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A B S T R A C T

Schizophrenia is a complex psychiatric disorder with genetic and phenotypic heterogeneity. Accumulating rare
and genome-wide association study (GWAS) common risk variant information has yet to yield robust mechanistic
insight. Leveraging large-scale gene deletion mouse phenomic data thus has potential to functionally interrogate
and prioritize human disease genes. To this end, we applied a cross-species network-based approach to parse an
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Mouse models
Cross-species

extensive mouse gene set (188 genes) associated with disrupted prepulse inhibition (PPI), a Schizophrenia
endophenotype. Integrating PPI genes with high-resolution mouse and human brain transcriptomic data, we
identified functional and disease coherent co-expression modules through hierarchical clustering and weighted
gene co-expression network analysis (WGCNA). In two modules, Schizophrenia risk and mouse PPI genes
converged based on telencephalic patterning. The associated neuronal genes were highly expressed in cingulate
cortex and hippocampus; implicated in synaptic function and neurotransmission and overlapped with the
greatest proportion of rare variants. Concordant neuroanatomical patterning revealed novel core Schizophrenia-
relevant genes consistent with the Omnigenic hypothesis of complex traits. Among other genes discussed, the
developmental and post-synaptic scaffold TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil
containing 2) emerged from both networks as a novel core genetic driver of Schizophrenia altering PPI. As-
pects of psychiatric disease comorbidity and phenotypic heterogeneity are also explored. Overall, this study
provides a framework and galvanizes the value of mouse preclinical genetics and PPI to prioritize both existing
and novel human Schizophrenia candidate genes as druggable targets.

1. Introduction

Schizophrenia (SZ) is a complex and phenotypically heterogeneous
psychiatric syndrome that contributes significantly to the global burden
of disease (Solmi et al., 2023; Velligan and Rao, 2023a). Diagnosed by
late adolescent/young adult onset of positive (e.g., auditory hallucina-
tions, delusions) and negative (e.g., social withdrawal and anhedonia,
blunted affect) symptoms (Velligan and Rao, 2023b), the latter is less
responsive to currently available pharmacotherapies (Correll and
Schooler, 2020). The limited understanding of the disease’s molecular
foundations has hampered improved treatment development.

Elucidating the SZ genetic architecture has the power to yield etio-
logical insight. This disease is highly heritable (estimates as high as
81%) (Sullivan et al., 2003) and strongly polygenic. Common genetic
variants (minor allele frequency >1%) make a significant heritability
contribution (~24%) and genome wide association studies (GWAS) so
far identified 287 common risk loci (Loh et al., 2015; Schizophrenia
Working Group of the Psychiatric GenomicsC, 2014; Trubetskoy et al.,
2022). Nevertheless, several rare chromosomal copy number variants
(CNVs) represent an even greater disease risk (Marshall et al., 2017;
Rees et al., 2014). Causal variant identification in CNVs and GWAS loci
is complicated due to the presence of often multiple gene variants in
high linkage disequilibrium (LD). Thus, analysis of rare coding variants,
as the most immediate link between a genetic perturbation and disease
pathogenesis, can provide molecular insight and aid in common variant
mapping. While 10 exome-wide significant SZ-related ultra-rare coding
variants (URV) were identified recently (Singh et al., 2022), unearthing
additional URVs is hampered by low population frequency. Thus, ap-
proaches that can aid in identifying such rare variants can form the
foundation for mechanistic insights and GWAS variant prioritization.

The Research Domain Criteria (RDoC) framework espouses the use of
objective biological disease biomarkers to improve neuropsychiatric
disease (NPD) diagnosis (Insel et al., 2010). In this context, endophe-
notypes are a quantifiable subtype more proximal to the disease genetic
susceptibility (Cannon and Keller, 2006). Prepulse inhibition (PPI) of the
acoustic startle reflex is a SZ-associated endophenotype (Mena et al.,
2016; Swerdlow and Light, 2018). This operational measure of senso-
rimotor gating is the ability of a non-startling “prepulse” to temper the
reflex response to a startling stimulus or “pulse” (Swerdlow et al., 2000).
PPI is evolutionarily conserved, facilitating cross-species translational
comparisons in preclinical genetic models to reveal novel and hence
SZ-relevant genes (Powell et al., 2009). Of note, however, it is not
Schizophrenia-specific and not all disrupted disease genes alter PPI in
mice (Powell et al., 2009). Moreover, it is not clear how PPI aligns with
SZ positive/negative symptoms and rare/common variants or how to
parlay genetic risk into novel disease-gene identification.

The International Mouse Phenotyping Consortium (IMPC) has the
potential to inform SZ understanding. This large-scale resource of
protein-coding gene knockout (KO) mice and standardized multi-
systemic functional phenomic data (Brown and Moore, 2012) houses
an extensive library of PPI-related genes. Our goal was to exploit this

data (from 4031 genetic deletionmodels) to functionally interrogate and
prioritize Schizophrenia rare and GWAS common signals. To this end,
we applied a computational approach with the Omnigenic model (Sabik
et al., 2021), the systems biology equivalent of the polygenic theory
(Boyle et al., 2017). It posits that all genes expressed in a
disease-relevant tissue (i.e. the brain for Schizophrenia) contribute to
complex disease. Nevertheless, “core” genes directly influence a key
disease endophenotype (e.g. rare variants affecting PPI) while “periph-
eral” genes affect core gene expression (Boyle et al., 2017; Sabik et al.,
2021; Sabik et al., 2020). We used cross-species methods to parse the PPI
genes into subnetworks. For this, we integrated mouse gene-KO PPI data
(IMPC); common and rare variant Schizophrenia genes (GWAS catalog)
and high-resolution mouse and human brain transcriptome (Allen Brain
Atlas ABA) to identify a module of core established and novel genes as
potential SZ-relevant genetic drivers and druggable targets (van Dam
et al., 2018).

2. Methods

2.1. Mice

KO mouse lines in this study were derived from International
Knockout Mouse Consortium (IKMC) ES cell resources or by CRISPR/
Cas9 mutagenesis. All mice were produced and maintained on a C57BL/
6N genetic background of sub-strains C57BL/6NJ, C57BL/6NTac or
C57BL/6NCrl. Details on the production of each mouse line can be found
at www.mousephenotype.org by searching by gene name. Husbandry
practices vary between centers and details can be found at www.
mousephenotype.org/impress. All procedures were conducted in
compliance with ethical animal care and use guidelines at each center
and in accordance with ARRIVE guidelines (https://www.mouseph
enotype.org/about-impc/animal-welfare/arrive-guidelines).

2.2. Study design

An overview of the study design is depicted in Fig. 1. We applied a
two-pronged approach to identify Schizophrenia-relevant core gene
modules from both humanWGCNA and hierarchical clustering of mouse
brain transcriptome respectively.

