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Introduction
Chronic obstructive pulmonary disease (COPD) pathogenesis is characterized by alveolar destruction 
(emphysema), airway remodeling, and chronic inflammation. Notable changes occur in the epithelial, 
endothelial, and inflammatory cell lineages (1–5). Cigarette smoke (CS) results in the activation and 
alteration of  a number of  cellular function pathways in the host, such as immune activation, protease 
production, cytoskeletal remodeling, and cell death (6–9). Prior studies using standard methods of  tran-
scriptomic analysis of  cell subpopulations in mouse and human lungs have informed our knowledge of  
COPD pathogenesis (1, 10). However, the understanding of  cell-specific changes and transcriptional gene 
interactions in COPD remain limited due to the associated difficulties in achieving further granularity 
within high-dimensional data. The traditional single-cell RNA sequencing analysis pipeline provides dif-
ferential gene expression however fails to identify gene interactions or latent factors that may be important 
for COPD pathogenesis.

To expand our understanding of  the epithelial cell-specific transcriptional changes contributing to CS-in-
duced lung injury, we utilized new unsupervised and supervised interpretable machine learning approaches 
to analyze single-cell RNA-Seq (scRNA-Seq) data from the mouse smoke exposure model. The CS expo-
sure model in mice recapitulates many of  the features of  human disease, including chronic inflammation, 
cytoskeletal remodeling, cellular senescence, and alveolar epithelial cell injury (5, 11–16) and allows for the 

Transcriptomic analyses have advanced the understanding of complex disease pathophysiology 
including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic 
causative factors has been limited by the integration of high dimensionality data. COPD is 
characterized by lung destruction and inflammation, with smoke exposure being a major risk 
factor. To define previously unknown biological mechanisms in COPD, we utilized unsupervised 
and supervised interpretable machine learning analyses of single-cell RNA-Seq data from the 
mouse smoke-exposure model to identify significant latent factors (context-specific coexpression 
modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled 
to protein networks uncovered a reduction in network complexity and new biological alterations 
in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was 
altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in 
plasma from patients with COPD, and smoke exposure resulted in enhanced GSN release from 
airway cells from patients with COPD. This method provides insights into rewiring of transcriptional 
networks that are associated with COPD pathogenesis and provides a translational analytical 
platform for other diseases.
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study of  earlier disease processes. First, we used latent variable model with overlapping clusters (LOVE), an 
unsupervised latent factor approach that we coupled to the analyses of  known protein-protein interactions to 
identify transcriptional signatures that were rewired by exposure to CS in the epithelial cell population. Next, 
we used significant latent factor interaction discovery and exploration (SLIDE) (17), a supervised interpre-
table latent factor regression approach on the expression data to uncover significant latent factors that can 
discriminate between epithelial cells exposed to air versus CS and provide insights into pathophysiological 
processes underlying the transcriptional rewiring. Using these interpretable machine learning approaches, 
we identified CS-induced transcriptional rewiring of  cytoskeletal-related genes including gelsolin (GSN).

GSN is an actin-modifying cytoskeletal protein that has been shown to be increased in plasma from 
healthy smokers compared with healthy nonsmokers (18) and in the urine of  individuals with α-1 antitrypsin 
deficiency–related COPD (19), and dysregulation has been implicated in other pulmonary diseases, includ-
ing interstitial lung disease and acute lung injury (20–22). The role of  GSN in CS-induced COPD remains 
unknown. Using the LOVE/SLIDE interpretable machine learning approach, we identified previously 
unknown epithelial cell–specific transcriptional rewiring of  the actin-modifying gene GSN in CS-related 
lung disease and demonstrate its function in epithelial cells in COPD.

Results
We analyzed scRNA-Seq profiles of  single cell lung suspensions from C57BL/6J mice exposed to 6 months 
of  air or CS using standard cell-centric analysis and a functional network-centric analysis called LOVE 
(Figure 1A). This standard smoke exposure model resulted in alveolar enlargement (emphysema) reflect-
ed as alveolar mean cord length, which we confirmed using 2 different analysis platforms (Supplemen-
tal Figure 1, A–D; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.180239DS1). After 6 months of  CS exposure, the final dataset consisted of  analysis of  39,633 total 
cells, an average of  4,954 cells per mouse (n = 4 mice per group; Total cells: 20,578 air; 19,055 smoke). 
We identified 34 clusters representing 22 distinct cell types in both control and CS-exposed lungs based on 
representative marker genes, demonstrating inclusion of  all known major cell lineages: myeloid, lymphoid, 
epithelial, endothelial, and stromal (Figure 1B). For cell type identification of  the derived clusters, we 
compared previously defined gene expression lists for mouse lungs to the differential expressed genes repre-
senting each cluster (23). Cell clusters were found to express canonical markers for the respective cell types 
(Figure 1C). The Scgb1a1 gene was detected in all cells in our analysis with increased expression levels in 
club cells, similar to that reported previously (23). We did not detect a distinct cluster of  goblet cells, which 
were included in the club cell cluster based on Bpifb1 gene expression. We observed only subtle changes in 
the majority of  cell marker genes with CS exposure (Figure 1C, red versus teal columns by cell type).

Cell set frequencies by cluster were determined to examine the effect of CS on the lung cell distributions. 
Cell counts were determined by the number of cells identified per cluster and proportion was determined based 
on the total number of cells assayed per mouse. Exposure to 6 months of CS resulted in significant changes in 
cell set frequencies in immune cell subsets, with an increase in alveolar macrophage (AM) clusters A (AMA) 
and B (AMB), and a decrease in CD4+ T cells (Supplemental Figure 2A). There was also a decreasing trend in 
frequency of type II pneumocytes, cluster A (Supplemental Figure 2B). Shifts in the transcriptional state of cell 
clusters was subtle in most clusters using UMAP projection (Supplemental Figure 2C). We next determined the 
transcriptional rewiring that occurs due to CS using interpretable machine learning and network approaches 
on single-cell transcriptomic data from epithelial cell subsets. We define transcriptional rewiring as changes in 
transcriptional state due to an external stimulus, such as CS.

Lung epithelial cell heterogeneity occurs after smoke exposure. After 6 months of  CS exposure, we identified 
6 distinct epithelial subclusters including alveolar type 1 pneumocytes (AT1), alveolar type 2 pneumocytes 
(AT2A and AT2B), ciliated, club, and mesothelial cells (Figure 1, B and C). There was a nonsignificant 
trend toward a decrease in the cell frequency of  the AT2A subcluster with CS (Supplemental Figure 2B, P 
= 0.17). Among epithelial cells, AT2A cells had the highest number of  DEGs, followed by club, ciliated, 
AT2B, and mesothelial cells (Supplemental Table 1). We compared the top 5 differentially expressed genes 
(DEGs) between 6 months of  air and CS exposure (Figure 2A, Supplemental Table 2), separating out 
unique genes from those that were up or downregulated in multiple cell types (Supplemental Figure 3, 
A–C). In AT1 and AT2 cell clusters, genes that were commonly upregulated included Scgb1a1 and Scgb3a1 
(secretoglobins), Cyp2f2 (cytochrome p450 2f2), and Selenbp1 (selenium binding protein 1) (Supplemental 
Figure 2A). Upregulation of  Cbr2 was also shared with other epithelial cell types and has been implicated in 
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alveolar epithelial cell plasticity (24). For AT1 cells, the top 5 unique downregulated genes (Figure 2A) were 
involved in pathways for folate and glucosamine metabolism (Mthfd1 and Ndst1), mitochondrial protein 
import (Tomm7), and signal transduction (Ankrd1 and Pigp). The top upregulated unique genes due to CS 
for AT1 cells included genes regulating surfactant metabolism (Sftpb and Scgb3a2) and cell cycle, including 

