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An integrated transcriptomic cell atlas of 
human neural organoids

Zhisong He1,19 ✉, Leander Dony2,3,4,5,19, Jonas Simon Fleck6,19, Artur Szałata2,7,19, Katelyn X. Li2,3,19, 
Irena Slišković2,3,4,19, Hsiu-Chuan Lin1, Malgorzata Santel1, Alexander Atamian8,9, 
Giorgia Quadrato8,9, Jieran Sun1, Sergiu P. Pașca10,11, Human Cell Atlas Organoid Biological 
Network*, J. Gray Camp6,12 ✉, Fabian J. Theis2,5,7 ✉ & Barbara Treutlein1 ✉

Human neural organoids, generated from pluripotent stem cells in vitro, are useful 
tools to study human brain development, evolution and disease. However, it is unclear 
which parts of the human brain are covered by existing protocols, and it has been 
difficult to quantitatively assess organoid variation and fidelity. Here we integrate  
36 single-cell transcriptomic datasets spanning 26 protocols into one integrated 
human neural organoid cell atlas totalling more than 1.7 million cells1–26. Mapping to 
developing human brain references27–30 shows primary cell types and states that have 
been generated in vitro, and estimates transcriptomic similarity between primary  
and organoid counterparts across protocols. We provide a programmatic interface  
to browse the atlas and query new datasets, and showcase the power of the atlas to 
annotate organoid cell types and evaluate new organoid protocols. Finally, we show 
that the atlas can be used as a diverse control cohort to annotate and compare 
organoid models of neural disease, identifying genes and pathways that may underlie 
pathological mechanisms with the neural models. The human neural organoid cell 
atlas will be useful to assess organoid fidelity, characterize perturbed and diseased 
states and facilitate protocol development.

Human neural organoids, self-organizing three-dimensional human 
neural tissues grown in vitro, are becoming powerful tools for stud-
ying the mechanisms of human brain development, evolution and 
disease31–33. They can be generated using external patterning factors 
(for example, morphogens) to guide their development towards 
certain brain regions or to drive the emergence of specific cell types 
(guided protocols)7,11,18,34,35. Conversely, unguided protocols rely on 
the self-patterning capacity of organoids to generate diverse cell types 
and states36,37.

Single-cell RNA sequencing (scRNA-seq) is a powerful technology 
to characterize cell type heterogeneity in complex tissues, and has 
illuminated a remarkable heterogeneity of diverse progenitor, neuronal 
and glial cell types that can develop within neural organoids2–4,37,38, as 
well as differentiation trajectories of certain neural lineages. The data 
also enable the comparison of human neural organoid cells to those 
in the primary human brain, and most analyses have revealed strong 
similarity in molecular signatures6,18,25,39. Substantial differences have 
also been reported, including differential gene expression linked to 
media components39 and perturbed metabolic signatures associated 

with glycolysis3,10,23,24,38. Nevertheless, analysis of organoid tissues sup-
ports a useful recapitulation of early brain development, and scRNA-seq 
methods have been applied to study the molecular basis of neural cell 
type fate determination20, evolutionary differences in primates3,38,40,41 
and pathological changes in neural disorders16,26,42,43. However, it is 
unclear which portions of the developing central nervous system can 
be generated with existing protocols and which ones are still lacking. 
It has also remained challenging to systematically quantify the tran-
scriptomic fidelity of neural organoid cells compared to their primary 
counterparts.

In this study, we address these challenges by combining 36 scRNA-seq 
datasets covering numerous human neural organoid protocols into an 
integrated transcriptomic cell atlas. We establish an analytical pipe-
line that allows for the comprehensive and quantitative comparison 
of the organoid atlas to reference atlases of the developing human 
brain27. We harmonize annotations of cell populations in the primary 
and organoid systems, estimate the capacity and precision of differ-
ent neural organoid protocols to generate different brain regions, and 
identify primary cell populations that are under-represented in neural 
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organoids. We estimate transcriptomic fidelity of neurons in neural 
organoids, and identify previously described cell stress3,10,23,24 as a uni-
versal factor distinguishing metabolic states of in vitro neurons from 
primary neurons without strongly affecting core identities of neuronal 
cell types. We map the data of a neural organoid morphogen screen44 
to the integrated atlas to assess regional specificity and generation of 
new states. We also collect 11 scRNA-seq datasets modelling 10 different 
neural diseases, and map the integrated data to the neural organoid 
atlas for cell type annotation and differential expression (DE) analysis. 
Finally, we show that the atlas can be expanded by projecting new data 
to the current atlas. Together, our work provides a rich resource and a 
new framework to assess the fidelity of neural organoids, characterize 
perturbed and diseased states and streamline protocol development.

Data curation, harmonization and integration
To build a transcriptomic human neural organoid cell atlas (HNOCA), 
we collected scRNA-seq data and detailed, harmonized technical and 

biological metadata from 36 datasets, including 34 published1–26 and 
two as yet unpublished ones (Supplementary Table 1), accounting for 
1.77 million cells after consistent preprocessing and quality control 
(Fig. 1a). The HNOCA represents cell types and states generated with 
26 distinct neural organoid differentiation protocols, including three 
unguided and 23 guided ones, at time points ranging from 7 to 450 days 
(Fig. 1b). To remove batch effects, we implemented a three-step inte-
gration pipeline. First, we projected the HNOCA to a single-cell atlas 
of the developing human brain27 using reference similarity spectrum 
(RSS)3. Then, we developed snapseed (Methods) to perform prelimi-
nary marker-based hierarchical cell type annotation. Last, we used 
scPoli45 for label-aware data integration based on the snapseed anno-
tations. Evaluation of different integration approaches using a previ-
ously established benchmarking pipeline46 showed that scPoli had 
the best performance for these datasets (Extended Data Fig. 1). We 
performed clustering on the basis of the scPoli representation and 
annotated clusters on the basis of canonical marker gene expression,  
organoid sample age and the auto-generated cell type labels. A uniform 
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Fig. 1 | Integrated HNOCA. a, Overview of HNOCA construction pipeline.  
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integrated HNOCA, coloured by level 2 cell type annotations (c), gene 
expression profiles of selected markers (d), sample ages (e) and differentiation 
protocol types (f). g, Proportions of cells assigned to different cell types in  
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sample age. h, UMAP of the integrated HNOCA coloured by top-ranked 
diffusion component (DC1) on the real-time-informed transition matrix 

between cells. The stream arrows visualize the inferred flow of cell states 
toward more mature cells. i, Marker gene expression profiles along cortical 
pseudotime. j, UMAP of non-telencephalic neurons, coloured and labelled by 
clusters. k, Heatmap showing relative expression of selected genes across 
different non-telencephalic neuron clusters. Coloured dots show cluster 
identities as shown in j. Cb, cerebellum; ChP, choroid plexus; CP, choroid 
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manifold approximation and projection (UMAP) embedding high-
lighted three neuronal differentiation trajectories corresponding to 
dorsal telencephalic, ventral telencephalic and non-telencephalic 
populations as well as trajectories leading from progenitors to glial cell 
types such as astrocytes and oligodendrocytes precursors (Fig. 1c–e and 
Extended Data Fig. 2). Cells from both unguided and guided protocols 
were distributed across all trajectories (Fig. 1f).

To elucidate the dynamics and transitions of cell states and types, we 
reconstructed a real-age-informed pseudotime of HNOCA cells on the 
basis of neural optimal transport47 using moscot48 (Fig. 1h). Focusing 
on the dorsal telencephalic neural trajectory, we observed consistent 
pseudotemporal expression profiles of marker genes such as SOX2 
(neural progenitor cells (NPCs)), BCL11B (deeper layer cortical neurons) 
and SATB2 (upper layer cortical neurons) (Fig. 1i). To further resolve 
heterogeneity among non-telencephalic neurons, we performed sub-
clustering of this population, which revealed numerous neuronal popu-
lations characterized by distinct marker gene expression (Fig. 1j,k).

HNOCA projection to a human developing brain atlas
To assess our cell type annotation, and more precisely annotate the 
heterogeneous non-telencephalic neuronal populations, we com-
pared the HNOCA to a recently published single-cell transcriptomic 
atlas of the developing human brain27 (Fig. 2a). We applied scVI49 and 
scANVI50 to the primary reference atlas, and used scArches51 to project 

the HNOCA to the same latent space. The shared latent space allowed 
us to reconstruct a bipartite weighted k-nearest-neighbour (wkNN) 
graph between cells in the HNOCA and the primary reference atlas, 
which was used to transfer the ‘CellClass’ and ‘Subregion’ labels, as well 
as the neurotransmitter transporter (NTT) information of neuroblasts 
and neurons to the HNOCA. The transferred labels are strongly con-
sistent with our assigned labels (Extended Data Fig. 3) and allowed us 
to refine the regional annotation of HNOCA non-telencephalic NPCs 
and neurons, as well as the NTT annotation of the non-telencephalic 
neurons (Fig. 2b), resulting in the final hierarchical HNOCA cell type 
annotation (Extended Data Fig. 3).

We also sought to compare organoid cells to stages of human brain 
development beyond the first trimester. Focusing on dorsal telen-
cephalon, we compared the transcriptomic profile of HNOCA NPCs 
and neurons with cells in a primary atlas of human cortex development 
spanning the first trimester to adolescence30. We observed a transition 
from cell states observed in the first trimester to more mature states 
observed in the second-trimester cortex (Fig. 2c), and did not detect 
substantial matching to later stages. We extended the comparison to 
other brain regions using two primary atlases27,29 representing the first 
and second trimester, respectively. We confirmed increased similar-
ity to second-trimester cell states in older organoids for other brain 
regions (Extended Data Fig. 3).

