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ABSTRACT Cardiovascular diseases are the leading cause of global mortality, necessitating early detection
and continuous monitoring for timely interventions. Smartwatches with electrocardiogram (ECG) recording
capabilities enable real-time, at-home cardiac monitoring. Specific ECG characteristics can provide insights
into cardiovascular diseases. The delineation of ECGs, which is the identification of fiducial points (such
as onsets, offsets, and peaks), is a time-consuming task. Automated ECG delineation can enhance this
process, but existing research comparing available algorithms is limited. Furthermore, to the best of our
knowledge, none have addressed single-lead ECGs from smartwatches, which can be noisy and unfiltered.
Thus, this study evaluates the best-performing open-source algorithm for single-lead and smartwatch ECG
data. We used two public datasets (Lobachevsky University Database, QT Database) and two smartwatch
datasets (SmartHeartWatch Dataset, SMART Start Dataset) including two devices (Apple Watch, Withings
ScanWatch). Algorithms from three toolkits (NeuroKit, ECGKit, ECGdeli) were assessed based on the time
deviation between algorithm outputs and reference annotations, sensitivity, true positives, and false negatives.
Results were further evaluated against the Common Standards for Quantitative Electrocardiography (CSE)
recommendations. ECGdeli outperformed the other algorithms. For QRS on- and offset, ECGkit shows
comparable sensitivity, but otherwise lower scores. NeuroKit consistently shows lower sensitivity across
all four data sets, however, the temporal deviation between detected point and reference was higher. Overall,
sensitivity scores were higher for Apple Watch data compared to Withings ScanWatch data. This study
demonstrates that segmentation algorithms are applicable to single-lead smartwatch ECG data, with ECGdeli
being the most stable overall, and NeuroKit recommended for scenarios prioritizing the temporal accuracy
of detected points.

INDEX TERMS Cardiovascular diseases, mobile health, ECG segmentation, wearable devices.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Cardiovascular diseases are the leading cause of global
approving it for publication was Angelo Trotta . mortality, with their prevalence having doubled over the
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past three decades [1]. This growing burden underscores
the need for effective strategies to manage risk factors
and improve cardiovascular health. Early detection and
continuous monitoring of cardiac conditions are crucial for
timely interventions, which can significantly improve patient
outcomes [2], [3].

Specific characteristics of the electrocardiogram (ECG)
can provide insights into the condition and prognosis of heart
failure patients. A prolonged QRS complex is associated with
poorer outcomes [4]. Prolonged QT and QTc duration are
predictors of cardiac arrest and sudden death [5], [6]. Changes
in T-wave morphology are also predictive of mortality in heart
failure patients [7]. Traditional ECG monitoring methods
in clinical settings offer valuable diagnostic and prognostic
information. However, these methods are often limited to
scheduled appointments and brief recording periods, which
can miss transient or asymptomatic cardiac events outside
these windows.

Smartwatches with ECG monitoring capabilities have
emerged as useful, non-invasive tools that complement
routine clinical care by offering real-time, continuous cardiac
health monitoring [8], [9], [10], [11], [12]. These devices
allow patients to take measurements from home, providing
flexibility and enabling long-term use. This facilitates new
insights into cardiac health, such as understanding disease
progression, gaining better insights into medication efficacy,
and identifying patterns that may predict acute events.
Many smartwatches already feature certified algorithms for
detecting atrial fibrillation. Perez et al. showed that the use of
smartwatches for continuous heart rate monitoring resulted
in the detection of atrial fibrillation in a significant number
of participants, which enabled early medical intervention and
improved patient outcomes [8]. Initial validation studies to
capture important clinical parameters have shown promising
results [13], [14], [15], [16], [17], [18], [19]. However, the
full potential of smartwatch ECGs is far from being fully
exploited.

To ensure that smartwatches can provide reliable cardiac
monitoring, it is essential to accurately extract clinically
relevant information from recorded ECG data. Automated
ECQG feature extraction requires sophisticated algorithms and
signal processing techniques. This process involves careful
signal segmentation and determining fiducial points that
mark the onsets, offsets, and peaks of each ECG waveform,
a task known as ECG delineation. Manual annotation by
cardiologists is time-consuming and impractical for large-
scale, continuous monitoring. Further, automatic protocols
for ECG annotation can save a considerable amount of
time with similar clinical endpoints compared to manual
annotation carried out by expert operators, as the work by
Jauregui et al. shows [20].