Figure 1. scRNA-Seq defines cell type profiles in a mouse model of COPD. C57BL/6J mice (n = 3 per group; 5,000 cells per mouse) were exposed to 6 
months of air or CS. Harvested lung tissue was dissociated into single cell suspensions and processed individually for scRNA-Seq as described. (A) Experi-
mental workflow and data analysis using standard Seurat cell clustering versus LOVE functional gene clustering. (B) Uniform Manifold Approximation and 
Projection (UMAP) representation of Seurat cell clustering identifying 34 cell clusters among the air and smoke exposed groups, notated with color and 
number labels (n = 4 individually sequenced mice per group). (C) Canonical cell marker genes identify distinct cell populations within myeloid, lymphoid, 
stromal, epithelial, and endothelial cell clusters. Groups are separated by exposure groups: air (red) or smoke (teal), n = 3 mice per group. Gene expression 
is reported as z-score by color histogram. 
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Cdkn1a (encodes for p21Cip1) and Rgcc (a cell cycle regulator that is induced by p53), the latter indicating an 
increase in the cellular senescence program (Figure 2A).

In the AT2A cluster, there was down regulation of  the growth factor–related genes (Areg), Mt-1 (metal-
lothionein-1), Lyz1 (lysozyme 1), and lipid and fatty acid biosynthesis (Scd1 and Elovl1), and upregulation 
of  genes involved in cellular detoxification and oxidative stress (Cyp2b10 and Prdx6), fatty acid metabolism 
(Acot1), and protein modification (Sult1a1 and Ctsh). AT2B cells had a downregulation of  mitochondrial 
subunits of  the electron transport chain for complex 1 (Ndufa1, Ndufa2, Ndufa3, Ndufa6, Ndufa7, Ndufb10, 
Ndufb11, Ndufc1, Ndufv3, Ndufs5, and Ndufs6), complex III (Urcqc1, Cox5a, Cox6c, Cox7b, and Cox7c), and 
ATP synthase (Atp5md, Atp5a1, Atp5d, Atp5o. Atp5e, and Atp5g1). There were also reductions in ribosomal 
subunits (Rpl41), Klf2 (kruppel like factor 2), Pltp (phospholipid transfer protein), and H2-Q6 (histocompati-
bility complex). The top 5 unique upregulated genes in AT2B represent matrix proteinases and matrix com-
ponents (Adam19 and Col4a3), and Pon3, Npnt, and Mbip. Polymorphisms in Adam19 have been associated 
with COPD development (25). These findings suggest a reduction in metabolic and translational programs 
in AT2 cells with increased focus on matrix interactions and kinase signaling.

Ciliated airway epithelial cells (CC) (Figure 2A) show downregulation of  Tuba1b (tubulin), Ifitm3 
(interferon-induced transmembrane protein 3), Swi5 (homologous recombination transcription factor), and 
genes involved in mitochondrial function (Atp5e and Chchd2). Further analysis of  smoke-induced chang-
es in CC gene expression demonstrate upregulation of  genes responsible for mucin production (Muc4), 
inflammatory responses to viral infection (Apobec3), Atp8a1 (ATPase phospholipid transporting protein 8a1, 
involved in ion transport), Akr1b8 (aldo-keto reductase family member), and Resf1 (retroelement silencing 
factor 1). Upregulation of  mucin genes has also been seen in human ciliated epithelial cells from patients 
with COPD (6, 26). Club cells showed upregulation of  cellular detoxification and oxidoreductase activity 
(Cyp1b1, Nqo1, and Aox1) and down regulation of  ribosomal components (Rpl39 and Rpl37), Scgb3a2, Lypd2 
(Ly6/Plaur domain containing protein), and Pglyrp1 (peptidoglycan recognition protein 1).

Epithelial cell-specific functional rewiring due to CS. Our initial analysis using a traditional transcriptom-
ic pipeline identifies differentially expressed genes and associated pathways. However, while informa-
tive, the DEG analyses are univariate, and downstream pathway analyses can only identify enrichment 
of  genes of  interest in known biological processes. They do not allow the identification of  previously 
uncharacterized cellular programs, at the transcriptional level, underlying CS-induced lung injury. To 
this end, we utilized a combination of  unsupervised and supervised machine learning approaches to 
characterize context-specific transcriptomic signatures underlying CS-induced lung disease in epithelial 
cells. First, we used LOVE, an unsupervised latent factor approach developed in-house (27), to uncover 
clusters corresponding to different functional states in these cells. There are 2 fundamental differences 
in our approach compared with the wide range of  clustering approaches used routinely on scRNA-Seq 
data. First, rather than directly clustering cells, our model formulation allows us to cluster genes into 
latent functional states, which generates a corresponding assignment of  cells to these latent states. Sec-
ond, other latent factor approaches that are either nonidentifiable (i.e., the factors are unstable and change 
based on initialization conditions) or make very limiting assumptions regarding the structure of  the data 
or data-generating mechanisms to provide identifiability of  the latent factors (e.g., orthogonality of  the 
latent factors). Our model comes with rigorous statistical guarantees regarding identifiability of  these 
latent states without making any of  these limiting assumptions (27). Among all epithelial cells, LOVE 
identified 12 clusters from the air scRNA-Seq data (Figure 2B) and 4 clusters from the smoke scRNA-
Seq data (Figure 2C). For each cluster, LOVE identified a set of  key marker genes that are representative  
of  the functional states of  these clusters. We then utilized what we consider to be a high-quality murine pro-
tein interactome network (28) to identify subnetworks involving proteins encoded by these marker genes. 
Coupling protein network analyses to key marker genes identified by LOVE from transcriptomic data pro-
vides insights into differences in key cellular programs across smoke and air in the epithelial cell types.

Our unsupervised LOVE analyses demonstrate distinct functional rewiring within epithelial cells due 
to CS (Figure 2, B and C). The epithelial air functional network (air exposed, healthy control mice) was 
highlighted by protein processing and cytoskeletal regulation (Rps27a, Myo1b, Tuba1a, Bag2, and Anxa1), 
transcriptional regulation (Eloc, Creb1, and Ncoa2), transmembrane ion transport (Scnn1a), and tyrosine 
kinase signaling (Zap70) (Figure 2B). With CS exposure, there was a decrease in the network complexity 
and rewiring of  genes controlling the protein processing network (Gsn, Rps27a, and Eef1a1) and emergence 
of  ribosomal biosynthesis as a dominant functional cluster (Figure 2C). The identification of  Gsn as a 
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primary node in the smoke exposure network is unique in COPD pathogenesis and was not previously 
identified using standard DEG analysis.

Epithelial cell–specific latent factors are predictive of  CS exposure. The prior unsupervised analyses focus 
on defining functional states specific to mice with and without CS exposure. We next utilized a super-
vised interpretable machine learning approach to elucidate latent factors (context-specific gene modules) 

Figure 2. CS results in transcriptional rewiring 
within epithelial cells in the mouse lung. (A) 
Heat maps of z-scores showing the top 5 unique 
downregulated and upregulated genes between 
air and smoke exposure groups for each epitheli-
al cell cluster. Groups are separated by exposure 
groups: air (red) or smoke (teal). Cell-type text color 
corresponds to the top 5 genes in the same color 
on the Y-axis label. Gene expression is reported as 
z-score by color histogram. (B and C) Epithelial cells 
were analyzed using a functional gene clustering 
model (LOVE) with functional gene clusters created 
for each exposure group. (B) Epithelial cells with air 
exposure, (C) Epithelial cells with 6 months smoke 
exposure. Functional groups were identified within 
air and smoke exposure groups. Gene nodes are 
shown as triangles, and predicted, experimentally 
validated interactor genes are shown as circles. 
Red-yellow shading represents the average gene 
expression intensity across all of the cells in that 
group. n = 3 mice per group.