We evaluated the capacity of each neural organoid protocol to gener-
ate neural cells of different brain regions (Fig. 2d, Extended Data Figs. 3 
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and 4 and Supplementary Table 2). Datasets of unguided neural orga-
noids contain cells across all brain regions with proportions varying 
across datasets, indicating the capacity of unguided protocols to gener-
ate many brain regions but with high variability. By contrast, datasets 
derived from guided organoid protocols are strongly enriched for cells 
of the targeted brain region, but often show an increased proportion 
of cells of the brain regions neighbouring the targeted regions. For 
example, several datasets derived from midbrain organoid protocols 
also show high proportions of hindbrain neurons, indicating an impre-
cision of morphogen guidance.

To comprehensively evaluate how well organoid protocols repre-
sented by the HNOCA generate primary brain cell types, we estimated 
presence scores for every primary cell type in each HNOCA dataset 
(Methods). A large presence score indicates high frequency and likeli-
hood that cells of a similar type are observed in the HNOCA dataset. By 
normalizing the scores per organoid dataset (Extended Data Fig. 5 and 
Supplementary Table 3), we obtained a metric to describe how well each 
primary cell type is represented in at least one HNOCA dataset (Fig. 2d). 
This analysis confirmed the absence of erythrocytes, immune cells 
and vascular endothelial cells in the HNOCA, all of which are derived 
from non-neuroectodermal germ layers (Fig. 2e). As expected, tel-
encephalic cell types are most strongly represented in HNOCA. By 
contrast, cell types of the thalamus, midbrain and cerebellum are least 
represented, including thalamic reticular nucleus GABAergic neurons, 

dorsal midbrain m1-derived GABAergic neurons and m1/m2-derived 
glutamatergic neurons, and cerebellar Purkinje cells (Fig. 2f,g). It is 
worth noting that, even though these cell types are less abundant in 
HNOCA datasets than in the primary atlas, certain organoid protocols 
can generate some of these under-represented cell types (for example, 
Purkinje cells in posterior brain organoid protocols).

Transcriptomic fidelity organoid cell types
We next aimed to understand the transcriptomic similarities and dif-
ferences between organoids generated by distinct differentiation 
protocols as well as between organoids and primary brain tissue. We 
identified differentially expressed genes (DEGs), comparing neural 
cell types in the HNOCA with their primary counterparts27 (Fig. 3a and 
Supplementary Table 4). We found that for most neural cell types, 
more than one-third (mean 34.4%, standard deviation 12.1%) of DEGs 
were shared across at least half of the protocols (protocol-common 
DEGs), suggesting that many transcriptomic differences between 
organoid and primary cells were independent of organoid protocol 
(Fig. 3b). We verified our results using an extra primary human cortex 
scRNA-seq dataset28 (Extended Data Fig. 6 and Supplementary Table 5). 
We next assessed differential transcriptomic programmes that were 
shared across regional neural cell types, and identified a total of 920 
ubiquitous, protocol-common DEGs (uDEGs) that were differentially 
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right, GABAergic neurons. Colour shows the brain region. c, Numbers of 
protocol-common DEGs (DE in at least half of protocols), grouped by the 
number of neural cell types in which a gene is DE. d, Distribution of expression 
log-fold-change (logFC) correlation of ubiquitous DEGs among different neuron 
subtype*protocol (that is, each of the neural cell types generated by each of  
the different protocols). e, Numbers of DEGs per category. f, Gene ontology 
enrichment analysis of downregulated (upper, blue) and upregulated (lower, 
red) ubiquitous DEGs. Sizes of the squares correlate with −log-transformed 
adjusted P values. g,h, Distribution of the mitochondrial ATP synthesis-coupled 

electron transport module scores (g), canonical glycolysis module scores  
(h, left) and the Molecular Signatures Database hallmark glycolysis module 
scores (h, right), in primary neural cell types (upper, dark) and organoid 
counterparts (lower, light). P values, significance of a two-sided Wilcoxon test.  
i, Heatmap shows pairwise correlation (corr.) of the three module scores.  
j, Hallmark glycolysis score of dorsal telencephalic excitatory neurons (dTelen 
VGLUT-N), split by the three primary developing human brains and 27 organoid 
datasets with at least 20 dTelen VGLUT-N. The lower panel shows selected 
features of differentiation protocols that may be relevant to cell stress. The 
protocol and publication indices are shown in Extended Data Fig. 1. Mat. media, 
maturation media. k, Spearman correlations between gene expression profiles 
of neural cell types in HNOCA and those in the human developing brain atlas27, 
across the variable transcription factors (TFs). Datasets are in the same order as 
in Supplementary Table 1.
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expressed in at least 14 out of the 16 neural cell types (Fig. 3c). These 
uDEGs showed consistent fold changes (r > 0.8) across neuron types 
and protocols (Fig. 3d), and represent consistent molecular differences 
between neurons in organoids and those in primary tissues regardless 
of protocol or neuronal cell type. Out of all 920 uDEGs, 363 genes were 
consistently upregulated and 673 genes were consistently downregu-
lated, with only 59 genes (6%) inconsistently differentially expressed 
across subtypes or protocols (Fig. 3e).

Using gene ontology enrichment analysis52,53 on the uDEGs, we found 
downregulated uDEGs enriched in neurodevelopmental processes 
including neuron cell–cell adhesion and synapse organization (Fig. 3f). 
Upregulated uDEGs were enriched in many metabolism-associated 
terms including mitochondrial ATP synthesis-coupled electron trans-
port (electron transport in short) and canonical glycolysis (Fig. 3f). 
An enrichment of energy-associated pathways has previously been 
associated with metabolic changes caused by the limitations of cur-
rent culture conditions10,24. Also, the Molecular Signatures Database 
gene set hallmark glycolysis54,55 has previously been used to define 
metabolic states in neural organoids23. Scoring mitochondrial elec-
tron transport, canonical glycolysis and hallmark glycolysis gene sets 
across the HNOCA and the primary reference atlas27, we found that all 
three terms showed significant separation of organoid and primary 

cells (Fig. 3g,h). Using the datasets from refs. 3 and 27 as representa-
tive examples, we identified a similar distribution of glycolysis scores 
across all neural cell types with an overall increased score in organoid 
cells (Extended Data Fig. 7). Focusing on dorsal telencephalic neurons, 
we compared the distribution of glycolysis scores across organoid dif-
ferentiation protocols and identified several protocol features that cor-
related with metabolic cell stress. For instance, the usage of maturation 
media, slicing or cutting of organoids and, to a lesser extent, shaking 
or spinning of organoids led to overall lower glycolysis scores (Fig. 3h). 
Mean glycolysis score and transcriptomic similarity of organoid and 
primary reference cell types27 across differentiation protocols were 
negatively correlated10,24. The correlation was significantly reduced 
when considering only variable transcription factors, indicating that 
the metabolic changes in organoids have limited impact on the core 
molecular identity of neuronal cell types (Extended Data Fig. 7). This 
observation is consistent with previous studies23,24 of distinct metabolic 
states of cells in neural organoids relative to the primary tissue, which 
were shown to not affect neuron fate specification and maturation.

Next, we focused on the expression of 366 variable transcription 
factors to calculate the correlation between corresponding neuronal 
cell types in the HNOCA datasets and the primary reference atlas27. 
We found that both guided and unguided organoid differentiation 
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protocols generated neuronal cell types with comparable similarity to 
the corresponding primary reference cell types. However, we observed 
brain region-dependent differences in transcriptomic similarity. For 
example, organoid neurons from the dorsal parts of most brain regions 
showed higher similarity to their primary counterparts across organoid 
datasets than cell types derived from the ventral parts of most brain 
regions (Fig. 3i).

To identify molecular features other than metabolic state that 
decreased organoid fidelity, we incorporated dorsal telencephalic gluta-
matergic neurons from four different primary developing human brain 
atlases27–30 as an integrated primary reference, and identified neuron 
subtype and maturation state heterogeneity (Extended Data Fig. 8). 
Projection of dorsal telencephalic neurons in the HNOCA to the pri-
mary atlases revealed the corresponding heterogeneity in neural orga-
noids. Considering metabolic state, maturation state and cell subtype 
as covariates during DE analysis3 significantly reduced the number of 
DEGs, supporting the idea that these are the major factors differentiating 
organoid and primary brain cells (Extended Data Fig. 8 and Supplemen-
tary Table 6). We observed enriched biological processes that included 
synaptic vesicle cycle and negative regulation of high voltage-gated cal-
cium channel activity (Extended Data Fig. 8), suggesting that organoids 

are deficient in these processes. Of note, these differences are observed 
across organoid protocols, and highlight areas of consistent transcrip-
tomic divergence between in vitro and primary counterparts.

HNOCA facilitates organoid protocol evaluation
The HNOCA, as well as the analytical pipeline we established, provides 
a framework to query new neural organoid scRNA-seq datasets not 
included in the HNOCA. To showcase this application, we retrieved 
scRNA-seq data from a recently published multiplexed neural organoid 
morphogen screen44 and projected them to the HNOCA and primary ref-
erence27 latent spaces (Fig. 4a, Extended Data Fig. 9 and Supplementary 
Table 7). We transferred regional labels and found high consistency with 
the provided regional annotation, but with higher resolution within 
each of the broad brain sections of forebrain, midbrain and hindbrain 
(Fig. 4b). Our transferred annotation therefore allowed a more compre-
hensive assessment of the effects of different morphogen conditions 
on generating neurons of different brain regions (Fig. 4c). We further 
calculated presence scores for reference cells in each screen condition 
and compared the data of the different screen conditions with the 36 
HNOCA datasets. Using hierarchical clustering on average presence 
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scores revealed distinct presence score profiles for many screen condi-
tions (Fig. 4d), suggesting regional cell type composition distinct from 
the HNOCA datasets. Next, we summarized the max presence scores 
for the whole morphogen screen data (Fig. 4e), and compared them 
to those for the HNOCA data to identify primary reference cell types 
with increased presence in the screen (Fig. 4f). This analysis highlighted 
several reference cell clusters with significant abundance increase 
under certain screen conditions (Fig. 4g) such as LHX6/ACKR3/MPPED1 
triple-positive GABAergic neurons in the ventral telencephalon and 
dopaminergic neurons in ventral midbrain. In summary, the projection 
of the morphogen screen query data to HNOCA and primary reference 
allowed a refined annotation of the morphogen screen data, as well 
as a comprehensive and quantitative evaluation of the value of new 
differentiation protocols to generate neuronal cell types previously 
under-represented or lacking in neural organoids.

