > > > > > o - > o [ £ b E £ > o0\ < > > > £ s S =
{ | ~ ol ~ bl wl - - - e X ) % 5
w w % 8 B 8 v B B 2 2 E & £ £ 2 %8 8§ e 2z 3 g g ¢ g & v g
@ @ o o o ° o o o £ = g £ - w g u u o} S 5 5 o o (s} g
O O [] [} [] [7] [7] [7] 7} o =] @ 5} ] ° [7] o o 1 (8] O ] ] S - ® \ 1)
| | %] %] 4] (%] %] 4] %] 17 % =] T ] @ 2] Q K] £ a)‘ w‘ i & & 7} = © 0
g § ¢ ¢ ¢ ¢ ¢ ¢ ¢ S5 S5 O o & B 2 9 B 2 g £ N N N & & 3 @&
2 2 = 5 5 5 5 5 = (6 o = 3 [} © = = < (%} S H w w w N 4 =4 4
T ] %) %) %) 7] %) %) %) | 4 g & Z =% . & =% = 3 3 o o o u w g c
(] ] _4\ gl _ _J _ ol !l 5 5 3 % { x c © x = (7] [} © rv T 2 ° a -]
3] 3] 2 £ £ £ £ € < = = = 2 < w = c w | 2 2 O Q 9 o s E
5 5 g & ©& © © & 9 3 2P = 5 £ g E z g o S 3 g & o § = =
a 0 5 ® ® ® ® ® ©® @ I 2 E g 2 E 3 s 2 2 g & g g N I
o (= (=2 (= [= (=2 = 5 13 - 3 [3
S 2 < < < < < < < =) oo 2 T I 3 E = i R B B A -
[ 5] o c z L S S S c 3 s
= = o @ ) o =} =] o L o =
< < 2 c £ 2 @& =2 £ 9
I £ E 2 2 2 =}
— g S E E E £ |
[a] = = £ =
) = z z 2z 5 g
o
z

Fig. 1 | Violin plot of the median depth of coverage by kit for 9351 ES experiments pertaining to 28 different enrichment kits. The number of experiments pertaining to
each kit is shown above the plots. Coverage is shown on the Y-axis. Thickness of the plotted shape indicates the proportion of experiments that have a particular coverage.
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Table 1 | Table showing overall number of CNV calls submitted for clinical interpretation following filtering, separated by type

and caller used

Copy number
Tool Long 0 1 2 3 4 >4 Total
ClinCNV 248 (68) 283 (206) 1,203 (64) 99 (99) 776 (29) 145 (1) 28(2) 2,782 (469)
Conifer 526 (14) 5(4) 65 (0) 20 (20) 246 (5) 0(0) 0(0) 862 (43)
ExomeDepth 502 (31) 218 (28) 1342 (90) 38 (38) 1948 (64) 134 (4) 23 (9) 4,205 (264)
Total 1276 (113) 506 (238) 2610 (154) 157 (157) 2970 (98) 279 (5) 51 (11) 7849 (776)
% of Events 16.26 6.45 33.25 2.00 37.84 3.55 0.65 100
Numbers in brackets denote the subset of calls detected on sex chromosomes.
a) b)..
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Fig. 2 | Distribution of lengths of 7849 CNV calls detected in 3436 affected individuals, separated into deletions (Panel a) and duplications (Panel b). The x-axis
represents the length of calls identified (log,, scale), and the y-axis the number of events observed. Note that the y-axis scale is different in panel a from panel b.

probands, this equated to 2.4 variants per proband that required
interpretation.

The total number of CNV calls in affected individuals returned for
interpretation was highest for ExomeDepth (n =4205), while ClinCNV
called about two-thirds of this number (2782), and Conifer approximately
one-fifth (862), reflecting different predilections of the underlying algo-
rithms with respect to sensitivity and specificity of CNV detection. While
Conifer and ExomeDepth showed a significant bias toward calling dupli-
cations, the reverse pattern was observed for ClinCNV, which identified
more deletions (p <0.00001 in all cases, Fisher exact test; Supplementary
Table 4). We assessed the distribution of the length of CNVs returned for
interpretation as identified by each tool. Notably, the average length of
CNVs detected by Conifer was approximately an order of magnitude larger
than that of ExomeDepth, which in turn was longer than that of ClinCNV.
This pattern held for both duplications and deletions and again reflects
differences in the way the tools identify and segment CNVs (Fig. 2, Sup-
plementary Table 5).

Diagnostic results

Following expert interpretation, 105 potentially pathogenic CNVs of
interest in 103 affected probands were identified, of which 52 have been
confirmed as disease-causing in 51 individuals (Table 2). The disease-
causing CNVs included three “double-hit” instances where an SNV and
CNV affecting different alleles of the same gene were identified, resulting in
a compound heterozygous diagnosis and one instance where two CNVs
affecting different genes provided a dual genetic diagnosis for a complex
phenotype. Parent—child trios account for 18 out of the 51 solved cases
(35%), and 13 of these cases are caused by de novo CNVs. A further 25
CNVs are regarded as pathogenic by the clinical experts but not sufficient to
explain the full phenotype observed in the affected individual, including

seven complete gonosomal aneuploidies (“Partially explanatory” in
Tables 2 and 3). A further 26 potentially pathogenic CNVs were identified
for which further validation is not logistically possible due to lack of access to
DNA and/or the patient (referred to as candidates below). While 81% (42 of
52) of confirmed disease-causing CN'Vs are deletions, only 39% (7 of 18) of
the partially explanatory pathogenic CNVs are deletions, even when dis-
regarding the gonosomal duplications. Of the 26 candidate CN'Vs, 54% (14)
are deletions (Fig. 3 and Table 2).

Of the 77 confirmed pathogenic CNVs, 40 (52%) were initially iden-
tified by all three callers (Fig. 3 and Table 2). However, in the case of ten of
the 40, the Conifer call was subsequently discarded due to it being below the
applied SV-RPKM threshold, and one of the ten was also discarded by the
ExomeDepth workflow due to a low BFE. Of the remaining 37 pathogenic
CNVs, 36 (97%) were identified by ClinCNV, two of which subsequently
failed ClinCNV quality control thresholds, while 25 (68%) were identified
by ExomeDepth, five of which were subsequently discarded due to a low BF.
Interestingly one of the 37, a duplication in PIEZO2 was identified by
Conifer alone.

Below we provide an example of an RD case solved through the analysis
of CNVs undertaken here, from each of the four ERN partners in Solve-RD.

