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Abstract

Understanding the athlete’s movements and the restrictions incurred by protective equip-

ment is crucial for improving the equipment and subsequently, the athlete’s performance.

The task of equipment improvement is especially challenging in sports including advanced

manoeuvres such as ice hockey and requires a holistic approach guiding the researcher’s

attention toward the right variables. The purposes of this study were (a) to quantify the

effects of protective equipment in ice hockey on player’s performance and (b) to identify the

restrictions incurred by it. Twenty male hockey players performed four different drills with

and without protective equipment while their performance was quantified. A neural network

accompanied by layer-wise relevance propagation was applied to the 3D kinematic data to

identify variables and time points that were most relevant for the neural network to distin-

guish between the equipment and no equipment condition, and therefore presumable result

from restrictions incurred by the protective equipment. The study indicated that wearing the

protective equipment, significantly reduced performance. Further, using the 3D kinematics,

an artificial neural network could accurately distinguish between the movements performed

with and without the equipment. The variables contributing the most to distinguishing

between the equipment conditions were related to the upper extremities and movements in

the sagittal plane. The presented methodology consisting of artificial neural networks and

layer-wise relevance propagation contributed to insights without prior knowledge of how and

to which extent joint angles are affected in complex maneuvers in ice hockey in the presence

of protective equipment. It was shown that changes to the equipment should support the

flexion movements of the knee and hip and should allow players to keep their upper extremi-

ties closer to the torso.
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Introduction

Ice hockey is a fast-paced game, requiring a wide variety of movements ranging from sprints

and rapid deceleration and acceleration around tight turns to high-speed collisions with other

players. Hence, ice hockey injury rates are among the highest in competitive sports [1]. Besides

the introduction of several initiatives such as behavioral modifications and changes in rules

[2], the use of protective equipment has been shown to decrease the rates of injuries [3]. On

the other hand, the use of heavy, cumbersome, and restrictive protective equipment inevitably

causes movement limitations and may affect the natural movement patterns of hockey players.

Although protective equipment has been evaluated for injury reduction across various stud-

ies [3–5], there is a lack of literature concentrating on the performance aspect of protective

equipment. Existing research investigating performance in ice hockey has mostly focused on

the skates and the stick. For example, it has been shown that the design of skate blades can

improve the skating speed of players by up to 1.3% [6], and the stiffness of a hockey stick shaft

can significantly influence the puck velocity in wrist shots [7]. Regarding the protective equip-

ment, previous work only focused on the reduction of weight to decrease sprint times and

increase endurance [8]. Besides the added weight, the effects of protective equipment on the

kinematics of movements are currently unknown.

The key technical challenge in understanding the effects of equipment on skating technique

is analyzing these data to identify when and where kinematic differences exist. Conventional

biomechanical analysis methods addressed the problem of high dimensionality data by focus-

ing on single, time-discrete variables that are pre-selected by the researcher, for example, peak

impact force in running [9, 10]. However, finding reliable and representative variables is still

controversial in well-investigated sports such as running [11–13] and it is even more difficult

in sports and movements less understood and investigated, such as ice hockey. Therefore,

researchers are at risk of discarding potentially relevant data while omitting temporal informa-

tion and time dependencies. Further, traditional correlations and statistical hypothesis tests

(e.g., t-tests, ANOVAs) for single points do not extend to curves [12, 14]. In response to these

shortcomings of conventional statistical tools, machine learning techniques have become pop-

ular to help deal with the increasing amount of data in the biomechanical research [15]. Espe-

cially artificial neural networks, ANNs, have been used in biomechanical contexts, for

instance, to identify subject-specific locomotion characteristics [16] or to distinguish between

different activities in badminton [17].

Although artificial neural networks, are successfully applied in biomechanics for classifica-

tion tasks, they introduced another challenge based on their black box characteristic. Due to

the structure of an artificial neural network, it is impossible to understand how the machine

learning algorithm came to its decision [18]. Consequently, artificial neural networks are lim-

ited to the result and provide only limited information about the relationship between the

input data and a particular (classification) result. Thus, the question to be answered in this

study is not whether the movement was performed with equipment or not, but how this deci-

sion was made based on the player’s range of motion.

In this context, multiple procedures and algorithms [19–21] have been proposed to over-

come the black-box problem and to improve the usability of artificial neural networks. These

powerful tools and therefore has raised attention across different disciplines. One of these

methods is the layer-wise relevance propagation, developed by Bach and colleagues [22],

which has been successfully applied to several biomechanical questions such as understanding

the uniqueness of human locomotion in walking [23], and running [24]. The basic concept of

layer-wise relevance propagation (LRP) is based on the assignment of relevance scores to the

different input variables dependent on their contribution to the model’s decision. Input
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variables that strongly influence the model’s decision have higher relevance scores than vari-

ables that have a weak influence on the model’s decision, and therefore lower relevance scores.