HNOCA facilitates disease model interpretation
We next tested whether the integrated HNOCA can serve as a control 
cohort for assessing organoid models of neural disease. We collected 
11 scRNA-seq datasets from 10 neural organoid disease models and 
their respective controls (microcephaly56, amyotrophic lateral scle-
rosis43, Alzheimer’s disease57, autism42, fragile-X syndrome (FXS)58, 
schizophrenia59, neuronal heterotopia60,61, Pitt–Hopkins syndrome62, 
myotonic dystrophy63 and glioblastoma64) (Fig. 5a, Extended Data Fig. 10 
and Supplementary Table 8). We projected the data to the HNOCA and 
the primary reference atlas to transfer annotations (Fig. 5b–f). We 
found differences in cell type and brain regional composition between 
disease model organoids and their respective, study-specific control 
organoids for most studies (Fig. 5g,h). These differences might repre-
sent disease phenotypes, but could also be the consequence of cell line 
variability. It is therefore important to properly annotate the cell type 
and regional composition of disease and control organoids to identify 
disease phenotypes, particularly when analysing disease-associated 
transcriptomic alterations in a given cell type.

We developed a wkNN-based strategy to generate matched HNOCA 
metacells for every cell in each disease model organoid scRNA-seq 
dataset (Fig. 5i), and quantified their transcriptomic similarity (Fig. 5j). 
The dataset of glioblastoma organoids64 showed substantially lower 
similarity to their primary counterpart than the other disease models 
(Fig. 5k). To assess these transcriptomic differences, we performed 
DE analysis between glioblastoma and matched control metacells. 
Focusing on the AQP4+ population (Extended Data Fig. 10), we identi-
fied 1,951 DEGs in glioblastoma cells compared to matched HNOCA 
metacells (Supplementary Table 9) and found increased expression of 
genes such as RBM25 (ref. 65) CALD1 (ref. 66), HNRNPU67 and SPARC68 
(Fig. 5l), all of which have been reported to be relevant to glioblastoma.

Next, we focused on the organoid model of FXS58, in which NPCs 
and neurons in the control organoids were of non-telencephalic 
identities whereas the disease model organoids mainly contained 
telencephalic cells (Fig. 5h and Extended Data Fig. 10). The integrated 
HNOCA provides the opportunity to perform DE analysis for FXS neo-
cortical neurons with matched HNOCA metacells, which identified 444 
DEGs. DEGs higher expressed in FXS cells (122 genes) were enriched 
for autism-associated genes annotated in the Simons Foundation 
Autism Research Initiative (SFARI) database. One such gene, CHD2, 
was reported in the original publication58 as a key regulator of FXS 
with increased protein level, but its expression change on messenger 
RNA (mRNA) level change could not be detected in a bulk RNA-seq 
experiment. We also detected decreased expression of FMR1, whose 
loss-of-function mutation causes FXS69.

Extending the HNOCA through data projection
New scRNA-seq datasets of human neural organoids continue to be 
generated, and it will be important to continuously extend and update 
the HNOCA with this extra data. We therefore established a computa-
tional toolkit to project new scRNA-seq data to the HNOCA (Fig. 6a). 
We demonstrate the use of the toolkit by incorporating scRNA-seq data 
from six more studies70–75 into the HNOCA (HNOCA-extended; Fig. 6b 
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and Supplementary Table 10), using query-to-reference mapping. We 
harmonized cell type annotations using wkNN-based label transfer, 
and placed the cells in the context of the existing organoid single-cell 
transcriptomic landscape as represented by the HNOCA (Fig. 6c–e). 
Mapping further datasets to the HNOCA using our approach enhances 
the atlas by increasing its coverage over existing neural organoid pro-
tocols and neural cell types generated in organoids.

To enable researchers to use the HNOCA in their own analysis, we 
provide various options for exploration and interaction with the atlas 
(Fig. 6f). The HNOCA can be browsed through an online portal76, ena-
bling visualization of gene expression and discovery of marker genes. 
We also provide the HNOCA through an online interface (http://www.
archmap.bio/) for the interactive mapping of new datasets, enabling 
label transfer, presence score computation and metabolic scoring of 
cell states. Finally, we have developed HNOCA-tools, a Python pack-
age implementing all central analysis approaches presented in this 
paper, such as annotation, reference mapping, label transfer and DE 
testing methods.

Discussion
In this study, we built a large-scale integrated cell atlas of human neural 
organoids, the HNOCA, by integrating 1.8 million cells spanning 36 
scRNA-seq datasets generated by 15 different laboratories worldwide 
using 26 different differentiation protocols as well as diverse scRNA-
seq technologies. The resulting atlas revealed the high complexity 
of neuronal, glial and non-neural cell types that can develop in neu-
ral organoids grown under existing protocol conditions. Mapping 
the HNOCA data to various human developing brain cell reference 
atlases27–30 allowed comprehensive evaluation of neural organoid pro-
tocols to generate cell types of different brain regions. We found that 
organoids in the first 3 months of culture best match to first-trimester 
primary data, whereas organoids around 3 months of culture and older 
best match second-trimester primary cell states. We did not observe 
significant neuronal maturation and diversification signatures match-
ing older developmental stages, suggesting a limitation of neuronal 
maturation in current neural organoid protocols.

We performed DE analysis between organoid neuron types and their 
primary counterparts to evaluate transcriptomic fidelity, and identi-
fied metabolic changes related to the glycolysis pathway as a main 
factor that distinguishes organoid and primary cell states, consistent 
with previous reports. Despite the negative effects of metabolic stress 
on overall transcriptomic fidelity, the molecular identity of regional 
cell types is maintained as evidenced by transcription factor coexpres-
sion patterns that are highly consistent with primary counterparts.

We showcased the mapping of query data, a recently published 
single-cell transcriptomic neural organoid morphogen screen, to the 
HNOCA and the primary reference, which enabled a refined cell type 
annotation, as well as a compositional comparison with existing neural 
organoid datasets. Our powerful framework will facilitate quantitative 
and comparative analysis of scRNA-seq data of human neural organoids, 
and for the benchmarking of new neural organoid protocols.

Consistent with earlier reports3,77, we find that unguided protocols 
generate neural cells with high brain regional variability, which is useful 
when studying broader fate determination during neurodevelopment. 
Guided protocols resulted in a strong enrichment of the targeted 
brain regions. We also note that some guided protocols, particularly 
those targeting midbrain, show relatively low specificity and generate 
neural cells from the nearby brain regions. This issue may be due to a 
differential response of neural stem cells in the organoid to the same 
morphogen cue, or to the lack of a full understanding of the timing, 
concentration and combinations of morphogens required to precisely 
define cells of the deeper regions in the central nervous system.

The integrated HNOCA is also an excellent resource for analysis 
of disease-modelling neural organoid data. It facilitates cell type 

annotation and provides a large control cohort of single-cell transcrip-
tomes for comparison. For example, we observed discrepancy of cell 
type and regional composition between control and disease model 
samples in many studies. At the same time, the HNOCA provides the 
opportunity to identify disease-specific molecular features against a 
multi-line multi-protocol large-scale control cohort.

We demonstrate how the HNOCA can be extended and updated by 
projecting extra single-cell transcriptomic data of neural organoids 
to the atlas. Further, we have developed a computational toolkit, 
HNOCA-tools, which will enable other researchers to recapitulate the 
analytic framework applied in our study. Together, we imagine that the 
HNOCA will be kept up to date and continue to reflect the landscape 
of human neural cell states generated in organoids in vitro, serving as 
a living resource for the neural organoid community that enables the 
assessment of organoid fidelity, the characterization of perturbed and 
diseased states and the development of new protocols.
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Methods

Metadata curation and harmonization of human neural 
organoid scRNA-seq datasets
We included 33 human neural organoid data from a total of 25 publica-
tions1–24,26 plus three unpublished datasets in our atlas (Supplementary 
Table 1). We curated all neural organoid datasets used in this study 
through the sfaira78 framework (GitHub dev branch, 18 April 2023). For 
this, we obtained scRNA-seq count matrices and associated metadata 
from the location provided in the data availability section for every 
included publication or directly from the authors in case of unpub-
lished data. We harmonized metadata according to the sfaira stand-
ards (https://sfaira.readthedocs.io/en/latest/adding_datasets.html) 
and manually curated an extra metadata column organoid_age_days, 
which described the number of days the organoid had been in culture 
before collection.

We next removed any non-applicable subsets of the published data-
sets: diseased samples or samples expressing disease-associated muta-
tions (refs. 14–16,18,19,26), fused organoids (ref. 1), primary fetal data 
(refs. 10,23), hormone-treated samples (ref. 22), data collected before 
neural induction (refs. 3,20) and share-seq data (ref. 23). We harmonized 
all remaining datasets to a common feature space using any genes of 
the biotype ‘protein_coding’ or ‘lncRNA’ from ensembl79 release 104 
while filling any genes missing in a dataset with zero counts. On aver-
age, 50% of the full gene space (36,842 genes) was reported in each of 
the constituent datasets. We then concatenated all remaining datasets 
to create a single AnnData80 object.

Preprocessing of the HNOCA scRNA-seq data
All processing and analyses were carried out using scanpy81 (v.1.9.3) 
unless indicated otherwise. For quality control and filtering of HNOCA, 
we removed any cells with fewer than 200 genes expressed. We next 
removed outlier cells in terms of two quality control metrics: the 
number of expressed genes and percentage mitochondrial counts. 
To define outlier cells on the basis of each quality control metric, 
z-transformation is first applied to values across all cells. Cells with 
any z-transformed metric less than −1.96 or greater than 1.96 are defined 
as outliers. For any dataset collected using the v.3 chemistry by 10X 
Genomics, which contains more than 500 cells after the filtering, we 
fitted a Gaussian distribution to the histogram denoting the number 
of expressed genes per cell. If a bimodal distribution was detected, 
we removed any cell with fewer genes expressed than defined by the 
valley between the two maxima of the distribution. We then normal-
ized the raw read counts for all Smart-seq2 data by dividing it by the 
maximum gene length for each gene obtained from BioMart. We next 
multiplied these normalized read counts by the median gene length 
across all genes in the datasets and treated those length-normalized 
counts equivalently to raw counts from the datasets obtained with 
the help of unique molecular identifiers in our downstream analyses.