2.3. Phenotyping

The IMPC phenotyping pipeline consists of 14 mandatory and other
optional tests that assess major biological systems and disease areas
(www.mousephenotype.org). For each mouse line, 7 male and 7 female
mutant mice were phenotyped from 4 to 16 weeks of age including age-
matched, wild type C57BL/6N baseline controls. Homozygous male and
female animals were phenotyped for mouse lines that were homozygous
viable. Mouse lines were designated as sub-viable if they had fewer than
12.5% homozygous pups after intercross and production of a minimum
of 28 pups (i.e., <50% of the expected 25%) while those with 0%
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homozygous pups after intercross were designated lethal lines. Hetero-
zygous male and female mice were phenotyped for both sub viable and
lethal lines with the addition of surviving homozygous mice for sub-
viable lines.

Within the IMPC pipeline, four mandatory and five optional
behavior-specific tests were performed: mandatory tests were open field,
combined SHIRPA and dysmorphology, grip strength, acoustic startle/
prepulse inhibition, optional tests include holeboard exploration, light-
dark box, fear conditioning, tail suspension, and rotarod (https://www.
mousephenotype.org/impress/index). For all behavioral tests, animals
could acclimatize to the phenotyping room in their home cage for at
least 30 min before testing. Upon the test’s completion, the animals were
placed back in their home cage and returned to the housing room. All
efforts were made to minimize animal discomfort by considerate hous-
ing, husbandry, and phenotyping methodology. Animal welfare was
assessed routinely for all mice involved. Detailed description of all
phenotyping tests is available on the IMPC website www.mousephen
otype.org including all parameters and metadata.

2.4. Acoustic startle (S)/Prepulse inhibition (PPI)

The acoustic startle response is characterized by an exaggerated
flinching response to an unexpected strong auditory stimulus (pulse).
This response can be attenuated when it is preceded by a weaker stim-
ulus (pre-pulse). PPI has been described in numerous species, including
mice and humans and provides an operational measure of sensorimotor
gating reflecting the ability of an animal to successfully integrate and
inhibit sensory information. The experimental apparatus consists of an
outer sound attenuated chamber in which an animal holder is mounted
on a regularly calibrated load cell platform that records the startle
response, linked to the transducer and amplifier. The test session is
initiated with a 5 min acclimatization period (background noise, BN is
ca. 65–70 dB) and, as an option, to the startle pulse alone for 5 times
(excluded from the statistical analysis). The session is then continued by
presentations of different trial types, each presented 6–10 times in a
pseudorandom order, with an inter-trial interval (ITI) varying randomly
between 20 and 30 s. The trial types are a) pre-pulse trials (PP1, PP2,
PP3, PP4) of 10–20 ms duration and different intensities presented alone
or that precede the startle pulse (PP–S) by 50–120 ms. The intensities of
the pre-pulse are 2–20 dB above the background noise (BN) so that they

do not elicit a significant startle response on their own; b) Startle pulse
trials where 110–120 dB/40–60 ms of white noise is presented alone; c)
No stimulus (NOSTIM) trials in which only background noise is pre-
sented to measure baseline movement of the animal. Startle response is
recorded every millisecond for 65–100 ms after the onset of stimulus.
The maximal peak amplitude is used to determine the acoustic startle
response. Basal startle responses S and PP-S are calculated respectively
as the average responses to the pulses presented alone and the average
responses to the combined pre-pulse-pulses. The amount of pre-pulse
inhibition (PPI) is calculated as a percentage score for each PP trial
type: % PPI = 100 x (S –PPI-S)/S. The global level of PPI is also calcu-
lated as the mean % PPI for the different prepulse responses: 100 x [S –
(PP1–S + PP2–S + PP3–S + PP4–S)/4]/S.

2.5. Data QC

Data generated by the IMPC partner centers were uploaded to the
Data Coordination Center (DCC) where quality control and preliminary
statistical analyses were performed. Initially, as part of the data upload
process, data were validated against the IMPReSS and iMits resources to
ensure accuracy and completeness of uploaded data. At this stage,
validation checks were primarily concerned with ensuring data were
formatted correctly and that a complete set of data including metadata
was captured. Following the initial validation stage, data were inserted
into a database at the DCC where they underwent further quality control
procedures. During this stage, the data were checked for values out of
established ranges and unexpected relationships between parameters.
Stability and variability of phenotypic measures were also inspected
visually. Changes in the distribution of data and deviation from
normality (QQ plot and histograms) were noted as potential quality
control issues and were then communicated with the data generating
centers. Data was corrected by the center if technical issues were
discovered. If the data-generating center determined that there was no
reason to exclude data, then no changes were made. Examples of issues
found during this stage included duplicate measurements, measure-
ments with incorrect units, out of range measurements, miscalculations,
and improper upload to IMPC.

Fig. 1. Study overview using mouse prepulse inhibition (PPI) genes and brain expression to stratify human Schizophrenia common and ultra-rare variants and
identify potentially novel ultra-rare variant genes with „core”-like properties. Created with BioRender.com.
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2.6. Statistical analysis

The categorical data from the nominated behavioral lines were
analyzed with two-tail Fisher’s exact test whereas the continuous data
were analyzed with the linear mixed-model, two of them implemented
in the R software (R Team Core, 2017) and the package PhenStat version
2.18.010. Because IMPC data has been collected for over 10 years, the
control data show heterogeneity that can be a result of seasonal effects,
personnel changes, and other environmental factors. To reduce this
heterogeneity, we utilized SoftWindowing introduced in (Haseli-
mashhadi et al., 2020) and implemented in the R package SmoothWin
(http://CRAN.R-project.org/package=SmoothWin) prior to applying
the linear mixed model to the continuous measurements. This assigned
non-increasing weights, ranging from 0 to 1, to control data subject to
their distance in time from the mutants. That is, controls that are
measured at or near the date of mutants are assigned the maximal
weights whereas the ones at earlier or later dates are given less weights.
Then the PhenStat is modified to apply the weighted linear mixed model
(WLMM) using weights from the SoftWindowing approach (documen-
tation BioConductor (https://www.bioconductor.org/packages/release
/bioc/html/PhenStat.html). Prior to applying the default model selec-
tion in the PhenStat using backward elimination, the WLMM incorpo-
rated Genotype, Sex, Genotype-Sex interaction and body weight in the
fixed effect term and Batch, defines as the date of experiment, in the
random effect. All lines were processed using the twomethods described
above, but some with no variation in response were manually assigned a
p-value of 0.999999. The raw data from the IMPC data release (DR) 10.1
(data release used for the current analysis), statistical pipeline and the
statistical results are available from the IMPC FTP endpoint link (ftp
://ftp.ebi.ac.uk/pub/databases/impc). At the time point of writing,
the IMPC is currently using DR19.1 with 8483 KO genes phenotyped. As
data has continually been added to the IMPC resource, the data available
with each DR varies.