6

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(21):e180239  https://doi.org/10.1172/jci.insight.180239

that are necessary and sufficient to discriminate between mice with and without CS exposure. Specifically, 
we used SLIDE to infer corresponding significant latent factors that provide insights into transcriptomic 
profiles underlying CS-induced lung injury among epithelial cell subtypes in our model. SLIDE is a first-
in-class interpretable machine learning technique for identifying significant interacting latent factors under-
lying outcomes of  interest from high-dimensional omic datasets. SLIDE makes no assumptions regarding 
data-generating mechanisms, comes with theoretical guarantees regarding identifiability of  the latent fac-
tors/corresponding inference, and has rigorous FDR control. SLIDE outperforms/performs at least as 
well as a wide range of  state-of-the-art approaches, including other latent factor approaches in terms of  
prediction (29). More importantly, it provides biological inference beyond prediction that other methods do 
not afford. These unique properties of  SLIDE help move beyond correlative biomarkers to transcriptomic 
signatures regulating key processes underlying CS-induced lung injury in COPD.

Using SLIDE, we performed analysis on AT2, AT1, and ciliated epithelial cell populations as identi-
fied by known cell markers within our scRNA-Seq dataset. Separate models were built for the different cell 
populations. Each of  the models was able to meaningfully discriminate cells from mice with or without CS 
exposure (models were significant in a k-fold cross-validation framework with permutation testing). With-
in AT1 cells, 3 standalone significant latent factors were identified (significant stand-alone latent factor) 
with 4 interacting latent factors (Figure 3A). Tsc22d3, Selenbp1, and Scgb1a1 were present in the standard 
DEG analysis and the SLIDE method. The significant stand-alone factors represent biological categories 
including cellular metabolism, the actin cytoskeleton and RNA regulation (Figure 3B). Within AT2 cells, 
we identified a stand-alone significant latent factor and 5 interacting latent factors (gene groups, Figure 
3C). These factors included genes that were present in the standard DEG analysis and characterized in 
COPD in the literature: Prdx6 (30, 31), Selenbp1 (32), Ctsh (32, 33), Scgb1a1 (26), and Ndufs2 (34) (Figure 3, C 
and D). However, SLIDE also uniquely identified genes that characterized CS exposure (Polr2e, Fam189a2, 
Aldoa, Smim1, Rasl11a, Adk, Atp1b1, Tmem243, Sult1a1, Npnt, and Eif4a) versus air exposure (Ndufs2) (Figure 
3C). Interestingly, several of  these genes would not be captured by traditional differential expression (DE) 
analysis as they are significant only in a multivariate setting (i.e., they are not significant by themselves but 
become significant in the context of  context-specific gene groups). These CS-associated genes correspond 
broadly to antioxidant responses, drug metabolism, and transcriptional and protein regulation. For ciliated 
cells, an increased number of  latent factors were identified compared with AT1 and AT2 cells. There were 
5 standalone significant latent factors were identified with 6 interacting latent factors (Figure 4A). While 
a number of  genes, Sftpc, Scgb1a1, Atp8a1, and Selenbp1, in the significant stand-alone latent factors were 
also captured by standard DE analyses, several genes were discovered by SLIDE for the first time. These 
CS-associated genes correspond broadly to cytoskeletal and vesicle regulation, antioxidant responses, drug 
metabolism, and RNA regulation (Figure 4B).

Evaluation of  the identified signatures in an orthogonal cohort. We then sought to further evaluate the robust-
ness of  the identified latent factors beyond the rigorous cross validation and permutation testing analyses 
outlined above by testing model performance on a completely orthogonal scRNA-Seq dataset (dataset B, 
GSE151674 as previously reported (15, 35)) in C57BL/6 mice exposed to 6 months of  air versus CS per-
formed by a separate research team. Specifically, we sought to assess the ability of  SLIDE (17) to distin-
guish between cells with and without CS exposure. This is an extremely stringent evaluation as the model 
was built solely using our data, i.e., both the structure and prioritization of  latent factors is using only our 
data. Indeed, the overall SLIDE model remained significantly predictive on dataset B, confirming the gen-
eralizability of  our findings. Further, Gsn was identified in our LOVE model as a previously unknown and 
centric latent factor in lung epithelial cells in the context of  CS (Figure 2C). Using our validation dataset 
B, Gsn was identified using SLIDE as a latent factor in the AT2 cells (Figure 5A). We next utilized the 
Gsn-centric latent factor gene set to determine if  using this gene set can predict the air versus smoke-ex-
posed groups within other epithelial cell types. Using the Gsn-centric gene list from AT2 cells (dataset B), 
we confirmed that SLIDE was able to predict the smoke-exposed group (Figure 5B) for AT2 cells in the 
original scRNA-Seq dataset (dataset A) and ciliated cells in dataset B (Figure 5C). In addition, the AT2 
gene list from dataset A could similarly predict CS exposure across cell types, specifically ciliated cells from 
the same dataset (Figure 5D). This shows that network shifts due to CS exposure, which are represented by 
cell-type specific latent factors, can be used as predictive markers in other cell types exposed to CS.

GSN is altered in human COPD. We next validated a role for Gsn as a proof  of  concept that new biolog-
ical targets can be identified using this computational analysis method. To determine which epithelial cells 
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express GSN, we analyzed scRNA-Seq data from our mouse CS model and from healthy versus COPD 
lung. In the mouse lung, the percent of  cells expressing Gsn is similar across cell types after CS exposure 
for 6 months (Figure 6A). In human lung, there was no statistically significant change in GSN expression 
in ciliated cells from COPD lungs (FC 0.135, P = 0.075), while there was a significant decrease in GSN 

Figure 3. CS exposure resulted in transcriptional rewiring in AT1 and AT2 cell populations. scRNA-Seq data from mice exposed to 6 months of air or CS 
(n = 3 per group; 5,000 cells per mouse) were analyzed using SLIDE for dataset A. (A) Standalone significant latent (marginal) factors for AT1 cells are in 
teal and interacting latent factors are in red. Genes comprising each latent factor by cell type are reported in the table and network connectivity maps with 
genes that characterized CS exposure in red/squares and air in blue/circles. (B) Latent factor genes and network map for AT1 cells, (C and D) SLIDE latent, 
and interacting factors identified for AT2 cells with latent factor genes shown that characterize CS (red/squares) versus air (blue/circles). 
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expression level in AT1 cells (Figure 6B, log2FC –0.713, P = 1.07×10–7). GSN expression was very low 
in AT2 cells with no significant change between COPD and controls (log2FC –0.066, P = 0.190). This 
reduction in GSN in AT1 cells may reflect that the majority of  the patients with COPD were not actively 
smoking, as lungs were procured at the time of  lung transplant. Human lung tissue staining demonstrated 

Figure 4. CS exposure resulted in transcriptional rewiring in ciliated cells. scRNA-Seq data from mice exposed to 6 months of air or CS (n = 3 per group; 
5,000 cells per mouse) were analyzed using SLIDE for dataset A. (A) Standalone significant latent (marginal) factors for ciliated cells (CCs) are in teal and 
interacting latent factors are in red. (B) Genes comprising each latent factor for CCs are reported in the table and network connectivity maps with genes 
that characterized CS exposure in red/squares and air in blue/circles.
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that GSN is decreased in ciliated cells of  the human COPD airway (Figure 6C) and confirmed that GSN is 
significantly reduced in the alveolar AT1 cells (podoplanin-positive cells) in COPD alveolar tissue (Figure 
6D and Supplemental Figure 4).