As a next step we generated a log-normalized expression matrix by 
first dividing the counts for each cell by the total counts in that cell and 
multiplying by a factor of 1,000,000 before taking the natural loga-
rithm of each count + 1. We computed 3,000 highly variable features 
in a batch-aware manner using the scanpy highly_variable_genes func-
tion (flavor = ‘seurat_v3’, batch_key = ‘bio_sample’). Here, bio_sample 
represents biological samples as provided in the original metadata of 
the datasets. On average, 72% of the 3,000 highly variable genes were 
reported in each of the constituent HNOCA datasets. We used these 
3,000 features to compute a 50-dimensional representation of the 
data using principal component analysis (PCA), which in turn we used 
to compute a k-nearest-neighbour (kNN) graph (n_neighbors = 30,  
metric = ‘cosine’). Using the neighbour graph we computed a 
two-dimensional representation of the data using UMAP82 and a coarse 
(resolution 1) and fine (resolution 80) clustering of the unintegrated 
data using Leiden83 clustering.

Hierarchical auto-annotation with snapseed
Snapseed is a scalable auto-annotation strategy, which annotates cells 
on the basis of a provided hierarchy of cell types and the corresponding 
cell type markers. It is based on enrichment of marker gene expres-
sion in cell clusters (high-resolution clustering is preferred), and data 
integration is not necessarily required.

In this study, we used snapseed to obtain initial annotations for 
label-aware integration. First, we constructed a hierarchy of cell types 
including progenitor, neuron and non-neural types, each defined by 
a set of marker genes (Supplementary Data 1). Next, we represented 
the data by the RSS3 to average expression profiles of cell clusters in 
the recently published human developing brain cell atlas27. We then 
constructed a kNN graph (k = 30) in the RSS space and clustered the 
dataset using the Leiden algorithm83 (resolution 80). For both steps, we 
used the graphical processing unit (GPU)-accelerated RAPIDS imple-
mentation that is provided through scanpy81,84.

For all cell type marker genes on a given level in the hierarchy, we 
computed the area under the receiver operating characteristic curve 
(AUROC) as well as the detection rate across clusters. For each cell type, 
a score was computed by multiplying the maximum AUROC with the 
maximum detection rate among its marker genes. Each cluster was 
then assigned to the cell type with the highest score. This procedure 
was performed recursively for all levels of the hierarchy. The same 
procedure was carried out using the fine (resolution 80) clustering of 
the unintegrated data to obtain cell type labels for the unintegrated 
dataset that were used downstream as a ground-truth input for bench-
marking integration methods.

This auto-annotation strategy was implemented in the snapseed 
Python package and is available on GitHub (https://github.com/dev
systemslab/snapseed). Snapseed is a light-weight package to enable 
scalable marker-based annotation for atlas-level datasets in which 
manual annotation is not readily feasible. The package implements 
three main functions: annotate() for non-hierarchical annotation of 
a list of cell types with defined marker genes, annotate_hierarchy() 
for annotating more complex, manually defined cell type hierarchies 
and find_markers() for fast discovery of cluster-specific features. All 
functions are based on a GPU-accelerated implementation of AUROC 
scores using JAX (https://github.com/google/jax).

Label-aware data integration with scPoli
We performed integration of the organoid datasets for HNOCA using 
the scPoli45 model from the scArches51 package. We defined the batch 
covariate for integration as a concatenation of the dataset identifier 
(annotation column ‘id’), the annotation of biological replicates (anno-
tation column ‘bio_sample’) as well as technical replicates (annotation 
column ‘tech_sample’). This resulted in 396 individual batches. The 
batch covariate is represented in the model as a learned vector of size 
five. We used the top three levels of the RSS-based snapseed cell type 
annotation as the cell type label input for the scPoli prototype loss. 
We chose the hidden layer size of the one-layer scPoli encoder and 
decoder as 1,024, and the latent embedding dimension as ten. We used 
a value of 100 for the ‘alpha_epoch_anneal’ parameter. We did not use 
the unlabelled prototype pretraining. We trained the model for a total 
of seven epochs, five of which were pretraining epochs.

Benchmark of data integration methods
To quantitatively compare the organoid atlas integration results from 
several tools, we used the GPU-accelerated scib-metrics46,85 Python 
package (v.0.3.3) and used the embedding with the highest overall 
performance for all downstream analyses. We compared the data inte-
gration performance across the following latent representations of the 
data: unintegrated PCA, RSS3 integration, scVI49 (default parameters 
except for using two layers, latent space of size 30 and negative binomial 
likelihood) integration, scANVI50 (default parameters) integrations 

https://sfaira.readthedocs.io/en/latest/adding_datasets.html
https://github.com/devsystemslab/snapseed
https://github.com/devsystemslab/snapseed
https://github.com/google/jax


Article
using snapseed level 1, 2 or 3 annotation as cell type label input, scPoli45 
(parameters shown above) integrations using either snapseed level 1, 2 
or 3 annotation or all three annotation levels at once as the cell type label 
input, scPoli45 integrations of metacells aggregated with the aggrecell 
algorithm (first used as ‘pseudocell’3) using either snapseed level 1 or 3 
annotation as the cell type label input to scPoli. We used the following 
scores for determining integration quality (each described in ref. 46): 
Leiden normalized mutual information score, Leiden adjusted rand 
index, average silhouette width per cell type label, isolated label score 
(average silhouette width-scored) and cell type local inverse Simpson’s 
index to quantify conservation of biological variability. To quantify 
batch-effect removal, we used average silhouette width per batch label, 
integration local inverse Simpson’s index, kNN batch-effect test score 
and graph connectivity. Integration approaches were then ranked by 
an aggregate total score of individually normalized (into the range of 
[0,1]) metrics. Before we carried out the benchmarking, we iteratively 
removed any cells from the dataset that had an identical latent repre-
sentation to another cell in the dataset until no latent representation 
contained any more duplicate rows. This procedure removed a total of 
3,293 duplicate cells (0.002% of the whole dataset) and was required 
for the benchmarking algorithm to complete without errors. We used 
the snapseed level 3 annotation computed on the unintegrated PCA 
embedding as ground-truth cell type labels in the integration.

Pseudotime inference
To infer a global ordering of differentiation state, we sought to infer a 
real-time-informed pseudotime on the basis of neural optimal trans-
port47 in the scPoli latent space. We first grouped organoid age in days 
into seven bins ((0, 15], (15, 30], (30,60], (60, 90], (90, 120], (120, 150], 
(150, 450]). Next, we used moscot48 to solve a temporal neural problem. 
To score the marginal distributions on the basis of expected prolifera-
tion rates, we obtained proliferation and apoptosis scores for each cell 
with the method score_genes_for_marginals(). Marginal weights were 
then computed with

exp(4 × (prolif_score − apoptosis_score))

The optimal transport problem was solved using the following 
parameters: iterations = 25,000, compute_wasserstein_baseline = False, 
batch_size = 1,024, patience = 100, pretrain = True, train_size = 1. To 
compute displacement vectors for each cell in age bin i, we used the 
subproblem corresponding to the [i, i + 1] transport map, except for 
the last age bin, where we used the subproblem [i − 1,i]. Displacement 
vectors were obtained by subtracting the original cell distribution from 
the transported distribution. Using the velocity kernel from CellRank86 
we computed a transition matrix from displacement vectors and used 
it as an input for computing diffusion maps87. Ranks on negative diffu-
sion component 1 were used as a pseudotemporal ordering.

Preprocessing of the human developing brain cell atlas scRNA-seq 
data
The cell ranger-processed scRNA-seq data for the primary atlas27 were 
obtained from the link provided on its GitHub page (https://storage. 
googleapis.com/linnarsson-lab-human/human_dev_GRCh38-3.0.0.h5ad). 
For further quality control, cells with fewer than 300 detected genes 
were filtered out. Transcript counts were normalized by the total 
number of counts for that cell, multiplied by a scaling factor of 10,000 
and subsequently natural-log transformed. The feature set was inter-
sected with all genes detected in the organoid atlas and the 2,000 
most highly variable genes were selected with the scanpy function 
highly_variable_genes using ‘Donor’ as the batch key. An extra column 
of ‘neuron_ntt_label’ was created to represent the automatic classified 
neural transmitter transporter subtype labels derived from the ‘Auto
Annotation’ column of the cell cluster metadata (https://github.com/
linnarsson-lab/developing-human-brain/files/9755350/table_S2.xlsx).

Reference mapping of the organoid atlas to the primary atlas
To compare our organoid atlas with data from the primary developing 
human brain, we used scArches51 to project it to the above mentioned 
primary human brain scRNA-seq atlas27. We first pretrained a scVI 
model49 on the primary atlas with ‘Donor’ as the batch key. The model 
was constructed with following parameters: n_latent = 20, n_layers = 2, 
n_hidden = 256, use_layer_norm = ‘both’, use_batch_norm = ‘none’, 
encode_covariates = True, dropout_rate = 0.2 and trained with a 
batch size of 1,024 for a maximum or 500 epochs with early stop-
ping criterion. Next, the model was fine-tuned with scANVI50 using 
‘Subregion’ and ‘CellClass’ as cell type labels with a batch size of 
1,024 for a maximum of 100 epochs with early stopping criterion 
and n_samples_per_label = 100. To project the organoids atlas to the 
primary atlas, we used the scArches51 implementation provided by 
scvi-tools88,89. The query model was fine-tuned with a batch size of 
1,024 for a maximum of 100 epochs with early stopping criterion 
and weight_decay = 0.0.

