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Urban air pollution represents a significant threat to public health and the environment, with nitrogen oxides, 
ozone, and particulate matter being among the most harmful pollutants. These contribute to respiratory and 
cardiovascular diseases, particularly in urban areas with high traffic and elevated temperatures. Machine learning, 
especially deep learning, shows promise in enhancing the prediction accuracy of prediction of pollutant’s 
concentrations. However, the “black box” nature of these models often limits their interpretability, which is 
crucial for informed decision-making. Our study introduces a Temporal Selection Layer technique within deep 
learning models for time series forecasting to tackle this issue. This technique not only improves prediction 
accuracy by embedding feature selection directly into the neural network, but also enhances interpretability and 
reduces computational costs. In particular, we applied this method to hourly concentration data of pollutants, 
including particulate matter, ozone, and nitrogen oxides, from five urban monitoring sites in Graz, Austria. These 
concentrations were used as target variables to predict, while identifying the most relevant features and periods 
that affect prediction accuracy. Comparative analysis with other embedded feature selection methods showed that 
the Temporal Selection Layer significantly enhances both model effectiveness and transparency. Additionally, we 
applied explainable techniques to evaluate the impact of weather and time-related factors on air pollution, which 
also helped assess feature importance. The results show that our approach improves both prediction accuracy 
and model interpretability, leading finally to more effective pollution management strategies.
1. Introduction

Ambient air quality has become a pressing environmental concerns 
of our time, with significant implications for human health [1], ecosys-
tems [2], and global climate [3]. Among the multitude of pollutants that 
contaminate the atmosphere, nitrogen oxides (𝑁𝑂 and 𝑁𝑂2), ozone 
(𝑂3), and particulate matter (𝑃𝑀) stand out due to their pervasive 
presence and severe health effects. Nitrogen oxides, primarily gener-
ated by vehicles and industrial processes [4], are key precursors in the 
formation of ground-level ozone, a potent pollutant that forms through 
complex photochemical reactions involving volatile organic compounds 
under sunlight [5]. This process is particularly intensified in urban envi-
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ronments, where high traffic density and increased temperatures create 
ideal conditions for ozone accumulation [6].

Particulate matter is another major concern, especially 𝑃𝑀2.5 (par-
ticulate matter with a diameter below 2.5 μm) and 𝑃𝑀10 (particulate 
matter with a diameter below 10 μm), which differ in size but share the 
common trait of being small enough to be inhaled into the human respi-
ratory system [7]. 𝑃𝑀2.5 poses a risk as it can penetrate into the lungs, 
leading to serious health conditions. Recent studies have also shown that 
exposure to 𝑃𝑀2.5 is correlated with an increased risk of developing 
various mental disorders, including depression and anxiety, highlight-
ing the broader systemic risks associated with fine particulate matter 
exposure [8]. On the other hand, 𝑃𝑀10 particles, while larger, are still 
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harmful and can cause respiratory issues and irritation of the eyes, nose, 
and throat. In certain industrial regions, exposure to 𝑃𝑀10 has been as-
sociated with elevated levels of heavy metals, which pose significant 
health risks, especially to vulnerable populations such as children [9].

In the case of 𝑂3, while essential in the stratosphere for protecting 
the Earth from harmful ultraviolet radiation, becomes a dangerous pol-
lutant at ground level. It not only aggravates respiratory conditions, but 
also plays a significant role in climate warming due to its greenhouse 
gas properties [6]. The significant impact of these pollutants on public 
health is evident, with the World Health Organization estimating that 
it is responsible for approximately 4.2 million premature deaths each 
year, an alarming statistic that underscores the magnitude of this issue 
[10].

In response to the growing concern over air quality, there is a need 
to model their ambient concentrations for monitoring purposes, un-
derstanding sources, short- and long-term trends [11] and mutual re-
lationships [12]. Machine learning algorithms came in handy due to 
their data-driven nature, while first-principle models still serve to under-
stand the spatial distributions of pollutants. Despite their effectiveness 
in improving prediction accuracy, deep learning (DL) models often face 
significant challenges related to their lack of interpretability, which is 
crucial for informed decision-making [13]. Building trust, enhancing the 
understanding of decision-making processes, and ensuring accountabil-
ity in high-stakes applications are critical challenges that eXplainable 
Artificial Intelligence (XAI) addresses effectively [14].

To address this issue, our study applies a recent technique referred 
to as Temporal Selection Layer (TSL) within DL models such as Feed-
Forward (FF) and Long-Short-Term Memory (LSTM) for time series 
forecasting. This technique not only improves prediction accuracy by 
embedding feature selection directly into the neural network but also 
reduces computational complexity and enhances model interpretability 
[15]. Because this process is embedded within the model, it has an ad-
ditional property by offering insights into the features deemed relevant 
and irrelevant. This strategy improves the interpretation of the model 
reducing their black box nature.

Our main contribution focuses on predicting the airborne particle 
concentration using data from urban monitoring stations, with the aim 
of enhancing prediction precision and identifying the most relevant fea-
tures and periods that contribute to prediction accuracy. Specifically, 
we applied the proposed methodology to public data from Austrian gov-
ernment sources [16], covering the period from January 2014 to March 
2022. In particular, the data collected includes measurements of 𝑃𝑀10 , 
𝑁𝑂, and 𝑁𝑂2 in five urban areas of Graz, Austria.