Example of successful new diagnosis from ERN EURO-NMD

This male in his thirties first came to clinical attention in his adolescence,
affected by poor balance, recurrent falls, and difficulty rising from the floor.
Prior to this, he had been able to run and play sports normally. His
symptoms worsened slowly over time, and he is currently unable to walk or
stand without assistance. He also has mild facial weakness and mildly ele-
vated serum creatine kinase. His family history is negative, having several
unaffected siblings. Muscle biopsy showed clear features of muscular dys-
trophy, and immunohistochemical analysis suggested reduced expression of
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o
525 48 £ § dystrophin. Exome sequencing was initially undertaken in 2017, but no
%% 3 £ pz T g diagnosis was reached at that point.
JOF2E8a ° .
2T =Sk g 8=l é’ As a result of reanalysis of the ES data undertaken here, a three-exon
g, deletion affecting exons 45 through 47 of the DMD gene
@ 5% (NC_000023.10:g.(2_31947661)_(32053731_2)[0]) was detected by both
3 2 g g Y
I § £ ExomeDepth and ClinCNV, consistent with the suspected diagnosis of
o
% 8 'JZ Becker Muscular Dystrophy. This hemizygous deletion was subsequently
% e confirmed using multiplex ligation-dependent probe amplification
5 53 g p g p p p
z § g (MLPA). Confirmation of the molecular diagnosis in this individual has
° 8% enabled enhanced genetic counselling, as any future daughter he may have
5 s § would be an obligate, and possibly manifesting, carrier of the CNV, thus
o2 59 requiring clinical management.
e = a
2 s
E g8 Example of successful new diagnosis from ERN GENTURIS
S = This family first came to clinical attention in 2003, meeting the criteria for
2 s | |¢ % hereditary diffuse gastric cancer (HDGC)™, as several family members had
s 3| s T .
2 N R R developed diffuse gastric cancers prior to 30 years of age. HDGC typicall
< RN B 3 & p Yy g y
po g3alg3[S ¢ results from CDHI loss of function’*”. However, Sanger sequencing of
5 Q28| ¢ é g g CDH1 performed proved negative, as did a subsequent investigation in the
é E form of MLPA, and ES, at which point no potentially explanatory SNVs,
- 94 § =§ - InDels, or CNVs were identified in CDH1, nor other candidate genes23 .
& 23 |E % : Following these negative findings, the ES data was submitted to Solve-
a - g § RD for two affected, and four unaffected siblings. The comprehensive rea-
g g gz nalysis of the ES data resulted in the identification of a ~116 kb heterozygous
& 8 2 Yy Y8
w0 S 5 e deletion impacting half of the CDH1 gene (from intron 7 forwards) and the
S S c O p g g
E 3 = ; 3 start of the downstream gene TANGOG (as far as intron 14) on chromosome
& & 3 3 g 16 (NC_000016.9:g.(2_68846035)_(68961985_%)del) in four of the six sib-
Q2 lings (Fig. 4). The CNV was detected by both ClinCNV and ExomeDepth
S 2 &S (T1g Y P
3 § < and further supported by split-reads and abnormally paired reads observed
"3 S s in data from one of the affected individuals. Visualisation in IGV and
0w |= o |28 subsequent MLPA validated this large event. Of note, one of the unaffected
—— o s ‘(CJ = q g
< § % E, = g siblings, a female carrier in her 40s, has not developed gastric cancer to date,
£ 32 in accordance with previously reported incomplete penetrance amon
33 p y rep plete p g
B s s S5 CDHI mutation carriers™. Another of the unaffected siblings was a carrier
1% 2 2 € &
o |5 8 s |8 but never developed gastric cancer as a result of having undergone pro-
8 g2 hylactic total gastrectomy due to the high incidence of cancer in the family.
o 8 phy 8 y y
% = g s The remaining unaffected siblings were found not to harbour the deletion,
® = 52 but unfortunately, both have also already undergone prophylactic gas-
= 8 22 trectomy. Nevertheless, as a result of their inclusion in Solve-RD, the famil
Z 3 o 2 Yy y
O |, o =3 has since been recontacted and enroled in a clinical pathway of care, and
g % g - |3 £ their 20-year diagnostic odyssey has now come to an end. Importantly,
g 3 8 LSS targeted genetic testing has now been made available to their offspring to
< < =
2 |, g 925 avoid unnecessary prophylactic gastrectomy in subsequent generations. The
© 2 N L= £ functional analysis and clinical implications of this CNV are described in
g S 3 R more detail in Sio José et al.”.
g |3 R
T % g . S 2 Example of successful new diagnosis from ERN ITHACA
2 # g s g2 This girl was first referred to paediatric neurology in her first year of life,
o |E 8 s (55§ gt p gy Yy
2 |5 ® : |s¢2 presenting with generalised tonic-clonic seizures. During her infancy, mild
8 > | ax% lobal developmental delay became evident, with delays in speech and
= |z g [82 g p y y p
o |2 - s (83 language acquirement and in gross-motor skill acquisition. Seizures were
£ |5 8 | g controlled with lamotrigine monotherapy, which could be discontinued
E’ g during childhood following prolonged seizure-free periods. Apart from
o z z % g_ polyhydramnios, pregnancy and delivery were uncomplicated. Medical
o |3 28 |z8|25 history comprised constipation and eczema, and family history was unre-
% ,‘,,3 5% |&8% § H markable. Physical examination revealed no additional phenotypic features,
F e £2 ie. no congenital anomalies, no facial dysmorphisms, and no growth
T |& s s | % Z-fo_J abnormalities. Investigations, including cerebral MRI and general metabolic
Q © o |c 2 screening were negative. Singleton ES was performed, followed by trio ES,
£ |2 = t |oE which revealed a heterozygous de novo SNV of uncertain significance
S | E = |25 (VUS) in  STIPI  (STIPI;  chrl1(GRCh37):g.63961718C>T;
L o %’ § NM_001282652.1:c.418C>T; p.(Argl40*)). Within this diagnostic trajec-
c; 3 8 5 |2 = tory, no analysis dedicated to CNV detection was performed.
% : S 5 f‘g 3 The systematic reanalysis of ES data reported here led to the identifi-
- = = © |y cation of a heterozygous 27kb deletion on chromosome 6p21
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Table 3 | Table showing success rates in identification of pathogenic CNVs from each of the four ERNs (European reference

Networks)

ERN Solved Partially solved (families) Candidates Total Pathogenic CNV Solved families
Families Sex chromosome Other Families Families % %

aneuploidies

EURO-NMD 18 0 4 10 1.461 1.5 1.2

GENTURIS 4 0 0 0 340 1.2 1.2

RND 13 0 2 12 2.168 0.7 0.6

ITHACA 16 7 12 4 1.788 2.0 0.9

Totals 51 7 18 26 5.757 1.3 0.9

The table shows the number and proportion of families found to have disease-causing variants which fully or partially explain the affected individual's phenotype, and how many have candidate CNVs

requiring further invetigation.