2.7. Multiple testing

The resulting p-values were corrected using the positive false dis-
covery rate (pFDR) correction to create q-value.

2.8. Calculation of META SCORES

Cross-phenotype meta-analysis was conducted using gene-knockout-
to-phenotype association summary statistics. Consider N-different
mouse phenotypes like endophenotypes of a certain human disease. For
each phenotype, assume that M different gene-knockouts were pheno-
typed, tested for gene-knockout-to-phenotype association and obtained
association Z-scores (genotype beta-coefficient divided by its standard
error). To simplify this, let Zij be an association Z-score for the ith gene
and jth phenotype, Zi = {Zi1,Zi2,Zi3,…ZiN}T and let Z represent a M ×

N matrix of Z-scores. Under the null hypothesis of no association be-
tween gene-knockout and phenotype, we assume that Zi follows a
multivariate normal distribution with zero mean equal to 0 and
covariance matrix Σ.

[Step 1] Estimate Σ, genetic correlations between phenotypes, by
computing cor(Z).
[Step 2] For ith gene, conduct a cross-phenotype meta-analysis:

[Step 2-1] Obtain a meta-score by computing Tobs =
∑N

j=1Z
2
ij .

[Step 2–2] Simulate K vectors of Z-scores using a multivariate
normal distribution with mean 0 and cor(Z).
[Step 2–3] Generate an empirical null distribution of the metascore
test statistic by computing (To

k , k = 1,…K) for K simulated Z-score
vectors.

[Step 2–4] Compute an empirical p-value by counting the number of
times the null statistic To

k exceeds the observed one Tobs divided by
the number of simulations (K).

[Step 3] Obtain multiple-testing adjusted p-values (q-value) using
Benjamini-Hochberg procedure.

2.9. Hierarchical clustering analysis of PPI gene-related brain
transcriptomic data

In situ hybridization (ISH) raw data, i.e., expression energies and
corresponding brain tissues, was downloaded for 188 PPI genes from
Allen Mouse Brain Atlas (ABA) (Data Release, October 4, 2018) via the
Allen Brain Atlas application programming interface (API) (brain-map.
org/api/index.html) by using custom-written bash scripts (Lein et al.,
2007). They consisted of ISH data for 1707 different mouse brain regions
in sagittal sections whereby developing mouse brain regions were
excluded. We then performed a global unsupervised hierarchical clus-
tering analysis as described previously (Garrett et al., 2023). For the
generation of the heat map, we used the heatmap.2 function within the
gplots package of R statistical software (www.r-project.org). Agglom-
erative hierarchical clustering by the hclust function (method = “ward.
D2”) was applied to group mouse brain regions (columns) as well as
expression energies of genes (rows) for the heat map. Rows were scaled
and represented as z-score. Blue indicates higher expression levels and
yellow lower levels within the heat map. A dendrogram was shown for
the columns (brain regions) and rows (genes), where the main subtrees
were highlighted with letters (Fig. 3A). We used the silhouette method
by the function fviz_nbclust from the R package factoextra to cut the
dendrogram and determine the optimal number of clusters.

2.10. Human brain weighted gene co-expression network analysis
(WGCNA)

The WGCNA network used in this study is from and described in
detail in (Hawrylycz et al., 2015) and the Supplementary Data Set 1 and
2 therein. This study used the data from six healthy human donor brains
available in the Allen Human Brain Atlas (http://human.brain-map.
org/) interrogating samples from approximately 500 anatomically
discrete regions for genome-wide gene expression using an Agilent 8 ×

60K cDNA array chip. For all pairs of genes, a Pearson’s correlation was
calculated, and a signed similarity (Sij) parameter was derived. In the
signed network, the gene similarity reflects the sign of the expression
profile correlation. A signed network was constructed that summarized
gene expression across 132 brain structure subsets for each brain. For
the six individual donor brain networks, a consensus network was used
to identify the common expression patterns. Genes were hierarchically
clustered andmodule assignments were determined andmerged until all
pairs of module Eigen genes were correlated with R< 0.8 (for details see
in online methods ‘WGCNA consensus network construction’ in
(Hawrylycz et al., 2015). Finally, all 17348 expressed genes were
assigned to modules based on kME. Module Eigen genes were calculated
using all available data.

2.11. Functional and disease enrichment analysis of modules

To functionally annotate the PPI and WGCNA gene modules, and to
determine disease associations, we performed enrichment analyses
using the ENRICHR web interface focusing on gene ontology (GO)
processes, mammalian phenotypes and diseases: MGI mammalian
phenotype Level 4 2021, GO Biological processes, Reactome, SynGO and
DisGeNET (Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021). The
Functional Mapping and Annotation of Genome-Wide Association
Studies (FUMA) interface (Watanabe et al., 2017; Watanabe et al., 2019)
was used to assess the spatio-temporal exonic expression during human
development from the BrainSpan atlas and human tissue-specific gene
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expression in the Genotype-Tissue Expression (GTEx) portal. The tissue
specificity was tested using the differentially expressed genes (DEGs) as
per the description on the FUMA database (https://fuma.ctglab.
nl/tutorial#gene2func). The gene symbols were used as the input in
each database. Enrichments were considered significant when the
Benjamini-Hochberg corrected p value (=q) was less than 0.05.

2.12. Module enrichments for schizophrenia variants and PPI genes

Genome-wide association study (GWAS) summary statistics for
Schizophrenia, as identified by the (SchizophreniaWorking Group of the
Psychiatric GenomicsC, 2014; Trubetskoy et al., 2022), were accessed
through the GWAS catalog database (https://www.ebi.ac.uk/gwas/
home). The Schizophrenia rare and URVs were those identified by