GSN has been previously reported to be increased in the serum of  patients with pulmonary fibrosis 
(21) and reduced in acute lung injury (22, 36). GSN can be released from cells as a plasma form (37). To 
determine if  GSN is released from airway epithelial cells, we exposed primary human bronchial epithelial 
cells (HBECs) that were grown and differentiated to ciliated cells at air liquid interface (ALI) to control air 
or gaseous CS by Vitrocell exposure chambers (Vitrocell Inc). HBECs were attained from people in a normal 
control group and patients with COPD. We tested cell lysates, basal chamber media, and apical cell surface 
liquid for total GSN by dot blot analysis. There was an increase in GSN in cell lysates after CS exposure in 
normal HBECs with an exaggerated increase in COPD HBECs (Figure 7A). In normal HBECs, CS caused 
GSN to be released into the basal chamber media (Figure 7B). In COPD HBECs, GSN release was signifi-
cantly higher into the basal chamber media and apical surface liquid compared with normal HBECs (Figure 
7, B and C). These findings support that GSN expression and release is induced by CS in ciliated airway 
epithelial cells and further augmented in COPD. We next determined the level of  GSN in human plasma 
from nonsmoking participants in the control group, active smokers without COPD, and patients with COPD 
by ELISA (Abcam Inc). GSN was significantly increased in the plasma of  patients with COPD (n = 79) 
compared with controls (n = 10) and smokers without airflow obstruction (n = 38) (Figure 7D). There was 
no significant difference in GSN between participants in the control group and smokers. Plasma fibrinogen 

Figure 5. A Gsn-centric latent factor gene set can predict the smoke-exposed group within other epithelial cell types. scRNA-Seq data from mice 
exposed to 6 months of air or CS (n = 3 per group; 5,000 cells per mouse) were analyzed using SLIDE for dataset B for AT2 cells. (A) Standalone signifi-
cant latent (marginal) factors for AT2 cells are in teal and interacting latent factors are in red. Genes comprising each latent factor by for the AT2 cells are 
reported in the table and network connectivity maps with genes that characterized CS exposure in red/squares and air in blue/circles. Of note, no air-as-
sociated latent factors (blue/circles) were present in this analysis. Cross prediction analysis was completed for between dataset A and B to determine if 
the CS treatment group could be identified. Area under the curve (AUC) is reported. Statistical comparison by 2-tailed Student’s t test with Mann-Whitney 
test for data in B–D. P values are noted. (B) AT2 dataset B predicting the CS group from AT2 cells in dataset A, (C) AT2 dataset B predicting the CS group 
from ciliated cells in dataset B, (D) AT2 dataset A predicting the CS group from ciliated cells in dataset A.
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level has been previously reported as a biomarker of  systemic inflammation in COPD (38, 39). GSN level 
correlated positively with plasma fibrinogen level in the same individual (Figure 7E, P = 0.040).

We next determined the effect of  GSN overexpression and exogenous GSN on epithelial cell migration 
and proliferation. In a 2D wound (scratch) assay using Beas-2b cells, GSN overexpression (OE) resulted in 
a decrease in wound healing over 12 hours (Figure 8A, P = 0.0008). GSN overexpression quantification is 
shown in Supplemental Figure 5. SLIDE analysis demonstrated transcriptional connections between GSN, 
cytokeratin 8 (KRT8), and cytokeratin 18 (KRT18) (Figure 5A). We examined this interaction through 
overexpression of  GSN in Beas-2b cells in the context of  CS extract exposure (10% CSE). GSN OE result-
ed in a decrease in KRT8 with a significant interaction between GSN OE and CSE treatment (P = 0.009 
by 2-way ANOVA) (Figure 8, B and C). KRT18 was significantly reduced by CSE exposure in GSN OE 
cells (P = 0.015) but not control cells (P = 0.22) (Figure 8, B and C). We found that exogenous recombinant 

Figure 6. Gsn is enriched and increases in ciliated cells in mouse lung after CS and human COPD lung. Expression of Gsn was plotted from scRNA-Seq 
data from (A) Dataset A, epithelial cells isolated from mouse lung, 6 month smoke exposure model (n = 3 mice per group; 5,000 cells per mouse) and (B) 
human control versus COPD lung epithelial cells. Data are shown as mean gene expression in each group and fraction of cells with expression. Cells were 
isolated from lung samples from patients with COPD (GOLD stage IV, n = 6, ages 58–68, 5 males and 1 female) and normal nonsmoker donor controls (n = 4, 
ages 56–68, 3 males, 1 female). (C and D) Human lungs from people in the control group or patients with COPD was stained by IF and imaged on a confocal 
microscope n = 3–4 participants per group (8 images per participant). Data represent normalized mean grey value ± SEM. Statistically significant P values 
are noted. Statistics by 2-tailed Student’s t test with Mann-Whitney post test. Representative images are shown for (C) airway epithelium stained for GSN 
(magenta) and EPCAM (green). Scale bars: 50 μm (left) and 10 μm (right). (D) Alveolar epithelium stained for GSN (magenta) and HT2-280 (green). Scale bar: 
100 μm. GSN staining intensity was quantified in HT2-280–negative, podoplanin-positive alveolar tissue. Mean grey intensities (per measured area) were 
normalized to the healthy control. Group data were split into high (Hi) and low (Lo) groups by using the mean value for the healthy control group.
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human GSN (rhGSN) promoted Beas-2b cell proliferation at 10 and 30 μg/mL (*P = 0.0004, **P = 0.0145) 
(Figure 8D). In the wound assay, rhGSN did not alter wound healing over 12 hours in Beas-2b cells (Fig-
ure 8E). rhGSN increased the gene expression of  KRT8 (P = 0.0078) with a trending but nonsignificant 
increase in KRT18 and ACTA2 (α-smooth muscle actin) (Figure 8F).

Figure 7. GSN is released by airway epithelial cells due to CS exposure and levels are increased in the plasma of patients with COPD. Primary human 
ALI cultures were exposed to gaseous CS by Vitrocell with n = 2 donors per group (biological replicates) and n = 2–9 inserts per donor (technical replicates). 
GSN quantity was determined by dot blot from (A) ALI cell lysates, (B) basal chamber media, and (C) apical chamber media. Data represent mean ± SEM. 
Statistically significant P values are noted. Statistics by 1-way ANOVA with Kruskal-Wallis post test. (D) GSN concentrations in human plasma were deter-
mined by ELISA for nonsmokers (n = 10), smokers without COPD (n = 38) and participants with COPD (n = 154). Data represent mean ± SEM. Statistically 
significant P values are noted. Statistics by 1-way ANOVA with Kruskal-Wallis post test. (E) Plasma GSN concentration compared with fibrinogen concen-
tration in the same participant. Statistically significant P values are noted. Statistics by 1-way ANOVA with Kruskal-Wallis post test. Linear regression with 
P = 0.040. Grey, controls; Blue, participants with COPD.
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Discussion
This study provides what we believe to be new functional evidence of  epithelial cell type–specific tran-
scriptional rewiring that occurs in the context of  CS exposure and identified a role for GSN in CS-in-
duced COPD. We utilized unsupervised and supervised interpretable machine learning approaches, LOVE 
and SLIDE, to identify notable latent genes that are associated with our outcome of  interest: CS-induced 
emphysema in the mouse model. The CS mouse model is a foundational model for the study of  CS-in-
duced lung injury and emulates many of  the features of  human COPD including alveolar tissue destruc-
tion (emphysema) and cytoskeletal remodeling, airway hyperplasia, and chronic inflammation (4, 5, 13, 
14)). Critically, SLIDE moves beyond biomarkers to transcriptomic latent factors underlying biological 
changes due to CS exposure, as demonstrated with GSN in the human airway epithelium. This study 
therefore demonstrates feasibility and application of  interpretable machine learning approaches for murine 
scRNA-Seq datasets to identify otherwise unknown genes and pathways involved in human COPD.