Bipartite weighted kNN graph reconstruction
With the primary reference27 and query (HNOCA) data projected to the 
same latent space, an unweighted bipartite kNN graph was constructed 
by identifying 100 nearest neighbours of each query cell in the reference 
data with either PyNNDescent or RAPIDS-cuML (https://github.com/
rapidsai/cuml) in Python, depending on availability of GPU accelera-
tion. Similarly, a reference kNN graph was also built by identifying 100 
nearest neighbours of each reference cell in the reference data. For each 
edge in the reference-query bipartite graph, the similarity between 
the reference neighbours of the two linked cells, defined as A and B, 
respectively, is represented by the Jaccard index:

∩
∪

J A B
A B
A B

( , ) = .

The square of Jaccard index was then assigned as the weight of the 
edge, to get the bipartite weighted kNN graph between the reference 
and query datasets.

wkNN-based primary developing brain atlas label transfer to 
HNOCA cells
Given the wkNN estimated between primary reference27 and query 
(HNOCA), any categorical metadata label of reference can be trans-
ferred to query cells by means of majority voting. In brief, for each 
category, its support was calculated for each query cell as the sum of 
weights of edges that link to reference cells in this category. The cat-
egory with the largest support was assigned to the query cell.

To get the final regional labels for the non-telencephalic NPCs and 
neurons, as well as the NTT labels for non-telencephalic neurons, con-
straints were added to the transfer procedure. For regional labels, only 
the non-telencephalic regions, namely diencephalon, hypothalamus, 
thalamus, midbrain, midbrain dorsal, midbrain ventral, hindbrain, 
cerebellum, pons and medulla, were considered valid categories to 
be transferred. The label-transfer procedure was only applied to the 
non-telencephalic NPCs and neurons in HNOCA. Before any major-
ity voting was done, the support scores of each valid category across 
all non-telencephalic NPCs and neurons in HNOCA were smoothed 
with a random-walk-with-restart procedure (restart probability alpha, 
85%). Next, a hierarchical label transfer, which takes into account the 
structure hierarchy, was applied. First, the considered regions were 
grouped into diencephalon, midbrain and hindbrain, with a support 
score of each structure as its score summed up with scores of its sub-
structures. Majority voting was applied to assign each cell to one of the 
three structures. Next, a second majority voting was applied to only 
consider the substructures under the assigned structure (for example, 
hypothalamus and thalamus for diencephalon).

https://storage.googleapis.com/linnarsson-lab-human/human_dev_GRCh38-3.0.0.h5ad
https://storage.googleapis.com/linnarsson-lab-human/human_dev_GRCh38-3.0.0.h5ad
https://github.com/linnarsson-lab/developing-human-brain/files/9755350/table_S2.xlsx
https://github.com/linnarsson-lab/developing-human-brain/files/9755350/table_S2.xlsx
https://github.com/rapidsai/cuml
https://github.com/rapidsai/cuml


For NTT labels, we first identified valid region-NTT label pairs in 
the reference on the basis of the provided NTT labels in the reference 
neuroblast and neuron clusters and their most common regions. Here, 
the most common regions were re-estimated in a hierarchical manner 
to the finest resolution mentioned above. Next, when transferring 
NTT labels, for each non-telencephalic neuron with the regional label 
transferred, only NTT labels that were considered valid for the region 
were considered during majority voting.

Stage-matching analysis
To match telencephalic NPCs and neurons in HNOCA to develop-
mental stages, we used the recently published human neocortical 
development atlas30 as the reference. The processed single nucleus 
RNA-seq data were obtained from its data portal (https://cell.ucsf.edu/ 
snMultiome/). Given the ‘class’, ‘subclass’ and ‘type’ labels in the pro-
vided metadata as annotations, and ‘individual’ as the batch label, 
scPoli was applied for label-aware data integration. Next, data rep-
resenting different developmental stages were split. For each stage, 
Louvain clustering based on the scPoli latent representation (resolu-
tion, 5) was applied. Clusters of all stages were pooled, and highly 
variable genes were identified on the basis of coefficient of variations 
as described in this page: https://pklab.med.harvard.edu/scw2014/
subpop_tutorial.html. Finally, every one of HNOCA telencephalic 
NPCs and neurons were correlated to each cluster across the identi-
fied highly variable genes. The stage label of the best-correlated cluster 
was assigned to the query HNOCA cell.

To extend the analysis to other neuronal cell types, the second- 
trimester multiple-region human brain atlas29 was also introduced. The 
processed count matrices and metadata were obtained from the NeMO 
data portal (https://data.nemoarchive.org/biccn/grant/u01_devhu/
kriegstein/transcriptome/scell/10x_v2/human/processed/counts/). 
Given the ‘cell_type’ label of the provided metadata as the annotation 
and ‘individual’ as the batch label, scPoli was run for label-aware data 
integration. Louvain clustering was applied to the scPoli latent rep-
resentation to identify clusters (resolution, 20). Similarly, Louvain 
clustering with a resolution of 20 was also applied to the first-trimester 
multiple-region human brain atlas27 on the basis of the scANVI latent 
representation we generated earlier. Average expression profiles 
were calculated for all the clusters, and highly variable genes were 
identified using the same procedure as above for clusters of the two 
primary atlases combined. Next, every NPC and neuron in HNOCA 
was correlated to the average expression profiles of those clusters. 
The best-correlated first- and second-trimester clusters, as well as 
the correlations, were identified. The differences between the two 
correlations were used as the metrics to indicate the stage-matching 
preferences of NPCs and neurons in HNOCA.

Presence scores and max presence scores of cells in the primary 
developing brain atlas
Given a reference dataset and a query dataset, the presence score 
is a score assigned to each cell in the reference, which describes the 
frequency or likelihood of the cell type or state of that reference cell 
appearing in the query data. In this study, we calculated the presence 
scores of primary atlas cells in each HNOCA dataset to quantify how 
frequently we saw a cell type or state represented by each primary cell 
in each of the HNOCA datasets.

Specifically, for each HNOCA dataset, we first subset the wkNN graph 
to only HNOCA cells in that dataset. Next, the raw weighted degree 
was calculated for each cell in the primary atlas, as the sum of weights 
of the remaining edges linked to the cell. A random-walk-with-restart 
procedure was then applied to smooth the raw scores across the kNN 
graph of the primary atlas. In brief, we first represented the primary 
atlas kNN graph as its adjacency matrix (A), followed by row normaliza-
tion to convert it into a transition probability matrix (P). With the raw 
scores represented as a vector s0, in each iteration t, we generated st as

ss α α P s= + (1 − )t
T

t0 −1

This procedure was performed 100 times to get the smooth presence 
scores that were subsequently log transformed. Scores lower than the 
5th percentile or higher than the 95th percentile were trimmed. The 
trimmed scores were normalized into the range of [0,1] as the final 
presence scores in the HNOCA dataset.

Given the final presence scores in each of the HNOCA datasets, the 
max presence scores in the whole HNOCA data were then easily cal-
culated as the maximum of all the presence scores for each cell in the 
primary atlas. A large (close to one) max presence score indicates a 
high frequency of appearance for the cell type or state in at least one 
HNOCA dataset whereas a small (close to zero) max presence score 
suggests under-representation in all the HNOCA datasets.

Cell type composition comparison among morphogen usage 
using scCODA
To test the cell type compositional changes on admission of certain 
morphogens from different organoid differentiation protocols, we 
used the pertpy90 implementation of the scCODA algorithm91. scCODA 
is a Bayesian model for detecting compositional changes in scRNA-seq 
data. For this, we have extracted the information about the added mor-
phogens from each differentiation protocol and grouped them into 
15 broad molecule groups on the basis of their role in neural differen-
tiation (Supplementary Table 1). These molecule groups were used 
as a covariate in the model. The region labels transferred from the 
primary atlas were used as labels in the analysis (cell_type_identifier). 
For cell types without regional identity, the cell type labels presented 
in Fig. 1c were used. Pluripotent stem cells and neuroepithelium cells 
were removed from the analysis because they are mainly present in the 
early organoid stages. We used bio_sample as the sample_identifier. 
We ran scCODA sequentially with default parameters, using No-U-turn 
sampling (run_nuts function) and selecting each cell type once as a 
reference. We used a majority vote-based system to find the cell types 
that were credibly changing in more than half of the iterations.

Cell type composition comparison among morphogen usage 
using regularized linear regression
To complement the composition analysis conducted with scCODA, we 
devised an alternative approach to test for differential composition 
using regularized linear regression. We fit a generalized linear model 
with the region composition matrix as the response Y and molecule 
usage as independent variables X:

βY X~

The model was fit with lasso regularization (alpha = 1) using Gaussian 
noise and an identity link function. The regularization parameter lambda 
was automatically determined through cross-validation as implemented 
in the function cv.glmnet() from the glmnet92 R package. All non-zero coef-
ficients β were considered as indications of enrichment and depletion.

DE analysis between HNOCA neural cell types and their primary 
counterparts and functional enrichment analysis
To study the transcriptomic differences between organoid and primary 
cells, we subset HNOCA using the final level 1 annotation to cells labelled 
‘Neuron’. We furthermore subset the human developing brain atlas to 
cells that had been assigned a valid label in the neuron_ntt_label annota-
tion column. We added an extra two datasets of fetal cortical cells from 
ref. 39 and ref. 28. For the data from ref. 39, we subset the data to cells 
labelled ‘fetal’ and estimated transcripts per million reads for each gene 
in each cell using RSEM93 given the STAR94 mapping results. We then 
computed a PCA, a kNN graph, UMAP and Leiden clustering (resolu-
tion 0.2) using scanpy. We then selected the cluster with the highest 
STMN2 and NEUROD6 expression as the cortical neuron cluster and 

https://cell.ucsf.edu/snMultiome/
https://cell.ucsf.edu/snMultiome/
https://pklab.med.harvard.edu/scw2014/subpop_tutorial.html
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https://data.nemoarchive.org/biccn/grant/u01_devhu/kriegstein/transcriptome/scell/10x_v2/human/processed/counts/
https://data.nemoarchive.org/biccn/grant/u01_devhu/kriegstein/transcriptome/scell/10x_v2/human/processed/counts/


Article
used only those cells. For the data from ref. 28 we subset the datasets 
to cells annotated as ‘Neuronal’ in Supplementary Table 5 (‘Cortex 
annotations’) of their publication and computed a PCA, neighbourhood 
graph and UMAP to visualize the dataset. We found that only samples 
from the individuals CS14_3, CS20, CS22 and CS20 contained detectable 
expression of STMN2 and NEUROD6 so we subset the dataset further 
to only cells from those individuals.

