
communicationsmedicine Article

https://doi.org/10.1038/s43856-024-00643-3

High-resolution modeling and projection
of heat-related mortality in Germany
under climate change

Check for updates

Junyu Wang 1 , Nikolaos Nikolaou 2, Matthias an der Heiden 3 & Christopher Irrgang 1

Abstract

Background Heat has become a leading cause of preventable deaths during summer.
Understanding the link between high temperatures and excess mortality is crucial for
designing effective prevention and adaptation plans. Yet, data analyses are challenging due
to often fragmented data archives over different agglomeration levels.
Method Using Germany as a case study, we develop a multi-scale machine learning model
to estimate heat-related mortality with variable temporal and spatial resolution. This
approach allows us to estimate heat-related mortality at different scales, such as regional
heat risk during a specific heatwave, annual and nationwide heat risk, or future heat risk
under climate change scenarios.
ResultsWeestimate a total of 48,000heat-relateddeaths inGermanyduring the last decade
(2014–2023), and themajority of heat-related deaths occur during specificheatwave events.
Aggregating our results over larger regions, we reach good agreement with previously
published reports from Robert Koch Institute (RKI). In 2023, the heatwave of July 7–14
contributes approximately 1100 cases (28%) to a total of approximately 3900 heat-related
deaths for the whole year. Combining our model with shared socio-economic pathways
(SSPs) of future climate change provides evidence that heat-related mortality in Germany
could further increase by a factor of 2.5 (SSP245) to 9 (SSP370) without adaptation to
extreme heat under static sociodemographic developments assumptions.
Conclusions Our approach is a valuable tool for climate-driven public health strategies,
aiding in the identification of local risks during heatwaves and long-term resilience planning.

Human civilization has become the driving force of the Earth’s changing
climate, as anthropogenic greenhouse gas emissions are theprimary causeof
the recent globalwarming1. Since the industrial revolution, referenced to the
time period of 1850–1900, the average global surface temperature has risen
by about 1.2 °C2. Europe, for instance, is warming at almost twice the global
rate, with an average temperature increase of around 2.2 °C2.

Rising global temperatures lead to a cascade of global and regional
phenomena and impacts, such as ice sheet loss and sea level rise3, ecosystem
disruption4, and extreme weather events that increase in frequency, duration
and severity5,6. Heatwaves, prolonged time periods of excessive heat over a
given spatio-temporal extent, are one type of extreme events that have been
linked to anthropogenic climate change repeatedly. Over the past decades,

heatwaves have increased globally and regionally7, posing direct threats for
human health8, public health systems9, food security10, work productivity11,
and infrastructure12.Higher temperatures are strongly linked to an increase in
heart- and lung-related health issues, ultimately resulting in higher mortality
rates13. The overall burden of heat-related mortality has risen on all
continents14–17 with particular risks for ageing sub-populations14. In cities and
larger urban agglomerations, the so-called heat island effect can further
amplify ambient temperatures by up to 10°C18, causing additional heat stress
on the human body. In 2022, it was estimated that 60,000 people in Europe
died directly due to high temperature19. In Germany, the unusually high-
temperature summers of 2018–2020 have been estimated to attribute to
almost 20,000 heat-related deaths17.
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Plain Language Summary

Heat is becoming a major cause of
preventable deaths during the summer. We
developed a computer model to estimate
heat-related deaths at specific times and in
different districts. Using this model for Ger-
many, we estimate that over the past decade
(2014–2023), around 48,000 deaths were
heat-related, with most occurring during
heatwaves. For example, a heatwave from
July 7–14, 2023, contributed to 1100 out of
3900 heat-related deaths that year. Our
model alsosuggests that,without adaptation,
heat-related deaths in Germany could
increase remarkably due to climate change.
The insights from our model can help identify
areas at high risk and support long-term
public health planning to reduce the impact of
heatwaves.
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As a consequence of the rising heat-related burden, temperature has
become an essential global monitoring variable to assess current and
future health risks20. Currently, we are on track for 2.5–2.9 °C of global
warming under current climate pledges this century21, which will further
intensify the described climate impacts and, thus, also the burden on our
health systems. Several nations are in the process of shaping and
implementing adaptation and safety plans against extreme heat22.
Although many studies have assessed the impact of heat on mortality,
most either provide risk estimation for large regions or only focus on
cities. Combined risk estimation and projection across different spatial
and temporal scales is currently still missing, making it challenging for
local governments to develop targeted preventive and adaptive plans.
Accurate and high-resolution estimates of the heat-related stress for
public health systems are crucial for such purpose.