Existing work on ECG delineation focuses on processing
traditional 12-channel ECGs obtained through standard
clinical equipment [21], [22], [23], [24]. However, ECGs
used in a traditional clinical setting differ significantly from
smartwatch ECGs. Smartwatch ECGs use only one lead
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instead of twelve, use different electrode types and involve
different recording settings and environments, as users might
often be on the move. Further, the smartwatch ECGs undergo
pre-filtering, which differs across different devices, and
recordings are often performed by laymen without medical
training. Given these differences, the question arises whether
the established ECG delineation algorithms perform equally
well on smartwatch ECG data.

To the best of our knowledge, the performance of
ECG delineation algorithms on data obtained from smart-
watches has not yet been investigated. With the increasing
adoption of smartwatches for health monitoring, this gap
highlights an urgent need to evaluate and adapt these algo-
rithms for accurate and reliable use with smartwatch ECG
data.

Therefore, the objectives of this work are to: i) determine
the best-performing open-source algorithm for delineating
ECGs from smartwatch data, ii) evaluate its performance in
identifying key fiducial points, and iii) assess how well it
performs across various smartwatch models. We base our
analysis on four datasets, including two public open-source
ECG datasets and two smartwatch datasets recorded by us.
Our study evaluated two commonly used smartwatches with
ECG functionality and involved a diverse user collective.
An overview of this work is shown in Figure 1.

Il. DATA SETS
An overview of the characteristics of all datasets included in
this study is shown in Table 1.

A. PUBLIC OPEN-SOURCE ECG DATASETS

1) LOBACHEVSKY UNIVERSITY DATABASE

The Lobachevsky University Database (LUDB) [25] was
published in 2020 and serves as an open tool for the validation
of ECG delineation algorithms. It contains 200 12-lead ECG
recordings with a length of 10 seconds each and a sampling
frequency of 500 Hz. A variety of different morphologies are
represented. For our experiments, we only use lead I as it is
most similar to smartwatch ECGs.

2) QT DATABASE

The QT database (QTDB) [26] was introduced in 1997, and
it comprises 105 recordings that last for 15 minutes each,
taken from two different leads. The sampling frequency for
the recordings is 250 Hz, and it covers a wide variety of
morphologies.

B. SMARTWATCH DATASETS

The smartwatch datasets included in this study contain data
recorded with the Apple Watch Series 7 (Apple Inc., USA)
and the Withings ScanWatch (Withings SA, France). The
Apple Watch ECG app has FDA clearance, and the Withings
ScanWatch has reviewed medical certification in Europe and
FDA clearance in the United States. We are not aware of any
public datasets containing smartwatch recorded data.
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FIGURE 1. Visual abstract showing the main motivation and objective, methods, key findings, and implications of our study.

TABLE 1. Characteristics of the datasets, that are used in this study. The datasets include public datasets containing traditional ECG signals and datasets

containing ECGs recorded with smartwatches.

Year Number of signals  Signal length ECG type Sampling frequency
Lubachevsky University 2020 200 10 s 12-channel ECG 500 Hz
Database (LUDB) [25]
QT Database (QTDB) [26] 1997 105 15 min 2-channel ECG 250 Hz
SmartHeartWatch 2022 96 30s-50s 1-channel ECG 300 Hz / 512 Hz
(Withings ScanWatch / Apple Watch)
SMART Start 2023 28 30s—50s 1-channel ECG 300 Hz

(Withings ScanWatch)

1) SMARTHEARTWATCH DATASET

Data for the SmartHeartWatch study were collected between
August and October 2022 at the Machine Learning and
Data Analytics Lab of the Friedrich-Alexander Universitéit
Erlangen—Niirnberg, Germany. Participants were asked to
self-record an ECG with two different smartwatches in
a resting phase as well as in a recovery phase after
physical activity. Participants included a healthy group and
a group of people with heart failure. The study protocol
was approved by the responsible ethics committee (vote
number 22-237-S). Participants included in the study were
required to be at least 22 years old, capable of completing all
study phases as self-assessed, and provide written informed
consent. For the healthy group, exclusion criteria included
the presence of electrical implants, poor skin integrity in
areas where smartwatches were to be applied, diagnosed
heart failure or other heart diseases, and pregnancy or
breastfeeding. Participants with heart failure were excluded
if they had a pacemaker, defibrillator, or other electrical
implants, poor skin integrity in relevant areas, or were
pregnant or breastfeeding. In total, for each participant four
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smartwatch ECG recordings were obtained: two with the
Apple Watch Series 7 and two with the Withings ScanWatch.