Therefore, the implementation of layer-wise relevance propagation in combination with

machine learning techniques can resolve the black-box limitation, and lead the researcher’s

focus toward the most relevant variables [22].

In this study, we utilized artificial neural networks along with layer-wise relevance propaga-

tion methods to investigate the effects of hockey protective equipment on player’s performance

to identify key biomechanical changes. We hypothesized that the protective equipment would

restrict the player’s motion in a way that would be detectable by a neural network. Specifically,

the purposes of this work were to:

1. Train neural network models for a series of movements to distinguish between the presence

of protective equipment and the absence of protective equipment while performing ice

hockey drills based on their joint angles captured by an inertial measurement unit-based

system.

2. Identify the variables and intervals during each of the movements that were most relevant

in distinguishing between the two equipment conditions using layer-wise relevance

propagation.

Methods

Participants

Twenty male ice hockey players (age: 26.4 ± 7.0 years; mass 86.4 ± 6.5 kg; height 183.8 ± 6.5

cm) participated in this study (06. April– 22. June 2022). To ensure comparable effect of the

protective equipment, participation was limited to active male ice hockey players. Therefore,

all participants were active male ice hockey players, including 14 elite players and 6 recrea-

tional players. Written informed consent was collected from all participants and approval for

this research project was obtained from the ethics board of the University of Calgary (Ethics

ID: REB21-1932).

Data collection

The participants completed four different drills to gain information on different complex

maneuvers: A sprint drill, a linear crossover drill, a power turn drill, and a slap shot. These drills

were chosen to represent a variety of movements required in an ice hockey game [25]. For the

sprint drill, the participants skated the long axis of the ice rink as fast as possible. To record the

sprint time, timing lights (Brower TCi Timing System by Brower Timing Systems, Draper,

Utah, USA), were placed 20 m apart. For the linear crossover drill, participants skated the same

distance, while performing the linear crossover movement instead of sprint strides for stroking.

The slap shot was performed from a mark of 5 m from the goal line centered in front of the

goal. The players were instructed to shoot as strongly as possible with their preferred side. A

radar gun (Stalker Sport 2, Stalker sport, Richardson, Texas, USA) was positioned behind the

goal to capture the shooting velocity of the puck. For the power turn drill, the participants

skated back and forth between two face-off dots on the ice. Reaching one mark, players had to

perform a power turn (i.e., sharp turn) around the mark and skate back to the first mark, where

they completed a second power turn in the other direction, creating a figure-eight pattern. The

circuit was repeated three times. Illustrations of the executed drills are displayed in Fig 1.

The drills were performed successively two times per condition in the following order:

power turn, linear crossover, slap shot, and sprint. The participants were advised to take as
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much rest as needed between the drills with a minimum of 30 seconds rest. The two tested

conditions were with protective equipment (Equipment) and without protective equipment

(No Equipment). In the Equipment condition, the players wore shin pads, shoulder pads,

elbow pads, and the jock, while skates, helmet, gloves, and ice hockey stick were worn during

both conditions.

Movement data were collected using the Xsens MVN Awina System (Xsens Technologies

B.V., Enschede, Netherlands), a full-body system comprised of 17 inertial measurement units

that were sampled at 60 Hz. Before testing, the wireless sensors were attached to a t-shirt

accompanying the system or were attached directly to the participants’ bodies using elastic

straps. Additional clothing or equipment was worn over the sensors. In addition, sensors for

the head and the feet were taped to the participants’ helmet and skates, respectively. A calibra-

tion procedure (neutral standing and walking trial) was performed as per the manufacturer’s

recommendation before each of the three conditions.

The integrated sensors of the MVN Awina System capture the movements by recording the

readings of the integrated accelerometer, the gyroscope, and the magnetometer. Using a bio-

mechanical model based on the height and foot length of the participant, kinematics including

the 3D position and linear and angular accelerations of all 23 segments are calculated. Addi-

tionally, the center of mass position and 3D joint angles of 22 joints can be exported from the

system. For easier movement detection (see “movement Extraction” section), we reset the

position of the segments by identifying the right heel as the origin (0,0,0) using the “reprocess”

function of MVN Awinda software (2022.0). The raw joint angle and segment kinematic data

are then exported. The three axes of interest are: the positive x-axis is anterior, the positive y-

axis points to the left, and the positive z-axis is upwards [26].