(NC_000006.11:g.(2_31630124)_(31657924_%)del) in the proband. This
deletion was detected by all three tools, and visual inspection of sequence
alignment files in IGV clearly indicated the presence of the variant in the
affected daughter, and its absence in both parents, thus confirming that itis a
de novo deletion. The deletion fully removes CSNK2B, LY6G5B and
LY6G5C, and its breakpoints affect GPANKI and ABHDI16A. GPANKI,
LY6G5B and LY6G5C currently have no disease association, and while
ABHDI6A is associated with autosomal recessive spastic paraplegia-86
(MIM#619735), there is no apparent second hit in ABHDI6A, and the
phenotype of the proband does not comprise spastic paraplegia. CSNK2B,
on the other hand, has recently been shown to be associated with autosomal
dominant Poirier-Bienvenu neurodevelopmental syndrome (POBINDS;
MIM#618732), in which truncating variants in CSNK2B result in hap-
loinsufficiency, leading to early-onset seizures and highly variable impair-
ments of intellectual functioning’* . As the de novo deletion observed in
this proband results in haploinsufficiency of CSNK2B, and her phenotypic
description fits within the CSNK2B-associated phenotypic spectrum, this
27 kb deletion on chromosome 6p21 is regarded as explanatory for her rare
condition, thus ending a seven-year diagnostic odyssey for this family.

Example of successful new diagnosis from ERN RND

This teenage female was first evaluated in paediatric neurology as a child,
presenting with global developmental delay and behavioural and learning
problems. Retrospectively, the first symptoms had become apparent in her
infancy, consisting of mild delayed development of fine and gross motor
skills. Additionally, she had delays in language and speech development and
was diagnosed with attention deficit disorder, for which she is being treated
with methylphenidate and responding well. No obvious dysmorphic fea-
tures were observed upon physical examination, but mild hypertonia of the
triceps surae, hyperreflexia, kinetic tremor, mirror hand movement, and a
tiptoeing gait were observed. Subsequent cerebral MRI showed ven-
triculomegaly, corpus callosum hypoplasia, prominent cerebellar folia, and
thin middle cerebellar peduncles. Genetic testing, consisting of aCGH
(median resolution 180 kb), targeted testing for Fragile X syndrome, and ES
did not pinpoint a molecular cause.

Systematic reanalysis of the ES data undertaken here led to the iden-
tification of a heterozygous deletion of ~200kb at chromosome 4q31.1
(NC_000004.11:g.(2_140187697)_(140394334_?)del), encompassing part
of the MGARP gene (not known to be associated with disease), and the
entire NAA15 gene, which encodes the catalytic subunit in the N-terminal
acetyltransferase A complex (MIM: 608000). The deletion was identified by
all three tools and subsequently validated using high-resolution aCGH
(median resolution 60 kb). Following the review of the prior results, the
absence of recall of the variant in the initial aCGH analysis was attributed to
its limited resolution. The patient’s mother, who had had similar learning
problems and has mild cognitive disability, was subsequently also found to
be positive for the deletion. No further family testing was possible. Echo-
cardiography was normal in both cases. Loss-of-function variants in NAAI5
and heterozygous deletion of this gene and nearby genes are associated with

‘Intellectual developmental disorder, autosomal dominant 50, with beha-
vioural abnormalities’ (MIM: 617787)*>%. This disorder has the features of a
wide spectrum of neurodevelopmental severity and variable association of
congenital anomalies, thus confirming that the observed CNV was causative
in this case, and ending this family’s seven-year diagnostic odyssey.

Discussion

Rigorous detection of CNVs from ES requires sequencing data that has been
generated as uniformly as possible, in order that the test experiment can be
compared against a similarly generated batch of matched control samples.
However, the ES data submitted to Solve-RD had been generated using 28
different enrichment kits and sequenced with different short-read tech-
nologies to different depths of coverage in multiple sequencing centres
across Europe. Hence the primary challenge encountered during this ana-
lysis was data heterogeneity. Similarly, from the perspective of diagnosis, it is
essential to have a clear clinical description of the affected individual to be
able to determine which genes and variants, if encountered, may explain the
observed phenotype. This was achieved here firstly through the use of the
HPO to capture a deep phenotypic description of affected individuals from
the referring clinicians, and secondly using the curated set of genes of
interest provided by each ERN. Together these significantly reduced the
search space for potentially disease-causing CNVs.

The interpretation of raw CNV calls is challenging due to the initial
high number of calls most tools report. We applied a robust filtering
strategy to remove calls that were clearly unlikely to be of relevance for
RD and benefited from the curated lists of genes of interest provided by
each ERN. Nevertheless, visual inspection of the affected region using
IGV was key for assessing the technical validity of calls, prior to, or in
parallel with, their biological interpretation. For interpretation purposes,
we routinely provided the following images: (1) Image of normalised
coverage across the whole genome, (2) Close-up images of apparent
breakpoints, and (3) Image of the variant itself and the surrounding
neighbourhood. It is likely that this is an aspect where an Al-based tool
for automated IGV-image analysis would be of significant benefit,
potentially saving many hours of human expert review time. We believe
that a Machine Learning/Al tool could be trained to discriminate
between whether a variant called by one of the algorithms is clearly a false
positive or likely to be a bona fide biological event, in the same manner
that the human eye can, when presented with the same images.

The clinical researchers representing each ERN applied their own
prioritisation strategy when interpreting CNV calls according to the specific
pathologic and phenotypic characteristics of their patients. When used as a
first-tier analysis, CNV detection from ES has been reported to result in
diagnostic yields as high as 7-19%"*. The overall rate of novel diagnoses
reached here through reanalysis was 0.9%, ranging from 0.6% for RND and
0.9% for ITHACA to 1.2% for GENTURIS and EURO-NMD. Notably, nine
of the sixteen CNVs established as being disease-causing in ITHACA cases
could be confirmed as de novo mutations due to ES data being available
from the proband’s parents. While our values are lower than those of prior
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Fig. 3 | Heat maps illustrating the length of confirmed disease-causing CNVs
(Panel a), partially explanatory disease-causing CNVs (Panel b) and candidate
disease-causing CNVs (Panel ¢) identified in this study. Duplications are shown in
blue, and deletions in red. Cyan and pink, represent duplication and deletion calls,
respectively, which were initially QC filtered in the workflow for the respective tool,

and identified post hoc. The approximate length of the event is indicated in the top
layer using a log;q scale. The affected gene is indicated along the bottom. Where
more than one gene was unaffected, it is shown as multiple, with the affected
chromosome indicated.

reports, where yield from reanalysis efforts, have resulted in increases in
diagnostic yield with respect to CNVs in the range of 1.6-2.0%**** in those
studies, the prior CN'V analyses had largely consisted of only chromosomal
microarray (CMA) analyses, which lack sensitivity for short CNV events,
which were hence identified in the subsequent ES-based CNV analyses. Our
results reflect several factors: the likelihood that detailed CN'V analysis of the
ES data had been undertaken prior to submission to Solve-RD; the role that
CNVs are likely to play in the respective class of disease; the time passed
since the initial analysis, which would affect the number of genes known to
be associated with a particular class of disease. Interestingly, the number of
genes of interest in each of the custom ERN gene lists does not appear tobe a

factor, given that GENTURIS had by far the shortest list, and RND and
ITHACA the longest.