The connection between temperature andmortality is often examined
with generalized additive models (GAMs), distributed lag models (DLMs),
and similar statisticalmodels17,19,23, despite their limitations. Inmostmodels,
the effects of temperature on each day are considered independent24.
However, consecutive hot daysmay result in additional heat stress, and such
cumulative effects are not captured by the models. Also, the model cali-
bration depends on both temperature and mortality data, but these data
sources often do not align in terms of their time and location specificity. For
example, temperature data can be available on a daily or even sub-daily basis
with kilometer-scale resolution. In contrast,mortality data is often reported
weekly at state or nation level. This discrepancy in temporal and spatial
resolutionusually leads to the use of aggregated temperature productsover a
larger area as predictors for estimating mortality, which can degrade the
model’s precision. Recently, Ballester et al. studied the impact of temporal
data aggregationon the estimation of the excess death cases and showed that
using weekly temperature as input could result in a 20% underestimation of
heat-related excess mortality25. Additionally, most models overlook the
impact of regional temperature variations,especially heat island amplifica-
tion, which can increase heat-related deaths during heatwaves26.

In this study, we developed a multi-scale machine learning model to
estimate daily heat-related mortality in Germany at the district level. The
term ’multi-scale’ refers to the utilization of data with varying temporal
resolutions, ranging from daily to weekly, and data with different spatial
resolutions, from 1 × 1 km grids to statewide. This multi-scale approach
enables a risk assessment with higher temporal and spatial resolutions
comparing to other models. By analyzing large-scale heat risk, including
annual and nationwide estimates, as well as regional heat risk, such as urban
agglomerations during specific heatwaves, our model provides compre-
hensive insights. Furthermore, we combined our model with climate pro-
jections from different shared socioeconomic pathways27 to explore the
impactof climate changeon theheat-relatedmortality inGermanyup to the
year 2100. This analysis provides a detailed multi-scale heat-related burden
and risk analysis forGermany, serving as a blueprint for other countrieswith
similar data availability.

Withourmodel,wefind that approximately 48,000heat-relateddeaths
have occurred in Germany over the past decade (2014–2023), with most
cases concentrated during specific heatwaves. Our projections indicate that
without adaptation, heat-relatedmortalitycould increaseby a factor of 2.5 to
9 by 2100 due to climate change. These findings highlight the urgent need
for targeted adaptation measures to reduce future heat-related health risks.

Methods
Data sources
Mortality. We acquired all-cause mortality counts from the Federal
Office of Statistics of Germany28,29. We used three statistics as the targets
for our training process: Daily mortality by state and gender; weekly
mortality by state, gender, and broad age groups (0–65, 65–75, 75–85,
85+); as well as weekly mortality data for Germany as a whole, cate-
gorized by gender and detailed age group (0–30, five-year age groups
from 30–35 to 90–95, 95+). Ethics approval was not required for the use
of this data because sufficient anonymization is achieved through

aggregation. The data are aggregated at the district level, ensuring that
individual identities cannot be traced or identified, in compliance with
data protection regulations.

Population. We obtained population data information for each district
(total of 400) as of December 31st annually from the regional database of
Germany (population estimate30). We selected data from the year 2011
onward because the countingmethods changed that year. The population
of each district was categorized by gender and age group (five-year age
groups from 0–5 to 90–95, 95+). We interpolated the population data to
estimate daily population figures.

The projection of demographic changes until 2070 is available from the
GermanFederal StatisticalOffice31. To estimate thedistrict-levelpopulation,
we assumed that the geographical distributionof each agegroup remains the
same as in 2021.

Temperature. We utilized three sources to collect past and present
temperature data for Germany. First, we acquired gridded temperature
data from the Copernicus European Regional ReAnalysis (CERRA),
covering the years 2011 to 202032. The data were used to compute
6-hourly average temperatures for each district in Germany. Second, we
used daily minimum, average, and maximum temperatures at a spatial
resolution of 1 × 1 kilometer provided by Helmholtz Munich33. This
dataset was obtained under a Data Transfer Agreement between our
research institution and Helmholtz Munich, ensuring secure and
authorized access to the data. We noticed some missing values in the
dataset fromHelmholtz Munich and supplemented it with data from the
CERRA dataset while considering the mean difference between the two
datasets.We also noticed the irregularity of themean temperature in year
2013 from Helmholtz Munich, which are much lower than other years.
However, we retained the data as-is for training purposes in this paper,
but excluded it from metric evaluation. Data beyond 2020 was excluded
from training and validation due to the impact of COVID-19 on
mortality.