Fig 1. Illustration of the executed drills: (A) The sprint and the linear crossover were performed while skating down the long side of the rink

with the timing lights positioned 20 m apart. (B) The setup for the slap shot, performed from a 5 m distance in front of the goal and the radar

gun positioned behind the goal, and (C) the basic movement of the power turn, repeated three times on each side.

https://doi.org/10.1371/journal.pone.0312268.g001
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Analysis

Movement extraction. A set of movements were defined and extracted for each of the

drills. The same number of individual movement trials using identical thresholds and sensors

were extracted for all participants. For the sprint, individual strides were defined as the move-

ment occurring between two ice contacts of the same foot. Strides were extracted using the

lowpass filtered (zero-lag fourth-order Butterworth filter, cut-off frequency 5 Hz) velocity of

the foot in the vertical direction to find the ice contact of the skate (Fig 2A). For each trial,

three strides were extracted for each foot, providing six strides per trial. Therefore, in total 24

strides were available for 17 out of the collected 20 participants. One participant (S01) did not

perform the sprint drill correctly, and the sensor data were compromised for two other partici-

pants (S04, S20).

For the linear crossover movement, one crossover was defined as the movement occurring

between two ice contacts of the same foot. The ice contact detection was performed in the

same way as it was performed for the sprint stride, using the lowpass filtered (fourth-order

zero-lag Butterworth filter, cut-off frequency 5 Hz) velocity of the foot in the vertical direction.

For each trial, one crossover movement was extracted for each foot, providing two crossover

movements per trial (Fig 2B). Therefore, in total 8 crossovers were available for 17 out of the

collected 20 participants. One participant (S01) did not perform the sprint drill correctly, and

the sensor data were compromised for one other participant (S20). For one participant (S19)

the needed number of crossover movements could not be extracted.

For the shooting trials, one shot per trial was performed and needed to be extracted. The

shot was defined as the movement occurring between the start of the deflection of the hand

Fig 2. Movement extraction based on the sensor data for (A) the sprint stride, (B) the linear crossover movement, (C) the slap shot, and (D) the power turn.

The shaded areas indicate one extracted movement. For the power turn, the upper plot shows a right turn while the lower plot is showing a left turn.

https://doi.org/10.1371/journal.pone.0312268.g002
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and the point in time when the stick hit the puck. Using the lowpass filtered (fourth-order

zero-lag Butterworth filter, cut-off frequency 4 Hz) angular velocity of one shoulder in the ver-

tical direction, the side of the shot was determined. Depending on the orientation, the respec-

tive angular velocity of the shoulder and the velocity of the hand in the vertical direction were

used to determine the start and end of the shot (Fig 2C). Each participant performed four

shots, which could be extracted for 18 out of the 20 participants. Two participants had cor-

rupted sensor data and were excluded (S03, S20).

The power turn was separated into a sequence of two turns, one right-sided (clockwise) and

one left-sided (counter-clockwise). For isolation of the single turns, the movement was split

every time the lowpass-filtered (fourth-order Butterworth filter, cut-off frequency of 0.5 Hz)

angular velocity of the pelvis in the vertical direction changed its sign (Fig 2D). In total 24

turns were available for 16 out of the collected 20 participants. One participant (S05) did not

finish all the power turns completely so the required number of turns could not be extracted.

Three other participants were not included in the analysis due to impaired sensor data (S01,

S03, S20).

Preprocessing

The 3D joint angles were the variables of interest for evaluating how equipment restricts the

range of motion during ice hockey. For evaluation, the ankle, knee, hip, shoulder, elbow, and

wrist were considered in all three rotational degrees of freedom. The extraction order follows

the convention Z (flexion/extension), X (abduction/adduction), and Y (internal/external rota-

tion) [27]. These conventions differ for some of the joints, e.g., pronation/supination for the

elbow and wrist. One limitation of the MVN Awina system is its accuracy. Due to the limited

accuracy of the system (1-degree root mean square error [26]), joint angles with maximal dif-

ferences between the two conditions smaller than 1 degree were not considered reliable.

Therefore, the wrist joint, ankle abduction/adduction, and knee abduction/adduction were

excluded.

Only the ipsilateral joint angle trajectories were extracted for the sprint drill due to the sym-

metry of the movement. Due to the non-symmetry of the other three drills, the joint angles

from both sides of the body were extracted for further analysis. The extracted trajectories were

time-normalized to 100 time points using spline interpolation. Further, the joint angles were

normalized participant-wise to a range between 1 and -1, which improves the efficiency and

accuracy of the neural network (see section 2.3.3). To preserve the relative dependence in mag-

nitude between the joints, the joint angles were all normalized to a pre-set ratio based on litera-

ture (S1 Table) [28]. Finally, all trajectories for one movement were concatenated into one

single feature vector. For the sprint movement, the feature vector had the dimension of 1 x

1200 (12 trajectories and 100 samples) and for the remaining movements, the dimensions

were 1 x 2400 (24 trajectories and 100 samples).

