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1. INTRODUCTION

Systems biology aims to find a mechanistic understanding
of biological processes and mathematical models are an
important tool to achieve this. Mechanistic models are
constructed to be consistent with the available informa-
tion; however, their construction is limited by the cur-
rent mechanistic understanding of the biological process.
In practice, incomplete information is akin to multiple
hypotheses about a process, which can be addressed by
model selection. However, model selection can be time-
consuming, particularly when there are large knowledge
gaps.

A novel approach to address incomplete information is
universal differential equations (UDEs), which combine
dynamical mechanistic and machine learning (ML) mod-
els. UDEs represent known mechanisms explicitly, and
unknown mechanisms by universal approximators like ar-
tificial neural networks (ANNs). These hybrid models have
been shown to require less training data and improve inter-
pretability over purely data-driven ML (Karniadakis et al.,
2021). An open issue is that UDEs can produce negative
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values, even for strictly non-negative quantities such as
molecular concentrations or population sizes. Dynamical
mechanistic models, such as ordinary differential equations
(ODEs), do not have this issue because the mechanisms
can be chosen to ensure non-negativity.

Here, we present an extension to the UDE framework that
ensures non-negativity (nUDE). We provide a proof of
the non-negativity, and evaluate nUDEs on a synthetic
and a real-world example. Moreover, we introduce a new
regularisation method to control the over-fitting of the
ANN in (n)UDEs. We find that our non-negativity ap-
proach may bias the ANN training; however, this bias can
be reduced, and calibration efficiency and model quality
can be preserved, by choosing the non-negativity factor
carefully.

2. MODELLING

2.1 Mechanistic modelling with ODEs

Mechanistic modelling is facilitated by the conversion of
domain knowledge into actionable mathematical expres-
sions, which can be used to understand the modelled be-
haviour in a virtual setting. A significant benefit over non-
mechanistic modelling is the ability to predict behaviour
that is not represented in the available training data.
However, model construction can be time-consuming. As
the exemplary models in this work are taken from the liter-
ature, this process is not further discussed here. Reviews of
this process are available in the literature, e.g. Villaverde
et al. (2022).

In systems biology, ODEs are commonly used to describe
the time-dependent rate-of-change of biological entities,
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such as proteins on the level of cells, or groups of indi-
viduals on the level of populations. Here, we consider a
general form of ODEs with initial conditions, i.e., initial
value problems (IVPs):

dx(t,θM)

dt
= f(x(t,θM), t,θM),

x(t0,θM) = x0(θM).


 (1)

The system changes with time according to the vector field
f : Rnx × RnθM → Rnx . The initial position, at t = t0,
is the initial condition x0 : RnθM → Rnx . The model is
parameterised by θM, which can contain values such as
population growth rate constants.

2.2 Machine learning with ANNs

In supervised machine learning, input-output pairs are
used to train an unknown function that represents the
input-output mapping. Some ANNs, such as multi-layer
feedforward networks, are universal approximators in the
limit case, meaning they are capable of approximating
functions to arbitrary precision (see e.g. Hornik et al.
(1989)). These ANNs are structured into layers of neurons,
where each neuron ψ of each layer ϕ is the composition
of one affine and (usually) one non-linear transformation
function. The fully-connected ANN U can then be under-
stood as a composition of layers, i.e.

U(ν,θU) =
�
ϕL ◦ϕL−1 ◦ ... ◦ϕ1


(ν,θU),

where θU are the weight and bias parameters of the affine
functions, ν ∈ Rnν is the input, and L is the total number
of layers (Gouk et al., 2021).

Many commonly used activation functions are Lips-
chitz continuous (Gouk et al., 2021). These include
the hyperbolic tangent tanh(z), the logistic sigmoid

(1 + exp(−z))
−1

, and the rectified linear unit (ReLU)
max(0, z). As ANNs with these activation functions are
thereby compositions of Lipschitz-continuous functions,
these ANNs are also Lipschitz continuous; a property that
we use to prove Theorem 1.