Fig. 2. Prepulse inhibition (PPI) phenotypes associated with disruption of selected mouse genes. (A) Gria1 (Glutamate Ionotropic Receptor AMPA Type Subunit 1),
(B) Gad2 (Glutamic acid decarboxylase, 2), (C) Cpe (Carboxypeptidase E), (D) Tdo2 (Tryptophan 2,3-dioxygenase), (E) Mphosph9 (M-phase phosphoprotein 9), (F)
Aspa (Aspartoacylase), (G) Olig1 (Oligodendrocyte transcription factor 1), (H) Lrrtm1 (Leucine rich repeat transmembrane neuronal 1), (I) Ntf5 (Neurotrophin 5).
Comparisons were made using the soft windowing approach of the International Mouse Phenotyping Consortium (IMPC) web resource at www.mousephenotype.org
and hence, control group numbers vary accordingly. WT = wildtype control mice, MUT = mutant mice.
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Fig. 3. (A) Unsupervised hierarchical clustering analysis of prepulse inhibition (PPI) gene expression in brain. Brain regions (BR) were clustered according to in situ
hybridization (ISH) expression values (Allen Brain Atlas) of PPI genes and revealed two clusters (BR-A and BR-B). PPI genes gathered in three clusters PPI-1, PPI-2
and PPI-3. Color-coded lines represent brain regions of interest for PPI. (B) Visualization of the color-coded brain regions from the heatmap indicated in mouse brain
coronal brain sections with corresponding Bregma levels for each section. Enrichment analyses for each of the PPI gene modules PPI-1 (C), PPI-2 (D) and PPI-3 (E).
(F) % overlap of PPI genes (188) with Schizophrenia genome wide associated study (GWAS) common variants from GWAS catalog. Created with Biorender. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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(Singh et al., 2022) and consisted of 244 gene variants with unadjusted p
value < 0.01. Fisher’s exact test was applied to determine whether the
number of Schizophrenia variants in a module exceeded the expected
number based on the total number of brain-expressed genes and
Schizophrenia variants analogous to (Sabik et al., 2021). For the
WGCNA, 33 modules (i.e. 17348 genes), including the grey module,
were considered in the Fisher’s exact test for the calculations of p-values.
P-value adjustment was applied using the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995). A Fisher’s exact test was also used to
assess the statistical significance of the PPI gene occurrence in the
WGCNA modules.

2.13. Mouse PPI phenotype identification of potential core genes

Using the IMPC database, we performed a batch inquiry of all genes
from PPI-1X or the Midnight Blue module. This list was sorted for genes
with phenotype information available and the mouse phenotype (MP)
term “prepulse inhibition” annotated. The PhenStat package was used to
analyse the data for each of the available lines directly. GO, Reactome,
KEGG pathway and SynGO enrichment analysis via ENRICHR was
conducted to functionally annotate the novel gene list.

2.14. Data availability

Protocols and procedures for all assays are available from mouse-
phenotype.org/impress. Genotype-phenotype associations, detailed
statistical results and raw phenotype data are available frommousephen
otype.org and can be retrieved from an API or via bulk download as
described here: mousephenotype.org/help/data-access/.

3. Results

3.1. Cross-phenotype meta-analysis scores using gene-knockout-to-
phenotype association summary statistics

Meta-analysis scores were obtained for each of the 4031 tested genes
using four PPI phenotype scores. We excluded thirty-five knockout-lines
with a hearing loss phenotype that would preclude PPI testing. For genes
tested by multiple centers, a single score was obtained by filtering or
pooling. Meta-analysis scores for 198 genes survived a False Discovery
Rate threshold of q ≤ 0.06. 29% of PPI candidate genes were hetero-
zygous deletions while the remainder were homozygous (Supplemen-
tary information 1). Furthermore, 80% (~) of these genes were
associated with a reduction in PPI in mice, with the remainder associ-
ated with increased PPI (Supplementary information 1, columns P and
Q including www.mousephenotype.org link to data visualization and
comparison using the soft windowing analysis (Haselimashhadi et al.,
2020)). The graphical visualization of % PPI for a selected subset of
these genes is shown in Fig. 2. Overall, these genes have orthologs that
represent only a fraction of the human genome. The prioritized genes
provide an anchor for the following bioinformatic analysis of mecha-
nisms, neuroanatomical bases, networks and potentially novel core
Schizophrenia genes.

3.2. Spatial organization of the PPI gene transcriptome in adult mouse
brain

PPI is an established endophenotype for a range of neuropsychiatric
disorders including autism spectrum disorders (ASD) and Tourette’s
syndrome and is not specific to Schizophrenia classifications (Perry
et al., 2007; Santos-Carrasco and De la Casa, 2023; Zebardast et al.,
2013). Therefore, to identify both the brain regions essential for medi-
ating PPI and the distinct gene expression patterns that will parse the
gene set (188 genes with brain expression data in ABA) into functional
and disease-coherent modules, we performed a hierarchical clustering
analysis based on the organization of the corresponding high-resolution

spatial transcriptomic data (ABA, 1707 defined brain areas). We hy-
pothesized that clustering would organize the PPI genes into clusters or
modules that share common brain expression patterns and hence
broadly similar functions for more robust determination of Schizo-
phrenia relevance.

The cluster analysis gathered the anatomical brain regions into two
main clusters (designated BR-A and BR-B Fig. 3A and B, Supplementary
information 2). BR-A consisted of brain areas derived from embryonic
telencephalon including the hippocampus (dentate gyrus and CA3), cor-
tex (anterior cingulate, enthorhinal, parietal, retrosplenial, motor and so-
matosensory) and amygdala (basolateral, lateral). BR-B was composed of
a mixture of telencephalic (e.g. cortical subregions, amygdala nuclei, hip-
pocampal CA1 and CA2, parasubiculum), diencephalic (e.g. thalamic and
hypothalamic nuclei), mesencephalic (ventral tegmental area, brainstem
nuclei, inferior colliculus, periaqueductal grey) and rhombencephalic
structures (e.g. medulla oblongata and pontine nuclei). Functionally, those
regions involved in PPI mediation were gathered only in BR-B while BR-
A encompassed only the PPI-modulating brain regions (Rohleder et al.,
2016) (Supplementary information 2).

Based on these expression patterns, PPI genes were clustered into 3
modules (designated PPI-1, PPI-2 and PPI-3, Supplementary informa-
tion 3). PPI-1 gathered 19 genes that were widely expressed but most
predominantly in the forebrain PPI-modulating telencephalic regions of
BR-A. PPI-2 consisted of 120 genes with relatively low expression
throughout the brain whereas PPI-3 comprised 54 genes that were also
moderately expressed in BR-A. Based on the gene expression profiles of
the three PPI genemodules, BR-A is the most clearly distinguishing brain
region cluster.

3.3. Three functionally coherent PPI gene modules based on brain
expression

We wanted to identify dysregulated mechanisms causing mouse PPI
abnormality through the functional coherence of the gene co-expression
modules. Enriched terms were deemed significant when the Benjamini-
Hochberg corrected p value (=q) was less than 0.05. PPI-1 genes
exhibited high brain-wide expression and are likely fundamental to
brain function. They included the glutamatergic neurotransmitter Gria1
gene (homozygous KO) encoding the GluA1 subunit of α-amino-3-hy-
droxy-5-methyl-4-isoxazole propionate (AMPA) receptor and the Gad2
gene (homozygous KO) that encodes the GABAergic synthetic enzyme
glutamate decarboxylase 2, both integral to normal brain excitatory and
inhibitory activity respectively. Accordingly, enrichment analysis
revealed that, collectively, knockout of genes from this module decreased
prepulse inhibition (as expected) and caused abnormal locomotor behavior
(Gria1, Vgf, Ncam2, Cpe) in mice (Fig. 3C–Supplementary information
4). Furthermore, these genes are among the top neuron-expressed genes
in mice and humans (Gria1, Camk2b, Rtn1, Fus, Gad2, Cpe, Atp6v1c1,
Srsf11) as well as involved in regulation of NMDA receptor activity (Gria1,
Camk2b) and Social Anhedonia (Vgf, Arrb1). The PPI-1 gene set was
highly expressed in the adult brain from late infancy with lower
expression during early/mid/late prenatal development indicating a
stronger function within the postnatal brain (Supplementary Fig. 1.
GTex, Brainspan).