The above mentioned datasets are available on a yearly basis and are
not suitable for real-time estimation of the heat-related risk. To address this
issue, we utilized temperature station data from theDeutscherWetterdienst
(DWD)34. The station data are available on a daily basis. We gathered
information from537weather stations. These stations have beenmeasuring
the average daily air temperature 2meters above the ground since 2010 and
have continued until at least 2022. The location of the stations is illustrated
in Supplementary Fig. 1. In order to unify the spatial coverage in accordance
with the reanalysis data, we trained an attention model to map the daily
average temperature from the DWD stations to the district-level average
temperature.

Geodata. The geographic information including the boundary and
reference point of each district in Germany was provided by Federal
Agency for Cartography and Geodesy (BKG). The boundary of each
district was used to calculate the temperature in each district. The
reference points were used to initiate the coordinate of each district
during the training of the temperature attention model.

Climate projections. We obtained climate projections from the EC-
Earth3model for three different shared socio-economic pathways (SSPs)
as defined by the Intergovernmental Panel on Climate Change (IPCC):
SSP126, SSP245, and SSP37035. The dataset includes daily mean tem-
peratures spanning from 2015 to 2100, with a spatial resolution of
100 km. The projection data of each scenario is a climate ensemble of 50
members. To map the temperature from the grid to the district level, we
obtained daily average temperature with the ERA5 daily statistics cal-
culator provided by the Copernicus Climate Data Store36 with a grid of
0.5° × 0.5° for training a down-scaling model. We interpolated the ERA5
data to match the grid of the EC-Earth3 model and used the interpolated
values to train a machine learning model for climate downscaling.

https://doi.org/10.1038/s43856-024-00643-3 Article

Communications Medicine |           (2024) 4:206 2

www.nature.com/commsmed


Machine learning model for mortality predictions
Our objective is to predict the number of heat-related excess death cases in
each district for each age group and sex. The estimation of all-cause mor-
tality operates as follows:

Edistrict;age;sexðmortÞ ¼ baselineage;sex × populationdistrict;age;sex × f age;sexðTtÞ:
ð1Þ

Weused temperature data (Tt) of each district at time t as input for our
model to obtain the result fage, sex(Tt). The function f is used to describe the
temperature dependent variability of temperature-related risks. The model
accounted for the lag effects of temperature by using different convolutional
kernel size. By multiplying fage, sex(Tt) with the baseline death rate and
population data, we obtained the final results, comprising daily death cases
for each district, categorized by gender and age groups. These results were
subsequently aggregated and compared to the registered death cases to
calculate the model’s loss, which was used to train the model.

More specifically, we predicted multiplying factors for the baseline
mortality rate using temperature as input. We assumed a uniform baseline
mortality rate for each gender and age group across all districts within
Germany, with the baseline depending solely on the time.Multiplying these
factorswith the baselineprovided thepredicteddailymortality rates for each
district.Unlike conventional statisticalmodels, we did not explicitly account
for seasonal trends, as these were implicitly encapsulated within the tem-
perature variable. Along with the population data for each district, we
predicted the daily death cases for each district according to genders and age
groups. We aggregated the predicted daily death cases to align with the
temporal and spatial scope of the data from the FederalOffice of Statistics of
Germany. We employed the Poisson loss function to calculate the loss
between the aggregated prediction and the registered death cases and utilize
this loss to train our model. If correction factors were applied for different
days of the week, the correction was performed before aggregating the
predicted death cases.

Throughout our analysis, we consistently partitioned the data into
training and validation sets, maintaining an 80:20 ratio with data from 2011
to 2018 used as training data and data from 2019–2020 as validation data.
We evaluated two distinct network architectures to fulfill our research
objectives.

Linear model. In the linear model, we employed a fully connected net-
work with ReLU (rectified linear unit) as the activation function. To
investigate the temperature-lag-mortality relationship, we incorporated a
1-dimensional convolutional layer with kernel sizelas the initial layer
within the neural network architecture to capture the lag effect of the
temperature on the mortality.