Additionally, we compared the performance of standard deep learn-
ing models FF and LSTM, both with and without the embedded TSL. 
These methods are compared against classical techniques such as De-
cision Tree (DT) Lasso (L1), K-Nearest Neighbors (KNN), and eXtreme 
Gradient Boosting (XGB) models. To assess the importance of features 
in the best-performing model, we also applied the well-known XAI tech-
nique named SHapley Additive exPlanation (SHAP) [17], which provide 
valuable insights into how past endogenous and exogenous features in-
fluence the predictions. SHAP assigns a numerical importance score to 
each input variable that contributes to the model’s prediction, based on 
Shapley values from game theory [18]. This technique has been success-
fully applied in several domains, including agriculture, cybersecurity, 
healthcare, finance, and natural language processing, among others, to 
enhance model transparency and interoperability [19,20].

The structure of this paper is as follows: Section 2 examines the latest 
developments in the explainability of deep learning models, particularly 
in the context of air pollution prediction. Section 3 details the materi-
als and methods used in this research, covering the model fundamentals, 
TSL and SHAP techniques, as well as the input data and the metrics used 
for model comparison. It also provides an overview of the hyperparam-
eter space and the optimization process. Section 4 outlines and analyzes 
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the primary findings from the experiments. Lastly, Section 5 summa-
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rizes the conclusions of the study and outlines potential directions for 
future research.

2. Related work

Several studies have applied machine learning to assess environ-
mental impacts. For example, the authors in [21] used random forest 
regression to assess air quality changes during the COVID-19 lockdown, 
finding significant reductions in 𝑁𝑂2 and 𝑃𝑀10 due to decreased 
traffic, while 𝑂3 levels increased. This highlights the effectiveness of 
predictive models in analyzing environmental changes during reduced 
economic activity. Similarly, [22] demonstrates the effectiveness of 1D 
convolutional neural networks in modeling daily airborne particle con-
centrations, highlighting the potential of deep learning in environmental 
monitoring.

The increasing complexity of machine learning models used in en-
vironmental forecasting, particularly deep learning models, has under-
scored the need for greater transparency and interpretability. Recent 
work has begun to explore the role of XAI techniques in improving the 
transparency and explainability of these models. For instance, [23] used 
the Extra Trees model to predict ground-level ozone and provided an 
interpretable rule-based framework, identifying key factors such as air 
temperature and pollutant concentrations.

These examples show that XAI techniques are crucial in making 
black-box models more understandable, particularly in the context of 
time series forecasting.

Explainability methods in deep learning and multivariate time series 
forecasting can generally be categorized into two main families: Ante-
hoc and Post-hoc [24].

• The Ante-hoc family focuses on model interpretability, providing 
insights into the internal workings of the models to explain the 
behavior learned during training. Over the years, several types of 
Ante-hoc methods have emerged, including approaches based on 
feature importance, decision rules, and time series decomposition.
– Feature importance methods offer a numerical or binary rep-

resentation of a feature’s relevance at either a local or global 
level. Examples of these methods include tree-based models [25], 
attention-based deep learning architectures [26], and embedded 
feature selection techniques [27] among others.

– Decision rules methods extract the conditions that lead to a final 
decision, similar to the way decision tree models make predic-
tions. Some examples are the GRU-Tree model [28] and Neuro-
fuzzy approaches [29].

– Decomposition methods decompose the original time series into 
its primary components, such as trend, seasonality, and residu-
als. The N-BEATS architecture [30] is a common example in this 
category.

• The Post-hoc family explains models using XAI techniques after the 
model has been trained. In time series forecasting, the most com-
mon Post-hoc methods are based on feature importance. Notable 
examples include SHAP [31], GRAD-CAM [32], LIME [33], and as-
sociation rules [34].

Feature selection has become a critical aspect of XAI, as it enhances 
both the interpretability and performance of machine learning models 
[35,36]. Embedded feature selection methods, in particular, integrate 
the selection process within the model training, leading to more efficient 
models that are both more transparent and better performing. These 
approaches not only enhance the interpretability of the model but also 
reduce computational costs.

In recent years, time series forecasting models have achieved no-
table success in various domains [37]. However, as these models are 
increasingly applied to more complex and critical problems, the de-
mand for accuracy and interpretability has grown. This has underscored 

the importance of feature selection and XAI techniques [38], which are 
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Fig. 1. Flowchart depicting the sequence of steps in the proposed experimental framework.
essential to enhance transparency and understanding in temporal data 
analysis. By focusing on the most relevant features, especially within 
the temporal dimension, these methods ensure that the models remain 
efficient and transparent, leading to more understandable and reliable 
predictions [39].

Several studies have specifically investigated their use in analyzing 
air pollutant levels. For example, [12,21] applied permutation impor-
tance was applied to explain feature selection during model training. 
However, this approach has limitations, as it can overlook important 
features and combinations of features.

In response to these challenges, the TSL methodology was introduced 
as an embedded feature selection approach to improve deep learn-
ing model interpretability. Tested on several classification and regres-
sion datasets from fields like Health, Economics, and Environment, TSL 
demonstrated notable improvements over traditional feature selection 
techniques, offering reliable and efficient results [38]. TSL outperformed 
baseline models and filter-based methods across most datasets with sim-
pler parametrization and less information [40]. Applied to ozone level 
prediction in Spain, TSL improved model accuracy and interpretability, 
achieving a 9% effectiveness increase compared to models such as Lasso 
and Decision Tree [15].