We describe the architecture of these ANNs by the number
of neurons in each layer. For example, 3/3/2 is a fully-
connected feedforward ANN with 3 neurons in the first
and second layers, and 2 neurons in the output layer. Each
neuron i in layer l outputs ψl,i =


j Al,i,j(wl,i,jψl−1,j +

bl,i,j), where j is the neuron index in the previous layer,
ψl−1,j is the output from neuron j in the previous layer
j−1, and Al,i,j , wl,i,j and lk,i,j are the activation function,
weight and bias, respectively. The output from layer l with
n neurons is then ϕl = (ψl,1, · · · , ψl,n) .

2.3 Universal differential equations

Neural ODEs are ODEs similar to (1), but with an ANN
as their right-hand-side, i.e.

dx(t,θU)

dt
= U(ν(x(t,θU)),θU),

x(t0,θU) = x0(θU),

where the input ν(x(t,θU)) is now some function of the
state x.

While mechanistic modelling and neural ODEs with ANNs
both have important use cases, both approaches have

drawbacks. UDEs have been introduced to exploit the
strengths of each approach, and to enable modelling of
partially unknown biological processes (Oliveira, 2004). A
general form for UDEs in different modelling formalisms
is given in Rackauckas et al. (2020). In the ODE context,
a formulation for UDEs is given by

dx(t,θ)

dt
= f(x(t,θ), t,θM) +U(ν(x(t,θ)),θU),

x(t0,θ) = x0(θ),


 (2)

where U enables modelling unknown process mechanisms
in addition to the known mechanisms f . Here, θ =
(θM,θU), with mechanistic parameters θM. Although U
can be any universal approximator, in this study we only
consider fully-connected feedforward ANNs.

We note that the system in (2) is not a universal ap-
proximator for a dynamical system, despite U being a
universal approximator. However, this can be achieved by
adding state variables to the system that are equipped
with dynamics that are wholly-modelled in terms of a
universal approximator (Dupont et al., 2019).

2.4 Maximum likelihood estimation

Mechanistic models, ANNs, and UDEs often contain un-
known parameters, which can be estimated from data.
One approach is to find the maximum likelihood estimate
(MLE), which is the choice of parameter values θMLE

that maximises the probability of observing measurements
ȳ, i.e., the likelihood of the data under some system
parameterised by θ. This requires an observation model
h : Rnx → Rny that maps model state space to data
observation space. In general, measurements in the biolog-
ical sciences are significantly noisy, hence the observables
y = h(x(t,θ),θ) are related to the data by ȳti,yi = yti,yi+
ϵti,yi , where ti ∈ 1, ..., nt and yi ∈ 1, ..., ny are used to
index over measurements by timepoint and observable,
respectively, and ϵti,yi is measurement-specific noise.

For numerical efficiency, we minimise the negative log-
likelihood function,

J(θ) =
1
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ti,yi

log(2πσ2
ti,yi

) +
(ȳti,yi

− yti,yi
(θ))2

σ2
ti,yi

,

for i.i.d. Gaussian noise, i.e. ϵti,yi ∼ N(0, σ2
ti,yi

).

3. TOWARDS BIOLOGICALLY MEANINGFUL UDES

A common issue in machine learning is over-fitting, charac-
terised by the model adapting to noise or artefacts in the
training data, which is deleterious for generalisation be-
yond the training domain (Ying, 2019). This issue is more
prominent in ML compared to mechanistic models that are
constrained by domain knowledge. A special case of over-
fitting in UDEs is the absorption of the dynamics that
are encoded in the mechanistic terms (f in system (2)). A
broad spectrum of approaches to mitigate over-fitting have
been introduced in ML, including early stopping, noise
injection, and stochastic gradient descent. Few of these
approaches have been transferred to the field of UDEs.
One common approach that we tested here is to regularise
the system during training by introducing a learning bias
(Karniadakis et al., 2021).
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such as proteins on the level of cells, or groups of indi-
viduals on the level of populations. Here, we consider a
general form of ODEs with initial conditions, i.e., initial
value problems (IVPs):

dx(t,θM)

dt
= f(x(t,θM), t,θM),

x(t0,θM) = x0(θM).


 (1)

The system changes with time according to the vector field
f : Rnx × RnθM → Rnx . The initial position, at t = t0,
is the initial condition x0 : RnθM → Rnx . The model is
parameterised by θM, which can contain values such as
population growth rate constants.