Exponential model. The exponential model employed a shallow net-
work to extend the statistical model and permitted the summation of
exponential terms, a feature absent in GAMs and DLMs. The structural
principle of the network can be described by the following function:

f ðTÞ ¼ g exp g1ðTÞ
��

; . . . ; expðgdðTÞÞ; T ¼ ½T0;T1; . . . ;Tl�: ð2Þ

Here, T is the input temperature vector, l represents the number of lag
days under consideration, and d denotes the network’s hidden dimension.
The function g, g1, ⋯ , gd embodies the affine transformations executed
by the network. The scaling factorwithin the function g is non-negative. The
resulting output, denoted as f, is the multiplying factor of the baseline and
is then used to calculate the predicted death cases for each district, classified
by gender and age group.

The performance of a single trained model depends strongly on the
initial value. There can be significant differences amongmodels trainedwith
different initial values. Therefore, we trained multiple instances of the
temperature-mortalitymodels andused the averageoutputof the ensembles
as the final result to reduce prediction variance.

Machine learningmodel for district level temperature estimation
We used an attention-like model to interpolate the data from the DWD
stations or climate projections. After this interpolation step, we obtained the
data that serves as the input for our temperature-mortality model. In the
attention-like model, each district was assigned a trainable geographical
position Xi = (loni, lati), where i identifies different districts. Similarly, a
geographical position Yj = (lonj, latj) was assigned to each DWD station or
grid point in the climate projections according to their location. The daily
average temperature for a district, denoted as Ti, was calculated as follows

Ti ¼ bi þ
X

j

wijTj; wherewij ¼
e�αidðXi ;YjÞ

P
ke

�αidðXi;YkÞ : ð3Þ

Here, bi is the trainable bias, Tj is the temperature at the corresponding
DWD station or grid point in climate projections, wij is the attention of
district i on station or point j, and d calculate the distance betweenXi andYj,
and αi is a trainable district specific scaling factor.

The temperatures acquired this way capture the local weather exactly
(RMSE compared to the Helmholtz Munich dataset, 0.23 °C for training
dataset, 0.25 °C for validation dataset) and include the impact of the heat
island effect implicitly. The district level temperatures can then be used as
input for our model to provide accurate mortality estimation.

Statistics and Reproducibility
To assess the stability of themachine learningmodels, multiple instances of
each setupwere trainedwith different random initial values. The number of
instances for eachmodel setup is listed in the corresponding Supplementary
Tables 2–7. Performance was characterized using mean square errors and
coefficients of determination (R2-values). For the final setup, 20 instances
were trained, and the average of these 20 instances is reported as the final
result.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Past and present heat-related mortality in Germany
Figure 1 shows the relationship between the aggregated number of warm
days (>20 °C) in each district and the estimated heat-related annual mor-
tality risk for the past six years (2018–2023). We used a temperature cap
of 20 °C as a constraint of baseline mortality in the absence of heatwaves to
be consistent with previous publication from RKI17. (The impact of the cap
temperature is presented in Supplementary Fig. 2). The differences between
the estimations with original and capped temperatures represent the esti-
mated mortality risk caused by high temperatures17. While the year-to-year
spatial extent of past high temperatures shows a complex pattern on the
district level, certain hot-spot regions becomevisible. The areasmost heavily
impacted by the high temperatures include the western region of North
Rhine Westphalia (Ruhr area), Saarland, the northwest of Baden-Würt-
temberg, Berlin, Brandenburg, Saxony. Due to the high spatial resolution of
the temperature data, also the heat island effect becomes evident. This effect
is visually represented by the small red areas (district-free cities and other
large urban agglomeration areas, e.g., Berlin and theRuhr area) on themaps.
The cities had more warm days compared to the surrounding areas,
resulting inmoreheat-relateddeaths. Basedonourmodel estimates, regions
with 45 or more warm days in a year are likely to experience a heat-related
mortality rate of 100 per million population per year or more.