The PPI-2 genes exhibited restricted brain expression, indicating
discrete brain region function. Gene deletion altered PPI (both increased
and decreased), decreased exploration of a novel environment, decreased
body length and decreased fasting circulating glucose (Fig. 3D and Sup-
plementary information 4). There were no clear collective associations
of PPI-2 genes with biological processes or disease (GO_Biological Pro-
cess and DisGeNET, Fig. 3D). Overall, PPI-2 has gathered functionally
diverse genes not clearly distinguished when organized based on the
brain transcriptome. The lower expression of PPI-2 genes in brain (adult
and developing brain) confirms this, with high expression in fallopian
tubes, cervix-uterus, lung, breast, nerve and adipose tissue (Supple-
mentary Fig. 1, GTeX, Brainspan). Tdo2 (Tryptophan 2, 3-dioxygenase) is
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a gene gathered into this module. The encoded enzyme is highly
expressed in the liver with low expression in the brain. It catalyzes the
conversion of tryptophan to kynurenine and is associated with Schizo-
phrenia (Miller et al., 2004). Heterozygous knockout of this gene in mice
increased PPI in males and females.

Finally, PPI-3 genes altered PPI (both increased and decreased), as
well as decreased grip strength (e.g. Gatm, Stim2, Prkch, Kdm1a, Aspa),
total body fat (e.g.Gatm, Stim2, Aspa, Zdhhc5, Sirpa) and lymphocyte cell
number (Fig. 3E–Supplementary information 4). This gene module was
also involved in cellular modified amino acid biosynthetic process and
mitochondrial DNA metabolic process. There were no clear disease term
associations within this gene set (DisGeNET). Moreover, the PPI-3 gene
set was expressed in the adult brain and in the postnatal early infant
brain (GTex, Brainspan Supplementary Fig. 1) in specific cell populations
e.g. cortex corticospinal neuron markers (e.g. Setd2, Zdhhc5, Stim2,
Tmem41b) and oligodendrocytes (e.g. Olig1, Gatm, Fig. 3D, Supple-
mentary Information 4).

3.4. Schizophrenia risk and PPI genes converge based on telencephalic
expression

To determine whether mouse PPI genes are associated with SZ ge-
netic risk, we assessed the whole PPI gene set and the modules for
enrichment of established human common and rare variant genes using
the Fisher’s exact test (Supplementary information 5). With this
approach, we found a significant enrichment (12 overlapping genes) of
common (not the rare) variants within the entire PPI gene set indicating
convergence of Schizophrenia and PPI genetic risk (Fisher’s exact test: p
= 0.039, Fig. 3F).

Focusing on the individual modules, PPI-1 had the highest propor-
tion of enriched common Schizophrenia variants at 16% (3/19), fol-
lowed by PPI-2 (6%, 7/120) and PPI-3 (4%, 2/52, see Table 1 and
Supplementary information 5). PPI-1 enriched variants included the
glutamatergic receptor Gria1 as well as Rtn1 (Reticulon 1) and Camk2b
(Calcium calmodulin-dependent protein kinase IIb) and all three are
among the top neuron-expressed genes (Fig. 3C) and ablation decreased
PPI (Table 1). Rtn1 loss also caused abnormal locomotor behavior
(altered gait), while Camk2b and Gria1 loss was associated with hyper-
activity. The common variants that enriched in PPI-3 were Zdhhc5 (zinc
finger, DHHC domain containing 5) and Stim2 (stromal interaction
molecule 2), both corticospinal-neuron expressed genes (Table 1). Loss
of both genes impaired prepulse inhibition and altered the startle reflex
(decreased/increased respectively).

3.5. Expanded PPI gene modules based on brain transcriptomic spatial
organization

The PPI gene set (188 genes) was identified from the IMPC data
(4031 genes) available at the time point of analysis (DR10.1), ac-
counting for only a fraction of the entire protein-coding genome. To

address this issue of data incompleteness and create an extended
network to enrich established and potentially novel SZ-associated rare
variant genes with “core-like” properties, we expanded the gene set by
performing a hierarchical clustering analysis of all ABA-available mouse
brain transcriptomic data measured by ISH expression. It was our aim to
fabricate a more complete co-expression network based on the PPI
modulating BR-A telencephalic brain structures that distinguish the PPI
gene clusters above (Fig. 3A, PPI-1, -2, -3, (Rohleder et al., 2016).

With the new expanded modules (PPI-1X, PPI-2X, PPI-3X), PPI-1X
gathered 2058 genes that included all but one (Gad2) of the original
PPI-1 genes while PPI-2X comprised 15579 genes that included all but
three of the original PPI-2 genes and PPI-3X gathered 3897 genes that
included all except 14 of the original PPI-3 genes (Fig. 4A, Supple-
mentary information 6). We hypothesized that the new expanded gene
modules (i.e. the gene clusters PPI-1X, PPI-2X, PPI-3X) resemble the
original ones (PPI-1, PPI-2, PPI-3) based on similar expression profiles
within each module and because most genes from the original modules
are included in the expanded modules.

3.6. Mouse PPI-1X identified as schizophrenia-relevant core gene module

To determine whether genes in the expanded gene modules harbor
genetic risk for Schizophrenia, we investigated enrichment of common
variant mutations with Fisher’s exact test and manual annotation of
ultra-rare variants (URVs). Regarding the overlap of the URV genes
(Singh et al., 2022), the highest proportion was found in PPI-1X (2.6%),
the module with highest expression across brain regions (Supplementary
information 7). Based on this pattern, we therefore designated PPI-1X as
the “core” module for identification of rare Schizophrenia variant genes.
The greatest proportion of overlapping common variant genes occurred
in PPI-3X followed by PPI-1X (Schizophrenia Working Group of the
Psychiatric GenomicsC, 2014; Trubetskoy et al., 2022). The smallest
proportion but the most significant enrichment occurred in PPI-2X
owing to the larger sample size (Supplementary information 8)
(PPI-1X: 116 overlapping genes, 4.7%, Fisher’s P adj= 2.38e− 08, PPI-2X:
431 overlapping genes, 2.9%, Fisher’s P adj = 5.66e− 21, PPI-3X: 229
overlapping genes, 5.4%, Fisher’s P adj = 1.85e− 16, Fig. 4B).