Neural network

A shallow neural network was designed that consists of one input, one hidden, and one output

layer for each drill. The number of nodes for the input layer was derived from the shape of the

input data (12/24 joint angles, each with 100 time points), and the number of nodes in the out-

put layer corresponded to the number of classifications results (two, i.e., Equipment and No

Equipment). For the hidden layer, twice as many nodes as in the input layer were chosen and

the hyperbolic tangent was used as an activation function. The architecture resulted in neural

networks with 1200, 2400, and 2 nodes when one body side was considered, and neural net-

works with 2400, 4800, and 2 nodes, when both body sides were investigated. This three-layer
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architecture was chosen since it is known that a single hidden layer is sufficient for learning

most functional relationships [29]. Furthermore, this structure has shown good classification

results in classifying running patterns using similar input data [30].

The network was trained on the entire dataset leaving one participant out for each of the

different drills, and the validation during training was performed on randomly selected sub-

sets. The best trade-off between training efficiency and model accuracy was found to be a

mini-batch size of 16 and a maximum epoch size of 100. Due to the reduced amount of data

for the shooting drill, the epoch size for the shooting was 50, while the remaining parameters

were kept the same. The learning rate was set to 0.01.

The network’s performance was determined by classifying one complete dataset of the one

unseen participant that was not used for training. The accuracy per participant p
Accuracy pð Þ ¼ np

Np
� 100 can be calculated using the correctly classified movements n and the

total number of movements N. For the overall evaluation of the neural network, the single

accuracies per participant were averaged for each movement. For example, for the sprint drill,

the neural network was trained 17 times on 16 participants and tested on the remaining partic-

ipant. The achieved testing accuracies were averaged across all 17 trials.

After training and testing the neural network participant-wise, layer-wise relevance propa-

gation [22] was applied to the correctly classified trials to obtain the relevance scores for each

input variable. The relevance scores indicate how relevant each variable was to the model’s pre-

diction. The resulting relevance pattern, therefore, consisted of 1200 and 2400 relevance

scores, depending on the size of the input layer. Since the neighboring data points in the input

signals were time-dependent and represented related information, each relevance pattern was

smoothed to reduce variability in the signal without influencing the original pattern. The filter

weighted the current point with 50% of its relevance and neighboring points with 25% of its

relevance scores and was repeated twice. The weights for smoothing were chosen to sum to 1,

therefore a repetitive application would mimic a Gaussian filter [24]. The participant-wise rele-

vance scores were normalized. Finally, the normalized scores were averaged over all partici-

pants and rescaled to values ranging between zero and one, while values close to zero indicate

the lowest relevance and values close to one highest relevance. All analysis was performed

using MATLAB in the R2021b version (The MathWorks Inc., Natick, Massachusetts, USA)

and the layer-wise relevance propagation toolbox by Bach and colleagues [22] was used for the

implementation of the neural networks and all analyses based on layer-wise relevance propaga-

tion. The visualization and related processing steps of the results are based on code published

by Hoitz et al. [24]. The supporting information of this work (S1 File) contains the data files

required to replicate the results presented in this work.

Statistical methods

The condition (Equipment vs. No Equipment) was considered as the independent variable

and performance variables (sprint time, linear crossover time, slap shot puck velocity) were set

for statistical analysis. For each participant, the times and velocities were averaged per drill

and condition. Shapiro-Wilk test of normality was performed on the data and then, a paired

two-sample Student’s t-Test (α = 0.05) was performed on the performance data.

Results

Performance

The performance measures were improved in the condition without equipment compared to

the equipment condition. On average, the participants were able to perform the sprint 1.64%
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faster without equipment compared to wearing the equipment (p = 0.0037, mean Equipment

2.72 s, mean No equipment 2.68 s). Two of the participants decreased their performance while

15 participants increased their performance without equipment (Fig 3A).

For the linear crossover, the participants performed the movement 2.65% faster on average

in the no equipment condition (p = 0.0096, mean Equipment 3.03 s, mean No Equipment

2.94 s). Two participants increased the time they needed to perform the linear crossover, one

participant needed the same amount of time, and 14 participants decreased the time needed

(Fig 3B).

For the slap shot, the velocity of the puck decreased by 1.67% on average when the shooting

was performed with equipment compared to the condition without equipment (p = 0.0274,

mean Equipment 122.1 m/s, mean No Equipment 124.3 m/s). The velocity of the puck without

equipment decreased for four participants, stayed the same for one participant, and increased

for 14 participants (Fig 3C).

Neural network

For each drill, the neural network was trained according to the number of participants, leaving

one participant out. The accuracies across all participants were averaged for the classification

results listed in Table 1.

Fig 3. Boxplots of the performance time in seconds for (A) sprint and (B) linear crossover and the puck velocity in kilometers per hour for the slap shot for

the two conditions: The central red line indicates the median and the bottom and top line indicate the 25th and 75th percentile, respectively. The connecting

lines display the performance of the individual participants (* = p� 0.05, ** = p� 0.01).

https://doi.org/10.1371/journal.pone.0312268.g003

Table 1. Number of participants, number of samples, and best-achieved accuracy for each of the four drills.