2.2 Machine learning with ANNs
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input-output mapping. Some ANNs, such as multi-layer
feedforward networks, are universal approximators in the
limit case, meaning they are capable of approximating
functions to arbitrary precision (see e.g. Hornik et al.
(1989)). These ANNs are structured into layers of neurons,
where each neuron ψ of each layer ϕ is the composition
of one affine and (usually) one non-linear transformation
function. The fully-connected ANN U can then be under-
stood as a composition of layers, i.e.

U(ν,θU) =
�
ϕL ◦ϕL−1 ◦ ... ◦ϕ1


(ν,θU),

where θU are the weight and bias parameters of the affine
functions, ν ∈ Rnν is the input, and L is the total number
of layers (Gouk et al., 2021).

Many commonly used activation functions are Lips-
chitz continuous (Gouk et al., 2021). These include
the hyperbolic tangent tanh(z), the logistic sigmoid

(1 + exp(−z))
−1

, and the rectified linear unit (ReLU)
max(0, z). As ANNs with these activation functions are
thereby compositions of Lipschitz-continuous functions,
these ANNs are also Lipschitz continuous; a property that
we use to prove Theorem 1.

We describe the architecture of these ANNs by the number
of neurons in each layer. For example, 3/3/2 is a fully-
connected feedforward ANN with 3 neurons in the first
and second layers, and 2 neurons in the output layer. Each
neuron i in layer l outputs ψl,i =


j Al,i,j(wl,i,jψl−1,j +

bl,i,j), where j is the neuron index in the previous layer,
ψl−1,j is the output from neuron j in the previous layer
j−1, and Al,i,j , wl,i,j and lk,i,j are the activation function,
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n neurons is then ϕl = (ψl,1, · · · , ψl,n) .
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dx(t,θU)

dt
= U(ν(x(t,θU)),θU),

x(t0,θU) = x0(θU),

where the input ν(x(t,θU)) is now some function of the
state x.
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both have important use cases, both approaches have

drawbacks. UDEs have been introduced to exploit the
strengths of each approach, and to enable modelling of
partially unknown biological processes (Oliveira, 2004). A
general form for UDEs in different modelling formalisms
is given in Rackauckas et al. (2020). In the ODE context,
a formulation for UDEs is given by

dx(t,θ)

dt
= f(x(t,θ), t,θM) +U(ν(x(t,θ)),θU),

x(t0,θ) = x0(θ),


 (2)

where U enables modelling unknown process mechanisms
in addition to the known mechanisms f . Here, θ =
(θM,θU), with mechanistic parameters θM. Although U
can be any universal approximator, in this study we only
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universal approximator (Dupont et al., 2019).
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ȳ, i.e., the likelihood of the data under some system
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h : Rnx → Rny that maps model state space to data
observation space. In general, measurements in the biolog-
ical sciences are significantly noisy, hence the observables
y = h(x(t,θ),θ) are related to the data by ȳti,yi = yti,yi+
ϵti,yi , where ti ∈ 1, ..., nt and yi ∈ 1, ..., ny are used to
index over measurements by timepoint and observable,
respectively, and ϵti,yi is measurement-specific noise.

For numerical efficiency, we minimise the negative log-
likelihood function,
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for i.i.d. Gaussian noise, i.e. ϵti,yi ∼ N(0, σ2
ti,yi

).

3. TOWARDS BIOLOGICALLY MEANINGFUL UDES

A common issue in machine learning is over-fitting, charac-
terised by the model adapting to noise or artefacts in the
training data, which is deleterious for generalisation be-
yond the training domain (Ying, 2019). This issue is more
prominent in ML compared to mechanistic models that are
constrained by domain knowledge. A special case of over-
fitting in UDEs is the absorption of the dynamics that
are encoded in the mechanistic terms (f in system (2)). A
broad spectrum of approaches to mitigate over-fitting have
been introduced in ML, including early stopping, noise
injection, and stochastic gradient descent. Few of these
approaches have been transferred to the field of UDEs.
One common approach that we tested here is to regularise
the system during training by introducing a learning bias
(Karniadakis et al., 2021).