A total of 26 participants, comprising 70 % (n=18) without
any known cardiac conditions and 30 % (n=8) with a
diagnosis of heart failure (HF), were enrolled in the study. The
mean age of the healthy participants was 56 £ 20 years, with
61 % (n=11) females included in this group. The participants
with diagnosed heart failure had a mean age of 69 £ 9 years,
and among them, 50 % (n=4) were female. During data
acquisition, the smartwatches detected atrial fibrillation in
eight recordings from two healthy and two participants with
HEF. These recordings were excluded from the dataset. In total
96 recordings from 25 participants were included in the final
dataset. In this study, we did not evaluate differences among
resting and recovery phases or between healthy and heart
failure participants.

2) SMART START DATASET

The SMART Start dataset originates from a study including
pregnant women who were equipped with a Withings
ScanWatch, enabling them to conduct measurements at home
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independently throughout their pregnancy. The study was
conducted at the Department of Gynaecology and Obstetrics,
Uniklinikum Erlangen, starting in December 2022. Data
was collected using the Carecentive framework for mobile
health-powered trials.! The study included pregnant women
between the ages of 18 and 50 who were between 8+0
to 2346 weeks pregnant and had given written informed
consent. Women with electrical implants were excluded,
as were those with poor skin integrity on the wrist or a
wrist circumference greater than 20 cm. The study received
approval by the responsible ethics committee (530_20B).
As the data collection is still ongoing at the time of
analysis, only a subset has been used, the cutoff date was
October 18, 2023. The subset comprises only participants
who used the smartwatch during the study period. For each
participant, a single ECG recording was selected. To maintain
a manageable labeling workload, a random subset was
generated from the available data. The resulting dataset
consists of 28 participants with an average age of 34 £ 4 years
and an average gestational age of 23 £+ 7 weeks (mean =+
standard deviation).

C. REFERENCE ANNOTATIONS
1) PUBLIC ECG DATASETS
The LUDB and QTDB datasets contain manual annota-

tions for the on- and offsets of the P-wave, T-wave, and
QRS-complex.

2) SMARTWATCH DATASETS

Reference annotation of fiducial points, including on- and
offsets of P-wave and T-wave, as well as Q/R/S-peak
locations, were conducted by two independent ECG signal
processing experts. The SMART Start dataset additionally
contains annotations for QRS on- and offset. The annotation
process adhered to established cardiologist guidelines and
was facilitated using the MaD GUI [27], a dedicated labeling
interface.

Figure 2 shows exemplarily the fiducial point locations for
an ECG cycle. The fiducial points comprise P-wave: P,
Pogr, QRS complex: ORS,,, O, R, S, ORS,f, and T-wave: Ty,
Tofr -

lll. METHODS

A. DELINEATION ALGORITHMS

For our experiments, we included the ECG delineation
algorithms from the toolboxes NeuroKit,> ECGkit,® and
ECGdeli.* All three algorithms provide the source code and
extract all of the following features: onset and offsets of
P-wave (Pon, Pog), T-wave (Ton, Tofr) and QRS-complex
(ORSon, ORS,fr), as well as the peaks of the QRS-complex
(O, R, S). We chose these fiducial points as they are available

1 https://carecentive.net/
2https://github.com/neuropsychology/NeuroKit

3 https://ecg-kit.readthedocs.io/en/master/index.html
4https:// github.com/KIT-IBT/ECGdeli

VOLUME 12, 2024

for all algorithms and can be used to compute clinically
relevant cardiac features. The ECG delineation algorithms in
the Python toolbox NeuroKit [28] and in the Matlab toolbox
ECGkit implement the approach by Martinez et al. [29]. The
ECG delineation algorithm in the Matlab toolbox ECGdeli
is based on the paper by Pilia et al. [30]. All three algorithm
implementations are wavelet-based. We chose to evaluate
only open-source algorithms to ensure transparency and
reproducibility, as their source code is publicly accessible
and allows for independent verification of the results. Addi-
tionally, open-source algorithms benefit from continuous
community-driven improvements and offer flexibility to
adapt the code to specific research needs.