There was a clear bias towards deletions vis-a-vis duplications being
identified as pathogenic, with 49 of 77 (64%) confirmed pathogenic CNVs
being deletions and 42 of 52 (81%) disease-causing CNVs. This reflects the
fact that duplications are more challenging to detect, and even when
detected by ES, with DoC data alone it is invariably unclear as to whether
they are tandem duplications, possibly inverted, or inserted elsewhere in the
genome, each of these scenarios being likely to result in a different biological
consequence, making interpretation challenging. Furthermore, long
duplications appear to be under less evolutionary constraint than similarly
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Fig. 4 | Family pedigree and MLPA confirmation results for a Mexican family
extensively affected by Hereditary Gastric Cancer. a Family tree of the family of
proband P0014615 (represented by an arrow). Exome Sequencing data from six
individuals of the family was submitted to Solve-RD for re-analysis, following prior
analysis in 2015 for both SNVs and CNVs, which did not identify any variants of
interest. Three of the sequenced family members were affected by diffuse gastric
cancer (DGC, black symbols: P0014616, P0014615, P0014613), while the other three
were unaffected (P0014617, P0014614, P0014612). Individual III-3 (P0014617) is
currently a healthy carrier, perhaps due to incomplete penetrance previously

reported for CHDI. The age shown below affected individuals indicates the age of
disease onset, while that below healthy individuals represents their current age.

b MLPA validation results using SALSA MLPA-Probemix P083 CDHI (MRC
Holland) in the healthy-carrier III-3, and in the proband, III-5. A ratio above the blue
line indicates an elevated number of copies, while a ratio below the red line indicates
a decrease in copy number. The shaded blue area represents the position of probes
for CDHI and two neighbouring genes, while the grey area represents reference
probes.

sized deletions™, suggesting that they are less likely to result in disease.
Accordingly, the ACMG guidelines for the interpretation of constitutional
CNVs, require more supporting evidence for a duplication to be confirmed
as pathogenic than is required for a deletion.

It is noteworthy that, in comparison with the other two tools, Conifer
called very few CNVs under 20 kb in length, and indeed failed to successfully
identify 18 of 20 deletions <20kb that were determined to be disease-
causing, and the remaining two fell below the calling threshold. Notably,
Conifer also failed to identify duplications over 1 Mb in length, including
seven sex-chromosome aneuploidies, a limitation mentioned in the original
paper”. It is this failure at the two extremes of CNV length that largely
contributes to the inferior performance of Conifer. It should also be high-
lighted that we required a Z-score in excess of +1.75 for a CNV called by
Conifer to be returned for interpretation, whereas had we used +1.5, Conifer
would have successfully identified a further eight events of the disease-
causing CNVs, all but two of which were over 20 kb in length. CinCNV
performed best of the three callers with this highly heterogeneous dataset,
which is likely due to its more adaptive DoC calculation whereby it sub-
segments target regions into overlapping 120bp tiles, significantly
improving resolution, particularly for short CNVs, most of which were also
detected by ExomeDepth but some of which fell below the minimal calling
threshold. Indeed, only ClinCNV was sensitive enough to be able to identify
the three events affecting only one or two exons in APC, MEIS2, and NFIB,
respectively.

In addition to cases of de novo dominant inheritance resolved by an
individual CN'V, we also identified eight cases where an SNV and CNV were

affecting different alleles of the same gene, potentially forming a disease-
causing compound heterozygote. Two of these have been confirmed as
being explanatory for the individuals’ conditions, with the remaining six
requiring further validation. These findings underline the importance of
having all data relevant to the interpretation of an affected individual’s
condition readily at hand, as had the SNV and CNV analyses been
undertaken independently, these individuals would have been unlikely to
have received a diagnosis. Furthermore, in one affected individual, we
identified two pathogenic CNVs affecting different genes, each of which
explains unique features of the individual's complex phenotype, i.e. a dual
diagnosis”. We are confident that many of the CNVs that we currently
classify as candidates are likely pathogenic in the affected individuals, but
complete follow-up has not yet been possible. The complete expert-curated
dataset of deletions and duplications, together with the detailed phenotypes
and pedigrees and the aligned sequence files (BAM/CRAMs), are available
to the entire RD community via the European Genome-Phenome Archive
(EGA)*, allowing for new discoveries (see Data Availability section, below).

There are many reasons why a pathogenic CNV identified here may
not have been found in prior analysis of the ES data. Firstly, there may have
been no attempt to identify CNVs by the respective clinical research team,
due to alack of resources or expertise. However, we know that some form of
prior CNV analysis had been undertaken for the majority of affected indi-
viduals analysed here. Secondly, the tool(s) applied previously for CNV
detection may not have identified the relevant CNV, or though identified, it
may have been discarded due to local quality control parameters applied, e.g.
~10% of all the experiments submitted to Solve-RD were of sufficiently poor
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quality such that one of the centres involved in the reanalysis undertaken
here would have routinely QC-failed the sample in their diagnostic work-
flow and thus not attempted to identify CNVs. Thirdly, while the CNV may
have been identified, there may not have been any known association
between the affected gene(s) and the clinical presentation of the patient at
the time of the initial analysis, resulting in, at best, classification of the CNV
as a variant of uncertain significance (VUS), and the individual remaining
undiagnosed.

We would emphasise that any observations of potential tendencies in
the results presented here must be interpreted prudently since this was an
extremely heterogeneous dataset both in terms of the breadth and the
quality of the data and in terms of the time and expertise that had been
applied to the interpretation of the ES data in analyses undertaken prior to
submission to Solve-RD. As we gather more information about the role of
CNVs in RD through projects that share data widely, such as Solve-RD,
hopefully, the accuracy of CNV detection will improve, and the entire
process of identification and interpretation of this important class of var-
iants, from sequencing data to identification of pathogenic variants can be
automated, resulting in families affected by RD receiving a diagnosis sooner
rather than later.