Based on the review of the existing literature, it is clear that the 
integration of feature selection techniques and XAI methods has be-
come increasingly important in the field of environmental modeling. As 
demonstrated by recent studies, embedded feature selection methods 
not only enhance model transparency but also improve their predictive 
capabilities. In this work, we focus specifically on these techniques to 
further develop interpretable and efficient models for air quality fore-
casting.

3. Materials and methods

This section details the materials and methods used in this study, be-
ginning with a comprehensive description of the data sources and the 
preprocessing steps necessary for effective analysis. It also presents the 
model selected for comparative analysis, highlighting the key features 
of TSL and the post hoc explainability technique used to improve both 
3

performance and interpretability. In addition, this section outlines the 
evaluation metrics to assess the effectiveness of the models. Fig. 1 illus-
trates the flowchart followed during the experimentation.

3.1. Data description

A long term (almost nine years) environmental, pollution, and 
weather data set from 5 measuring stations from the Austrian city of 
Graz (Austria) namely Sud, Nord, West, Ost, and Don Bosco was pro-
cessed and deposited at [41]. The measurements, taken hourly, covered 
the time period from January 2014 to March 2022. The stations have 
been described in [21] and [22]. The concentrations of 𝑁𝑂2, 𝑁𝑂, 𝑂3, 
and 𝑃𝑀10 were compiled into a table alongside with meteorological 
variables from ground-level measurements from the different stations. 
Refer to the original paper for a complete list of ground-level meteoro-
logical features.

This study extends previous research by incorporating ERA5 reanal-
ysis data, in addition to these features. ERA5-Land is a global meteo-
rological dataset covering the period from 1950 to the present with a 
0.1°×0.1° resolution [42,43]. ERA5-Land refines simulated land fields 
and ERA5 atmospheric variables such as air temperature and humidity. 
The data was retrieved through the Copernicus Climate Data Store API 
and aggregated into a daily frequency. Table 1 contains a complete list 
of the features used. For further information, please refer to the origi-
nal ERA5 source [44]. The features have been calculated and presented 
in [45].

Understanding pollution levels in advance is crucial for planning and 
taking action during periods of higher concentrations. Therefore, the 
problem requires a minimum of a 24-hour forecast that provides hourly 
pollution levels, with predictions made at the start of each day.

A Bayesian Ridge model was employed to impute missing values, 
treating each feature as a function of the others in a round-robin man-
ner. Once the missing values were filled, the lag features were generated 
using meteorological data from all five stations. This involved using a 
12-hour window, where the median of the 12 most recent measurements 
was calculated to represent the value for each hour [12]. To avoid am-
biguity between 0° and 360°, wind direction was expressed in terms of 
x and y coordinates. Wind speed at a height of 10 meters was derived 

from its u and v components.
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Table 1

Table of variables and their measuring units.

Feature Abbreviation Unit

10m u-component of wind u10 m s-1

10m v-component of wind v10 m s-1

2m temperature d2m K
Soil temperature level 4 stl4 K
Snow cover snowc %
Snow depth sd m
Snow depth of water equivalent sde m of water equivalent
Snowfall sf m of water equivalent
Snowmelt smlt m of water equivalent
Temperature of snow layer tsn K
Forecast albedo fal dimensionless
Surface net solar radiation rsn J m-2

Surface sensible heat flux slhf J m-2

Surface thermal radiation downwards strd J m-2

Surface latent heat flux slhf J m-2

Surface net thermal radiation strd J m-2

Surface latent heat flux sshf J m-2

Total precipitation tp M
Windspeed ws m s-1

3.2. Models

In this study, a diverse set of models was been used to evaluate their 
performance in the problem at hand. These models belong to the most 
commonly studied family of methods in the literature for multi-horizon 
time series forecasting of air pollution, chosen for their effectiveness 
and efficiency. The model families considered include: linear, lazy, tree-
based, ensemble, and neural networks. Given the high dimensionality of 
the problem, interpreting the relevant features is crucial. For this reason, 
a representative model from each family is selected, with embedded 
feature selection methods included where applicable.

The Decision Tree (DT) [46] model represents the tree-based family. 
It is widely used and effective, having demonstrated success in a wide 
range of problems.

The Lasso (L1) [47] model represents the linear family. Known for 
its embedded feature selection through regularization, Lasso has been 
extensively studied and shown to perform well in various forecasting 
tasks.

For the lazy family, the Nearest Neighbors (KNN) [48] model is 
chosen due to its simplicity and efficiency in terms of training time. 
However, a limitation of KNN is the absence of an embedded feature 
selection mechanism.

Ensemble models cover a wide range of techniques. In this study, 
two of the most common ensemble methods from the literature are cho-
sen. Random Forest (RF) [49] represents the bagging approach and is 
one of the most effective methods in machine learning. Extreme Gradi-
ent Boosting (XGB) [50] represents the boosting approach and provides 
state-of-the-art results for many tabular data problems. However, nei-
ther RF nor XGB offers embedded feature selection and both lack inter-
pretability.

Two different neural network architectures are also selected: Feed-
forward (FF) [51] and Long Short-Term Memory (LSTM) [52]. Both have 
shown a strong performance in time series forecasting problems [53,54]. 
However, like ensemble models, neural networks do not inherently offer 
interpretability or feature selection.