Our network analyses coupled to functional cluster identification using LOVE demonstrate that CS 
exposure results in functional rewiring of  homeostatic transcriptional profiles in epithelial cells. A key 

Figure 8. Endogenous overexpression of GSN and exogenous GSN alter cellular migration, proliferation, and KRT8 dynamics. Beas-2b cells were 
analyzed for wound healing, cellular proliferation, and cytokeratin expression in the context of GSN overexpression (GSN OE) or exogenous recombinant 
human GSN (rhGSN). (A) Wound healing assay with GSN OE. Wounds were measured at time 0 and 12 hours. Percent wound healing was calculated. 
Representative images are shown. Data represent n = 3–6 per group technical replicates and 2 separate experimental replicates. Statistical comparison by 
2-tailed Student’s t test with Mann-Whitney test with P values noted. Images were acquired at 4X magnification. (B) Western blot for KRT8 and KRT18 
was performed on Beas-2b cells with GSN OE compared with control, with or without 10% CSE exposure (24 hours). Data are representative of 2 separate 
experiments (n = 3 per group per experiment). (C) Quantification of Western blot band intensity for KRT8 and KRT18. Normalized data are representative 
of 2 separate experiments (n = 6 per group total). Statistics by 1-way ANOVA with Kruskal-Wallis post test with P values noted. (D) Cell proliferation was 
determined using the Cyquant assay in cells exposed to rhGSN at 10 or 30 μg/mL compared with media or BSA (30 μg/mL). Cells were assessed at 48, 72 
and 96 hours. Simple linear regression analysis was performed. P values represent (*P = 0.0004, **P = 0.0145). (E) Wound healing assay was performed on 
Beas-2b cells treated with rhGSN at 10 or 30 μg/mL compared with cells treated with media or BSA (30 μg/ml). Wounds were measured at 0 and 12 hours. 
Percent wound healing was calculated. Representative images are shown. Data represent n = 6 wells per group. Statistical comparison by 1-way ANOVA 
with Kruskal-Wallis post test. (F) Beas-2b cells were exposed to rhGSN at 30 μg/mL for 24 hours with subsequent RT-PCR for KRT8, KRT18, and ACTA2. n = 
3 biological replicates per group. Statistical comparison by a parametric 2-tailed Student’s t test.
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advantage of  the network approach coupled to latent factor analysis is the identification of  functional mod-
ules, rather than only cell states, that are perturbed by CS. The rewiring of  the functional modules across 
epithelial cells suggests the interplay of  rewired cell-intrinsic and cell-extrinsic signaling in CS exposure. 
We found a reduction in the network complexity with CS exposure. This supports that CS causes the bio-
logical network across and within epithelial cell types to lose complexity, resulting in further loss of  adapta-
tion potential, robustness, and resilience in the epithelial cell network. Future studies could investigate and 
confirm this network deterioration in other cell types.

Dysregulation of  GSN at the protein level has been demonstrated in small studies of  healthy smokers 
(18) and genetic α-1 antitrypsin deficiency–related COPD (19). However, this study is the first to demon-
strate alterations of  GSN at the transcriptional and protein levels in CS-induced lung disease and COPD 
in mice and humans. GSN may be part of  a molecular phenotype or signature of  actin cytoskeletal remod-
eling in response to cellular injury or damage. Alternatively, cellular release of  GSN may be a protective 
response to cellular injury. GSN can act as an actin scavenger by binding free actin subunits, which may be 
released into the extracellular space and plasma after cell damage in disease states such as sepsis and acute 
respiratory distress syndrome (40, 41). Recombinant human plasma GSN is also protective against acute 
lung injury due to bacterial infection (42, 43). Intracellular GSN effects are likely different than secreted 
GSN. Our in vitro wound assay suggests that GSN OE inhibits cell migration likely related to altered actin 
dynamics, while exogenous recombinant human GSN does not. However, exogenous GSN does promote 
cell proliferation. SLIDE analysis identified new transcriptional connections between GSN, KRT8, and 
KRT18, which was further supported by in vitro expression changes in KRT8. These KRT8 expression 
changes differed between GSN OE and exogenous GSN exposure. Keratins are abundant intermediate 
cytoskeletal filaments that regulate a number of  cellular functions including cell shape and proliferation. 
They have also been implicated in pathogenesis and as markers of  unique transitional epithelial cell states 
in the lung (44, 45). Further studies in human COPD and related mouse models will be important to clarify 
the implications of  GSN on epithelial cell function and GSN-keratin interactions.

A limitation of  the study is that gene expression may not always reflect protein concentration and func-
tion, therefore, validation of  gene and protein expression are required. Single cell isolation is dependent 
upon isolation protocols, to which some cells may be more sensitive or difficult to recover. Variability is 
also introduced when different sequencing platforms are utilized. However, our cross-prediction analysis 
supports that SLIDE has strong predictive power both within and between complex sequencing datasets.

In summary, this study provides a transcriptional assessment of  the CS exposure animal model for 
COPD research that complements the emerging transcriptional profiles established for human COPD. 
After CS exposure, there is transcriptional rewiring of  epithelial cell types with a reduction in network 
complexity that informs future mechanistic studies and potential therapeutic avenues in COPD. Further-
more, we also successfully applied both the unsupervised latent factor–based LOVE and SLIDE models to 
murine scRNA-Seq data, which revealed functional transcriptional rewiring of  the cytoskeletal network 
and validated a biological role for GSN in human COPD. This model can be applied to other disease-based 
datasets for biological discovery.

Methods
Sex was considered as a variable. Human samples included both males and females, which were distributed 
evenly between normal control and COPD groups when possible. Mouse smoke exposure models utilized 
female mice, which demonstrate increased sensitivity to the emphysema phenotype due to smoke exposure.

Human lung tissue and plasma samples. Human lung tissue samples were obtained from The Airway Cell 
and Tissue Core at the University of  Pittsburgh (supported by P30 DK072506, NIDDK, and the CFF RDP 
to the University of  Pittsburgh). Donor lung samples were obtained from the Center for Organ Recovery 
and Education (CORE) at the University of  Pittsburgh. Donor lung samples originated from lungs deemed 
unsuitable for organ transplantation. All COPD samples were from lungs explanted from patients with 
COPD who had undergone lung transplantation under an approved protocol. Lung tissues were stored at 
–80 °C until use. Plasma samples and clinical data consisted of  participants in the COPD Specialized Cen-
ters of  Clinically Oriented Research (SCCOR) cohort at the University of  Pittsburgh. SCCOR is a single 
center COPD cohort recruited between July 2008 and June 2010 to study of  the molecular and cellular 
basis of  COPD subphenotypes. All SCCOR participants are 40 years of  age or older with a minimum of  
10 pack-year tobacco history at enrollment. Plasma samples were analyzed from 79 SCCOR participants 
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with COPD, defined by a postbronchodilator forced expiratory volume in 1 second to forced vital capac-
ity ratio (FEV1/FVC) of  < 0.70. For control groups, 10 SCCOR participants without evidence of  airflow 
obstruction on spirometry (controls) and 38 participants with active smoking but no evidence of  COPD 
were selected. All samples were deidentified prior to acquisition for experimental testing.