The work presented here has several clear limitations vis-a-vis reaching
a diagnosis for individuals affected by an RD. Firstly, given that the data was
from ES and that we only considered events affecting one of between 230
and 1944 genes of interest identified by each of the ERNs, we will obviously
miss any non-exonic events or CN Vs affecting genes not in the list of genes
of interest. However, undertaking this work without using gene lists would
result in a currently insurmountable load of data for interpretation, and
novel gene discovery was not the goal of the work undertaken here. How-
ever, such discoveries are enabled by the sharing of data with the wider RD
community via the EGA, which we hope will enable more cases to be solved.
Different approaches in interpretation undertaken by the ERN experts may
have resulted in some biologically relevant events being discarded as
uninteresting, which may be particularly true for duplications, for which
evidence of biological relevance in RD is currently relatively scarce. It is also
possible that the application of other tools designed to find CNVs affecting
only single exons, such as VarGenius-HZD”, may have allowed the iden-
tification of shorter events missed by the tools applied. With the future
adoption of long-read genome sequencing technologies such as those pro-
vided by Oxford Nanopore Technologies and Pacific Biosciences, it is likely
that the accuracy of CNV detection, and hence ease of interpretation, will
improve markedly.

Despite these limitations, we have successfully provided diag-
noses to at least 51 families who had previously undergone extensive
genetic testing and, in many cases, multiple hospital visits over many
years, some even decades, without having been provided with a
diagnosis. Within the larger Solve-RD reanalysis of all variant types,
these 51 CNV's were the second most common type of disease-causing
variant identified, after SNVs/InDels, contributing to ~9% of the
successful diagnoses (Laurie et al.”’). The ending of a diagnostic
odyssey has many benefits to patients and their families, beyond
changes in medical management and genetic counselling of relatives. It
also allows a better understanding of disease progression, access to
disease-specific online communities, and psychological closure,
amongst other benefits’. The work undertaken here indicates the
value of comprehensive (re)-analysis of copy number variants in
undiagnosed RD cases, even from historic ES data, and has resulted in
patients and their families being given an accurate diagnosis, finally
ending their diagnostic odysseys.

Based upon our findings, we suggest the following recommendations
for future (re)-analyses of ES data with respect to the identification of
disease-causing CNVs.

1. Know your enrichment kit. Investigate how well and how evenly it
captures your genes of interest.

2. Choose your tools wisely. While Conifer has been shown to work with
homogenous datasets, e.g., thousands of ES datasets generated using

the same kit in the same sequencing centre, it does not perform with the
heterogeneous dataset analysed here. Furthermore, it identified very
few CNVs <20 kb in length, missing many disease-causing variants.

3. Identifying regions that are commonly copy-number variants. In this
way any CNVs observed in such regions can be excluded from being
potentially disease-causing.

4. Use an in silico candidate gene list when possible. This will greatly
accelerate the process of interpretation. If the list is very short, then any
signal of a CNV in a gene of interest should be examined further, since
the sensitivity of tools remains low, and the prior probability of the gene
being variant is high. However, as lists grow longer, this probability
reduces, and calls will have to be filtered by quality thresholds.

5. Visualisation of CNV calls using a tool such as IGV is essential to assure
that they are likely to be real biological events, prior to expending time
and effort on further interpretation, investigation, and/or confirmation
using orthologous techniques.

Methods

Data collation

The ES data reanalysed here comprises previously inconclusive ES experi-
ments submitted for reanalysis as part of the Solve-RD project by 42 dif-
ferent research groups based in 12 countries across Europe and Canada
(range of 1-2111 experiments submitted per group). Each experiment was
submitted via one of four European Reference Networks (ERN) partnering
in Solve-RD, each focusing on a particular group of RD: EURO-NMD (rare
neuromuscular diseases); GENTURIS (rare genetic tumour risk syn-
dromes); ITHACA (rare malformation syndromes, intellectual and other
neurodevelopmental disorders); RND (rare neurological diseases).

A total of 9351 ES experiments from 9314 individuals (6224 affected
individuals and 3090 unaffected relatives) were initially submitted for rea-
nalysis. After the removal of samples sequenced with enrichment kits for
which the available control cohort was <30 and thus not large enough to
allow accurate CNV identification, data from 9171 individuals from 5757
families were analysed (see Technical Results). While 1320 of 1788 (74%)
families from ITHACA were composed of parent—child trios, facilitating
identification of de novo mutations, only 239 of the remaining 3969 (6%)
probands from other ERNs were trios. ES had been performed using 28
different enrichment kits (range of 4-2078 experiments per kit), and each of
the 42 research groups had followed their own DNA library preparation,
target enrichment, and short-read sequencing protocol in their local labs, or
via external DNA-sequencing providers. Furthermore, each group had
previously undertaken its own historic analysis and interpretation of the
resulting ES data to identify disease-causing variants, which had proven
inconclusive. The date at which the initial ES analysis and interpretation had
been undertaken ranged from 6 months to 8 years prior to the experimental
data being submitted to Solve-RD for reanalysis; however, this information
was not collected systematically for individual data sets.

In addition to sequencing data, a phenotypic description for each
affected individual was recorded in the PhenoStore module of the RD-
Connect GPAP*, consisting of a minimum of five Human Phenotype
Ontology terms (HPO™) wherever possible, and disease classification
using Orphanet Rare Disease Ontology (ORDO) ORPHA codes
(http://www.orphadata.org/cgi-bin/index.php),  and/or =~ OMIM
identifiers” (https://www.omim.org/) where appropriate, together
with family pedigrees. A detailed description of this data set can be
found in Laurie et al.”.

Ethics statement

The Ethics committee of the Eberhard Karl University of Tubingen gave
ethical approval for this work. Written informed consent for data sharing
within Europe for the purpose of research was obtained from all recruited
individuals or their parents/legal guardians where appropriate. The
responsibility of checking the data is suitable for submission to the RD-
Connect GPAP and Solve-RD, including informed consent, lies within the
data submitter as required by their Code of Conduct and Data Sharing
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Policy, respectively. In some cases, individuals had to be re-consented prior
to data submission. This study adheres to the principles set out in the
Declaration of Helsinki.

Alignment and definition of capture regions of interest
Sequencing data was submitted in BAM, CRAM, or FastQ format. Where
data was submitted in BAM or CRAM format, it was reconverted to FastQs
at read-group level prior to being realigned to the hs37d5 human genome
reference version, as used in phase 2 of the 1000 genomes project™ with
BWA-MEM* (v0.7.8-r455). As GC-rich enrichment targets are known to
amplify poorly, resulting in unreliable CNV calling®, the GC-content for
each target in each enrichment kit was calculated, and any targets in which
the GC-content was >80% were removed from the corresponding target
BED file prior to CNV calling. This resulted in the removal of <0.5% of target
regions per kit. Ensembl version 75 was used for gene and transcript
definition.