To address this issue, each neural network models are enhanced 
by incorporating a Time Selection Layer (TSL) [15] resulting in TFF 
and TLSTM models. TSL is an embedded feature selection method that 
improves the interpretability and predictive performance of these mod-
els by filtering out irrelevant features, including those in the temporal 
domain. It achieves this by performing element-wise multiplication be-
tween binarized weights and the input tensor, effectively excluding fea-
tures that do not contribute to the prediction. Positioned at the top of 
the network architecture, this layer is formally defined as illustrated in 
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the Equation (1):
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𝑇𝑆𝐿(𝑋𝑀𝑥𝐷) =𝐻(𝑊 𝑀𝑥𝐷)◦𝑋𝑀𝑥𝐷 (1)

In this scenario, “◦” represents the Hadamard product. Here, 𝑊
stands for the weight matrix linked to historical data and 𝐷 represents 
the count of features. 𝐻 functions as a gate, determining feature selec-
tion by approximating the Heaviside step function.

TSL is integrated into the neural network and is trained through 
backpropagation, and during training, features with zero weights in the 
selection mask are automatically excluded. Lasso regression is applied 
as regularization to avoid removing important features, penalizing the 
number of selected features based on the number of forecasting steps, 
thereby enhancing both model performance and transparency.

3.3. Model evaluation

In this study, we assess the performance of the models using a set of 
widely recognized metrics in forecasting tasks in the context of air pol-
lution. These metrics include the Mean Absolute Error (MAE), which is 
the most common metric in forecasting problems, Root Mean Squared 
Error (RMSE), the most common metric in air pollution contexts, and 
Weighted Absolute Percentage Error (WAPE), which provides an inter-
pretable metric in percentage measure (range [0, 1]). Each metric offers 
a different perspective on the error obtained by each model which would 
help to understand their strengths and weaknesses.

In addition, the required time to fit the different models has been 
measured in terms of seconds. This time will provide insights about the 
ability of the models to scale to high-dimensional problems. Note that 
due to the early stopping technique applied during the training, this 
time measures the convergence time which has no relationship with the 
number of parameters present in the model.

Evaluating a model properly requires providing the most reliable 
metrics that measure not only its efficacy but also its ability to adapt 
to unknown scenarios. Therefore, a Blocked Cross-Validation (BCV) ap-
proach is employed with four different folds, each containing data from 
six consecutive years. For instance, the first block is composed of the 
following splits: years [2014, ..., 2017] for training, year 2018 for vali-
dation, and year 2019 as testing. Note that as we use the BCV, the size 
of every split is always the same. Thus, the second fold would contain: 
years [2015, ..., 2018] for training split, year 2019 for validation split, 
and year 2020 as testing split. This process is repeated for the next two 
folds modifying the years contained in every split.

The evaluation is performed over the trained models in each fold, 
evaluated on the test set. With this approach, we can avoid providing 
more unbiased metrics that evaluate the generability and robustness of 
the models.

3.4. Hyperparameter space

The models described in Section 3.2 typically rely on a predefined 
set of hyperparameters that perform well in a wide range of problems. 
However, fine-tuning these hyperparameters can significantly improve 
performance in most cases. In this section, we detail the bounds estab-
lished for the various models used in our study, which are dictated by 
computational or technical limitations of the respective libraries.

Table 2 outlines the configuration for each model. The first entry 
includes the window size hyperparameter, which relates to the prepro-
cessing applied to the input data and is included for clarity. Tree-based 
methods share the maximum depth hyperparameter, with the same 
range across models, except for XGB, where the range is constrained 
by the underlying technology. The L1 model only requires the regu-
larization term (also known as alpha), which is set between zero (no 
penalization, linear model) and one. For the KNN model, the number of 
neighbors is the key hyperparameter, with an upper bound of 32 deemed 
appropriate for this study.

Neural networks require more hyperparameters than other methods 

but can deliver strong results, as discussed in Section 4. Since very deep 
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Table 2

Hyperparameter ranges defined during tuning. 
Note that the first row is an hyperparameter com-
mon to every model.

Model Hyperparameter Range

- Window size [24, 72]
DT Maximum depth [2, 32]
L1 Regularization [0, 1]

FF & LSTM

Layers [1, 3]
Units [4, 2048]
Dropout [0, 0.5]
Learning rate [0.0001, 0.01]
Batch size [16, 128]

TSL Regularization [0.01, 1e-7]
KNN K [2, 32]
RF Maximum depth [3, 32]

# Estimators [2, 100]
Min samples [2, 256]

XGB Maximum depth [1, 16]
# Estimators [2, 32]
Learning rate [0, 1]
Min samples [2, 256]

architectures are not typically necessary for time series forecasting prob-
lems, the upper limit was set to three layers. The number of units, capped 
at 2048, was chosen to be as large as computationally feasible, given the 
high dimensionality of the input features. Standard ranges were applied 
for Dropout, learning rate, and batch size, as commonly found in the 
literature.

Lastly, the range for the TSL layer was selected based on insights 
from previous studies on similar problems, which helped inform the 
most suitable parameters.

3.5. Hyperparameter optimization

The models used in this work require specific configurations that sig-
nificantly influence their final performance. These configurations, often 
referred to as hyperparameters, determine aspects such as model design, 
constraints, and the learning process. To identify the optimal configu-
ration, an optimization algorithm is needed to explore the search space 
and evaluate different setups.

In this study, Bayesian optimization is used to find the best set of 
hyperparameters for each model due to its proven effectiveness in recent 
research [55,56]. The key inputs for this algorithm are the objective 
function to be optimized (discussed in Section 3.3) and the search space 
(outlined in Section 3.4), both of which have been previously detailed.