Animal smoke exposure and sample collection. Animals were housed according to standard housing 
criteria. C57BL/6J mice were obtained from Jackson Laboratories (female mice at 10–12 weeks of  
age, n = 3–4 per group) and subjected to the smoke of  4 unfiltered cigarettes per day (lot# 3R4F; 
University of  Kentucky), 5 days a week for a duration of  6 months, using a smoking apparatus that 
delivers targeted CS to single mice isolated in individual chambers (7, 46). The controls in each group 
were exposed to room air alone. These mice were caged separately and housed in the same facility 
as their smoke-exposed counterparts. At the completion of  each experiment, mice were euthanized 
by CO2 inhalation, the chest was opened, and the trachea was cannulated. For scRNA-Seq data com-
prising dataset A, the left lung lobe was tied off, extracted, and placed in complete medium (DMEM 
with 10% FBS and 1% HEPES, 1M) on ice. The remaining lung lobes were inflated with 10% buffered 
formalin at a constant pressure of  25 cm H2O for 10 minutes. The lungs were then ligated, excised, 
and fixed in formalin for 24 hours before washing in PBS, storing in 70% ethanol, and embedding in 
paraffin. Serial midsagittal sections were obtained for histological analysis.

All animal experiments for dataset B collection were performed in accordance with the Animal Care 
and Use Committee of  Helmholtz Zentrum München. Animals were housed according to standard hous-
ing criteria. C57BL/6J mice (female mice at 8–12 weeks of  age) were subjected to full-body smoke expo-
sure for 50 minutes twice daily (lot# 3R4F; University of  Kentucky), 5 days a week for a duration of  6 
months. The controls in each group were exposed to room air alone. At the completion of  each experiment, 
mice were euthanized and lungs were collected for single cell isolation as previously reported (15, 35).

Mouse lung morphology analysis. Mouse lungs that were inflation fixed as described were imaged with 
brightfield at 20× magnification. Images were masked to block out airways, blood vessels, and intraalveolar 
immune cells or debris. Using an ImageJ–based script we called “WaffleFry”, each masked image was over-
laid with horizontal and vertical lines interspaced at 10-pixel intervals. Chord length measurements were 
automatically processed vertically and horizontally across this image grid. A chord length measurement 
was recorded when the subsequent pixel had tissue density (rather than airspace). Chord lengths of  under 
8 pixels were discarded to prevent capture of  nonalveolar spaces. This analysis tool is similar to previously 
validated programs (7, 46). It has been uploaded to Github at https://github.com/ckliment/WaffleFry.git 
(Commit ID: 0097d2b1e5ca6bc15ae97f769030a0109bccf62c).

Images were also analyzed using a published deep learning algorithm called “Deepmasker” to mea-
sure alveolar spaces with exclusion of  intraalveolar inflammatory cells and blood vessels, as previously 
described (47), with comparable results (Supplemental Figure 1).

Mouse single-cell lung processing and scRNA-Seq. 2 sets of  scRNA-Seq data were analyzed for this study: 
dataset A from the University of  Pittsburgh and dataset B from the Institute of  Lung Health and Immunity, 
Helmholtz Munich, Germany.

For dataset A, the left lung lobe from each mouse was further processed to isolate single cell suspen-
sions. Lung tissue was first minced into small pieces and placed in 0.5 mL dispase solution (50 U/mL, Sig-
ma-Aldrich) in a conical tube. The tissue was incubated at room temperature on a gentle rocker for 45 min-
utes. The tissue was then placed in a petri dish with 7 mL complete medium with 10 μL DNase-I solution 
(1 mg/mL, Sigma-Aldrich), teased apart, and placed on a rocker for 12 minutes to liberate adherent cells. 
Liberated cells were then passed through a 70 μm strainer into a conical tube with subsequent washing of  
the strainer with 5 mL of  media. This process was repeated with a 40 μm strainer. Cells were spun down 
at 400g for 10 minutes at 4°C. Cells were resuspended in 6 mL of  red blood cell lysis buffer, incubated for 
5 minutes, and spun down. Cell pellets were resuspended in 0.5 mL PBS with 0.4% BSA (Thermo Fisher 
Scientific), filtered a final time through a 40 μm FloMi filter tip (Bel-Art), and kept on ice. Cells were count-
ed and 5,000 cells were processed. Individual cells were barcoded with library preparation using 3primeV2 
reagents by 10X Genomics Chromium System per the manufacturer’s protocol. Next generation RNA-Seq 
was performed on the libraries using an Illumina NextSeq-500 by the UPMC Genome Center (Pittsburgh, 
Pennsylvania, USA). Raw data were demultiplexed using Cell Ranger 5.0.1 and the mkfastq function and 
then aligned to 10X Genomics’ mouse reference genome mm10-2020-A using cellranger count. Data can 
be downloaded from the Gene Expression Omnibus database with the accession code GSE277533.
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Dataset B was collected, processed, and published as previously reported (15, 35). C57BL6 mice were 
exposed to 6 months of  air or whole-body CS (5 days per week, Cigarette lot# 3R4F; University of  Ken-
tucky). Drop-Seq technology and computational pipeline was used for the dataset, as previously reported. 
Raw sequencing output and count matrices after basic QC filtering can be downloaded from the Gene 
Expression Omnibus database with the accession code GSE151674.

scRNA-Seq analysis and clustering. Data from datasets A and B were analyzed using the R package Seurat 
V3.2.3 and R V4.0.2 (48–50). Cells were filtered for greater than 200 genes, fewer than 3,000 genes, and 
less than 25% mitochondrial genes. Data normalization was performed using the standard Seurat workflow 
followed by clustering and visualization using uniform manifold approximation and projection (UMAP). 
Marker genes for each cell type were identified using the Seurat FindAllMarkers function, and cluster cell 
identities were manually assigned using canonical cell markers and previously established gene marker lists 
(23). Differentially expressed genes comparing CS-treated and air control cells were identified using the 
FindMarkers function, an implementation of  a nonparametric Wilcoxon rank sum statistical test. Genes 
with P value less than 0.05 and absolute lnFC greater than 0.1 were used as inputs for pathway enrichment 
analysis. Gene ontology analysis was performed using WebGestalt, which utilizes the Fisher Exact Test, 
identifying genes with a FDR less than 10% (51).

LOVE and SLIDE models for latent factor analysis. We first removed transcripts and cells exhibiting high 
sparsity in the transcriptomic count matrix from Seurat. Specifically, we discard transcripts with over 99.5% 
zeros and cells with more than 90% zeros across all datasets. LOVE, a 3-step algorithm, then identifies 
latent factors in an unsupervised way (27). The first step leverages the data covariance matrix to determine 
the structure and quantity of  latent factors. The subsequent step identifies the gene members of  each latent 
factor, which include both pure and mixed variables. The final step allocates weights to the mixed variables 
for each latent factor, informed by the findings of  the first 2 steps.

LOVE was first employed on the complete dataset for each cell type. We then performed a nonoverlap-
ping assignment of  genes to latent factors according to the allocation matrix outputted by LOVE, which 
details the weight of  each gene within each latent factor. Specifically, each gene was exclusively attributed 
to the latent factor where it has maximal weight. This definitive assignment process revealed 2 principal 
latent factors for all datasets: one predominantly composed of  homeostasis and house-keeping genes, and 
another comprising genes with potential functional differentiation.