To compute DE between HNOCA cells and their primary counterparts, 
we first aggregated cells of the same regional neural cell type into pseu-
dobulk samples by summing the counts for every sample (annotation 
columns, ‘batch’ for HNOCA; ‘SampleID’ for the human developing 
brain atlas; ‘sample’ for ref. 39 and ‘individual’ for ref. 28) using the 
Python implementation of decoupler95 (v.1.4.0) while discarding any 
samples with fewer than ten cells or 1,000 total counts. We then subset-
ted the feature space to the intersection of features of all datasets and 
removed any cells with fewer than 200 genes expressed. We further 
removed any genes expressed in less than 1% of neurons in HNOCA and 
any genes located on the X and Y chromosomes. Out of the remaining 
11,636 genes, on average, 99% were reported in each of the constituent 
HNOCA datasets. For each regional neural cell type, we removed any 
sample from the pseudobulk data that was associated with an organoid 
differentiation assay with fewer than two total samples or fewer than 
100 total cells. We next used edgeR96 to iteratively compute DE genes 
between each organoid differentiation protocol and primary cells of the 
matching regional neural cell types for every regional neural cell type 
while correcting for organoid age in days, number of cells per pseudob-
ulk sample, median and standard deviation of the number of detected 
genes per pseudobulk sample. We used the data from ref. 27 (the human 
developing brain atlas mentioned above), ref. 28 and ref. 39 as primary 
data for the DE comparison in the cell type ‘Dorsal Telencephalic Neuron 
NT-VGLUT’, whereas for all other cell types we used the human develop-
ing brain atlas as the fetal dataset. We used the edgeR genewise negative 
binomial generalized linear model with quasi-likelihood F-tests. We 
deemed a gene significantly DE if its false-discovery rate (Benjamini–
Hochberg) corrected P value was smaller than 0.05 and it had an abso-
lute log2-fold change above 0.5. We used the GSEApy97 Python package 
to carry out functional enrichment analysis in our DE results using the  
‘GO_Biological_Process_2021’ gene set.

To evaluate the effect of different primary datasets on the DE results, 
we computed the DE between Dorsal Telencephalic Neuron NT-VGLUT 
from the HNOCA subset generated with the protocol from ref. 6 and the 
matching cell type from the Braun et al.27 primary dataset as well as the 
data from ref. 28. To prevent technology effects to affect this analysis, 
we only used cells generated with the 10X Genomics 3′ v.2 protocol 
in this comparison. We generate pseudobulk samples as described 
above and corrected organoid age in days and number of cells per pseu-
dobulk sample in the DE comparison. We used the same edgeR-based 
procedure and cut-offs as described above. We used the scipy fcluster 
method to cluster genes on the basis of their log-fold changes in the 
two primary datasets. We grouped clusters to represent consistently 
upregulated, consistently downregulated and three different inconsist-
ently regulated groups of genes. We computed functional enrichment 
of each gene group as described above.

To evaluate the effect of different organoid datasets on the protocol- 
based DE analysis, we computed DE between Dorsal Telencephalic 
Neuron NT-VGLUT of every organoid publication (further split by pro-
tocol, where more than one protocol was used in a publication) and the 
matching cell type in the dataset from ref. 27. We computed pseudobulk 
samples and carried out the DE analysis using the same procedure and 
cut-offs as in the protocol-based DE analysis.

Transcriptomic similarity between HNOCA neural cell types and 
their primary counterparts in the human developing brain atlas
To estimate the transcriptomic similarity between neurons in HNOCA 
and the human developing brain atlas27, we first summarized the 

average expression of each neural cell type in the primary reference, as 
well as in each dataset of HNOCA. For each HNOCA dataset, only neural 
cell types with at least 20 cells were considered. Highly variable genes 
were identified across the neural cell types in the primary reference 
using a Chi-squared test-based variance ratio test on the generalized 
linear model with Gamma distribution (identity link), given coefficient 
of variance of transcript counts across neural cell types as the response 
and the reciprocal of average transcript count across neural cell types 
as the independent variable. Genes with Benjamini–Hochberg adjusted  
P values less than 0.01 were considered as highly variable genes. Similar-
ity between one neural cell type in the primary atlas and its counterpart 
in each HNOCA dataset was then calculated as the Spearman correlation 
coefficient across the identified highly variable genes.

To estimate the similarity of the core transcriptomic identity, which 
is defined by the coexpression of transcription factors, the highly vari-
able genes were subset to only transcription factorsfor calculating 
Spearman correlations. The list of transcription factors was retrieved 
from the AnimalTFDB v.4.0 database98.

To identify metabolically stressed cells in the datasets, we used the 
scanpy score_genes function with default parameters to score the 
‘canonical glycolysis’ gene set obtained from the enrichR GO_Biologi-
cal_Process_2021 database across all neuronal cells from HNOCA and 
refs. 27,28,39.

To estimate the significance of the difference between the correla-
tion of glycolysis scores and whole transcriptomic similarities, and 
the correlation of glycolysis scores and core transcriptomic identity 
similarities, we generated 100 subsets of highly variable genes, each 
with the same size as the highly variable transcription factor. Tran-
scriptomic similarities were calculated on the basis of those subsets, 
and then correlated with the glycolysis scores.

Heterogeneity of the telencephalic trajectories
To characterize heterogeneity of telencephalic NPCs and neurons in 
HNOCA, we first transferred the cell type labels (as indicated as the 
‘type’ label in the given metadata) from the human neocortical devel-
opment atlas to the HNOCA telencephalic NPCs, intermediate pro-
genitor cells and neurons, on the basis of transcriptomic correlation. 
In brief, each primary atlas cluster we obtained as mentioned above 
was assigned to a cell type as the most abundant cell type among cells 
in the cluster. The label of the best-correlated primary cluster was then 
transferred to every query cell. Given the transferred label, together 
with the level 2 cell type annotation shown in Fig. 1c, as the annotation 
label, scPoli was applied to the telencephalic subset of HNOCA for 
data integration.

To benchmark how well different integration strategies recover the 
neuron subcell type heterogeneity, we generated four different cluster-
ing labels: (1) Louvain clustering (resolution, 2) with the original scPoli 
latent representation; (2) Louvain clustering (resolution, 2) with the 
updated scPoli representation; (3) Louvain clustering (resolution, 2)  
with PCA of HNOCA telencephalic subset (based on scaled expres-
sion of 3,000 highly variable genes of the telencephalic subset with 
flavor = ‘seurat’) and (4) Louvain clustering (resolution, 1) for each 
sample separately (each with 3,000 highly variable genes identified 
with flavor = ‘seurat’, followed by data scale and PCA). Next, for each 
sample with at least 500 dorsal telencephalic neurons, the adjusted 
mutual information scores were calculated between each of those 
four clustering labels with the transferred cell type label mentioned 
above as the gold standard, across the dorsal telencephalic neurons 
as annotated as the level 2 annotation.

To create a comprehensive primary atlas of dorsal telencephalic neu-
rons for DE analysis between neural organoids and primary tissues, we 
subset dorsal telencephalic neurons or neocortical neurons from four 
different primary atlases27–30. For ref. 28, cells in five author-defined clus-
ters (60, 57, 79, 45, 65) with high expression of MAP2, DCX and NEUROD6 
were selected. For ref. 29, cells with the following ‘clusterv2 - final’ labels 



were selected: ‘Neuron_28’, ‘Neuron_34’, ‘GW19_2_29NeuronNeuron’, 
‘Neuron_30’, ‘Neuron_66Neuron’, ‘GW18_2_42NeuronNeuron’, ‘Neu-
ron_33’, ‘Neuron_39Neuron’, ‘Neuron_35’, ‘Neuron_63Neuron’, ‘Neu-
ron_9’, ‘Neuron_11’, ‘Neuron_20’, ‘Neuron_22’, ‘Neuron_5Neuron’, 
‘Neuron_21’, ‘Neuron_18’, ‘Neuron_101Neuron’, ‘Neuron_17’, ‘Neu-
ron_19’, ‘Neuron_16’, ‘Neuron_50Neuron’, ‘Neuron_12’, ‘Neuron_13’, 
‘Neuron_68Neuron’, ‘Neuron_100Neuron’, ‘Neuron_25’, ‘Neu-
ron_27’, ‘Neuron_53Neuron’, ‘Neuron_23’, ‘Neuron_26’, ‘Neuron_24’, 
‘Neuron_102Neuron’, ‘Neuron_72Neuron’, ‘Neuron_15’, ‘Neuron_29’ 
and ‘Neuron_35Neuron’ on the basis of their high expression of NEU-
ROD6 and FOXG1. For ref. 27, cells dissected from dorsal telencephalon 
that were annotated as neurons with and only with the VGLUT NTT 
label were selected. For ref. 30, cells annotated as excitatory neurons 
were selected. The curated clusters of the Wang et al. primary atlas, 
as described earlier, were also subset to those with excitatory neuron 
labels. The selected dorsal telencephalic neuron subsets of the atlases 
were merged into the joint neocortical neuron atlas.