B. EVALUATION CRITERIA

As evaluation metrics, we calculated the error as the deviation
between the algorithm output and reference annotations in
milliseconds (ms) as mean (©) and standard deviation (o)
over all events in the respective dataset. We considered a
difference greater than 120 ms as misdetection and did not
include these events in the error detection, as suggested by
Beraza and Romero [21]. Sensitivity (Se) was calculated to
interpret the number of misdetections. We did not evaluate
Positive Predictive Value (PPV) and F1-score, as for LUDB
and QTDB, not every heartbeat was annotated, and we,
therefore, cannot evaluate false positives.

R
QRSO" QRscoff
Pon Pt Ton Tost
Q

S

FIGURE 2. Location of fiducial points, including onset and offsets of
P-wave (Pon, Poff), T-wave (Ton. Toff) and QRS-complex (QRSon, QRS f).
as well as the peaks of the QRS-complex (Q, R, S).

TABLE 2. Acceptable deviations in ms for fiducial point delineation
according to the CSE working party [31].

Pon Pog QRSon  QRSog  Tog
Oacceptable in ms  10.2 12.7 6.5 11.6 30.6

We, further, evaluated the results of the delineation
algorithms for each fiducial point with respect to accept-
able deviations according to the recommendations by the
Common Standards for Quantitative Electrocardiography
(CSE) working party [31], as also performed in comparable
studies [21], [22]. The values for acceptable deviations are
shown in Table 2.
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TABLE 3. Results for delineation algorithms on public ECG datasets and smartwatch datasets. Public datasets: Lobachevsky University Database

(LUDB) [26], QT database (QTDB) [25] and their combination (LUDB+QTDB); Smartwatch datasets: SmartHeartWatch, SMART Start, and their combination
(SmartHeartWatch+SMART Start). Results are reported in Sensitivity (Se) in %, deviation (1 + o) in ms, and the number of True Positives (TP) and False
Negatives (FN). Delineation results are shown for the fiducial points on- and offset of P-waves (Pon and P,¢f), T-waves (Ton and T,gr) and QRS-complex
(QRSon and QRS,¢f) as well as Q/R/S-peak locations (Q, R, S). For each fiducial point, the highest Se among the algorithms is highlighted in bold. A dash

(-) indicates that no annotations were available for specific fiducial points in the corresponding dataset.