With the goal of maximising the probability of detecting potentially
disease-causing CNVs, three different algorithms which identify CNVs
based on DoC were applied. Two of these, Conifer’, and ExomeDepth®, have
been widely applied to ES data with success previously, while the third,
ClinCNV, was developed recently by a Solve-RD partner”’. Each of these
tools offers the practical advantage of separating the DoC calculation for
each individual experiment from the CNV calling step, and thus CN'Vs were
subsequently called in batches by enrichment kit. The processing took on
average 1 CPU hour per experiment per tool, e.g. a batch of 500 samples was
processed in around 32 h on a machine with 16 cores. Furthermore, each
algorithm provides an estimate of the likelihood that calls produced are
biologically real, and the most likely false positive calls were excluded based
on these metrics. As primary filters, in the case of Conifer, a value in excess of
+1.75 SV-RPKM was required for a CNV call to be taken forward for
biological interpretation, while for ExomeDepth a Bayes factor (BF) > 15
was required, and for ClinCNV, a minimum log likelihood estimation of
twenty was applied.

CNV call filtering and visualisation

As the focus of Solve-RD is diagnosing RD cases, through the identifi-
cation of rare variants that are potentially disease-causing, any apparent
CNV call observed in a region where more than 1% of individuals in the
whole sample had a similar type of call (i.e. a deletion or duplication)
were discarded as being too common to be clinically relevant with respect
to RD. Furthermore, CN'Vs returned for interpretation by clinical experts
were restricted to those that overlapped with at least part of a gene in a
predefined list of curated genes of interest provided by the respective
ERN: EURO-NMD (1 = 615), GENTURIS (230), ITHACA (1944), RND
(1820). The full list of ERN curated genes is provided in Supplementary
Table 1 and details as to how these lists were determined in Laurie et al."”.
Potential CNVss of interest were subsequently categorised into six non-
redundant classes to aid interpretation: Long CNV's (>500 kb in length);
Homozygous deletions; Heterozygous CNVs affecting genes known to
cause disorders with an autosomal dominant mode of inheritance;
Regions with apparent copy numbers of four or more; Gonosomal CNVss;
Potential compound-heterozygous double-hits in the form of a CNV
affecting the second allele of a gene in which biallelic variants are known
to be disease-causing, and in which a potentially pathogenic SNV has
been previously identified in Solve-RD. For each class recommendations
were provided for interpretation, for example, computationally detected
consanguinity status was used for prioritising short homozygous dele-
tions (<500 bp) and short regions with copy number four or more, which
would otherwise have been filtered due to the minimum size threshold.
To provide support for the interpretation of the technical validity of CNV
calls, images of regions containing CNV calls were generated auto-
matically using the Integrative Genomics Viewer (IGV)*. A variety of
custom tracks, including call tracks for each of the three algorithms,
BAM DoC, and gene tracks for ERN genes of interest, were incorporated,
among others.

ClinCNV Workflow

Analysis was performed separately for experiments generated by different
exome enrichment kits. Initially, ClinCNV calculates the average read
coverage of targeted regions of the enrichment kit divided into 120 bp
windows. As the first step of preprocessing, coverage is corrected for GC-
content and library size for each sample individually. Following normal-
isation, systematically poorly covered regions (i.e. where 90% of samples had
a normalised coverage < 0.3) were excluded, followed by the application of
variance stabilisation of read counts (square root transformation). To
ameliorate the potential impact of batch effects on coverage calculation,
samples were further clustered based on their global coverage profiles. In
generating these clusters, target regions in the top and bottom quintiles for a
variance were excluded to minimise the potential impact of polymorphic
regions on cluster generation and coverage profiles were smoothed using the
rolling median. Uniform manifold approximation and projection
(UMAP)™* was performed for the mapping of smoothed coverage profiles.
Samples were clustered into subgroups with a minimum size of 15 using
dbscan®. Finally, the coverage of each 120 bp window was normalised using
the median of coverages within the cluster. Different potential copy num-
bers are modelled using the theoretically expected value and estimated
variance, and the log likelihood of normalised coverage under different
expected copy-number models is calculated for each window. Calling is
performed analogously to Circular Binary Segmentation™ using a Max-
imum Subarray Sum algorithm®, i.e. the segment with the highest evidence
supporting an alternative copy-number to that of the model is identified at
each step of the segmentation, rather than the segment with the largest
difference in mean.

Resulting CNV calls were filtered according to measures of within-kit
allele frequency of the CNV and the noisiness of the coverage at the CNV
site, requiring a minimum log likelihood ratio of 20 to be considered worthy
of biological interpretation. A robust regression model is fitted, taking the
75% percentile rank of the per-chromosome number of CNVs as a response
variable, and median read depth, enrichment kit, and predicted ancestry
determined using SampleAncestry (https://github.com/imgag/ngs-bits/
blob/master/doc/tools/SampleAncestry) as predictors. A sample was
assessed as QC failed if the response variable was outwith the 99.5% pre-
diction interval of the regression. The 75% percentile of the per-
chromosome number of CNVs was chosen to overcome cases where long
CNVs may have been segmented into many separate calls, and thus, an
otherwise good sample could be falsely identified as QC failed if only the
total number of CNV calls was used as a response. Where parents of a case
were available (i.e. family trios), copy-number information from the parents
was also provided to assist in interpretation and to confirm if CNVs
represented de novo events.

Conifer workflow

Conifer* (http://conifer.sourceforge.net/) uses singular value decomposition
(SVD) to identify rare CNVs from exome sequencing data. Samples with
similar read lengths were analysed in the same batch, and sex-specific
sample pools were created to generate accurate X-Chromosome calls. Reads
Per Kilobase per Million mapped reads (RPKM) values were calculated
independently by enrichment kit for all corresponding targets. Following
SVD to identify biases in coverage introduced by batch effects, 3-15 com-
ponents were removed from each group based on manual inspection of the
inflection points of scree plots generated by the programme.

Within each analysis batch, if all experiments had <30 calls, the results
were considered ready for further filtering. On the contrary, where any
experiment in a batch had more than 30 calls, then if the median number of
calls per experiment in the batch was less than 10, any experiment with more
than 30 calls was discarded as failing QC, and the results from the remaining
experiments were considered ready for filtering. However, if the median
number of calls within the batch was more than 10 per experiment, then the
SVD value was increased, and the batch analysis was rerun, until either all
experiments had <30 calls or the median number of calls was <10, at which
point any experiment with more than 30 calls was discarded as described
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above. CNVs with an SVD-ZRPKM value >1.75 or less than —1.75 were
considered bona fide duplication or deletion calls, respectively, worthy of
biological interpretation. Conifer does not provide any guidance as to the
exact copy number identified at a particular locus and provides no further
indicators of the quality of a detected event other than the SVD-RPKM
metric.