Additional to the annual estimation of heat-related mortality, our
model enables a near real-time (daily) heat-related risk estimation at the
district level. This combination allows further insights into the impact of
individual heatwaves and their contribution to the previously estimated
annual heat-related mortality. As an example, we selected the week of July
7–14, where most of Europe was exposed to extreme heat37. Figure 2
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illustrates the dynamics of estimated mortality risks between July 7 and 14,
with a 5-day heatwave between July 8 and 12. The estimatedmortality risks
in all districts were less than 1 per million people per day on 7 July, one day
before the heatwave. On the first day of the heatwave, 8 July, the estimated
mortality risks increased slightly in the west and southwest of Germany,
where temperatures were also higher. Temperatures increased further on
9 July, with a nation-wide average of 24.5 °C, the peak during the heatwave.
The estimated mortality risks also increased, but did not peak until three
days later, on 12 July, even though the weather cooled down slightly
(21.1 °C) compared to 9 July (24.5 °C) and 11 July (23.9 °C). The heatwave
ended on 12 July, but the elevated mortality risks persisted for another day

(13 July) before fading away on 14 July. We estimated a total of 1100 heat-
related deaths between 7 and 14 July. All federal states, except for Schleswig-
Holstein, Hamburg, Lower Saxony, Bremen and Mecklenburg-
Vorpommern in the north, experienced a mortality risk of over 10 per
million people during the heatwave. Peak values were estimated in
Rhineland-Palatinate with a risk up to 39 deaths per million people. This
analysis indicates a distinct lagged relationship between excess heat and
daily mortality risk that persists beyond the temperature peak for up to two
days, highlighting the need for preventive and adaptivemeasures evenwhen
temperatures start decreasing after the peak of a heatwave. Compared to the
estimated total heat-related mortality in the summer of 2023 (Fig. 1), this
single event contributed approximately 28%.

Scenario-based future heat-related mortality in Germany
The learned exposure-response function in our model allows us to inves-
tigate future heat-related mortality risk under climate change. We applied
ourmodel to process different climate projections, provided through socio-
economic pathways (SSP) as defined by the sixth assessment report of the
Intergovernmental Panel on Climate Change (IPCC, 38). We utilized data
from the sustainability scenario (SSP126, estimated global warming of
1.8 °C until 2100), themiddle of the road scenario (SSP245, estimated global
warming of 2.7 °C until 2100), and the regional rivalry scenario (SSP370,
estimated global warming of 3.6 °C until 2100). In line with the past and
present temperature data used above,we applied an attentionmechanism to
derive daily temperature projections at the district level and used them as
input for the machine learning model (see details in the methods section).
We further assumed that population anddeath rateswould remain constant
to simplify mortality projections.

The SSP-based temperature trajectories and associated heat-related
excess mortality estimate are illustrated in Fig. 3. Excess mortality is
expected to respond non-linearly to the increasing temperatures, as both
average andextreme temperatures (heatwaveoccurrenceand frequency) are
rising, especially in the SSP370 scenario. Over the coming decades until
2050, the excessmortality shows comparable increments, particularly in the
SSP126 and SSP245 scenarios. It is noteworthy that SSP245 assumes current
CO2 emissions until 2050. Between 2050 and 2100, the excess mortality in
SSP126 remains almost constant, while the excess mortality in SSP245 and
SSP370 shows distinct increase. By the last decade of the 21st century,
annual median excess deaths of approximately 3700 (SSP126), 11,600
(SSP245) and 41,000 (SSP370) could be attributable to heat in Germany,
which amount to 40, 140, and 500 permillion people per year, respectively.

As a comparison, we included two non-static demographic scenarios
extending until 2070 to assess the additional demographic impact on the
future projections of heat-related health risks (see Supplementary Fig. 3 and
discussion below).

Accurate prediction of summer mortality
Many studies have shown that there is a minimum mortality temperature,
and the mortality rate increases monotonically for temperatures above and
below this optimum39. Using temperature as the sole input, our model
successfully captures the seasonal trends in mortality (Supplementary
Fig. 4), with highermortality in winter and lowermortality in summer. The
model’s performance varies with different setups; the results are provided in
Supplementary Fig. 5 and Supplementary Tables 2–6, with further discus-
sion in Supplementary Discussion.