Drill Number of Participant Number of samples Best Accuracy

Per participant In total

Sprint 17 24 408 99.26%

Linear-Crossover 17 8 136 97.79%

Slap Shot 18 4 72 100%

Power Turn 16 24 384 97.92%

https://doi.org/10.1371/journal.pone.0312268.t001
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Layer-wise relevance propagation

Sprint. The average relevance scores that were derived from the neural network model

based on the correctly classified steps are depicted in Fig 4. Notable high relevance (Fig 4A)

included knee flexion/extension at 60–75%, hip flexion/ extension at 0–10%, shoulder flexion/

extension at 0–10%, and shoulder abduction/adduction at 40–45%.

The variables recorded at each percent of the stride cycle were relevant for the classification of

the equipment condition (Fig 4B). However, in the early swing phase after the skate-off (60–80%),

a peak of high contributions was visible. Another peak of high relevance was located around the

ice contact, starting at the end of the swing cycle (95–100%) and after the ice contact (0–10%).

The variables of trajectories that were most relevant were flexion/extension movements in

the knee, hip, and shoulder. The joint trajectories related to the upper extremities (shoulder

and elbow) showed a higher contribution to the classification result than trajectories related to

the lower extremities. The lowest contributions were visible in all planes of the ankle and the

knee and hip abduction/adduction and internal/external rotation (Fig 4C).

Linear crossover. The average relevance scores that were derived from the neural network

model based on the correctly classified crossovers are depicted in Fig 5. Notable high relevance

(Fig 5A) of the following leg included shoulder flexion/extension at 0–20% and shoulder inter-

nal/external rotation at 30–40%. For the crossing leg, notable high relevance included shoulder

abduction/adduction at 95–100%, shoulder internal/external rotation at 85–95%, elbow flex-

ion/extension at 70–85%, and elbow pronation/supination at 0–10%. In general, the clusters

were associated with the body side in which the foot was in contact with the ice.

Fig 4. Averaged relevance scores per variable (A) over one sprint stride cycle and contributions within a step cycle (B) and joint angle trajectories (C). In the

center (A), the relevance scores per joint angle over one sprint stride cycle are depicted by the shades of the color. The stride cycle starts with the ice contact

of the foot and can be divided into the gliding phase and the swing phase indicated below the plot. Lighter colors indicate lower relevance and darker colors

indicate higher relevance. The joint angles are listed on the left-hand side of the heatmap. Each row corresponds to one rotational degree of freedom. The

top part of the figure (B) shows the vertical summation of the heatmap, highlighting the contribution of each percent of the stride cycle to the success of the

model. The right side of the figure (C) depicts the horizontal summation of the heatmap, highlighting the contribution of each joint angle trajectory.

https://doi.org/10.1371/journal.pone.0312268.g004

PLOS ONE Identification of protective equipment restrictions in ice hockey

PLOS ONE | https://doi.org/10.1371/journal.pone.0312268 October 15, 2024 9 / 18

https://doi.org/10.1371/journal.pone.0312268.g004
https://doi.org/10.1371/journal.pone.0312268


The variables recorded at each percent of the linear crossover movement were relevant for

the classification of the equipment condition and the relevance is roughly constant over the

movement cycle (Fig 5B). However, at the beginning of the crossover movement (0–10%) and

right before the touchdown (90–100%), a peak of high contributions was visible.

The variables of joint angle trajectories that were most relevant were related to the upper

extremities (shoulder and elbow), with a slightly higher emphasis on the following leg. The rel-

evance distributions in the lower extremities were almost symmetrical, while the flexion/

extension movements in the knee and hip showed the highest contributions to the classifica-

tion result. The lowest contributions were visible in all planes of the ankle, internal/external

rotation of the knee and hip abduction/adduction, and internal/external rotation (Fig 5C).

Slap shot. The average relevance scores that were derived from the neural network model

based on the correctly classified shots are depicted in Fig 6. Notable high relevance (Fig 6A)

included elbow pronation/ supination at 20–25%, 80–90%, and 94–100%, and 80–90% shoul-

der flexion/extension.

The variables recorded at each percent of the slap shot were relevant for the classification of

the equipment condition. (Fig 6B). Especially during the loading phase during which the arm

is deflected to gain momentum, the relevance scores were almost constant with a slight ten-

dency to decrease (0–55%). Starting around 55% the relevance scores increased and peaks

were visible. Peaks were located at 73%, 84%, and 97%, directly before hitting the puck and

completing the shot.