To refine the data resolution, we applied LOVE in a nested manner to the 2 distinct feature groups. Fol-
lowing the post-LOVE analysis and a repeat of  the definitive assignment, we isolated the most significant 
50 features in the allocation matrix from each latent factor, both from the house-keeping gene analysis and 
the differential functional gene analysis. To further mitigate noise, we calculated the median expression of  
each transcript using nonzero values and excluded those transcripts whose expression resides in the lowest 
quantile under both experimental conditions. For every cell type and experimental condition, we construct-
ed a protein-protein interaction network based on the interactions among the chosen genes by using the 
“OR” logic. Networks were visualized through Cytoscape.

SLIDE analysis. The scRNA-Seq data underwent initial processing via the Seurat pipeline, as previously 
detailed. For each cell type, we began by applying sparsity filtering to remove cells and genes exhibiting 
high levels of  sparsity. Subsequently, for each distinct cell type, which included AT1, AT2, and ciliated cells, 
we performed the SLIDE analysis to identify cell type–specific latent factors that underlie air and smoke 
conditions. SLIDE is an interpretable machine learning approach designed to uncover significant interact-
ing latent factors that underlie outcomes of  interest within high-dimensional omic datasets (17). For each 
distinct cell type, which includes AT1, AT2, and ciliated cells, SLIDE is a 2-step process: the first involves 
a 10-fold cross-validation with 20 replicates to uncover latent factors (LOVE); the second step focuses on 
pinpointing significant independent and interactive latent factors with the iterative multistage knockoffs 
method. Spec (a frequency-based parameter to quantify the stability of  the multi-stage knockoff  approach) 
and iteration numbers were set as 0.2 and 300, respectively, for all cell types.

The top weighted gene members corresponding to each latent factor are presented in Figure 3. These 
members are a union of  the top 10 weighted genes derived from the allocation matrix produced by SLIDE 
and the 10 highest correlated genes between the gene expression and the air/smoke condition. The correla-
tion of  each gene is quantified by calculating the AUC.

Correlation networks are visualized by employing the QGraph package in R. Vertices within the net-
works represent the top-weighted member in the corresponding latent factor. The intergene correlations are 
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calculated using the Pearson correlation coefficient. To maintain clarity and relevance in the visualization, 
any correlation with a value below 0.1 is excluded from the plot.

Human lung scRNA-Seq and analysis. Lung samples from patients with COPD (GOLD stage IV, n = 6, ages 
58–68, 5 males and 1 female) and normal nonsmoker donor controls (n = 4, ages 56–68, 3 males, 1 female) 
were enzymatically digested as previously described (52), enriched EpCAM+ lung cells of  the distal lung 
were separated out, and scRNA-Seq was performed on the EpCAM+ lung cells. The sequencing results were 
analyzed using the Cell Ranger pipeline from 10x Genomics (v3.1.0, STAR v2.5.3a) and the Scanpy package 
(v1.8.0) (53). Reads were aligned to a hg38 human reference genome (GRCH38.97). Barcodes with less than 
400 or more than 20,000 detected transcripts were excluded from the single cell RNA library. Cells with a high 
proportion of  mitochondrial-encoded transcripts were excluded. Cells with high background mRNA contam-
ination were detected using the R library package SoupX (54) and also excluded from analysis. Variable genes 
were selected and ranked, and 3,426 genes identified as occurring in at least 3 samples were used as input for 
principal component analysis. After preprocessing, cells were clustered using standard cell markers. AT2 cells 
were specifically identified using cells positive for surfactant proteins SFTPC and SFTPB, rather than Epcam, 
to improve cell identification. Differential gene expression was calculated following leiden cell clustering and 
batch alignment with BBKNN (55). UMAPs were generated in Seurat (50). UMAPs and dotplots showing 
gene expression were generated via scanpy’s pl.umap() and pl.dotplot() function, respectively. 

GSN plasma analysis. GSN quantification was completed on human plasma samples using a GSN 
ELISA (Abcam, cat# ab270215). Samples were diluted at 1:5,000 and analyzed according to the man-
ufacturer’s instructions.

Human ALI cultures and smoke exposure. HBECs from normal and COPD lungs were attained from 
the University of  Pittsburgh cell core as previously described (56, 57) with a protocol approved by the 
University of  Pittsburgh Investigational Review Board. Samples were from n = 2 donors per group 
(biological replicates) and 2–9 inserts per donor (technical replicates). HBE cells were grown to 80%–
90% confluence in collagen-coated flasks then seeded onto type I collagen-coated (50 μg/mL in 0.02 N 
acetic acid) transparent PET Transwell inserts (0.4 μm pore, 24-well insert size 0.33 cm2 at a density of  
approximately 5–6 × 105 cells/cm2. Once a confluent monolayer had formed on the inserts, the apical 
medium was removed, and cells were grown at ALI (58) over 3–6 weeks for differentiation into ciliated 
airway epithelium prior to experimental use.

The Vitrocell smoke exposure chamber was used to expose HBEs grown at ALI to humidified air or 
CS. A single exposure is considered air for 16 minutes or 2 cigarettes over sixteen minutes using an ISO 
standard protocol. ALI cultures were exposed to 2 cigarettes followed by a 2-hour break in a cell culture 
incubator (5% CO2, 37°C) then 2 additional cigarettes. After the second exposure, 100 μL of  sterile PBS 
containing 1 × Halt protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific no. 1861281) 
was added to the apical cell surface and cells were incubated for 1 hour prior to harvest of  apical liquid, bas-
al media, and cell lysates. Protease inhibitor cocktail was added to the basal media prior to collection. Cell 
lysates were collected using 1 × RIPA lysis buffer (Pierce no. 89900) supplemented with 1 × RNAase-free 
DNAase (Thermo Fisher Scientific no. EN0521) and 1 × Halt protease and phosphatase inhibitor cocktail 
and lysed by sonication. Samples were analyzed by dot blot analysis as described below.

Tissue and cell immunofluorescent staining. Immunofluorescent staining of  lung tissue and cells in culture 
was completed as previously described (46). Lung tissue from human (normal control and COPD lungs) 
and mouse lung (air and CS exposed) were formalin fixed and paraffin embedded. Human lung tissue 
was analyzed from 3 patients in a control group (nonsmokers without lung disease) and 3 patients with 
COPD (GOLD stage 4). Prior to staining and analysis, tissue sections were deparaffinized and rehydrated 
by a series of  xylene and ethanol washes. Antigen retrieval was completed using sodium citrate buffer, pH 
6.0 at 95°C. Tissue was permeabilized with 0.3% Triton X-100 and 1% BSA in PBS and blocked with 2% 
BSA in PBS. Human and mouse lung sections were stained for mouse anti-GSN (1:100, Invitrogen no. 
27752), rabbit anti-epcam (1:100, Abcam no. ab223582), HT2-280 (Terrace Biotech, no. TB-27AHT2-280), 
podoplanin (Developmental Studies Hybridoma Bank, Univ. of  Iowa, Anti-Pdpn no. 8.1.1) and secondary 
Alexa fluorophore antibodies, including goat anti-mouse Alexa 555 (Invitrogen, cat. A32727), goat anti-
mouse Alexa 647 (Invitrogen, cat. A21235), goat anti-rat Alexa 647 (Invitrogen, cat. A21247), and goat 
anti-rabbit Alexa 647 (Invitrogen, cat. A21245). Control sections were stained with nonimmune rabbit IgG 
(no. 2729P, Cell signaling). All tissue sections were stained with Hoechst at 10 mg/mL for 10 minutes. 
Sections were mounted with Prolong Gold (Molecular Probes, Thermo Fisher Scientific) and cured for at 
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least 24 hours at 4°C prior to imaging. Images were acquired on a Nikon A1R confocal microscope using 
a 60 × objective.