Next, cells in the joint neocortical neuron atlas were correlated with 
the average expression profile of each excitatory neuron cluster of the 
Wang et al. atlas30. The cluster label of the best-correlated cluster was 
assigned to each cell in the joined neocortical neuron atlas, so that cell 
cluster labels were harmonized for all cells in the atlas. Label-aware 
data integration was then performed using scPoli45. On the basis of 
the scPoli latent representation, Louvain clustering was performed 
on the joint neocortical neuron atlas (resolution, 1). This cluster label 
was transferred to the dorsal telencephalic neurons in HNOCA with 
max-correlation manner across highly variable genes defined on aver-
age transcriptomic profiles of clusters in the joint neocortical neuron 
atlas.

Reference mapping of the neural organoid morphogen screen 
scRNA-seq data to the human developing brain atlas and HNOCA
We used scArches to map scRNA-seq data from the neural organoid mor-
phogen screen to both the scANVI model of the human developing brain 
atlas27 and the scPoli model of the HNOCA. In both cases, the ‘dataset’ 
field of the screen data was used as the batch covariate, which indicates 
belonging to one of the three categories: ‘organoid screen’, ‘secondary 
organoid screen’ or ‘fetal striatum 21pcw’. For mapping to the primary 
reference, we used the scvi-tools implementation of scArches without 
the use of cell type annotations and trained the model for 500 epochs 
with weight_decay of 0 and otherwise default parameters. For mapping 
to HNOCA we used scArches through scPoli and trained the model for 
500 epochs without unlabelled prototype training.

Retrieval and harmonization of disease-modelling human 
neural organoid scRNA-seq datasets
We included 11 scRNA-seq datasets of neural organoids, which were 
designed to model 10 different neural diseases including microceph-
aly56, amyotrophic lateral sclerosis43, Alzheimer’s disease57, autism42, 
FXS58, schizophrenia59, neuronal heterotopia60,61, Pitt–Hopkins syn-
drome62, myotonic dystrophy63 and glioblastoma64. Count matrices and 
metadata were directly downloaded for the ten datasets with processed 
data provided in the Gene Expression Omnibus or ArrayExpress. For 
the dataset with only FASTQ files available56, we downloaded the FASTQ 
files and used Cell Ranger (v.4.0) to map reads to the human refer-
ence genome and transcriptome retrieved from Cell Ranger website 
(GRCh38 v.3.0.0) for gene expression quantification. All datasets were 
concatenated together with anndata in Python ( join = ‘inner’). For each 
dataset, samples were grouped into either ‘disease’ or ‘control’ as their 
disease status, with ‘disease’ representing data from patient cell lines, 
mutant cell lines with disease-related alleles, cells carrying target-
ing guide RNAs (gRNAs) in CRISPR-based screen and tumour-derived 
organoids. and ‘control’ representing data from healthy cell lines, 
mutation-corrected cell lines and cells carrying only non-targeting 
gRNAs in a CRISPR-based screen.

Projection and label transfer-based annotation of the disease- 
modelling dataset
To compare the disease-modelling atlas with the integrated HNOCA, we 
used scArches51 to project it to the HNOCA as well as the first-trimester 
primary human brain scRNA-seq atlas27. For projecting to the primary 
atlas, the same implementation as mentioned above to map HNOCA 
to the atlas was used. For projecting to HNOCA, the query model 
was based on the scPoli model pretrained with the HNOCA data, and 
fineturned with a batch size of 16,384 for a maximum of 30 epochs with 
20 pretraining epochs. A nearest neighbour graph was created for the 
disease-modelling atlas on the basis of the projected latent representa-
tion to HNOCA with scanpy (default parameters), with which a UMAP 
embedding was created with scanpy (default parameters).

Next, for both HNOCA and the disease-modelling atlas, cells were 
represented by the concatenated representation of HNOCA-scPoli 
and primary-scANVI models. A bipartite wkNN graph was then recon-
structed as mentioned above, by identifying 50 nearest neighbours 
in HNOCA for each disease-modelling atlas cell. On the basis of the 
bipartite wkNN, the majority voting-based label transfer was applied to 
transfer the four levels of hierarchical cell type annotation and regional 
identity to the disease-modelling atlas.

Reconstruction of matched HNOCA metacells
For each cell in the disease-modelling atlas, a matched HNOCA metacell 
was reconstructed on the basis of the above mentioned bipartite wkNN. 
In brief, for a query cell i and a gene j measured in HNOCA, its matched 
metacell expression of j, denoted as e ′ij , is calculated as:
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Here, Ni represents all HNOCA nearest neighbours of the query cell 
ci, wik represents the edge weight between query cell i and reference 
cell k, and ekj represents expression level of gene j in reference cell k.

Given the matched HNOCA metacell transcriptomic profile, the 
similarity between a query cell and its matched cell state in HNOCA is 
then calculated as the Spearman correlation between the query cell 
transcriptomic profile and its matched HNOCA metacell transcrip-
tomic profile.

Re-analysis of GBM-2019 and FXS-2021 datasets
To analyse the glioblastoma organoid dataset (GBM-2019), cells from 
the publication were subset from the integrated disease-modelling 
atlas. Using scanpy, highly variable genes were identified with default 
parameters. The log-normalized expression values of the highly 
variable genes were then scaled across cells, the truncated PCA was 
performed with the top 20 principal components used for the fol-
lowing analysis. Next, harmonypy, the Python implementation of 
harmony99, was applied to integrate cells from different samples. 
On the basis of the harmony-integrated embeddings, the neighbour 
graph was reconstructed. UMAP embeddings and Louvain clusters 
(resolution, 0.5) were created on the basis of the nearest neighbour 
graph. Among the 12 identified clusters, cluster-7 and cluster-0, the 
two clusters with the highest AQP4 expression, were selected for the 
following DE analysis.

To analyse the FXS dataset (FXS-2021), cells from the publication were 
subset from the integrated disease-modelling atlas. The same proce-
dure of highly variable gene identification, data scaling and PCA as the 
GBM-2019 dataset was applied. Next, the nearest neighbour graph was 
created directly on the basis of the top 20 principal components. UMAP 
embeddings and Louvain clusters (resolution, 1) were then created on 
the basis of the reconstructed nearest neighbour graph. Among the 30 
clusters, cluster-17 and cluster-23, which express EMX1 and FOXG1 and 
were largely predicted to be dorsal telencephalic NPCs and neurons 
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according to the transferred labels from HNOCA, were selected for 
the following DE analysis.

F-test-based DE analysis for paired transcriptome
To compare expression levels of two groups of paired cells, the expres-
sion difference per gene of each cell pair is first calculated on the basis 
of the log-normalized expression values. Next, for each gene to test for 
DE, its variance over the calculated expression difference per cell pair 
(σ2) is compared with the sum of squared of expression differences  
(di for gene i) normalized by the number of cell pairs:
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Here, an F-test is applied for the comparison, with f = σ2/s2
0, d.f.1 = n − 1 

and d.f.2 = n.

Construction of the HNOCA Community Edition by query-to- 
reference mapping
To construct the HNOCA-CE, we first collected raw count matrices 
and associated metadata of five more neural organoid studies. For 
two publications71,75, we obtained them from the sources listed in the 
‘Data availability’ section of the paper. For the remaining three publi-
cations72–74, count matrices and associated metadata were provided 
directly by the authors. We subset each dataset to the healthy control 
cells and removed any cells with fewer than 200 genes expressed. We 
subset the gene space of every dataset to the 3,000 HVGs of HNOCA 
while filling the expression of missing genes in the community datasets 
with zeros. On average, 23% of genes with zero expression were added 
per dataset. We instantiated a mapping object from the HNOCA-tools 
package (at commit fe38c52) using the saved scPoli45 model weights 
from the HNOCA integration. Using the map_query method of the 
mapper instance, we projected the community datasets to HNOCA. We 
used the following training hyperparameters: retrain = ‘partial’, batch_
size = 256, unlabeled_prototype_training = False, n_epochs = 10, pre-
training_epochs = 9, early_stopping_kwargs = early_stopping_kwargs, 
eta = 10, alpha_epoch_anneal = 10. We computed the wkNN graph using 
the compute_wknn method of the mapper instance with k = 100. We 
transferred the final level_2 cell type labels from HNOCA to the com-
munity datasets using this neighbour graph. To obtain the combined 
representation of HNOCA-CE, we projected HNOCA together with the 
added community datasets through the trained model and computed 
a neighbour graph and UMAP from the resulting latent representation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All curated individual HNOCA datasets are available for easy access 
through the sfaira Python tool78. The integrated HNOCA data is available 
at Zenodo (https://doi.org/10.5281/zenodo.11203684)100 and the Cellx-
Gene Discover Census (https://cellxgene.cziscience.com/collections/
de379e5f-52d0-498c-9801-0f850823c847). The extended HNOCA Com-
munity Edition Atlas is also available through the CellxGene Discover 
Census (same URL as above). Both versions of HNOCA are available 
for reference mapping through the ArchMap web interface (https://
www.archmap.bio/). The HNOCA-tools package provides a Python 
interface for annotation, reference mapping and central downstream 
analysis steps and is available at https://github.com/devsystemslab/
HNOCA-tools. More information on the available tools and a documen-
tation of HNOCA-tools is available at https://devsystemslab.github.io/
HNOCA-tools. Jupyter notebooks and scripts to reproduce the analysis 
are available at https://github.com/theislab/neural_organoid_atlas.
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Extended Data Fig. 1 | Benchmark of data integration. (a) UMAPs of HNOCA, 
either without any data integration (PCA) or with different data integration 
methods applied. Number in parenthesis indicates which level of RSS-based 
snapseed annotation labels were provided as input to the model for methods 
which support semi-supervised data integration. Dots in all UMAP embeddings, 
each of which represents a cell, are colored by the cell type annotation introduced 
in Fig. 1. a.c. = aggrecell algorithm (b) scIB benchmarking metrics on all tested 

integration methods. (c) PCA of the scPoli sample embeddings from the final 
scPoli integration of HNOCA presented throughout the manuscript, colored by 
publications, scRNA-seq methods, organoid protocols, protocol types, cell lines, 
and sample ages. (d) UMAPs of HNOCA based on the final scPoli integration, each 
with one data set highlighted. Here, one data set is defined as data representing 
one protocol in one publication. The protocol and publication of each data set are 
shown by the color bar and indices on top of the UMAP.