As well as the expected Schizophrenia disease annotation of the
overlapping common variant genes, there were additional disease co-
morbidity associations (Fig. 4C–H, Supplementary information 9). The
rare and common variants that enriched within PPI-1X were also asso-
ciated with, for example, intellectual disability, epilepsy/seizures and
severe mental retardation. PPI-1X, PPI-2X and PPI-3X common variants
were also associated with ASDs. Regarding functional profiles, PPI-1X
rare and common schizophrenia variant genes were associated with
the mammalian phenotype hyperactivity, abnormal synaptic trans-
mission, abnormal long-term spatial reference memory, and reduced long-
term potentiation (Fig. 4C–H, Supplementary information 9, columns A-
F and H-M). The profile for PPI-3X overlapping Schizophrenia common
variant genes included the mammalian phenotypes of impaired

Table 1
Schizophrenia common variants enriched in the prepulse inhibition clusters.

Mouse Gene Protein Annotation Mouse knockout Sex PPI phenotype PPI cluster

Rtn1 RTN1 Reticulon-1 − /− M, F decreased 1
Gria1 GRIA1 Glutamate receptor 1 − /− M, F decreased 1
Camk2b CAMK2B Calcium/calmodulin-dependent protein kinase type II subunit beta +/− F decreased 1
Mgmt MGMT Methylated-DNA–protein-cysteine methyltransferase − /− M, F decreased 2
Bach 2 BACH2 BTB and CNC homology, basic leucine zipper transcription factor 2 − /− M, F decreased 2
Tfr2 TFR2 Transferrin receptor protein 2 − /− M, F decreased 2
Nhlh1 NHLH1 Helix-loop-helix protein 1 +/− F decreased 2
Ghrhr GHRHR Growth hormone-releasing hormone receptor − /− M, F decreased 2
Efcab6 EFCAB6 EF-hand calcium-binding domain-containing protein 6 − /− M, F decreased 2
Mphosph9 MPHOSPH9 M-phase phosphoprotein 9 − /− M, F increased 3
Zdhhc5 ZDHHC5 Palmitoyltransferase ZDHHC5 − /− M, F decreased 3
Stim2 STIM2 Stromal interaction molecule 2 +/− M, F decreased 3

M = male, F = females.
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coordination and decreased Purkinje cell number.

3.7. Human Midnight Blue identified as schizophrenia core gene module

We applied an alternative human brain-based method to elucidate
Schizophrenia core gene modules using those from an established

WGCNA of resting-state healthy human donor tissue in ABA (Hawrylycz
et al., 2015). The WGCNA is a correlation network approach that de-
termines gene-to-gene associations by grouping similarly expressed
genes together for functional annotation and unearthing novel genes. In
the assessment of 33 co-expression modules, we observed that the
common GWAS variants were significantly (with q< 0.05) enriched in 5

Fig. 4. (A) Unsupervised hierarchical clustering of transcriptomic data from entire genome based on BR-A. Brain regions (BR) were clustered according to in situ
hybridization (ISH) expression values (Allen Brain Atlas) and revealed three brain region clusters. Genes gathered in three extended clusters (I, II, III). (B) The overlap
of established schizophrenia common variants with each of the extended clusters. (C, D, E). Enrichment analyses for each of the Schizophrenia ultra-rare and
common variant gene overlaps with each of the extended gene modules are shown.
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modules (Modules M1 (Midnight Blue), M2 (Saddle Brown), M4
(White), M6 (Pink) and M11 (Brown)) (Fig. 5A, Supplementary infor-
mation 10) and the URVs in one module (M1 (Midnight Blue),
Fig. 5A–Supplementary information 11). The PPI genes did not enrich
significantly (with q < 0.05) in any modules however, there were
nominally significant enrichments in two modules (M11 (Brown), M12
(Antique White)) with an unadjusted p-value (Fig. 5A–Supplementary
information 12). Module M1 (“Midnight Blue”) enriched both the
common and rare variants, and tended to enrich for PPI genes, and we,
therefore, designated this as the Schizophrenia core gene module from
this analysis (Supplementary information 10, 11, 12).

Midnight Blue consists of 451 genes assigned to Telencephalon. This
encompassed parts of the frontal, parietal and temporal lobes, cingulate
gyrus and caudate putamen. The highest expression of these genes was
in hippocampus, particularly the dentate gyrus, and the amygdala
including basolateral amygdala. With parallels to PPI-1X, this module
was associated with synaptic transmission and regulation of synaptic
plasticity (Hawrylycz et al., 2015). Hyperactivity, enhanced long-term
potentiation, and decreased anxiety-related response phenotypes asso-
ciated with these genes (Fig. 5B). That the Schizophrenia risk gene sets
significantly, and the PPI genes tend to, enrich within this module is
consistent with findings from our mouse brain tissue co-expression hi-
erarchical clustering. The BR-A brain region cluster from this analysis
was restricted to forebrain Telencephalic structures that included those
involved in PPI modulation (Rohleder et al., 2016).

3.8. Using mouse PPI to identify novel schizophrenia genes in human and
mouse core co-expression modules

Wewanted to identify novel “core” Schizophrenia-relevant PPI genes
based on similar neuroanatomical patterning and the “guilt-by-associ-
ation” rule. With two independent methods in mice and humans, we
identified PPI-1X (from clustering) and Midnight Blue (fromWGCNA) as
“core modules”. 50% of Midnight Blue enriched-URV genes overlapped
with PPI-1X (Singh et al., 2022). Using IMPC PhenStat and batch
queries, we determined that 7% of available PPI-1X- and Midnight Blue
gene-KO mouse models exhibit robust PPI phenotypes (p < 0.0001,
Supplementary information 13, 14). From this gene subset, we
excluded established URVs and common variants and genes from the
original DR10.1 PPI list and focused on the newly generated DR19.1
(October 2023) PPI additions. The remaining PPI genes from both core
modules were designated “potentially novel” core genes with PPI
endophenotypes (full list in Supplementary Information 15) and listed
in Tables 2 and 3 (details in Supplementary Information 15).

Established Schizophrenia-related PPI genes detected by both
methods were the previously described Gria1 and Camk2b. Looking at
both sets of novel PPI genes (from PPI-1X and Midnight Blue) together, a
subnetwork of genes was associated with abnormal auditory brainstem
response and decreased startle reflex indicating hearing abnormalities that
would preclude clear detection of PPI impairments (Nin, Aak1, Nedd4l,
Ckb, Dyrk1b, andNptn KOmice). Thus, we excluded these genes from the
final list of “novel” PPI genes.