Another limitation of UDEs is that their dynamics are not
necessarily biologically meaningful. For example, a näıve
function approximator would not adhere to the princi-
ples of mass conservation or non-negativity of biological
quantities. Just as mechanistic models can be designed
to implicitly comply with such fundamental principles,
mathematical constraints for ANNs can be used as an
inductive bias to strictly enforce biologically-reasonable
model behaviour (Karniadakis et al., 2021).

We describe the learning bias parameter regularisation,
introduce the learning bias output regularisation, and
introduce the inductive bias non-negative UDEs (nUDEs).

3.1 Parameter regularisation:

Parameter regularisation aims to reduce the magnitude
of the parameters as a proxy for model flexibility. In
particular, ℓ1 and ℓ2 norms are frequently used to directly
penalise model parameters (Goodfellow et al., 2016). Here,
we use the ℓ2 (also known as Euclidean) norm of θU,

∥θU∥2 =
√∑

i θUi

2, yielding the regularised objective

J(θ) + λp∥θU∥22,
with regularisation parameter λp ≥ 0.

3.2 Output regularisation:

As parameter regularisation only indirectly limits the
impact of U on the solution, we also consider a novel
regularisation scheme, which we will refer to as output
regularisation. We compute non-zero contributions of U
to the solution directly with

R(θ) =

∫ tf

t0

∥UR(θ)∥2 dt,

where UR = U and UR = N⊙U in the UDE and nUDE
(see Section 3.3) cases, respectively. We set tf to the time
of the last measurement in the training data and add the
penalty to the regularised objective function as

J(θ) + λoR(θ)2,

with regularisation parameter λo ≥ 0.

3.3 Non-negative UDEs

In this section, we present a formulation of a constrained
UDE that ensures that state variables cannot become
negative. We consider the model structure
dxnUDE(t,θ)

dt
= f(xnUDE(t,θ), t,θM)

+N(xnUDE(t,θ))⊙U(ν(xnUDE(t,θ)),θU),
(3)

with Lipschitz-continuous functions U : Rnν → Rnx and
N : Rnx → Rnx , and choosing N : limxi→0 Ni(x) =
0 ∀i ∈ {1, . . . , nx} (e.g., N(x) = x). ⊙ is the element-
wise (Hadamard) product. In the following, we present
the properties of this non-negative UDE (nUDE). Some
function inputs are omitted for brevity after their first use.

Theorem 1. Consider the ODEs IVP,

dxODE(t,θM)

dt
= f(xODE(t,θM), t,θM),

xODE(t0,θM) ≥ 0,

where f is Lipschitz-continuous. If the non-negative quad-
rant is invariant under f , i.e. fi|xi=0 ≥ 0 ∀i ∈ {1, . . . , nx},
then xnUDE,i ≥ 0 ∀t ≥ t0 is a nUDE system (3) with the
same f .

Proof: As the right-hand-side of (3) is composed of
Lipschitz-continuous functions, the nUDE IVP has a
unique solution xnUDE(t,θ), by the Picard–Lindelöf the-
orem. The initial value xnUDE(t0,θ) is non-negative. We
will show that the solution remains non-negative, with a
proof by contradiction.

Assume there exists some i ∈ 1, ..., nx and t̃ > t0 s.t.
xnUDE,i(t̃,θ) < 0. As the initial condition is non-negative,
there must be some t∗ ∈ [t0, t̃] s.t. xnUDE,i(t

∗,θ) = 0 and
its derivative

(fi +NiUi)|t=t∗ < 0. (4)
As U and N are continuous Umax := maxt∈[t0,t∗] Ui < ∞
and Ni|xnUDE,i=0 = 0. Hence, |N⊙U|i = |Ni · Ui| ≤ |Ni ·
Umax| = 0 at t = t∗, and (4) simplifies to fi|t=t∗ < 0.
However, given fi|xi=0 ≥ 0, we arrive at the contradiction

fi|t=t∗ ≥ 0, hence no such t̃ exists. □

4. IMPLEMENTATION AND BENCHMARKING

4.1 Implementation

We implemented simulation and training of (n)UDEs using
established software packages. Simulation, objective func-
tion evaluation and gradient calculation was implemented
in the Advanced Multi-language Interface for CVODES
and IDAS (AMICI) (Fröhlich et al., 2021). To ensure scal-
ability, adjoint sensitivity analysis was employed (Fröhlich
et al., 2017). Parameter estimation problems were specified
using the Parameter Estimation Table (PEtab) format
(Schmiester et al., 2021). We work with two pre-existing
biologically-inspired models (termed Lotka-Volterra and
Boehm), with details provided in the following sections.