Pon Pyt QRSon Q R s QRSon Ton Toi
Se (%) 98.18 98.34 99.91 - 99.86 - 98.70 89.02 91.61
ECGdeli  AE0 (M) —6.22£30.00  17.22+2521  —T.67+21.59 - —3.72 4+ 14.20 - 11.08429.19 —4.12+41.94  3.19+39.38
hdel rp 3136 3141 3525 - 3523 - 3482 1257 3245
FN 58 53 3 - 5 - 46 155 297
Se (%) 87.41 91.11 99.72 - 97.59 - 99.55 71.53 79.08
ECGKy HEo (ms)  3.95£27.23  —3.07+2301 1065+ 15.88 - ~7.22418.32 - 2.95+19.39 —4.73+43.06 3.33+31.29
QTDB o~ TP 2792 2910 3518 - 3443 - 3512 1010 2801
FN 402 284 10 - 85 - 16 402 741
Se (%) 96.34 94.27 90.45 - 98.41 - 82.20 67.00 66.80
Newroit A0 (ms)  25.07+33.65 —18.83+31.63 —24.92+40.64 - —11.65 + 19.54 - —6.624+28.08 23.22+61.50 —21.64 +33.91
curoit p 3077 3011 3191 - 3472 - 2900 946 2366
FN 117 183 337 - 56 - 628 466 1176
Se (%) 98.5 99.21 99.34 - 99.29 - 99.40 96.41 92.81
ECGdeli p+o (ms) —18.16 & 28.21 21.26 +£15.39 —11.53 + 13.58 - 4.19 +10.42 - 17.40 £20.62 —9.04 &+ 34.62 10.44 +28.17
o TP 1381 1390 1817 - 1816 - 1818 1583 1524
FN 20 11 12 - 13 - 11 59 118
Se (%) 88.15 91.79 99.56 - 99.18 - 98.80 89.10 88.55
ECGKki  AEo (ms) —1086£2409 —807£19.52  470+1471 - 1.90 + 13.0 - 25241538 —11.60+25.0 3.84+25.48
LUDB TP 1235 1286 1821 - 1814 - 1807 1463 1454
FN 166 115 8 - 15 - 22 179 188
Se (%) 97.86 93.72 95.63 - 98.74 - 94.59 86.36 72.47
NewroKit K0 (ms) 11023508 —22.37+35.08 —6.44 +23.92 - 0.41 + 12,59 - —3.914+2240 24.35+57.30 —17.75 +28.93
TP 1371 1313 1749 - 1806 - 1730 1418 1190
FN 30 88 80 - 23 - 99 224 452
Se (%) 93.97 96.7 - 98.38 98.11 98.44 - 96.81 95.72
ECGdeli A0 (ms)  —0.00+44.07 2017 +27.62 - 139442045 1572+ 19.61  15.77 +25.19 - 51243284 11.60 + 31.49
el TP 2480 2552 - 3101 3111 3102 - 2849 2817
FN 159 87 - 51 60 49 94 126
Se (%) 69.27 72.30 - 45.53 96.25 63.92 - 72.38 70.51
ECGke A0 (ms) —864+4155 —16.22+3147 - 814+1552  6.69+ 1843  3.03426.10 - 5204369 —6.09+37.12
SmartHeart Watch At pp 1828 1908 - 1435 3052 2014 - 2130 2075
FN 811 731 - 1717 119 1137 - 813 868
Se (%) 82.76 81.02 - 92.93 97.26 92.8 - 90.49 90.01
Newoki A0 (ms) 1550 £36.62  —16.56 +27.78 - —7.66+17.13 —1.75+9.34  2.54 + 26.87 - 37.65+33.62 —23.94+ 24.90
CUrolit mpp 2184 2138 - 2929 3084 2924 - 2663 2649
FN 455 501 - 223 87 227 - 280 204
) 88.95 97.81 99.64 99.73 99.82 99.64 99.55 95.46 97.73
o pto(ms) —2514+53.09 17.73+27.2  4.94+24.03 77241831 3134402 12641275 —4.62+21.67 33.62+38.95 —7.51+33.99
TP 974 1071 1107 1109 1109 1106 1096 1052 1077
FN 121 24 4 3 2 4 5 50 25
Eockie  Se (%) 68.40 74.25 96.94 44.60 98.29 60.45 95.73 85.57 81.58
pto(ms) —479+37.86 —15.294+28.77 19.22429.16 —0.54+7.95 —0.84+10.08 —121+1573 —20.99+28.72 17.88+39.22 —1.54+32.61
SMART Start TP 749 813 1077 496 1092 671 1054 943 899
FN 346 282 34 616 19 439 a7 159 203
NewroKit 5S¢ (%) 90.14 95.07 93.70 95.86 99.28 95.86 98.55 79.76 97.1
pto(ms) 31.96+30.84 —16.19+2859 —871+27.86 —9.69+21.23 —0.06+647 2.87+1401 —1539+19.55 70.01+33.12 —33.97 +28.34
TP 987 1041 1041 1066 1103 1064 1085 879 1070
FN 108 54 70 46 8 46 16 223 32
Se (%) 98.30 98.61 99.72 - 99.66 - 98.94 92.99 91.99
ECGdeli  AE0 (ms)  —9.94£30.02  1846+22.73  —8.98+19.33 - —1.03 4 13.57 - 13.254+26.73 —6.86+38.11 551+ 36.33
“oldel - pp 4517 4531 5342 - 5339 - 5300 2840 4769
FN 78 64 15 - 18 - 57 214 415
Se (%) 87.64 91.32 99.66 - 98.13 - 99.29 80.98 82.08
ECGKy Ao (ms) —050+£27.18 4642212 8.62 + 15.75 - —4.08 4+ 17.23 - L09+18.31  —879+33.74  3.50+29.43
QTDB + LUDB ’ TP 4027 4196 5339 - 5257 - 5319 2473 4255
FN 568 399 18 - 100 - 38 581 929
Se (%) 96.80 94.10 92.22 - 98.53 - 86.43 77.41 68.60
Newroit A0 (ms) 213643477 —19.91£32.76 —1838+36.71 - —7.53 4 18.39 - —5.60+26.13  23.90+59.02 —20.34 + 32.38
uroRIt - pp 4448 4324 4940 - 5278 - 4630 2364 3556
FN 147 271 417 - 79 - 727 690
ECGdeli S¢ (%) 92.50 97.03 - 98.73 98.55 98.76 - 96.44
! pEo (ms) —14.20+47.29 19.45 £ 27.52 - 12.30 +20.1 1241 +£17.84 11.96 + 23.48 - 5.32 £ 38.63
TP 3454 3623 - 4210 4220 4208 - 3901
FN 280 111 - 54 62 53 - 144
Eccke e (%) 69.01 72.87 - 45.29 96.78 63.01 - 75.97 73.52
KU it o (ms)  —7.52+4055 —15.94 + 30.69 - 59141448 47141697  1.97 +24.0 - 1884391  —4.72+ 3588
SmartHeartWatch + SMART Start TP 2577 2721 - 1931 4144 2685 - 3073 2974
FN 1157 1013 - 2333 138 1576 - 972 1071
NewroKit 5S¢ (%) 84.92 85.14 - 93.69 97.78 93.59 - 87.56 91.94
WORIL 4o (ms)  20.624£35.74  —16.44 + 28.05 - —820+18.34 —1.30+871  2.63+24.12 - 45.68 +36.3 —26.82 & 26.33
TP 3171 3179 - 3995 4187 3988 - 3542 3719
FN 563 555 - 269 95 273 - 503 326