Fig 5. Averaged relevance scores per variable (A) over one linear crossover movement and contributions within a crossover cycle (B) and joint angle

trajectories (C). In the center (A), the relevance scores per joint angle over one linear crossover movement are depicted by the shades of the color. The

crossover movement starts with the ice contact of one foot and can be divided into the crossing step (contralateral foot) and the following step (ipsilateral side)

indicated below the plot. Another division/naming would include the gliding phase and swing phase of the non-crossing foot. Lighter colors indicate lower

relevance and darker colors indicate higher relevance. The joint angles are listed on the left-hand side of the heatmap. Each row corresponds to one rotational

degree of freedom. The top part of the figure (B) shows the vertical summation of the heatmap, highlighting the contribution of each percent of the linear

crossover movement to the success of the model. The right side of the figure (C) depicts the horizontal summation of the heatmap, highlighting the

contribution of each joint angle trajectory.

https://doi.org/10.1371/journal.pone.0312268.g005
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The most relevant joint trajectory was the pronation/supination movement of the elbow of

the dominant side performing the shot. The highest relevance amongst the variables of the

lower extremities was visible in the knee flexion/extension movement on both sides. The

shoulder flexion/extension and elbow flexion/extension of the dominant side showed higher

relevance in the upper extremities on the dominant side, while all variables related to the

upper extremities showed similar relevance on the non-dominant side. The lowest relevance

was visible in joint angles related to the ankle and hop and internal/external rotation move-

ments of the knee. In general, the relevance scores are higher in the upper extremities. While

the relevance scores of the lower extremities were symmetric on both sides, the relevance dis-

tributions of the upper extremities were different on both sides with a higher emphasis on the

dominant arm (Fig 6C).

Power turn. The average relevance scores that were derived from the neural network

model based on the correctly classified turns are depicted in Fig 7. Notable high-relevance

clusters (Fig 7A) include flexion/extension around 45–55% of the inside-facing shoulder.

Other clusters at this shoulder were located at 5–10% and 45–55% abduction/ adduction. The

contralateral shoulder (facing outside) showed higher contribution at 0–10% and 45–50% flex-

ion/extension.

The variables recorded at each percent of the stride cycle were relevant for the classification

of the equipment condition (Fig 7B). However, a peak of higher contribution was visible at the

beginning (0–10%) and in the middle of the movement (45–55%). Starting at 70% of the move-

ment, the relevance increases in waveforms until reaching a peak at 98%.

Fig 6. Averaged relevance scores per variable (A) over one slap shot movement and contributions within a slap shot cycle (B) and joint angle trajectories (C).

In the center (A), the relevance scores per joint angle over one slap shot movement are depicted by the shades of the color The shooting movement starts with

the initial movement of the hand and ends with striking the puck and can be divided into the loading phase (gain momentum) and the shooting phase. Lighter

colors indicate lower relevance and darker colors indicate higher relevance. The joint angles are listed on the left-hand side of the heatmap. Each row

corresponds to one rotational degree of freedom. The top part of the figure (B) shows the vertical summation of the heatmap, highlighting the contribution of

each percent of the slap shot to the success of the model. The right side of the figure (C) depicts the horizontal summation of the heatmap, highlighting the

contribution of each joint angle trajectory.

https://doi.org/10.1371/journal.pone.0312268.g006

PLOS ONE Identification of protective equipment restrictions in ice hockey

PLOS ONE | https://doi.org/10.1371/journal.pone.0312268 October 15, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0312268.g006
https://doi.org/10.1371/journal.pone.0312268


The variables of trajectories that were most relevant were joint trajectories related to the

upper extremities (shoulder and elbow). In the lower extremities, flexion/extension in the knee

and hip showed higher relevance, while the lowest contributions were visible in the ankle and

abduction/ adduction and internal/external rotation movements of the hip and knee. In gen-

eral, the relevance scores were higher in the upper extremities. The relevance scores of the

inside-facing and outside-facing joint angles showed similar distributions, with a generally

higher emphasis on the inside-facing side (Fig 7C).

Discussion

The purpose of this study was to explore the effect of ice hockey protective equipment on play-

er’s performance and the possibility of detecting kinematic restrictions by an artificial neural

network. Further, this study aimed to identify the variables and intervals during each of the

movements that were most relevant in distinguishing between the two equipment conditions

using layer-wise relevance propagation. The performance analysis showed that performance

measures decreased significantly when the drills were performed with protective equipment.

This outcome confirms previous findings that the use of protective equipment influences per-

formance [8, 31, 32] which can partly be due to the added weight of the equipment and partly

due to the restrictions incurred to the kinematics.

We demonstrated that an artificial neural network could accurately distinguish between the

movements performed with and without equipment based on the changes in the kinematics.