As suggested in the literature (Hass et al., 2019), we log10-
transform the mechanistic parameters θM for estimation.
The ANN parameters θU are not transformed. θU were
generally initialised to be small values and estimated ∈
[−10, 10]nθU . We used multi-start (1000 starts), gradient-
based optimisation with the Fides optimiser (Fröhlich
and Sorger, 2022) via the Python Parameter Estimation
Toolbox (pyPESTO) (Schälte et al., 2023). We initialised
the starts by drawing 1000 samples of θM and θU, and
we reused these 1000 sets of vectors across all comparable
experiments, i.e., when using the same model (Lotka-
Volterra or Boehm) and ANN architecture.

When assessing whether a solution is negative, we define
“negative” to be when any state variable in the solution
drops below a small negative value, which was chosen to
filter for numerical noise. This was -1e-7 for the Lotka-
Volterra model and -1e-13 for the Boehm model, which are
within one order of magnitude of the absolute simulation
tolerances used with each problem.

4.2 Lotka-Volterra model

For the demonstration of UDEs, nUDES and the differ-
ent regularisations, we considered a Lotka-Volterra system
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Fig. 1. Solution characteristics for the Lotka-Volterra
model: the number of optimisation runs yielding solu-
tions with negative (orange) or strictly non-negative
(gray) values for the predator or prey abundances.

describing predator-prey population dynamics. The abun-
dance of prey and predator are denoted by x1 and x2,
respectively. The standard Lotka-Volterra ODE system is

dx1

dt
= αx1 − βx1x2,

dx2

dt
= δx1x2 − γx2,




(5)

with mechanistic parameters θM = (α, β, γ, δ).

As a test case for modelling unknown mechanisms, we
consider that the interaction terms of the system are
unknown and replace them with an ANN U = (U1, U2).
This yields the UDE system (N1 = N2 = 1) and nUDE
system

dx1

dt
= αx1 +N1(x1)U1(ν,θU),

dx2

dt
= N2(x2)U2(ν,θU)− γx2.




(6)

We chose a simple 2/2 ANN for U with tanh activation
functions in the first layer, and the identity in the output
layer. The input ν := x is the state vector.

We initialised each entry of θM (α and γ) randomly in
[10−3, 103] (uniform distribution), and constrained them
by the same bounds during estimation. Approximately
50% of all start points could not be simulated and op-
timised, for example due to exponential blow-up.

Synthetic data for training and validation were generated
by simulating the system in (5) with 100 time units
with α = 1.3, β = 0.9, γ = 0.8, and δ = 1.8, and
x(t = 0) = (0.44249296, 4.6280594). The first 20 time units
of simulated data were used for training, and the next
80 time units for validation. The training data had 15%
multiplicative noise (N (0, 0.15x)) added to it, to represent
noise-corrupted data.

We simulated each optimisation result to check for non-
negativity (Fig. 1). More than half of the UDE fits pro-
duced negative populations. All nUDE models had zero
negative populations, except with “N(x) = tanh(10x)”.
The ODE solver may have numerical issues near zero due
to the larger second derivative of tanh(10x), than tanh(x).

The “nUDE; N(x) = x; λo = 0.01” case performed best on
the training data (not shown), and on the validation data,
and the “nUDE; N(x) = x” was next best on validation

Fig. 2. Waterfall plot for the Lotka-Volterra model. The
objective function value J on the validation data are
shown for the 20 best fits on the training data.

Fig. 3. Fit and prediction for the Lotka-Volterra UDE.
The vertical dashed line indicates the training and
validation data split. The fits and predictions from
the “nUDE; N(x) = x” and “nUDE; N(x) = x;
λo = 0.01” models are visually indistinguishable to
the UDE, and are not shown.

data (Fig. 2). However, the best UDE fit was also very
good (Fig. 3).