Throughout multiple iterations, the chosen model is trained and the 
algorithm updates the distribution of hyperparameters based on the 
performance of previous configurations. This update is guided by the 
average MSE metric, calculated across different validation years (refer 
to Section 3.3). Once the maximum number of iterations is reached, 
the configuration that delivers the best performance is selected. In this 
study, a maximum of 25 iterations was considered, which, with 4 val-
idation folds, resulted in the evaluation of 100 different models. Addi-
tionally, the algorithm employed the default Upper Confidence Bound 
(UCB) acquisition function, with a 𝜆 value of 2.576, to balance explo-
ration and exploitation.

3.6. Post-hoc explainability with SHAP

Feature selection provides some highlights about the relevant fea-
tures which increase the interpretability of the black-box model. How-
ever, we cannot quantify the influence of the relevant features on the 
final predictions. This may be especially important in high dimensional 
spaces where there may be thousands of relevant selected features. In 
addition, the relevant features are not linked with any output in specific 
but with all the different outputs at the same time, which can hinder the 
5

interpretation.
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Table 3

Best model configuration and metrics averaged for each fold. The 
best model for each metric is highlighted in bold.

Model MAE MSE RMSE WAPE Time (min)

DT 11.942 357.718 18.769 0.483 31.176
FF 11.340 330.139 18.048 0.455 4.735
KNN 12.472 380.953 19.118 0.497 0.007

L1 12.149 506.006 21.242 0.495 2169.395
LSTM 11.269 318.169 17.644 0.450 3.104
TFF 10.275 283.675 16.740 0.415 25.653
TLSTM 11.406 315.868 17.592 0.460 6.211
RF 11.008 292.894 16.993 0.444 2317.936
XGB 17.395 592.307 24.312 0.711 36.840

For a deeper understanding, we applied SHAP [17], a post-hoc ex-
plainability technique grounded in cooperative game theory. This tech-
nique aims to provide more information, indicating the level of influence 
of each feature on the prediction. SHAP assigns a Shapley value [18] to 
each feature, which quantifies its average marginal contribution to the 
model’s predictions. This method not only identifies the relevant fea-
tures but also provides insights into their global importance, thereby 
enriching the interpretability of the model.

Due to the post-hoc nature, the explanation process starts from the 
trained model and an analysis dataset. The analysis dataset is obtained 
by selecting the 20 centroids from the K-Means algorithm to select the 
most representative instances. After that, as the SHAP technique em-
ploys a local explanation approach, the relevance is calculated for each 
dataset instance. Finally, the relevance is averaged for each instance to 
obtain the final relevance for each feature.

In the case of models that embed a feature selection process, ad-
ditional post-processing must be applied to obtain accurate relevance 
values. One flaw of the SHAP technique is that its importance values 
can be misleading when two features are correlated. For that reason, re-
moved features can have a non-zero Shapley value if correlated with a 
relevant feature, which is likely to happen in time series data. For that 
reason, the Shapley value for removed features is set to zero for the 
models that embed a feature selection process.

4. Experimental results and discussion

In this section, the main results are described after the experimenta-
tion performed. These results are divided into several sections to analyze 
the performance from multiple perspectives using a general-to-specific 
structure. Firstly, Section 4.1 presents the results obtained for each 
model using the best configuration found. Section 4.2 details the con-
figuration for each model presented in previous section. The error is 
specified and divided by each target in Section 4.3. The best model found 
starts to be explained in Section 4.4 describing the selected features. 
Section 4.5 quantifies the relevance of each feature on the predictions. 
Finally, Section 4.6 shows graphically the predictions performed by the 
model compared with the real evolution.

4.1. Best results

The efficacy obtained in terms of our selected evaluation metrics is 
reported in Table 3. Each row represents a model acronym, while each 
column represents a different metric. The metric values represent the 
average values for each predicted target in the testing fold, using the 
same model configuration. Additionally, the table includes the average 
training time in minutes for the complete four-fold experiment.

In general, the error metrics highlight the complex, non-linear na-
ture of the problem. Simpler models like L1, KNN, or DT exhibit 3% to 
8% more error compared to the more complex models considered in our 
study. This increased error may be due to the models’ inability to ad-
equately adapt to the varying distribution of targets in the multi-step 
forecasting problem. An exception is the XGB model, which, despite be-

ing considered a complex model, produced the worst errors overall. This 



Results in Engineering 24 (2024) 103290M.J. Jiménez-Navarro, M. Lovrić, S. Kecorius et al.

Table 4

RMSE metric obtained for each model over the tested years. The best model by year 
is highlighted in bold.

Year DT FF KNN L1 LSTM TFF TLSTM RF XGB

2019 18.5 16.8 17.6 15.1 16.6 16.0 16.1 16.1 24.9
2020 17.1 16.2 16.7 16.0 15.3 15.1 14.9 15.6 23.3
2021 16.8 17.6 16.2 33.6 16.6 15.9 17.7 15.8 23.2
2022 22.6 21.6 25.9 20.3 22.1 19.9 21.6 20.5 25.8
could be a consequence of the GPU configuration used during the experi-
mentation. Notably, the XGB library defined different methods that may 
have sacrificed precision for greater acceleration.