This suggests that there are distinct differences in the kinematics of the movement and the

design of new protective equipment should include modifications to support more neutral

Fig 7. Averaged relevance scores per variable (A) over one power turn movement and contributions within a power turn cycle (B) and joint angle trajectories

(C). In the center (A), the relevance scores per joint angle over one power turn movement are depicted by the shades of the color. Lighter colors indicate lower

relevance and darker colors indicate higher relevance. The joint angles are listed on the left-hand side of the heatmap. Each row corresponds to one rotational

degree of freedom. The top part of the figure (B) shows the vertical summation of the heatmap, highlighting the contribution of each percent of the power turn

to the success of the model. The right side of the figure (C) depicts the horizontal summation of the heatmap, highlighting the contribution of each joint angle

trajectory.

https://doi.org/10.1371/journal.pone.0312268.g007

PLOS ONE Identification of protective equipment restrictions in ice hockey

PLOS ONE | https://doi.org/10.1371/journal.pone.0312268 October 15, 2024 12 / 18

https://doi.org/10.1371/journal.pone.0312268.g007
https://doi.org/10.1371/journal.pone.0312268


movements. However, only distinguishing the two conditions is not enough to make informed

modifications on the protective equipment; Instead, knowing the kinematic variables and

intervals that were most discriminative between the two conditions might lead to targeted

changes in the protective equipment. Therefore, layer-wise relevance propagation was applied

to highlight the relevance of each variable for the successful classification of the equipment

conditions. The results showed (e.g., Fig 4) that not all variables contributed equally to the clas-

sification results, with some variables being more discriminative than others.

Comparing the most relevant variables of all four movements, similar variables showed

high relevance scores across all four movements. The joints with the highest overall relevance

scores were the shoulder joint in all three planes of movement (sagittal, frontal, and transverse)

and the elbow joint in the investigated planes of movement (sagittal and frontal). Regarding

the lower extremities, the sagittal plane (flexion/ extension) movements showed the highest

relevance for the success of the model. The movements in other planes and movements related

to the ankle showed low contributions across all four movements. An overview of the joints

and planes of movement with the highest scores is given in Fig 8.

Comparing the relevance scores to the performed movements, the results were intuitive.

For example, the finding, that the movements in the lower extremities (knee and hip) in the

sagittal plane were more relevant than in the other two planes of movement. Knowing that the

greatest range of motion is performed in the sagittal plane and therefore the most power is pro-

duced in this plane, the relevance scores fell in line with these expectations. Nevertheless, the

relevance scores could provide a more detailed insight while depicting the relations between

the different variables for deepening the understanding of movements performed under the

two conditions.

By themselves, the relevance scores highlight which variables contributed the most to the

classification result without answering the question of which consequences these findings have

on the design of the protective equipment. Therefore, two assumptions were made: First, the

assumption was made that the differences in performance result from the differences between

the conditions. Further, it was assumed that the variables that were relevant to the neural net-

work were the same variables that were relevant to the performance analysis. While

Fig 8. The joints and planes of movement with the highest relevance across all four movements. The different colored

circles around the joints indicate the joint rotations that were most relevant across all four movements. Green circles are

related to rotations along the medial-lateral axis (in the sagittal plane), blue circles are related to rotations along the anterior-

posterior axis (in the frontal plane), and red circles to rotations along the longitudinal axis (in the horizontal plane).

https://doi.org/10.1371/journal.pone.0312268.g008
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performance was enhanced without equipment, the aforementioned assumption would need

further evaluation.

Based on the assumptions, the relevance scores were combined with the corresponding

joint trajectories, to link the relevant variables and the given performance results to make state-

ments on how to improve the performance. As shown in S1 Fig, which depicts the shoulder

flexion/extension movement of the sprint drill overlayed with the relevance scores, the rela-

tions between relevance scores and underlying joint angles could be made. In the mentioned

example a higher extension of the shoulder joint in the no equipment condition in comparison

to the equipment was visible. Furthermore, it has been shown that better performance is

related to the condition without equipment. Therefore, the protective equipment should be

changed in a way that the range of motion of the ice hockey player is closer to the natural

movement pattern that was performed without the equipment. When applying this approach,

concrete statements about improvements in protective equipment can be derived.

Each of the investigated movements requires a mix of power and finesse during execution

to achieve maximum performance [33]. Having a closer look at the sprint drill, these improve-

ments include increasing the flexion movement in the knee and the hip. This is important

given that faster skaters show more flexion in the knees and hips compared to slow skaters [34,

35]. Increasing flexion to improve the power generated by the joints furthermore supports the

need to improve the flexion movement in the elbow joint, as suggested by the results of the lin-

ear crossover and the power turns. Increasing the flexion in the shoulder is supported by the

results of all four drills. Combining the results for the shoulder joint, it would be beneficial to

design the shoulder pads in a way to allow for more shoulder flexion, higher adduction, and

higher internal rotation. This finding is in line with previous findings. For example, a player

who can perform smooth coordinated shoulder adduction/adduction movement is more effi-

cient compared to players who cannot perform those movements [34]. Summarizing these

findings, the ability of ice hockey players to move their arms closer to their trunks is improving

their performance, especially during drills associated with turns and changes of direction such

as the linear crossover and the power turn. This finding is supported by the physical effect that

by reducing the moment of inertia, a higher angular acceleration can be achieved while having

the same applied torque. In conclusion, the flexion movements should be increased in joints

contributing to fast forward movements, while the protective equipment related to the upper

body should be designed in a way that the arms can be brought closer to the body to support

turning movements. Although some specific suggestions for enhancing the relevant ranges if

certain joint motions, more detailed approaches will be needed to optimize the performance of

each piece of equipment in isolation as well.