4.3 Boehm model

As a second example we consider the Boehm model
(Boehm et al., 2014), which describes the STAT5 dimeri-
sation process. It is fully specified by eight ODEs and nine
estimated parameters. The measurements are mapped to
the eight state variables through a nonlinear observation
function. Implementation and training details are specified
in the supplemental materials section 2. To evaluate UDEs
and nUDEs, we consider two scenarios for the Boehm
model that differ in the effect that the ANN component
can have on the overall dynamics:

Scenario 1: Like in the synthetic Lotka Volterra example,
we assume that one mechanism is unknown, here the
export and dimer dissociation of nucpApA, and remove the
term from the ODE. Instead, we introduced a 5/5/5/2
ANN with 82 weight and bias parameters θU. This ANN
takes only a subset of the state vector as input (specifically,
the nucpApA species) and modifies the dynamics of two
species (nucpApA and STAT5A).

Scenario 2: A more flexible ANN component is used to
emphasise the effect of regularisation. This 5/5/5/5 ANN
has the same dimensions in the hidden layers as in Scenario
1 but takes three state variables as inputs, and modifies
the dynamics of five species, which increases the size of θU

to 110 free parameters. This scenario represents a greater
degree of uncertainty about the missing mechanisms in the
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Fig. 1. Solution characteristics for the Lotka-Volterra
model: the number of optimisation runs yielding solu-
tions with negative (orange) or strictly non-negative
(gray) values for the predator or prey abundances.
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dance of prey and predator are denoted by x1 and x2,
respectively. The standard Lotka-Volterra ODE system is

dx1

dt
= αx1 − βx1x2,

dx2

dt
= δx1x2 − γx2,




(5)

with mechanistic parameters θM = (α, β, γ, δ).

As a test case for modelling unknown mechanisms, we
consider that the interaction terms of the system are
unknown and replace them with an ANN U = (U1, U2).
This yields the UDE system (N1 = N2 = 1) and nUDE
system

dx1

dt
= αx1 +N1(x1)U1(ν,θU),

dx2

dt
= N2(x2)U2(ν,θU)− γx2.




(6)

We chose a simple 2/2 ANN for U with tanh activation
functions in the first layer, and the identity in the output
layer. The input ν := x is the state vector.

We initialised each entry of θM (α and γ) randomly in
[10−3, 103] (uniform distribution), and constrained them
by the same bounds during estimation. Approximately
50% of all start points could not be simulated and op-
timised, for example due to exponential blow-up.

Synthetic data for training and validation were generated
by simulating the system in (5) with 100 time units
with α = 1.3, β = 0.9, γ = 0.8, and δ = 1.8, and
x(t = 0) = (0.44249296, 4.6280594). The first 20 time units
of simulated data were used for training, and the next
80 time units for validation. The training data had 15%
multiplicative noise (N (0, 0.15x)) added to it, to represent
noise-corrupted data.

We simulated each optimisation result to check for non-
negativity (Fig. 1). More than half of the UDE fits pro-
duced negative populations. All nUDE models had zero
negative populations, except with “N(x) = tanh(10x)”.
The ODE solver may have numerical issues near zero due
to the larger second derivative of tanh(10x), than tanh(x).

The “nUDE; N(x) = x; λo = 0.01” case performed best on
the training data (not shown), and on the validation data,
and the “nUDE; N(x) = x” was next best on validation

Fig. 2. Waterfall plot for the Lotka-Volterra model. The
objective function value J on the validation data are
shown for the 20 best fits on the training data.

Fig. 3. Fit and prediction for the Lotka-Volterra UDE.
The vertical dashed line indicates the training and
validation data split. The fits and predictions from
the “nUDE; N(x) = x” and “nUDE; N(x) = x;
λo = 0.01” models are visually indistinguishable to
the UDE, and are not shown.

data (Fig. 2). However, the best UDE fit was also very
good (Fig. 3).