Supplementary Table 7 demonstrates that our model had an accurate
estimation of the daily mortality cases in Germany for warmer days
(nationwide mean temperature above 20 °C. Root-mean-square Error
(RMSE): 91.4 for training data, 83.9 for validation data. Coefficient of
determination (R2): 0.7887 for training data, 0.8272 for validationdata.). For
comparison, the theoretical lower bound of the RMSE falls within the range
of 45 to 60 according to the Poisson distribution and the upper bound of the
R2 is around 0.94. However, when considering all days in a year, the pre-
dictions are less accurate (RMSE: 171.1 for trainingdata, 199.6 for validation
data. R2: 0.5961 for training data, 0.4884 for validation data.). The decrease

Fig. 1 | Yearly aggregated number of hot days and heat-related mortality risk
between 2018 and 2023. Numbers in parentheses indicate the estimated annual
heat-related mortality. Red maps: Number of days with a daily average temperature
over 20 ∘C at the district level (2018-2020: Temperature data from Helmholtz
Munich; 2021-2023: Interpolated DWD station data). Grayscale maps: Estimated
yearly heat-related mortality rate per million people at the district level (best model
with day-of-the-week correction, based on 20 ensemble members). Due to COVID-
19, a reliable baseline formortality rates couldn’t be calculated for 2021–2023, so the
baseline mortality from the last week of 2020 was used instead. Our model’s esti-
mated heat-related deaths closely matched those in the RKI reports when data with
similar spatial resolution was used as input (see Supplementary Table 1).
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in performance is attributed to some notable deviations in the early months
of 2015, 2017, and 2018. In those years, severe influenza waves occurred in
Germany40. Another notable deviation occurred at the end of 2020, when
COVID-19 surged worldwide. The registered death cases are higher than
the prediction of the model, because our model only used temperature as
input for mortality prediction and cannot include the impact of transmis-
sion diseases. These results highlight that in summermost excess deaths are
attributed to heat, while in other seasons the mortality can be affected by
additional factors, for example, seasonal influenza.

We compared ourmortality predictionswith the registered death cases
and the predictions in the weekly reports from Robert Koch Institute
(RKI)41. For weeks with an average temperature above 20 °C, our model
demonstrated performance similar to that of the statistical model used in
RKI reports (weekly mortality RMSE from 2011 to 2020, except for 2013:
362.1 for our model, 364.9 for the GAMmodel used in RKI reports, weekly
R2: 0.8997 for ourmodel, 0.8982 for theGAMmodel used inRKI reports, see
Supplementary Fig. 6).

Discussion
We developed a multi-scale machine learning method that integrates
population dynamics modelling with temperature data and mortality sta-
tistics to provide district-level heat-relatedmortality estimates forGermany.

The model addressed the scope and scale mismatch between climate and
mortality data. In comparison to other models, this approach allowed us to
account for daily weather variations at the district level and to demonstrate
the spatial impact of urban heat islands. Overall, we estimated 48,000 heat-
related deaths in Germany during the last decade (2014-2023), of which
most cases can be attributed to individual heatwaves.

In addition to the estimation of past heat-related mortality, our model
enablesnear real-time risk estimation at thedistrict level.Assumingaccurate
documentation of the death date, the example of the heatwave between July
7 and 14 of 2023 clearly illustrates a temporal delay between the onset of a
heatwave and the increase inhealth risk. Evenwhen the heatwave ended, the
elevated risk persisted. The lag effect of the heatwave was limited to 3 days.
Consequently, this approach could be used in combination with weather
forecast systems to assess the heat-related risk in the near-term future.

The contribution of heatwaves to the total heat-related mortality has
not been extensively studied. Xu et al. compared different definitions of
heatwaves in a review paper and showed that defining a heatwave across
large areas is difficult due to the variations in population acclimatization and
adaptation42. Pascal et al. suggested that 6% of days account for 28% of the
heat-related mortality from 2014 to 2022 in France43. In cities in Latin
America, the extreme heat contributed to approximately 60% of the total
heat-related mortality44. In this paper, we did not explicitly define a

Fig. 2 | Daily temperature and heat-related mor-
tality risk dynamics during the heatwave from July
7 to July 14, 2023. The temperature below the date
represents the nationwide average. Numbers in
parentheses indicate the estimated daily heat-related
mortality. Red maps: Daily average temperature at
the district level, interpolated from DWD station
data. Grayscale maps: Estimated daily heat-related
mortality risk per million people at the district level
(best model with day-of-the-week correction, based
on 20 ensemble members). Due to the aforemen-
tioned reasons, the baseline mortality from the last
week of 2020 was used.