Fig. 5. Schizophrenia-relevant „core” genes enriched in Midnight Blue module. (A)Module enrichments for established Schizophrenia common and rare variants and
mouse prepulse inhibition (PPI) genes. The Midnight Blue module is significantly enriched in common and ultra-rare variants and tends to be enriched in mouse PPI
genes. The red line in each plot indicates the significance threshold of padj <0.05. (B) Midnight Blue module functional and disease annotations. (For interpretation
of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Among the novel PPI genes, the other predominant mouse phenotype
was hyperactivity (Abi2, Tspyl2, Frrs1l, Ntrk2, Arih1, and Ccsap KO
mice). SynGO analysis also indicates that there was a preponderance of
synaptic genes particularly representing the postsynapse (TANC2, PAK1,
ABI2, CAMK2, NTRK2, Supplementary Information 16). A novel core
gene identified in both the PPI-1X and Midnight Blue modules was
TANC2. Tetratricopeptide repeat, ankyrin repeat and coiled-coil con-
taining 2 (TANC2) is a post-synaptic scaffold protein associated with
neurodevelopment, intellectual disability and autistic features (Garrett
et al., 2022; Guo et al., 2019). Based on GO and Reactome analysis of the
novel PPI genes (Supplementary information 15), TANC2 was part of
a subnetwork with other genes implicated in brain development
including regulation of axonogenesis (NTRK2, PAK1), regulation of
neuron projection development (PAK1, NTRK2, CAMK1, SPOCK1, ABI2,
TANC2) and NOTCH signaling (MIB2). There were also genes involved
in oxidative phosphorylation, the citrate cycle, glyoxylate and dicar-
boxylate metabolism (CS, ATP5F1B) and chaperone-mediated auto-
phagy (CTSA, SNRNP70). Genes from specific brain cell populations also
emerged including CTSA (in microglia), MAT2A (in astrocytes) and
PAK1 (in oligodendrocytes).

4. Discussion

Schizophrenia has a complex polygenic architecture consisting of
both common and rare variants in hundreds of candidate genes (Singh

et al., 2022; Trubetskoy et al., 2022). Nevertheless, this established
genetic risk has yet to transduce into mechanisms of phenotypic het-
erogeneity, improved treatment strategies and patient stratification. We
used IMPC mouse PPI data with mesoscale neuroanatomic analysis to
functionally interrogate and prioritize Schizophrenia variants employ-
ing computational analysis through the Omnigenic hypothesis. To this
end, we took a cross-species approach integrating mouse PPI genes with
mouse (hierarchical clustering) and human (WGCNA) brain spatial gene
expression data. We determined that the genetic substrates of mouse PPI
significantly align with human Schizophrenia risk genes. Furthermore,
based on brain expression, we identified PPI- and
Schizophrenia-relevant functionally coherent modules with established
and potentially novel “core-like” genes involved in neuro-
transmission/synaptic function. These genes will be important for
informing Schizophrenia-related rare genes and druggable target
elucidation.

Human disease gene discovery remains correlative with existing
methods (Claussnitzer et al., 2020) andmacroscopic MRI does not reveal
molecular and cellular abnormality (Keshavan et al., 2020). Integrating
KO mouse PPI with brain expression data therefore provides a powerful
platform to translate human genetic risk into Schizophrenia-relevant
brain pathology. We found a significant convergence of Schizophrenia
and mouse PPI risk genes through both co-expression analyses. Thus, in
concordance with previous analysis (Zeighami et al., 2023), rodent
models sufficiently represent this aspect of human Schizophrenia mo-
lecular pathology, not thwarted by inter-species biological and gene
homology differences (Monaco et al., 2015). Combined, this supports
the utility of meticulously controlled data generated from multiple
mouse models to understand human Schizophrenia genetic risk
neurobiology.

PPI abnormality is not specific to Schizophrenia and has trans-
diagnostic potential (Insel et al., 2010; Santos-Carrasco and De la Casa,
2023). Thus, we wanted to find a specific PPI-gene subnetwork with
Schizophrenia core-like properties (Boyle et al., 2017). Telencephalic
PPI modulating brain regions emerged as the most relevant for the
PPI/Schizophrenia overlap, consistent with strong telencephalic tran-
scriptional patterning of psychiatric disorders (Zeighami et al., 2023).
Three established neuro-circuits underlie the PPI response: startle
mediating, PPI mediating and PPI modulating. Broadly, PPI mediation
recruits mid/hind brain regions while PPI modulation, on the other
hand, implicates the cortex including anterior cingulate, hippocampus
and amygdala among others (Rohleder et al., 2016). The anterior
cingulate is part of the human dorsolateral prefrontal cortex controlling
executive function. This region, along with the hippocampus, frequently
malfunctions in Schizophrenic patients (Huckins et al., 2019; Yoon et al.,
2008). It was the synaptic/neurotransmission genes with highest
expression in the PPI modulating regions (PPI-1X and Midnight Blue)
that strongly associated with Schizophrenia risk. This combined pattern
is consistent with existing glutamate and dendritic pathology Schizo-
phrenia hypotheses, further confirming altered glutamatergic and syn-
aptic plasticity as the cornerstone of the disease pathogenesis (Coyle,
2012; Fromer et al., 2014). With this confirmation, we thus provide a
framework for attributing Schizophrenia disease coherence to mouse
PPI genes and for functionally annotating existing and undisclosed
Schizophrenia variant genes.

With two established core modules, we identified a litany of poten-
tially novel Schizophrenia “core-like” genes. The Omnigenic model
proclaims that all genes expressed in a disease-relevant tissue contribute
to variation, but it is the core genes that directly influence the trait, in
this case, PPI (Boyle et al., 2017). By this definition, TANC2 emerged
from both approaches. Expressed in the developing and adult brain in
the postsynaptic density scaffold, homozygous deletion impaired PPI
and caused hyperactivity (Garrett et al., 2022). Although evidence is
limited, there are hints supporting a Schizophrenia role for TANC2. This
includes a de novo missense TANC2 variant (p.794A > V) in a female
Schizophrenic patient (Fromer et al., 2014) and how machine learning

Table 2
PPI-1X novel PPI genes with Schizophrenia core-like properties.