Focusing on complex models, we can distinguish three groups: neu-
ral networks, neural networks with TSL, and RF. The results for FF and 
LSTM architectures are quite similar, with a near 0.5% error difference 
in terms of WAPE. The inclusion of TSL in the architectures does not 
seem to have a positive effect on the LSTM model and even deteriorates 
its efficacy. However, adding TSL to the FF model results in a significant 
improvement, averaging a 4% reduction in error metrics. RF surpasses 
every model except the TFF model, closely matching the performance 
of the simple LSTM model. Nevertheless, there is a clear distinction be-
tween the TFF and all other models, and the TFF model is the best in 
terms of error reduction.

In terms of efficiency, the high dimensionality of the problem posed 
a significant scalability challenge for the different models. Models with 
poor scalability experienced substantial increases in training time de-
spite their simplicity. KNN achieved the best efficiency, as expected, 
because its algorithm does not require a training process, unlike other 
models. Tree-based models experienced a large increase in training time, 
especially the random forest, which was the most inefficient. The L1 
model was the second most inefficient, likely due to the complexity of 
optimizing it using the coordinate descent algorithm. Finally, neural net-
works demonstrated excellent scalability for this problem. However, the 
inclusion of TSL considerably increased the training time.

After studying the general results averaged by year, Table 4 breaks 
down this average into its components. The rows represent the different 
testing years, and the columns represent the various models. The cell 
values indicate the RMSE metric.

There is a significant increase in error between the first three tested 
years and the last one, supporting the idea of a substantial concept drift 
in 2022. This phenomenon helps to evaluate the models’ generalizability 
and robustness, rather than just their memorization ability. No recog-
nizable pattern has been found in previous years, suggesting a gradual 
concept drift over time.

As presented in Table 3, the best models are neural networks and 
random forests. Notably, L1 achieved remarkable results in the first two 
years, potentially establishing it as one of the top methods. However, 
its lack of generalization led to a significant error increase in 2021. Our 
study evaluates not only the plain effectiveness of the models but also 
their robustness over different years. A method that provides notable 
results in specific scenarios is not suitable for real-world applications. 
A robust, generalizable, effective, and efficient method is the desirable 
solution.

Focusing on TFF and RF, the RMSE shows minimal differences in 
2019 and 2021, with only a 0.1 difference. The improvement in 2020 
and 2022 sets the TFF as the best model.

In conclusion, the general metrics evaluated indicate that the TFF 
model is the best option, offering the optimal balance between efficacy 
and efficiency. Additionally, the error evolution over the years high-
lights it as the most robust and generalizable method.

4.2. Best hyperparameters

As a result of the Bayesian optimization process, the best configura-
tion was identified for each model. These configurations correspond to 
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the results presented in the previous section.
Table 5

Best hyperparameter configurations found. Note that W denotes window size.

Model W Configuration

DT 84 Max depth: 4

FF 32
# Layers: 3, # Units: 252, Batch size: 112,
Learning rate: 0.0015, Dropout rate: 0.3736

KNN 66 K: 29

L1 120 Apha: 0.0274

LSTM 32
# Layers: 3, # Units: 252, Batch size: 112,
Learning rate: 0.0015, Dropout rate: 0.3736

RF 124 Max depth: 38, # Estimators: 59, Min samples: 39

XGB 167
Max depth: 1, # Estimators: 22,
Learning rate: 0.0, Min samples: 238

TFF 166
# Layers: 4, # Units: 1533, Batch size: 51,
Learning rate: 0.0003, Dropout rate: 0.3433, Regularization: 0.0075

TLSTM 94
# Layers: 3, # Units: 113, Batch size: 30,
Learning rate: 0.0022, Dropout rate: 0.0097, Regularization: 0.0027

Table 5 presents each model along with its window size (W) and 
configuration. Generally, most models require a window size exceeding 
half of the maximum value, indicating that this problem demands a large 
number of lags to extract relevant information from the dataset.

For tree-based models, the key factor affecting performance was the 
maximum depth allowed. The poor performance of XGB is explained by 
its depth of one and a learning rate of zero, leading to underfitting. The 
decision tree increased its depth to four, which, as previously discussed, 
was insufficient for good results. The random forest achieved the best 
results with a maximum depth of 38 decisions, reflecting the complexity 
of the problem and the large number of features.

The KNN model used 29 neighbors, suggesting underfitting due to 
excessive smoothing of predictions.

In the L1 model, the only optimized parameter was the alpha regu-
larization factor, which had a low value. This indicates that the model, 
like the random forest, considers a large number of features.

Interestingly, the neural networks without TSL had almost the maxi-
mum allowed layers, although the number of units per layer was signif-
icantly below the maximum. The batch size and dropout rate were close 
to their maximum allowed values, while the learning rate was half the 
default for the Adam optimizer.

The TSL models, particularly the TFF model, differed notably from 
other neural networks. The TLSTM model had the same number of lay-
ers, emphasizing the problem’s complexity, but reduced all other param-
eters except for the learning rate. Its low regularization term suggests 
that a large number of features were selected.

The TFF model stood out by using the maximum number of lay-
ers and units, indicating its superior performance was due to increased 
complexity. The best TFF configuration supports the idea that the com-
plexity of this model allows for more effective processing and extraction 
of useful information with fewer input features. Additionally, its regu-
larization term was nearly three times that of the TLSTM, likely due 
to enhanced complexity, enabling more refined information extraction 

with fewer features.
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Table 6

Error by horizon for the best model.