Fig. 3 | Temperature projections and estimated heat-related excess mortality in
Germany (2015–2100) under different climate change scenarios. a Projected
annual average temperature from the EC-Earth3 model. b Projected annual heat-
related excessmortality cases (bestmodelwithout day-of-the-week correction, based

on 20 ensemble members). Excess mortality was calculated assuming constant
population and baseline mortality rates as of the end of 2020. The lines indicate the
median, and the shaded areas represent the 10th to 90th percentile range calculated
from the climate ensembles, with 50 members for each scenario.
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heatwave; instead, our model captures heatwave characteristics through
temperature and mortality data. According to our model, the top 10 days
with the highest heat-related deaths each year contributed to 40–90% of the
total heat-related mortality of the corresponding year in Germany (see
Supplementary Table 8). Only 7% of the days are disconnected, which
demonstrates the impact of consecutive hot days, i.e., heatwaves. These
findings also emphasize the importance of focusing heat risk prevention
plans on adapting to heatwaves. Further research is essential to compare the
temporal distribution of heat-relatedmortalitywithin a year across different
countries and to provide valuable insights for the development of effective
heat-health prevention plans.

Climate projections based on the IPCC’s shared socio-economic
pathways indicate that heat-relatedmortality inGermany is likely to further
increase without dedicated heat adaptation measures. In the middle of the
road scenario (SSP245), which is considered most likely based on current
policies, the annual heat-related excess mortality by 2100 could be 2.5 times
higher than today, which would amount to over 10,000 heat-related deaths
on average in a single year. In the higher emission scenario (SSP370), the
median excess mortality in Germany could be 9 times higher than today. In
the sustainability scenarios (SSP126), in which global warming is limited to
below 2 °C, the heat-relatedmortality would be constrained to around 5000
annual losses on average, staying within the present heat-related mortality
dynamics. These estimations did not account for the population develop-
ment, for instance, expected population aging45, which is considered as
another risk amplification factor.We investigated this effect by utilizing two
different non-static demographic projections until the year 2070, simulating
a range of future population aging scenarios that are driven by varying birth
rates, life expectancy, and net migration (Supplementary Fig. 3). Indepen-
dent of the climate scenario, we observe a steadily increasing additional risk
factor until at least 2050 in the range of 40 to 60% compared to the static
population assumption. These results suggest that the expected demo-
graphic changes in the coming decades likely increase the population’s
vulnerability to extreme heat substantially. Previous studies have suggested
excess deaths could range from 4 to 7 times46 or even over 18 times47 higher
than current rates in higher emission scenarios.While our results alignwith
a similar magnitude of increase, the estimated excess death cases differ due
to variations inmethods used to estimate heat-relatedmortality. Our results
highlight that effective safety plans against extreme heat are needed that
consider (1) the general risk due to continued greenhouse gas emissions and
warming and (2) the dynamic variations due to heat wave occurrence at the
regional level.

When compared to the heat risk reports from the RKI, our model
predicted more heat-related deaths. These differences can be explained by
the variations in the temporal and spatial resolution of the data used in the
two models. The RKI reports divided Germany into four regions and used
weekly average temperatures as regressors. The use of weekly temperatures
is expected to underestimate the variability of the daily temperatures and the
impact of the lag effect of heatwaves, thus underestimating the excess death
rate25. Additionally, the aggregation of temperature data over larger areas is
also expected to underestimate the temperature variance across different
districts, particularly the heat island effect. For comparison, we also used the
average temperature of larger areas as inputs for our model, and the esti-
mated heat-relatedmortality of ourmodel reached good agreementwith the
results in the RKI reports (see Supplementary Table 1).

In traditional statistical methods, models typically consist of three
variable components: yearly trend, seasonal variation, and temperature
response. Our model did not include seasonal variation, yet it achieved
similar accuracy in predicting total mortality for hot weeks compared to
traditional methods. These results suggest that temperature is the primary
driving factor for excess mortality in summer. Therefore, using only tem-
perature without an additional seasonal variable is sufficient to model heat-
related mortality.

Previous studies have compared various heat indicators in mortality
estimation. The results of our model also show good accordance with pre-
viousfindings, showing thatmean temperature best explains the variation in

summer mortality, as indicated in48. Furthermore, we found that daily
minimum temperature explains the variation in summer mortality better
than daily maximum temperature (see Supplementary Table 5 for details).
These observations confirm the findings of previous studies, suggesting that
high nighttime temperatures during a heatwave aremore fatal to vulnerable
populations49.