4.3 Boehm model

As a second example we consider the Boehm model
(Boehm et al., 2014), which describes the STAT5 dimeri-
sation process. It is fully specified by eight ODEs and nine
estimated parameters. The measurements are mapped to
the eight state variables through a nonlinear observation
function. Implementation and training details are specified
in the supplemental materials section 2. To evaluate UDEs
and nUDEs, we consider two scenarios for the Boehm
model that differ in the effect that the ANN component
can have on the overall dynamics:

Scenario 1: Like in the synthetic Lotka Volterra example,
we assume that one mechanism is unknown, here the
export and dimer dissociation of nucpApA, and remove the
term from the ODE. Instead, we introduced a 5/5/5/2
ANN with 82 weight and bias parameters θU. This ANN
takes only a subset of the state vector as input (specifically,
the nucpApA species) and modifies the dynamics of two
species (nucpApA and STAT5A).

Scenario 2: A more flexible ANN component is used to
emphasise the effect of regularisation. This 5/5/5/5 ANN
has the same dimensions in the hidden layers as in Scenario
1 but takes three state variables as inputs, and modifies
the dynamics of five species, which increases the size of θU

to 110 free parameters. This scenario represents a greater
degree of uncertainty about the missing mechanisms in the

a b

Fig. 4. Boehm Scenario 1 comparison between UDE
and nUDEs. a) Amount of models that stayed non-
negative in their trajectories, and b) distribution of
model calibration times per method. Horizontal lines
indicate the minimum, medium and maximum.

model, because the ANN can affect more state variables
directly.

We first consider Scenario 1 to assess the non-negativity
constraint in a realistic setting. Of the 1000 starts, 623
optimised UDE fits had non-negative values, while all
1000 nUDE fits were non-negative (Fig. 4a). However, we
found that the overall computation time for optimisation
was significantly increased when training the nUDEs with
N(x) = x (Fig. 4b). We saw an increased number of
optimiser iterations, and simulation time (Supplemental
Fig. 3) and furthermore observed predominantly non-
smooth trajectories among the best (N(x) = x)-nUDE
results, indicative of over-fitting (Fig. 5a). When using
N(x) = tanh(x) however, all 1000 parameterised nUDEs
stayed non-negative in their trajectories (Fig. 4a) while the
computational cost (Fig. 4b) and the UDE’s quality of fit
(Fig. 5a) were recovered. The 2% of best fits shown in Fig.
5 agree much better for the (N(x) = tanh(x))-nUDE than
in the (N(x) = x)-nUDE, indicating better convergence.

We used the Scenario 2 UDE variant with a larger ANN
component to assess the effect of regularisation. The ANN
flexibility has a considerable effect on UDE convergence
and over-fitting, as shown by the difference in trajectories
between the unregularised Scenario 1 and Scenario 2
UDEs (Fig. 5a and 5b). With increasing ANN complexity
the number of UDEs with negative values increased from
37.7% in Scenario 1 to 87.7% in Scenario 2.

There is a substantial difference in the quality of fits
between the unregularised and regularised UDEs, as ap-
parent from the best 2% of fits (Fig. 5b). The unregularised
UDEs tend to over-fit the training data, characterised by a
tight fit to the measurements and a high variability in their
trajectories between measurements, with frequent spikes.
The regularised UDEs on the other hand have a high agree-
ment between the 20 best models and produce smooth
trajectories, as shown for the parameter regularisation in
Fig. 5b. We observed similar trends between parameter
and output regularisation.

The UDE is expected to fit measurements more closely
than the fully mechanistic model due to the flexibility of
ANNs. However, this does not directly indicate its general-
isation capacity in predictions or inference of non-observed
states variables. In the real-world Boehm example, the
reference for non-observed state variables is not the true
solution, which is unknown, but the optimal solution from

a      Scenario 1: Ensembles of 20 best fits

b      Scenario 2: Ensembles of 20 best fits

Fig. 5. Ensembles of 20 best UDE model variants. a)
Scenario 1 : ANN with 1 input/2 outputs. Best fits
are shown for UDE, nUDE (N(x) = x) and nUDE
(N(x) = tanh(x)), no regularisation. b) Scenario 2 :
ANN with 3 inputs/5 outputs. Best fits are shown for
the unregularised UDE and a parameter-regularised
UDE with λp = 10.