ExomeDepth workflow
ExomeDepth® applies a beta-binomial model to the genome-wide dis-
tribution of read-depth data, aiming to compare a test sample to a similar
reference set selected by the tool. For the implementation of the Exome-
Depth workflow, the generation of read count data was separated from that
of identifying candidate CN'Vs. Thus, for each experiment, read depth was
initially calculated for all targets of the respective capture kit and stored as a
Bioconductor iRanges object****". In the second step, all iRanges objects
from experiments generated using the same enrichment kit were analysed as
a batch to generate raw CNV call sets. In this second step, ExomeDepth
automatically identifies an independent background reference set for each
test sample by selecting the most closely correlated samples in terms of
coverage from within the batch. Copy-number prediction is provided by the
ratio of observed/expected reads over a set of targets. We interpreted these
ratios in diploid chromosomes as follows:

* O/E ratio <0.10—likely homozygous deletion ie. copy num-

ber (CN)=0
* 0.10 < O/E ratio <0.75—likely heterozygous deletion; CN = 1
* 0.75<O/E ratio <1.25—]likely copy number neutral; CN =2, i.e. No
CNV to report

* 1.25<O/E ratio <1.75—]likely heterozygous duplication; CN =3

* 1.75<OJE ratio <225—CN =4

* OJE ratio >2.25—CN OTHER

ExomeDepth provides two indicators of quality. The first is a sample-
level indicator of the correlation between the test sample and the back-
ground reference, which should be >0.97 for the results to be regarded as
reliable. Secondly, regarding call quality, ExomeDepth provides a Bayes
factor (BF) based on the ratio of observed/expected reads over a set of
apparently copy-number variant targets. Experiments with a correlation
<0.97 were considered failing QC, and any calls with a BF <0.15 were
discarded as being unreliable.

CNV classes
To aid downstream interpretation, each CNV call was categorised into one
of six classes.

1. Putative CNVs longer than 500 kb in length were initially identified
regardless of the presence or absence of genes of interest in the ERN
gene lists. The recent release of large CNVs catalogues, such as
DECIPHER, as well as the presence of a large number of case reports
with chromosomal changes of this size and larger, allowed us to
hypothesise that such variants could be interpreted successfully, even if
the reported phenotypes of the patients exhibiting such variants may
differ from the phenotypes expected for affected genes.

2. Homozygous deletions are generally rare, and the presence of a
homozygous deletion needs to be interpreted very cautiously due to
potentially incorrect enrichment kit reporting, or poor-quality library
preparation. An important indicator that a putative homozygous
deletion call is likely to be bona fide is the consanguinity status of the
patient.

3. Heterozygous CNVs occurring in genes with a described autosomal-
dominant mode of inheritance reported in OMIM.

4. Duplications with apparent copy number > 3. These may represent
cases where alleles on both chromosomes are duplicated or cases where
only the allele on one chromosome has been duplicated multiple times.

5. Gonosomal CNVs: As gonosomal CNVs require a mixed workflow
depending on the sex of the participant, a separate set of calls was
generated for CNV calls on chromosomes X and Y. In the case of the Y-

Chromosome, only “Long” CNVs that would fall into category 1 above
were reported for interpretation since there were no genes of interest on
the Y-Chromosome on any of the ERN gene lists.

6. Potential compound heterozygote SNV/CNV “double-hits”. For a
short list of experiments in which a single candidate SNV had been
identified by the Solve-RD SNV working group, which was either listed
in ClinVar as Pathogenic/Likely Pathogenic or predicted to have a high
impact in a gene of interest, affecting an individual where the mode of
inheritance was suspected to be recessive, (see Laurie et al.'’) we
investigated whether a potentially pathogenic CNV affecting the
second allele of the same gene could explain the case as a compound
heterozygote.

Call filtering and visualisation

As the focus of Solve-RD is diagnosing RD cases, through the identi-
fication of rare variants that are potentially disease-causing, any
apparent CNV call observed in a region where more than 1% of indi-
viduals in the whole sample had a similar type of call (i.e. a deletion or
duplication) were discarded as being too common to be clinically
relevant with respect to RD. Furthermore, CNVs returned for inter-
pretation by clinical experts were restricted to those that overlapped
with at least part of a gene in a predefined list of curated genes of
interest provided by the respective ERN: EURO-NMD (n =615),
GENTURIS (230), ITHACA (1944), RND (1820). The full list of ERN
curated genes is provided in Supplementary Table 1, and details as to
how these lists were determined is described in Laurie et al.”’. Potential
CNVs of interest were subsequently categorised into six non-
redundant classes to aid interpretation: Long CNVs (>500kb in
length); Homozygous deletions; Heterozygous CNVs affecting genes
known to cause disorders with an autosomal dominant mode of
inheritance; Regions with apparent copy numbers of four or more;
Gonosomal CNVs; Potential compound-heterozygous double-hits in
the form of a CNV affecting the second allele of a gene in which biallelic
variants are known to be disease-causing, and in which a potentially
pathogenic SNV has been previously identified in Solve-RD. For each
class, we gave recommendations for interpretation; for example,
computationally detected consanguinity status was used for prioritis-
ing small homozygous deletions (<500 bp) and small regions with copy
number four or more, which would otherwise have been filtered due to
the minimum size threshold.

To provide support for interpretation of the technical validity of
CNV calls, screenshots for regions containing CNV calls were generated
automatically using the Integrative Genomics Viewer* (IGV), incor-
porating a variety of custom-built tracks (see Fig. 5). These included call
tracks for each of the three callers in SEG format, normalised coverage
tracks for ClinCNV and Conifer, beta-allele frequency, BAM DoC,
Institute of Medical Genetics and Applied Genomics (Tibingen) in-
house polymorphic CNV regions, and gene tracks from RefSeq genes,
ERN candidate genes, and DECIPHER microdeletion and duplication
syndromes™.

For each CNV returned for interpretation, we generated IGV screen-
shots of both the whole sample (chr1-22 and chrX/Y) to allow evaluation of
overall sample quality, and the region around the individual CNV (+£10 kb).
Specifically in the case of long CNVs, the observation of clear deviations
from the expected ratio of 50/50 in beta-allele frequencies provided strong
additional support of variant validity. For rare cases in which a signal of
unusual read pairing was observed, suggesting that a breakpoint may have
been captured, a screenshot was generated, including the suspected
breakpoint.