This study has several limitations worth acknowledging. First, the
model assumed a uniform mortality baseline and temperature-mortality
relationship for each age group and gender, regardless of the district. While
our results suggested this assumption is acceptable for modelling the heat-
related death in Germany, applying a single model to larger areas may be
inappropriate. To improve its accuracy, it is necessary to divide the target
area based on socio-economic conditions and climate classifications, and
tune the model accordingly. Second, although the model demonstrated
better accuracy in predictions using mean temperatures at the district level,
derived from a dataset with a 1 × 1 km resolution, obtaining the precise
temperature of every district is challenging. According to the work of
Nikolaou et al., a comparison of the dataset with other resources revealed an
RMSE of 0.90 °C33. These differences can substantially impact the model’s
accuracy. Furthermore, temperatures can vary largely within a district50.
These temperature variations lead to varying heat-related risks within a
district, which are not accounted for in our model. Third, the climate
downscaling model was trained on the ERA5 reanalysis36 but applied to the
climate projection computed with the EC-Earth3 model (see details in the
Methods section). In the scope of this study,wedidnot apply bias correction
due to potential additional processing uncertainties51. Nevertheless, poten-
tial biases in excess death estimation due to the temperature differences
between the twodata sets shouldbe consideredwhen interpreting the shown
results. Fourth, we explored a constant population and base mortality rate
for heat-related projections, along with two other demographic scenarios.
While the results suggested that an aging population in Germany will
increase overall heat-related mortality risk, we did not include scenarios
where improvements in the healthcare system could reduce baseline mor-
tality and, consequently, heat-related mortality risk. Moreover, the trained
parameters in the model represent the current exposure-response curve,
whichwill likely change with adaptation to heat. Predicting such adaptation
changes is very challenging. Nevertheless, our results provide valuable
insights for climate policy decisions, emphasizing the importance of
proactive measures and long-term planning to mitigate future heat-related
health risks effectively.

Many governments and public health authorities are accelerating their
efforts tomitigate the impact of heatwaves on public health systems52,53. Our
model has the potential to assess the effectiveness of such measures. An
effective heat prevention plan should result in a notable reduction in
registered death cases during a heatwave comparing to the estimation of a
model based on historical data. Therefore, we can conclude that such a plan
is effective if the registered deaths consistently remain lower than the pre-
dicted deaths.

Our model has enabled us to conduct in-depth analyses on the impact
of heat on the public health system in Germany. We are able to investigate
the effects of heat on specific age groups to identify those most vulnerable.
However, characterizing the risk for different age groups is beyond the scope
of this paper and will be addressed in future research.

Due to global warming, people are likely to be exposed to extreme heat
more often, and public health systems will experience large burdens during
the heatwaves. Effective heat prevention plans are becoming crucial in light
of this trend. Although ourmodel is trained only on the data fromGermany
in this study, the model could be applied to study heat-related mortality in
other regions. Combined insights can guide national and international
climate-driven health policies to address heatwave impacts in the near and
long-term future.

Data availability
All source materials on population and mortality are publicly available28–31

at the following websites: https://www.destatis.de/and https://www.
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regionalstatistik.de/. The climate data from CERRA, ERA5, and DWD are
also publicly available32,34,36 at https://cds.climate.copernicus.eu/and https://
www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html. High-resolution cli-
mate data is published33 and is available under a Data Transfer Agreement
with Dr. Alexandra Schneider fromHelmholtzMunich. Climate projection
data is publicly available from various providers (e.g., https://aims2.llnl.gov/
search), and the processed data can be provided upon request
from the corresponding author due to size constraints. Geographic
information data is publicly available (e.g., https://github.com/isellsoap/
deutschlandGeoJSON).

One example of the trained parameters of the neural network from 20
ensembles is included in the code as a PyTorch checkpoint file to illustrate
the modeling process. The remaining trained parameters are not provided,
as thedifferent ensembleswereprimarily used toanalyze the variancewithin
the model and are not essential for understanding or reproducing the main
findings. However, they are available upon request from the corresponding
author.

Code availability
The code for the model is publicly available54 at https://doi.org/10.5281/
zenodo.13348002. The interpolation of ERA5 data was performed using the
SciPy package (version 1.11.4) in Python. Themachine learningmodel was
implementedwith thePyTorch (version 2.0.0) andLightning (version 2.0.3)
packages, and itwas trainedonanNVIDIAAmpereA100PCIe 40GBGPU.
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