Mouse
symbol

Human
gene

Gene name

Ctsa CTSA Cathepsin A
Sbf1 SBF1 SET binding factor 1
Tspyl2 TSPYL2 TSPY-like 2
Tanc2 TANC2 Tetratricopeptide repeat, ankyrin repeat and

coiled-coil containing 2
Arih1 ARIH1 Ariadne RBR E3 ubiquitin protein ligase 1
Tpm 1 TPM1 Tropomyosin alpha-1 chain
Tspan13 TSPAN13 Tetraspanin-13
Aven AVEN Apoptosis And Caspase Activation Inhibitor
Cs CS Citrate synthase
Marchf6 MARCHF6 Membrane associated ring–CH–type finger 6
Ntrk2 NTRK2 BDNF/NT-3 growth factors receptor
Pak1 PAK1 P21 (RAC1) Activated Kinase 1
Snrnp70 SNRNP70 Small Nuclear Ribonucleoprotein U1 Subunit 70
Clk 2 CLK2 CDC Like Kinase 2
Mib2 MIB2 MIB E3 Ubiquitin Protein Ligase 2
Rgl1 RGL1 Ral guanine nucleotide dissociation stimulator-like 1
Gpcpd1 GPCPD1 Glycerophosphocholine Phosphodiesterase 1
Snx14 SNX14 Sorting nexin-14
Mpi MPI Mannose-6-phosphate isomerase
Mat2a MAT2A methionine adenosyltransferase 2A
Spock 1 SPOCK1 SPARC (Osteonectin), Cwcv And Kazal Like Domains

Proteoglycan 1
Tspoap1 TSPOAP1 TSPO associated protein 1
Atp5f1b ATP5F1B ATP Synthase F1 Subunit Beta
Fkbp10 FKBP10 FKBP Prolyl Isomerase 10
Tlcd3b TLCD3B TLC Domain Containing 3B

Table 3
WGCNA Midnight Blue novel PPI with Schizophrenia core-like properties.

Mouse
symbol

Human
gene

Gene name

Frrs1l FRRS1L Ferric-chelate reductase 1 like
Ccsap CCSAP Centriole, cilia and spindle associated protein
Brd 4 BRD4 Bromodomain-containing Protein 4
Abi2 ABI2 Abl interactor 2
Tanc2 TANC2 Tetratricopeptide repeat, ankyrin repeat and

coiled-coil containing 2
Camk1 CAMK1 Calcium/calmodulin dependent protein kinase I
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differentiated Schizophrenia from bipolar and major depressive disorder
based on TANC2 (Yang et al., 2022). Moreover, this gene exemplifies
how allelic heterogeneity varies symptom severity depending on the
mutation. To date (Guo et al., 2019), only monoallelic patient mutations
are described whereas biallelic deletion underlies the mouse PPI
phenotype. This is consonant with the gradient effect of neuro-
developmental mutations where high disruption is more strongly asso-
ciated with intellectual disability than SZ (Fromer et al., 2014). Thus,
more evidence is required to determine whether the developmental or
adult-derived function of TANC2 potentially increases Schizophrenia
genetic risk. Other developmental genes did however emerge as “core”
genes (e.g. PAK1, SPOCK1) supporting the Schizophrenia neuro-
developmental hypothesis (Fatemi and Folsom, 2009). In addition, the
novel core genes emblematic of diverse functional and biological cate-
gories, including brain bioenergetics and glial cells (oligodendrocytes,
microglia and astrocytes), are consistent with Schizophrenia complexity
for which this computational framework can be applied for annotation
(Brown et al., 2021).

A salient issue influencing PPI diagnostic value concerns the align-
ment with positive and negative Schizophrenia symptoms. At least in
male patients, PPI correlates with both symptom domains (Braff et al.,
1999). We observed a similar pattern in this study, however there was a
functional dichotomy depending on the co-expression module involved.
The PPI-1 (and PPI-1X) module of synaptic brain-wide expressed PPI
genes was phenotypically associated with mouse hyperactivity. The
latter is a putative proxy for psychomotor agitation, a positive symptom
aligning with delusions and impaired self-control (Pompili et al., 2021).
The PPI-3 (and PPI-3X) genes on the other hand associated with
impaired grip, hypotonia, corticospinal motor output neurons (CSNs,
from motor M1 and somatosensory S1 cortex) and myelin-producing
oligodendrocytes (Baumann and Pham-Dinh, 2001; Macias et al.,
2022). That abnormal motor control is a Schizophrenia negative
symptom could indicate that common variant genes that predominate in
PPI-3 are relevant for this symptom domain (Abboud et al., 2017).
Different NPD co-morbidities were also evident within this functional
dichotomy such as Intellectual Disability with brain-wide expressed
neuronal function genes (PPI-1X) and ASD with expression in specific
cell populations (PPI-3X). This indicates risk for cognitive impairment
with PPI-1X gene loss-of-function-mutations (Fromer et al., 2014).
Moreover, as in the example of TANC2, while overlapping genes are
involved in Schizophrenia and other neurodevelopmental disorders, the
severity of functional effects depends on the mutation. Thus, focusing on
PPI molecular underpinnings has the potential to reduce heterogeneity
and reveal novel clinical strata and transdiagnostics for the RDoC (Insel
et al., 2010; Owen, Legge, Rees, Walters and O’Donovan, 2023; Santo-
s-Carrasco and De la Casa, 2023). Future dissection of how rare and
common variants fall within this functional dichotomy will be important
for patient stratification and developing treatment strategies for nega-
tive symptoms.

We based this analysis on the Omnigenic model as a broad theoret-
ical construct and tool to estimate the likely proximity of PPI genes to
Schizophrenia pathogenesis based on co-expression analysis. Never-
theless, this theory has been debated and criticized previously for a
disproportionate focus on “core” genes and an over-simplification of the
definition of core vs. peripheral genes (Boyle et al., 2017; Wray et al.,
2018). These caveats should therefore be borne in mind when consid-
ering the results of this study, acknowledging that further empirical
analysis is needed to confirm the association of the novel genes with
Schizophrenia pathogenesis. Studies such as this one integrating phe-
nomic (in this case, mouse) data with gene co-expression networks, will,
in any case, help to evolve and nuance this theory and gene categori-
zation further, increasing the utility for understanding complex neuro-
psychiatric disease genetic risk.

4.1. Conclusion

In conclusion, we have demonstrated how using mice to understand
the genetic substrates and risk in PPI can generate valuable information
potentially for better diagnosing and treating Schizophrenia patients.
We also provide a neuroanatomic transcriptomic-patterning model
derived from mouse PPI modulation to functionally characterize novel
disease variants, stratify patients for improved precision treatment ap-
proaches, and disclose the genetic underpinnings of phenotypic het-
erogeneity in Schizophrenia. As PPI is a transdiagnostic endophenotype
within the RDoC initiative, a similar cross-disorder analysis could be
applied to ascertain the relevance of this mouse phenotype. Further-
more, as most NPD-relevant genetic variation occurs in non-coding
regulatory regions (Rummel et al., 2023), future analysis will incorpo-
rate regulatory network information to understand the impact on PPI
protein-coding gene function (van Dam et al., 2018). In addition, as
genes operate in networks or pathways, a systems-level analysis of the
core PPI genes identified here will earmark Omnigenic model-relevant
peripheral genes through interaction networks.
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