To increase the amount of data for the analysis, we addi-
tionally evaluated the algorithms on the combination of the

IV. RESULTS
A. BENCHMARK ECG DELINEATION ALGORITHMS

smartwatch ECG data sets (SmartHeartWatch + SMART
Start) and the combination of the two publicly available ECG
datasets (QTDB + LUDB).

160798

Table 3 shows the delineation results for the public ECG
datasets QTDB and LUDB, as well as for the smartwatch
datasets SmartHeartWatch and SMART Start. The results are
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FIGURE 3. Boxplots showing sensitivity in % and deviation in ms of ECG delineation using ECGdeli algorithm on SmartHeartWatch and SMART Start
datasets. Fiducial points include on- and offset of P-waves (Pon, Pyfr) and T-waves (Ton, Tofr), and Q/R/S-peak locations (Q, R, S) (solid color).
Additionally, results for on- and offset of the QRS-complex (QRSon, QRS,fr) are shown, but only on the SMART Start dataset (dashed color). Only true
positive detections are considered within this plot. The horizontal bars represent the median sensitivity, diamonds (+) indicate outliers. The boxes
represent the interquartile range, and the vertical lines extend to the furthest observation that is not considered an outlier, i. e., that is at most

1.5 times the interquartile range from the top or bottom of the box. Triangles (A) represent the mean.

displayed as Se in %, deviation from the ground truth in ms
(u £ o) and the number of true positives (TP) and false
negatives (FN).

ECGdeli achieves the highest Se for the on- and offset of
P- and T-waves on the public ECG datasets (LUDB, QTDB).
For QRS,, and QRS,#, ECGKkit achieves a comparable
Se. ECGdeli performs best on all fiducial points for
the smartwatch datasets (SmartHeartWatch, SMART Start),
except for P,, on the SMART Start dataset, where NeuroKit
performs best. In all other cases, NeuroKit consistently has
a lower Se for all the points on any of the four investigated
datasets.

For the following analysis, we concentrate on ECGdel,
which performed best among the investigated algorithms.

B. FIDUCIAL POINT ANALYSIS FOR ECG DELINEATION ON
SMARTWATCH DATA

Figure 3 shows the Se in % and the deviation in ms of
ECGdeli algorithm for all investigated fiducial points. QRS
and QRS is evaluated on the SMART Start dataset only,
whereas the results for all other fiducial points comprise data
from SMART Start and SmartHeartWatch datasets.

ECGdeli achieves a Se over 90% for all fiducial points. The
QRS-complex shows the lowest errors, with the points Q, R,
S, as well as ORS,,, and QRS , exhibiting high Se and a low
mean deviation. In contrast, P,, is segmented with the lowest
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Se and the highest deviation. Detailed results can be seen in
Table 3.

C. DELINEATION OF DIFFERENT SMARTWATCH TYPES
Figure 4 shows the delineation performance using the
ECGdeli algorithm for Apple Watch and Withings Scan-
Watch recordings. The Se of delineating the Apple Watch
using ECGdeli is generally higher for all fiducial points
compared to the Withings ScanWatch. Especially for
the QRS-complex, ECGdeli hardly misses any peaks on the
Apple Watch. There is a slightly higher deviation for the
QRS-complex on the Apple Watch. For P-wave and T-wave,
the deviations are comparable between Apple Watch and
ScanWatch. Example signals for the Apple Watch and With-
ings ScanWatch including fiducial point locations determined
by ECGdeli and corresponding reference annotations are
shown in Figure 5.

