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A cross-species foundation model for single cells
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Foundation models in transcriptomics have gained attention
due to their ability to generalize across tasks with limited
labeled data. GeneCompass builds upon these models by
incorporating prior biological knowledge and datasets from
both human and mouse cells, enhancing its capacity for cross-
species analysis and advancing the field of single-cell
transcriptomics.

Foundation models like those in ChatGPT' have revolutionized
various fields. Based on transformer architectures and pre-trained
on vast unlabeled datasets, they require extensive data to
comprehend context and structure effectively. These models can
tackle specific problems with little to no labeled data through
zero-shot learning or fine-tuning. This is particularly relevant in
biomedical research, where high-quality labeled datasets are
scarce. Large language models have been quickly adopted due to
their easily demonstrable performance on intuitive tasks, such as
language understanding and standardized tests. However, trans-
lating this success to molecular biology involves adapting models
to molecular data and establishing benchmarks demonstrating
that these models understand cell biology and can predict cellular
behavior.

To address this challenge, several approaches adapt these
models to cells, leveraging the increasing availability of large-scale
single-cell transcriptome data.?® In this context, genes and their
expression levels are analogous to words, and each cell represents
a sentence. Implementing this analogy in a concrete model raises
questions: How can we efficiently encode transcriptome informa-
tion? Which model architectures are optimal? How do we define
and measure “best” performance? What roles do training data size
and other factors play in model effectiveness?

In a recent study in Cell Research, Yang et al.* advanced this field
by proposing GeneCompass, a transformer-based foundation
model trained on more than 100 million human and mouse cells
— the largest single-cell corpus to date. Unlike previous models
that only considered gene ranks or bins, GeneCompass quantita-
tively encodes absolute gene expression values and integrates
prior biological knowledge, including gene regulatory networks
(GRNs), promoter information, gene families, and co-expression
data (Fig. 1). Through ablation studies on various downstream
tasks, they disentangle the effects of input data (like prior
information and corpus size) and model architecture. By evaluat-
ing several downstream tasks assessed by other models, they
push toward a unified evaluation benchmark for objective
assessment.

The authors applied the embeddings learned during pre-
training to tasks such as cell type annotation, perturbation
prediction, dosage-sensitive gene prediction, and GRN inference.
By comparing various models, including GeneCompass variants, to
known labels, they demonstrate the benefits of incorporating
prior knowledge and large-scale pre-training. For example, models
with prior knowledge outperform those without. To isolate model
architecture’s impact from pre-training data, they retrained
competing models on the same dataset, revealing that Gene-
Compass consistently outperforms them across tasks.

Scaling laws in foundation models suggest that pre-training on
larger datasets can significantly boost performance. The authors
demonstrate these laws across various downstream tasks,
although room for improvement remains. For instance, in cell
type annotation, accuracy plateaus indicate limits of the pre-
training corpus. In tasks such as drug response, gene expression
profiling, and dosage-sensitive gene prediction, performance
increases substantially with larger pre-training data. In the latter,
GeneCompass consistently outperforms Geneformer® but plateaus
at an AUC of 0.95, highlighting its architectural advantage.

In cell type annotation, GeneCompass outperforms other
foundation models trained on the same data for species-specific
datasets but does not consistently surpass a dedicated model in
cross-species  annotation, indicating a need for further
development.

For GRN inference, GeneCompass leverages the relationships
captured in its gene embeddings. By measuring the similarity
between gene embeddings and applying a threshold to
determine significant interactions, they constructed a gene-gene
relationship network. This approach outperforms other foundation
models and a state-of-the-art method. To validate their findings
more objectively, the authors performed in-silico gene deletions
and examined the predicted changes in other genes, focusing on
known direct targets.

To assess drug response prediction, the embeddings were
integrated with the Compositional Perturbation Autoencoder
(CPA)° framework to predict gene expression changes. GeneCom-
pass achieved scores comparable to Geneformer, indicating that
prior knowledge and a larger cross-species training corpus do not
enhance performance in this task. Similar observations occur
when using DeepCE® for predicting drug-induced gene expression
changes. Finally, fine-tuning GeneCompass for predicting dosage-
sensitive genes yielded superior performance compared to
Geneformer and models without pre-training.
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Fig. 1 Overview of transcriptomic foundation models. GeneCompass is pre-trained on vast unlabeled datasets to effectively comprehend
context and structure and then applied to specific problems with little to no labeled data through zero-shot learning or fine-tuning.

For predicting the effect of gene perturbations, the embeddings
are integrated into GEARS,” an advanced perturbation prediction
tool. GeneCompass embeddings improved predictions compared
to default GEARS embeddings. However, this task remains
challenging for deep learning models; a recent study shows that
even simple linear models can outperform foundation models.?

Finally, cell fate prediction is evaluated by in-silico gene
modifications to drive cells toward a target state. The authors
apply this to human embryonic stem cells (ESCs) differentiating
into gonadal lineage cells, identifying five transcription factors
(TFs), three of which are known to play roles in mouse gonadal
development in vivo. Indeed, human ESCs overexpressing NR5A1
and GATA4 exhibit characteristics of differentiated gonadal cells.
This validates the practical applicability of their approach.

While foundation models are often evaluated using similar
downstream tasks, aiding in direct comparisons, many of these
metrics primarily serve as proof of concept. They often lack
validation in practical applications, revealing a gap between
theoretical performance and real-world utility. For instance, the
GRN task shows promise, but to maximize its benefit, more
extensive validation is needed, such as testing and adjusting to
additional TFs. Moreover, a general issue with GRNs is the absence
of a definitive ground truth. Other tasks like perturbation
prediction remain challenging, and foundation models have only
partially improved them so far. Future community efforts should
focus on establishing meaningful and comparable benchmarks to
convincingly demonstrate the performance and utility of founda-
tion models.

In conclusion, GeneCompass represents a significant advance-
ment in foundation models for single-cell transcriptomics.
Importantly, it demonstrates that the model follows scaling laws
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in some downstream tasks, suggesting that adding more data to
the training corpus could improve performance. However, merely
increasing the pre-training corpus is insufficient; the new data
should offer greater diversity across tissues, developmental stages,
diseases, and more to be beneficial. Ultimately, developing a
universal foundation model — or “virtual cell”® — that integrates
transcriptomic, epigenetic, genomic, proteomic, metabolomic, and
imaging data could revolutionize our understanding of biological
processes. Such a comprehensive model would enable the
exploration of unknown biology and accelerate drug and
biomarker discovery. While it is still unclear how and to what
extent this is possible, GeneCompass is a step forward.
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