Fig. 6. Boehm Scenario 2 : Simulation of best unregu-
larised UDE (orange) and UDE with parameter reg-
ularisation (λp = 10, purple). Shown are the simula-
tions for 4/8 state variables.

the fully mechanistic ODE model. Compared to the ODE
reference, the normalised mean squared error (NMSE) for
the best UDE was significantly improved by parameter
and output regularisation (NMSE with λp = λo = 0:
145.99, λp = 10: 12.83, λo = 0.1: 12.69). While it’s un-
clear whether these trajectories are correct, they are more
in line with the previously published reference. There-
fore, some regularisation is expected to reduce over-fitting
and recover biologically reasonable and interpretable non-
observed state variables. This advantage is evident in simu-
lations, where regularisation mitigates blow-up and strong
fluctuations observed in the unregularised UDE (Fig. 6).

5. DISCUSSION

In this manuscript, we presented and evaluated different
types of regularisation on the universal components of
UDEs describing biological processes. In particular, we
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introduced (i) an output regularisation to avoid over-
fitting, and (ii) a regularisation of the UDE structure to
ensure non-negativity.

Our theoretical result guarantees that the solution is
non-negative everywhere, up to numerical noise, and this
constraint is generally applicable to biological modelling,
where entities like molecular concentrations and popula-
tion sizes are often non-negative. Our experimental results
demonstrate that the non-negative constraint works in
principle on a synthetic Lotka-Volterra example, and in
practice on the real-life Boehm example.

The choice of N(x) can itself be mechanistically informed.
If there is some prior knowledge that a missing mechanism
affecting xi has the factor xi, then choosing Ni(x) = xi

may improve the learning problem for U. However, if the
missing mechanism does not depend on xi, then U needs
to counter this in addition to learning the missing mech-
anism. In such cases, we suggest the bounded Ni(x) =
tanh(αxi), which does not grow with xi except near 0,
according to α. This can have substantial computational
benefits (Fig. 4). However, larger choices of α can increase
numerical error (Fig. 1), so alternative choices of N are an
important open topic.

We found that N did ensure non-negativity in compu-
tational experiments, but only up to numerical error.
Tailored ODE solvers can ensure that user-provided con-
straints are satisfied by performing additional integration
steps as a constraint is approached (Eich, 1993). This could
be used to remove negativity due to numerical error in
nUDEs, but does not resolve the negativity in standard
UDEs.

In principle, our regularisation strategies are applicable to
a variety of universal approximators, modelling formalisms
such as partial differential equations, and choices of N.
We present some limited benchmarking here. Our results
for the Boehm model in Scenario 2 suggest that, as the
amount of prior assumptions on the missing dynamics de-
creases, the user is forced to choose a more expressive ANN
(U), and the importance of regularisation increases. Com-
monly, ODE models in systems biology are characterised
by a stoichiometric matrix and a flux vector, which can
be exploited to encode further biological properties into
ANNs like conservation of mass (Pinto et al., 2022). Our
approach naturally extends to this setting and, moreover,
can be used to specify directionality in the reactions. More
comprehensive benchmarking is required to uncover best
practices when modelling unknown mechanisms.

Hybrid models promise to bridge the gap between the
interpretability of mechanistic models, and the predic-
tive capabilities of machine learning models. Context-
specific modelling choices can improve the performance
of hybrid models substantially. We integrated UDEs into
standard workflows for systems biology and showed that
biologically-reasonable predictions are possible, without
sacrificing computational efficiency.
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Benchmark problems for dynamic modeling of intracel-
lular processes. Bioinformatics, 35(17), 3073–3082.

Hornik, K., Stinchcombe, M., andWhite, H. (1989). Multi-
layer feedforward fetworks are universal approximators.
Neural Netw., 2(5), 359–366.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., et al. (2021).
Physics-informed machine learning. Nat. Rev. Phys.,
3(6), 422–440.

Oliveira, R. (2004). Combining first principles modelling
and artificial neural networks: a general framework.
Comput. Chem. Eng., 28(5), 755–766.

Pinto, J., Mestre, M., Ramos, J., et al. (2022). A general
deep hybrid model for bioreactor systems: Combining
first principles with deep neural networks. Computers
& Chemical Engineering, 165, 107952.

Rackauckas, C., Ma, Y., Martensen, J., et al. (2020).
Universal differential equations for scientific machine
learning. arXiv preprint arXiv:2001.04385.
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