Clinical interpretation

Further annotations to aid interpretation (Supplementary Table 2) were
added to the results using AnnotSV*’ (Version 3.0.7), and fully annotated
CNV call sets generated for all tools together with accompanying custo-
mised IGV visualisations were distributed to clinical experts in each ERN for
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diagnostic interpretation. Some annotations, such as that of the ENCODE
blacklist for high-signal regions, were used to quickly discard overlapping
CNVs by all ERNs, whereas other information, such as evidence of con-
sanguinity, provided further support that homozygous deletions were likely
to be relevant in affected cases. For the interpretation of heterozygous
deletions, pLI scores from GnomAD™ and haploinsufficiency gene lists
from the DDD project™, aided interpretation. Each ERN prioritised calls for
further investigation based on their expert knowledge of underlying disease
mechanisms in their respective patients. The full workflow is illustrated in
Fig. 6. On average the clinical experts spent 5 min on interpretation per
CNV with less than two CNVs of interest on average per sample. Many
CNV calls could be rapidly discarded based upon a lack of match between
the gene potentially affected and the phenotype of the affected individual,
and/or segregation patterns within the family. Others were rejected when
visual inspection of the IGV tracks indicated that they were likely false-
positive calls, and thus unlikely to be bona fide biological events. Where
deemed necessary and when feasible, CNVs believed to be diagnostically
relevant were validated at local centres using orthologous approaches. The

final decision as to whether a CNV was determined to be pathogenic or not
was taken by the respective clinical experts from the ERN (see below for
further details).

The filtering strategy of ERN EURO-NMD
The filtering strategy undertaken by EURO-NMD was determined per
analysis (see the section “Call filtering and visualisation” above). In general, a
balance had to be upheld whereby clinical researchers would interpret as
many CNVs as possible while maintaining a feasible interpretation load.
Thus the following analyses were shared directly given the relative number
of CNVs to be analysed: homozygous deletions, high copy number dupli-
cations, gonosomal CNVs, and potential compound heterozygote second
hits, whereas heterozygous CNV's were split between CNV's of copy number
one (CN1, ie. deletions) and those of copy number three (CN3 i.e.
duplications).

For CN1, CNV:s for genes with DDD Haploinsuffiency scores > 90 or a
GnomAD pLi < 0.1 were discarded, as these indicate that the gene is likely
tolerant of heterozygous deletions. For both CN1and CN3, CNVs identified
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through ClinCNV with a log likelihood <30 were discarded, as these
are likely false positives. CNVs identified in genes only known to have
recessive inheritance patterns were discarded, as were CNVs reported in
Conrad et al.*". For long CNVs, CNVs found in the Encode blacklist were
discarded. Following these filtering steps, experts from the submitting
groups applied a phenotype-first approach. If the phenotype could poten-
tially match with the gene affected by the CNV call, IGV tracks were checked
to evaluate the likelihood of the called CNV being a true CNV.

The filtering strategy of ERN GENTURIS

Due to the small size of the ERN GENTURIS cohort, and the short gene list,
only limited further filtering of calls was necessary. No additional filters were
applied to call sets from Conifer. In the case of heterozygote deletions and
duplications, specific filtering criteria were applied separately for ClinCNV
and ExomeDepth. For ClinCNV, we first interpreted all events identified by
more than one tool, independent of the ClinCNV log likelihood value. After
this, we proceeded to analyse all events called only by ClinCNV with a log
likelihood of at least 20. For ExomeDepth, we first interpreted all events
called by more than one tool, independently of the Bayes factor (BF), and
subsequently considered events called only by ExomeDepth with a BF of at
least 15. For long CNVs, we first discarded all those events found in the
encode blacklist and analysed the rest. For all datasets, following IGV

visualisation, only CNVs observed to be rare in control populations were
considered for further interpretation.

The filtering strategy of ERN ITHACA

For ERN ITHACA, as a first step, we discarded variants that were
annotated to have low QC, had been previously annotated as benign,
or occurred in regions on the Encode Blacklist, as provided by the
AnnotSV annotation. Additionally, to reduce the proportion of false
positives, we discarded deletions shorter than 10 kb and duplications
shorter than 20kb in length, with the exception of homozygous
deletion calls and variants in parent-offspring trios identified as being
de novo by ClinCNV. Following this, a visual inspection of each of the
remaining CNV calls in IGV images was undertaken to assess tech-
nical validity, using reads and coverage supporting the call and B-allele
frequency. Based on this visual assessment, apparently, real biological
CNVs were defined. For detailed clinical interpretation, prioritisation
was subsequently guided by genes present on the ERN ITHACA gene
list with a disease-association validity score 23, see Laurie et al.”,
consistent with the expected mode of inheritance. Of note, CNVs
2200 kb were also investigated regardless of the presence or absence of
a gene on the ERN ITHACA gene list, given the prior knowledge of
large CNVs being involved in ITHACA-associated phenotypes. All
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CNVs passing the above criteria were returned to the submitting
groups from ERN-ITHACA, for diagnostic interpretation based on
the clinical relevance to the phenotype observed in the affected
individual.

The filtering strategy of ERN RND

The filtering strategy of ERN RND was predominantly based on tool-
specific metrics. In general, the goal was to exclude calls with a high like-
lihood of being false positives. For CinCNV, we discarded all calls with alog
likelihood <30 and fist prioritised calls with a log likelihood > 200. As
Conifer provides no metrics for filtering, all Conifer calls were analysed. For
ExomeDepth, we discarded all calls affecting less than three targets and
those with a Bayes factor <30, unless there was an overlapping CNV
identified by one of the other tools. Following these filtering steps, the
clinical researchers who submitted the case applied a phenotype-first
approach. If the phenotype could potentially match that of the called CNV,
IGV tracks were checked visually to evaluate the likelihood that the called
CNV was bona fide.

Data availability

All raw and processed data files are deposited at the EGA (Datasets
EGADO00001009767, EGADO00001009768, EGADO00001009769, and
EGAD00001009770, under Solve-RD study EGAS00001003851) and can be
made available upon approval by the Data Access Committee
(EGAC00001001319). The family (FAM) and participant (P) identifiers
used in this manuscript are pseudonymized and known only to the
researchers involved In Solve-RD.

Code availability

All the software tools used in this paper are open-source and freely available
online at https://github.com/imgag/ClinCNV (CHinCNV 1.16.6), https://
github.com/vplagnol/ExomeDepth (ExomeDepth 1.1.15), https://conifer.
sourceforge.net/ (CoNIFER 0.2.2), https://github.com/Igmgeo/AnnotSV
(AnnotSV v.3.0.7). Genome-Phenome Analysis Platform used for the
metadata collection is available on https://platform.rd-connect.eu/.
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