Target MAE MSE RMSE WAPE

Ost∣NO 11.182 376.817 19.412 0.771
Ost∣𝑁𝑂2 8.095 114.199 10.686 0.358
Ost∣𝑃𝑀10𝐾 8.484 188.076 13.714 0.348
West∣NO 9.116 276.128 16.617 0.862
West∣𝑁𝑂2 8.260 125.059 11.183 0.372
West∣𝑃𝑀10𝐾 7.342 116.435 10.790 0.358
Nord∣𝑂3 16.944 471.407 21.712 0.382
Nord∣NO 5.858 134.276 11.588 0.987
Nord∣𝑁𝑂2 7.081 94.468 9.719 0.394
Nord∣𝑃𝑀10𝐾 6.657 92.502 9.618 0.352
Sud∣𝑂3 17.331 487.797 22.086 0.455
Sud∣NO 15.670 840.574 28.993 0.770
Sud∣𝑁𝑂2 8.301 125.539 11.204 0.350
Sud∣𝑃𝑀10𝐾 7.997 142.005 11.917 0.353
DonBosco∣NO 19.620 1035.696 32.182 0.573
DonBosco∣𝑁𝑂2 9.256 148.446 12.184 0.272
DonBosco∣𝑃𝑀10𝐾 8.372 147.885 12.161 0.344

4.3. Target error

To better understand the predictions made by the best model, the 
error metrics for each target were analyzed. These metrics were calcu-
lated by averaging the errors across all forecasting horizons within each 
test set.

Table 6 summarizes the errors for each target (y-axis) and metric 
(x-axis). The error distribution across different pollutants varies signifi-
cantly by area, probably due to spatial differences in pollutant charac-
teristics.

The NO pollutant shows the most variation, with a minimum MAE 
of 5.9 in the Nord and a maximum in Don Bosco. This variation could 
be linked to differences in population density and traffic flow, leading 
to less variability in the data.

𝑁𝑂2, 𝑂3, and 𝑃𝑀10𝐾 pollutants exhibit less deviation than NO. 
However, a similar pattern emerges, with the Nord showing an MAE 
difference of one to two points compared to other areas.

4.4. TSL selected features

Following a general-to-specific structure, we selected the TFF model 
as the best overall performer. In this and the following sections, we will 
analyze and explain this model from various perspectives using different 
methods. Due to the evaluation method used in our experiments, we 
have as many models as tested years. To simplify the study, we focus 
on the most recent year, which represents the most challenging test set 
and highlights the model’s robustness.

In this section, we examine the selected inputs in two dimensions: 
features and lags. This selection is important to understand the which 
features and lags are considered to the problem, based on the model 
optimization criteria. For this purpose, we created a matrix in which 
the x-axis represents the lags and the y-axis represents the features. Each 
cell is green for a selected lagged feature, and blue otherwise. Finally, 
the features are divided into different groups to improve visual clarity.

4.4.1. Meteorological features

The meteorological input features are the first group studied. These 
features are divided into three categories: ground-level, ground-level 
lagged, and satellite represented in Figs. 2, 3, and 4, respectively.

It is interesting to note that, despite representing the same features, 
there are differences between the selected non-lagged and lagged fea-
tures. This can be explained by the strong correlation between these 
features, which creates redundancy. As a result, the TSL chose only one 
version of the features or reduced the amount of information into one 
as much as possible.

For example, Fig. 2 shows that less than half of the lags for Don 
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Bosco relative humidity and Nord radiation were selected, while most 
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Fig. 2. Selected features by the TSL for the ground-level meteorological features.

Fig. 3. Selected features by the TSL for the lagged ground level meteorological 
features.

Fig. 4. Selected features by the TSL for satellite meteorological features.

of the lags for the lagged versions of these features were chosen. Con-
versely, for West wind speed, the non-lagged feature was selected more 
frequently than its lagged counterpart.

However, in most cases, both groups of features are clearly aligned 
when selecting and removing certain features. The most frequently re-
moved feature detected by the TSL in both groups is the Don Bosco 
temperature. In contrast, most features show significant overlap be-
tween the selected lags, except for the Nord pressure, where the most 
recent lags are more frequently selected in Fig. 2.

Finally, Fig. 4 shows a more sparse selection of data, indicating that 
the model considered most of the features irrelevant. This pattern may 
be due to spurious correlations between relevant features or the model 
getting stuck in a local optimum.

The most frequently selected feature appears to be the v10 com-
ponent, which was selected in many of its lagged versions, similar to 
previous feature groups. Another significant feature is the u10 compo-
nent, which shows a pattern in both recent and distant lags, possibly 
indicating a seasonal trend. Additionally, some features are only con-
sidered in the most recent lags. For instance, this is observed with wind 
speed, sshf, and str.

In conclusion, the first two groups of features are selected on almost 
all their lags excepting some features. In contrast, the final group shows 
a sparser selection, with only one or two key more frequent features. The 
following sections will further support this observation using feature 

importance techniques.
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Fig. 5. Selected features by the TSL for the target features.

Fig. 6. SHAP values for top ten features by lag for NO pollutant.

4.4.2. Target features

The final group of features to analyze are the target variables we 
aim to predict. This group is especially important for understanding the 
model’s performance.

In general, Fig. 5 does not show any particular feature being favored 
over others, which is expected since all features are used in the loss func-
tion. It is clear that the most recent lags, ranging from the last 6 to the 
last 24, are consistently selected. This pattern is common in time series 
forecasting, as recent lags are usually highly correlated with the predic-
tions. A similar, though less pronounced, pattern is observed in the last 
lags, where most features are selected for periods of two to eight hours.