Ice hockey is a complex sport consisting of different movements that require a broad skill

set of speed, agility, precision, and balance. The examined movements were chosen to address

the different skills and to model different movement patterns. Therefore, contrasting results

for one joint angle for different movements may not surprise. As an example, the results of the

linear crossover suggest an increased pronation movement of the elbow, while in shooting a

decreased pronation movement seemed beneficial. To understand the biomechanical mecha-

nisms of the pronation/supination movement of the elbow more in-depth, further analysis is

required. Moreover, a decision should be made depending on which movement has the higher

prevalence during a game or according to the position of the hockey player.

In summary, this study’s work showcased how artificial neural networks and layer-wise rel-

evance propagation could be used to identify the variables that best capture how equipment

influences movements. Using the variables of interest instead of the whole available dataset

streamlined the process of selecting the right variables, removed the researcher-based selection

bias, and made the process more efficient. Further, the given performance measures can be
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used to derive improvement suggestions regarding the protective ice hockey equipment. Nev-

ertheless, the results should be evaluated critically in the context of the given problem regard-

ing the usability and the informative value of the results.

One limitation is related to the preselection and preprocessing of the data. First, some joint

angles were not investigated since their magnitude ranged in the dimension of the measure-

ment error of the MVN Awina system (1-degree root mean square error [26]). Secondly, a

joint-dependent normalization was applied to maintain the relative information on the range

of motion between the joints. From a computer science perspective, this normalization skewed

the results in favor of the joints with larger ranges of motion, while a uniform normalization

would have favored joints with a smaller range of motion such as knee internal/external rota-

tion. The choice of using unequal normalization was made with regard to the practical applica-

tion of this study, but it should be kept in mind that this normalization method introduced a

biomechanical bias.

Finally, the neural network itself has some limitations that may influence the relevance

scores. First, the limited number of training data for some of the movements, e.g., the slap

shot, might lead to either low accuracy or limited generalization [36]. Further, based on their

functionality, artificial neural networks might not find the best solution (global minimum) but

rather a good solution (local minimum). Precautions were undertaken to avoid these prob-

lems, e.g., testing on unseen participants and testing different hyperparameter settings. Never-

theless, these limitations should be kept in mind during evaluation.

Summary and conclusion

The potential of neural networks and layer-wise relevance propagation has not yet been

explored to make functional statements in an applicable case. Thus, the purpose of this work

was to apply this combination to explore and understand how complex drills in ice hockey

were affected by the presence of equipment based on their joint angles captured by an inertial

measurement unit-based system. Further, the variables and intervals during each of the move-

ments that were most relevant in distinguishing between the two equipment conditions using

layer-wise relevance propagation were identified.

In summary, the variables contributing the most to distinguishing between the Equipment

and No Equipment conditions were related to the upper extremities and movements in the

sagittal plane/along the medial-lateral movement axis. Using the highlighted variables by the

proposed methodology and linking the results to the performance measures, suggestions on

equipment improvements could be derived. Changes to the equipment should support the

flexion movements of the knee and hip and should allow players to keep their upper extremi-

ties closer to the torso.

While the presented methodology has some limiting factors, their effect can be minimized

by interpreting the results within the contextual information of the model, the underlying

data, and influencing factors to translate the relevance scores into meaningful statements.

Supporting information

S1 Table. The 3-dimensional joint angles and their ranges of motion. Ranges of motion are

given in the full range of motion and split values in the two movement directions. The ratio

was calculated by dividing the individual joint angles by the overall maximum range of motion

(shoulder abduction/adduction) [28].

(PDF)
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S1 Fig. Shoulder joint flexion/extension trajectories for each condition overlayed with the

relevance scores of the respective joint for one sprint stride. The joint trajectories are dis-

played with the mean (solid line) ± standard error (shaded area) for the two conditions, equip-

ment in red and no equipment in green over one sprint stride cycle. The vertical line indicates

the skate-off and therefore the transition from the gliding to the swing phase of the foot. The

plots were overlayed with the relevance scores calculated for the shoulder flexion/extension

trajectory. Dark colors indicate higher relevance and lighter colors indicate lower relevance.

(TIF)

S1 File. Data. This archive contains all the underlying data (raw and processed) presented in

this publication.

(ZIP)
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