After immunofluorescent staining, human lung sections (n = 3 healthy controls and n = 3 COPD, 
GOLD stage 4) were analyzed for GSN expression using ImageJ in airway epithelial cells or alveolar tissue. 
Images were acquired from different regions of  the lung representing airways or alveolar tissue (n = 6–8 
images each). Images were divided into 4 quadrants, and areas to be analyzed were sampled from HT2-
280–negative stretches of  podoplanin-positive alveolar tissue from each image quadrant and from the cen-
ter of  each image (5 areas per image). Macrophages and alveolar type 2 cells were avoided during analysis 
based on cell morphology and HT2-280 staining, respectively. Mean grey value for each area was recorded 
and compared between samples from individuals who were healthy and who had COPD.

Dot blot and Western protein analysis. For dot blot analysis, a PVDF Immobilon membrane (Bio-Rad no. 
162-0177) was activated using methanol then washed in distilled, deionized water for 5 minutes 3 times. 
The membrane was layered with soaked blotting papers into the Dot Blot apparatus and 50 μL of  each 
sample (apical surface liquid, basal media or cell lysates) were blotted onto a membrane in triplicate using 
gentle vacuum for 60 seconds. Blots were incubated in blocking solution (5% milk in PBS-tween) for 1 
hour at room temperature followed by 3 rinses in PBS-Tween (PBS-T). The membrane was subsequently 
incubated with primary antibody for 1 hour at room temperature on a rocker, washed 5 times in PBS-T for 
5 minutes, then incubated with secondary antibody for 1 hour at room temperature on a rocker followed 
by repeat wash steps. Western blot analysis was completed according to previously published methods (59). 
Primary antibodies used were targeted against GSN (1:500, Invitrogen no. 27752), DDK (1:1000, Invitro-
gen no. MA1-9187), KRT8 (1:500, DSHB no. TROMA-1) and KRT18 (1:500, Abcam no. ab93741). Sec-
ondary antibodies used were Invitrogen GOXMO HRP high XADS (no. A16078). Blots were developed 
using SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific no. 34580) and 
imaged using a ChemiDoc XRS+ (Bio-Rad) detector.

GSN overexpression, exogenous GSN exposure, and wound healing assay. BEAS-2B cells, a human bron-
chial epithelial cell line (ATCC), were grown and maintained in DMEM with Nutrient Mixture F-12 
(Genesee Scientific) and supplemented with 5% FBS and 1% penicillin/streptomycin(Genesee Scien-
tific). Cells were used between passage 3–8. Cells were cultured on tissue culture–treated polystyrene 
plates and were propagated when 70%–90% confluent. Cells were propagated by trypsinization with 
0.25% trypsin-EDTA (Gibco no. 25200-056) and neutralized by trypsin neutralizing solution (Gib-
co no. R-002-100). For GSN OE, cells were transfected with 2.3 nM plasmid DNA for GSN (GSN_
OHu20043D_pcDNA3.1+/C -(K)-DYK, Clone ID:OHu20043D, catalog no. SC1200, Genscript) or 
control (pcDNA3.1-C-(k)DYK, catalog no. SC1317, Genscript) using Lipofectamine 3000 (Invitrogen) 
per the manufacturer’s protocol. Select experiments were exposed to CS extract (CSE) as described 
below. Transgene expression was confirmed using Western blot analysis according to previously pub-
lished methods (59) with GSN antibody (1:500, Invitrogen no. 27752) and DDK antibody (1:1000, Invi-
trogen no. MA1-9187). Analysis of  KRT8 and KRT18 by Western blot was assessed using anti-KRT8 
and anti-KRT18 antibodies above. Beas-2b cells were exposed to exogenous recombinant human GSN 
(rhGSN, Cytoskeleton Inc.) for 24–96 hours at concentrations of  10 or 30 μg/mL. Media alone or ster-
ile BSA (at 30 μg/mL) were used as control conditions. Cells were analyzed for cell proliferation using 
the Cyquant assay, wound healing assay as described (analysis at time 0 and 12 hours), and real time 
PCR analysis at 24 hours for KRT8, KRT18, and ACTA2.

CSE. Research cigarettes were purchased from the University of  Kentucky (Lot no. 1R6F). CSE 
was prepared in 30 mL of  DMEM with 1% penicillin/streptomycin drawn into a 60 mL syringe (Ther-
mo Fisher Scientific). A single cigarette was fixed on the top of  the syringe and burned. The plunger 
was used to draw the smoke into the syringe followed by shaking to promote dissolution in the media. 
The CSE solution was filtered through a 0.45 μM filter. The absorbance of  the CSE was measured 
using a cuvette at an O.D. of  310 nm with microplate reader (SpectraMax, M2, Molecular Devices). 
An O.D. value of  0.2 is approximately equal to 100%. The CSE was adjusted to 10% and used for cell 
exposure for 24 hours.

Real-time PCR. RNA was isolated from cells and converted to cDNA for real-time quantitative PCR 
(q-PCR) using LightCycler 480 SYBR Green I Master mix (Roche) and specific primer combinations on 
a CFX384 Real-Time system C1000 Touch Thermal Cycler (Bio-Red). Primers were purchased from Inte-
grated DNA technologies, IDT including ACTA2: Hs.PT.56a.2542642; KRT8: Hs.PT.58.22681010; KRT18: 
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Hs.PT.58.19252426 and GAPDH: Hs.PT.39a.22214836. Each sample using primers pairs was measured at 
least in duplicate. Relative fold change was calculated by normalizing to GAPDH.

Statistics. Mean densitometry (ImageLab Software) and all other quantitative data (mean ± SEM) were 
normalized to appropriate control groups. Statistical analyses were completed using GraphPad Prism 9.3. 
Data were assessed for sample distribution. If  samples were normally distributed, then data are analyzed 
using ANOVA with Fisher’s LSD post test. If  the data were not normally distributed, nonparametric anal-
yses, including Kruskal-Wallis, Tukey’s, and/or Mann-Whitney were used. The association between circu-
lating plasma GSN were assessed with linear regression analysis. For all statistics, a P value less than 0.05 
was considered to be statistically significant.

Study approval. Human lung tissue samples were obtained from The Airway Cell and Tissue Core at the 
University of  Pittsburgh. The tissue core and biorepository efforts are approved through the University of  
Pittsburgh Institutional Review Board (IRB) through the Human Research Protection Office (Pittsburgh, 
Pennsylvania, USA). The IRBs cover the procurement, processing, and distribution of  human biospeci-
mens (Total Transplant Care Protocol; IRB no. 2017H0309 and IRB PRO14010265) and the collection and 
distribution of  clinical data (Honest Broker Protocol; IRB no. 2017H0310). Plasma samples and clinical 
data consisted of  participants in the COPD Specialized Centers of  Clinically Oriented Research (SCCOR) 
cohort, which is approved by the IRB at the University of  Pittsburgh (IRB no. 19090239, Pittsburgh, Penn-
sylvania, USA). All animal experiments for dataset A collection were approved by and performed in accor-
dance with the Institutional Animal Care and Use Committee (IACUC) of  the University of  Pittsburgh 
(Pittsburgh, Pennsylvania, USA).

Data availability. All data associated with this study are available in the main text or the supplemental 
materials including the Supporting Data Values File. scRNA-Seq data from C57BL/6 mice exposed to air 
or CS for 6 months is available from Geo Omnibus, GSE277533. Contact Corrine Kliment (ckliment@pitt.
edu) for study correspondence and material requests.
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