Although selection in non-extreme lags is sparse, there is a noticeable 
locality effect for some features during certain periods. This means that 
some lags are selected in groups. For example, the Nord NO pollutant 
shows this effect during several periods, particularly in the range of 96 
to 48 hours before the cutoff.

In conclusion, this group of features is predominantly represented 
in recent time periods, with some exhibiting a locality effect at specific 
intervals.

4.5. Shapley values

To support the conclusions made in Section 4.4, this section quanti-
fies the impact of different features on the forecast. We calculated the 
Shapley value for each input feature across each target value. The impor-
tance of each input feature was then averaged over all targets. Finally, 
we identified the top 20 features and represented their importance by 
lag in a heatmap.

Fig. 6 displays a heatmap of Shapley values. In this heatmap, the y-
axis represents the features, and the x-axis represents the different lags. 
The cell values indicate the Shapley values, where higher values denote 
a positive influence on the targets, while lower values signify a negative 
influence.

The most important features are primarily meteorological, as dis-
cussed earlier. Specifically, lagged and non-lagged wind direction con-
sistently ranks high in importance across all areas except for Don Bosco. 
Additionally, radiation and wind speed are crucial for the model in the 
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Nord region. These meteorological features are expected to be signifi-
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Fig. 7. Predictions vs reals NO.

Fig. 8. Predictions vs reals 𝑁𝑂2 .

cant because they influence pollutant generation and dispersion in the 
city.

While the same features are relevant across different areas, their im-
portance relative to lags is inconsistent. There is no clear pattern of 
features showing consistent importance over specific lags. Among the 
top two features, some consecutive lags (around 60 to 70 and 100 to 
120 hours ago) show a positive influence. This suggests that wind di-
rection from noon to the end of the day may promote new pollutant 
formation.

Finally, despite filtering lags using TSL, the Shapley analysis indi-
cates several lags in all features with almost zero importance. This issue 
arises from the method used and should be addressed in future work.

4.6. Predictions

This section presents the predictions made by the model. The predic-
tions have been aggregated for each pollutant, regardless of the zone, to 
enhance visual clarity.

Fig. 7 shows the predicted and actual values for the NO pollutant. As 
discussed in Section 4.3, the NO pollutant exhibited the most variable 
results. This variability is evident in the figure, where periods of low 
pollution are followed by sudden extreme values. Notably, the first 12 
days of January show a significant increase in NO levels, likely due to 
the effects of the holiday season. The model has captured this increase 
relatively well in its predictions.

It is important to note that NO levels remain quite low most of the 
time compared to other pollutants. As a result, the model performs worse 
in this case, as the time series lacks stationary patterns and behaves more 
chaotically.

Fig. 8 illustrates the behavior of the 𝑁𝑂2 pollutant. Unlike NO, 𝑁𝑂2
has fewer values near zero, with most of its levels hovering around 35 

𝜇g/m3.
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Fig. 9. Predictions vs reals 𝑂3.

Fig. 10. Predictions vs reals PM10K.

In this case, the model predictions are more conservative, staying 
close to the mean with low variability. This results in better overall 
accuracy but misses extreme values, which could be critical for decision-
making in some contexts.

Fig. 9 depicts the predictions for 𝑂3. This pollutant shows a slight up-
ward trend, possibly due to rising temperatures. Additionally, the data 
exhibits a strong daily seasonal pattern, which the model seems to have 
captured well. However, the model tends to avoid predicting the ex-
treme high and low values.

Fig. 10 compares the predictions and actual values for the 𝑃𝑀10𝐾
pollutant. This data shows a subtle weekly seasonal pattern, with higher 
values during weekends, which the model successfully captures. The 
dataset contains almost no values near zero, with a mean concentra-
tion of approximately 30 𝜇g/m3. In this case, the model captures more 
of the minimum values compared to the maximum ones, similar to its 
performance with 𝑁𝑂2 and 𝑂3.

In conclusion, the model successfully learned the patterns of four dif-
ferent pollutants, accounting for seasonal trends, mean values, holiday 
effects, and more. Although there are some shortcomings, the results 
demonstrate the model’s notable efficacy and flexibility.

5. Conclusions and future works

This paper analyzes the impact of a comprehensive set of features on 
air pollutant concentrations, using machine learning and explainability 
techniques. Specifically, a deep learning approach, with embedded fea-
ture selection using the TSL layer, delivered the best performance.

The results from the top-performing model underscore the critical 
role of meteorological features in explaining most past events, surpass-
ing the importance of other input features. Among these, wind direction, 
wind speed, solar radiation, and relative humidity were particularly sig-
nificant. Additionally, their lagged versions held similar importance, 
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dominating the relevance rankings determined by the SHAP technique. 
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Interestingly, endogenous features were less influential than meteoro-
logical ones, with the most recent events being the most frequently 
selected.

Future work could benefit from feature selection tailored to each 
output, helping to identify which inputs are most relevant for specific 
outputs. This is especially crucial in time series forecasting problems 
with multiple input/output features and future horizon predictions. Fur-
thermore, improving both the quality and quantity of meteorological 
data seems to be the key to enhancing model performance. Incorporat-
ing additional ground-level meteorological information and integrating 
it with satellite data could potentially boost the model’s efficacy.
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