Detailed delineation results for all three algorithms are
attached in the supplementary material.

V. DISCUSSION

In this study, we evaluated the performance of automatic
delineation algorithms for ECGs on smartwatch data.
We benchmarked three open-source algorithms using four
datasets. Two of these datasets consist of smartwatch ECGs
collected from a diverse user group. Our results show
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locations (Q, R, S). Only true positive detections are considered within this plot. The horizontal bars represent the median sensitivity, diamonds (o)
indicate outliers. The boxes represent the interquartile range, and the vertical lines extend to the furthest observation that is not considered an outlier,
i. e, that is at most 1.5 times the interquartile range from the top or bottom of the box. Triangles (A) represent the mean.

that delineation performance is consistent across all four
datasets, although the performance varies among different
fiducial points. ECGdeli is the most stable performing
algorithm for smartwatch data, whereas NeuroKit exhibited
higher temporal accuracy in detecting fiducial points, despite
recognizing fewer points correctly overall.

There are differences between the watches: the ECGdeli
algorithm identifies P-waves more accurately on the Apple
Watch. While more points are detected correctly with the
Apple Watch, the overall deviation is higher compared
to the ScanWatch. Figure 5 illustrates the differences in
signal quality: the Apple Watch produces a cleaner ECG
signal, whereas the Withings ScanWatch appears to contain
high frequency noise. We used the signals in their raw
format without applying any preprocessing algorithms. Both
manufacturers do not disclose details regarding the internal
preprocessing of the signals. For our analysis, we focused
on the raw signals provided by the watches to ensure
comparability and universal applicability.

The strengths of our study include a diverse user group and
its evaluation across two leading smartwatch models.

When comparing the mean deviation of the ECGdeli
algorithm on smartwatch data with normal deviations result-
ing from inter-observer differences (see Table 2), the limits
for ORS,n, ORS,f, and Ty are within the range, while for
P,y and P, , they are outside the range of acceptable values.
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We achieve comparable results to existing algorithm
benchmarks on conventional ECG datasets [21], [24].
Additionally, our implementation of ECGdeli shows similar
results to the original publication by Pilia et al. [30]. Com-
pared to the results reported by Beraza and Romero [21],
we found discrepancies in the performance of ECGkit on
QTDB, especially for the T-wave. However, our benchmark-
ing approach differed slightly. We focused only on lead I,
unlike their study, which considered two leads.

This work has several limitations. First, annotations for
ORS,, and QRS,y are available only for one of two
smartwatch datasets, which may limit the generalizability
of these findings. Compared to other benchmarking studies,
we used only a small selection of algorithms, as our focus
was on open-source implementations, which ensure greater
transparency and reproducibility of results. Furthermore, the
studies on smartwatch data involved a small sample size,
which may impact the robustness and applicability of the
results.

Existing studies have demonstrated the utility of smart-
watches in managing various conditions, including heart
failure [12], [19], cardiac rhythm safety in medication
treatment [10] or monitoring congenital heart disease in
children [14]. The findings of our underlying study, which
confirm the feasibility of automatic segmentation using
smartwatches, can be leveraged to develop mobile health
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solutions/digital health platforms for these cardiovascular
conditions.

For future studies, we recommend selecting the algorithm
based on the specific application and deciding whether to
prioritize high accuracy or a high detection rate, and ensuring
that it suits the particular smartwatch being used.

VI. CONCLUSION AND OUTLOOK

We demonstrate the feasibility of segmentation algorithms for
ECG data generated by smartwatches, paving the way for fur-
ther studies on smartwatch-based heart disease monitoring.
We conclude that open-source ECG segmentation algorithms
perform equally well on smartwatch ECG data compared
to traditional ECG data. Specifically, ECGdeli proved to
be the most stable algorithm overall, while NeuroKit is
recommended when temporal accuracy of detected points is
of interest.

Future work should focus on clinical validation of these
algorithms for specific cardiovascular disease markers. Our
heterogeneous findings indicate that the functionality of auto-
matic delineation algorithms should be further tested across
multiple smartwatch models to ensure broader applicability
and reliability.
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