Extended Data Fig. 2 | Characterization of HNOCA. (a) Expression of selected 
marker genes used in the semi-automatic annotation of cell types for Fig. 1.  
(b) Mean cell type proportion over all data sets per organoid age bin.  
(c) Distribution of sample real-time age in days over deciles of computed 
pseudotime. (d) Expression of top markers in different non-telencephalic 

neural cell types. Markers are defined as genes with AUC > 0.7, in-out detection 
rate difference>20%, in-out detection rate ratio>2 and fold change>1.2. When 
more than 5 markers are found, only the top-5 (with the highest in-out detection 
rate ratio) are shown.
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Extended Data Fig. 3 | Mapping-assisted annotation refinement of HNOCA. 
(a-b) UMAP of HNOCA colored by the mapped (a) cell classes and (b) brain 
regions, both from the human developing brain cell atlas as the primary 
reference. (c) Comparison of the HNOCA cell type annotation with the primary 
reference mapping-based transferred cell class and brain region labels. 
Darkness of cells indicates proportions of each HNOCA cell type being 
assigned to different cell class and brain region categories. Brain region labels 
are only shown for the HNOCA neural cell types. (d) Comparison of the simple 
majority-voting-based regional label transfer and the hierarchical regional 
label transfer with random-walk-with-restart-based smoothening. Only cells 
annotated as NPCs, IPs and neurons are included. (e) UMAP of non-telencephalic 
neurons, colored by clusters (upper), mapped brain regions (middle) and mapped 
neurotransmitter transporter (NTT) subtypes (bottom). (f) Comparison  
of non-telencephalic neural cell types, defined as the concatenation of the 
mapped brain region and NTT subtype, with the clusters. The middle heatmap 
shows contributions of different clusters to different neural cell types. The 
sidebar on the left shows the neural cell types; dots under the heatmap show 
clusters. The heatmaps on the bottom and on the right show the average 

expression of three neurotransmitter transporters SLC17A6, SLC18A3 and 
SLC32A1 in clusters (bottom) and neural cell types (right). (g) Overview of the 
HNOCA cell type composition for the first two levels of the cell annotation  
(left - level-1, middle - level-2), and the refined regional annotation assisted  
by mapping of non-telencephalic NPC and neurons to the primary reference 
(right). (h) neural cell type compositions of different data sets (rows). Darkness 
of the heatmap shows the proportions of different neural cell types per HNOCA 
data set. Sidebars on the left show organoid protocol types of different data 
sets. Sidebars on the bottom show neural cell types. Bars on the right show 
total neuron numbers across data sets. (i) Distribution of transcriptomic 
similarity differences of NPCs and neurons in HNOCA with the primary 
neuronal populations in the first trimester (represented by Braun et al.27) and 
the second trimester (represented by Bhaduri et al.29). Cells are firstly grouped 
by regional identities, followed by organoid ages (in months). Colors of boxes 
indicate organoid ages. ( j) Heatmap shows the enrichment of adult regional 
identities (columns) for HNOCA NPCs and neurons with different estimated 
regional identities (rows).



Extended Data Fig. 4 | Relationship between morphogen usage and cell 
type as well as regional composition. (a) Schematic of estimating cell type 
enrichment with different morphogen usages. (b) This heat map indicates in 
how many of the 17 iterations scCODA was executed (using each of the 17 
regional cell identity as a reference once) the respective morphogen was found 
to lead to compositional changes with respect to the reference regional cell 
identity. A morphogen effect was called significant in this consensus approach 
if it had a significant effect on cell type composition with respect to more than 

half of the reference cell types. (c) Effect of different morphogens on regional 
organoid composition in HNOCA. Positive values correspond to a higher 
abundance of cells from the indicated regional cell identity in cases where  
the respective morphogen was used in the differentiation protocol. Top: 
log2-fold-effect sizes of morphogens per regional cell identity as computed  
by the scCODA model. Bottom: L1-regularized linear model coefficients.  
The dashed arrows show consistent enrichment/depletion identified by the 
two methods.
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Extended Data Fig. 5 | Presence scores per HNOCA data set. (a) Average 
normalized presence scores of different HNOCA data sets (rows) in different cell 
clusters in the primary reference of the human developing brain atlas27 (columns). 
Sidebars on the left show organoid differentiation protocol types of HNOCA 
data sets. Sidebars underneath show cell class and the commonest region 
information of the cell clusters in the primary reference (HyTh - hypothalamus, 

MB - midbrain). (b) UMAP of the primary reference, colored by the max 
presence scores across different HNOCA data subsets, split by organoid 
protocol types. A high max presence score suggests enrichment of the 
corresponding primary cell state in at least one HNOCA data set among the 
data sets based on the specific type of organoid protocols, with a low score 
meaning under-representation of the cell state in all data sets in the subset.



Extended Data Fig. 6 | Robustness of organoid-primary DEGs against 
primary reference, and across organoid data set. (a) Number of DEGs 
between organoid Dorsal Telencephalic Neurons NT-VGLUT generated using 
the Velasco et al.6 protocol (10×3’ v2 chemistry only) and primary fetal cortical 
neurons from Braun et al.27 (10×3’ v2 chemistry only) or Eze et al.28 respectively. 
Of the 3829 shared DEGs, 3423 genes had an aligned direction of fold-change 
while 406 genes had an opposite direction of fold-change. (b) Heatmap of 
log2-transformed fold changes (log2FC) across all 9054 DEGs between Dorsal 
Telencephalic Neurons NT-VGLUT from Velasco et al. and either primary fetal 
cortical neurons from Braun et al. (10×3’ v2 chemistry only) or Eze et al. The 
dendrogram shows the hierarchical clustering of DEGs based on their log2FC 
against the two primary data. (c) Number of DEGs between organoid Dorsal 
Telencephalic Neurons NT-VGLUT generated using the Lancaster et al.36 

protocol (10×3’ v2 chemistry only) and primary fetal cortical neurons from 
Braun et al.27 (10×3’ v2 chemistry only) or Eze et al.28 respectively. Of the 2815 
shared DEGs, 2375 genes had an aligned direction of fold-change while 440 genes 
had an opposite direction of fold-change. (d) Heatmap of log2-transformed 
fold changes (log2FC) across all 9106 DEGs between dorsal telencephalic 
neurons from Lancaster et al. and either primary fetal cortical neurons from 
Braun et al. (10×3’ v2 chemistry only) or Eze et al. The dendrogram shows the 
hierarchical clustering of DEGs based on their log2FC against the two primary 
data. (e) Heatmap showing the mean log-fold change per gene across organoid 
publications for Dorsal Telencephalic Neurons NT-VGLUT compared to the 
expression in the matching cell type from the Braun et al.27 primary atlas. Shown 
are all genes that are significantly differentially expressed compared to primary 
cells in the data from at least one publication.
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Extended Data Fig. 7 | Transcriptomic fidelity of neurons and cell stress.  
(a) Hallmark glycolysis scores of different neural cell types in primary  
(left, Braun et al.27) and a selected organoid data set (right, Kanton et al.3).  
(b) Spearman correlation between average gene expression profiles of neural cell 
types in HNOCA and those in the primary reference of human developing brain 
atlas27, across either all the variable genes (left, S1) or variable transcriptional 
factors (TFs) (right, S3). The average gene expression profile per neural cell type 
was calculated with all cells (S1) or cells with low glycolysis scores (glycolysis 
score <0.6, S3). (c) Correlation between different average metabolic scores  
(up - hallmark glycolysis score, middle - canonical glycolysis score, low - electron 
transport score) and transcriptomic similarities (Spearman correlation) to 
primary counterparts. Each dot represents one neural cell type generated by 
one protocol. The correlation is calculated based on either all variable genes 
(left, S1) or variable TFs (right, S2). (d) The correlation between hallmark and 

canonical glycolysis scores and transcriptomic similarities to primary is 
significantly weaker when only TFs are taken into consideration, while electron 
transport scores show no correlation with transcriptomic similarities. The 
boxes show the distributions of correlation when a random subset of variable 
genes, with the same number as the variable TFs, are used. The red dots show 
the correlation using variable TFs. (e) Core transcriptomic fidelity of organoid 
neurons (S2, shown in Fig. 3) which only considers TFs, is higher than the global 
transcriptomic fidelity (S1) which considers all the highly variable genes. Core 
transcriptomic fidelity and global transcriptomic fidelity are highly correlated 
(left, x-axis - S1, y-axis - S2, each dot represents one neural cell type in one 
HNOCA data set), while core transcriptomic fidelity is significantly higher 
(right, x-axis: S1, y-axis: S2-S1, dots are colored by density estimated with 
Gaussian kernel). P-value shows the Wilcoxon test significance.



Extended Data Fig. 8 | Heterogeneity of telencephalic NPCs and neurons 
and its incorporation to differential expression analysis between dorsal 
telencephalic neurons in HNOCA and primary developing human brains. 
(a) Overview of mapping the telencephalic NPCs and neurons in HNOCA to the 
human neocortical developmental atlas30 for cell type annotations. (b) UMAP 
of cells from the HNOCA telencephalic trajectories, colored by the transferred 
cell types from the human neocortical developmental atlas (upper) and the 
HNOCA annotation. (c) UMAP of HNOCA telencephalic cells colored by 
expression levels of selected cell type markers. (d) Distributions of adjusted 
mutual information across dorsal telencephalic neurons in different HNOCA 
samples, between the transferred cell type labels and cluster labels generated 
with four different representations: 1) the original scPoli (scPoli-1), 2) the 
re-computed telencephalon-only scPoli based on given the transferred labels;  
3) unintegrated PCA of the merged data; 4) PCA and clustering sample-wise.  
(e) The joint atlas of human neocortical development, colored by data sets, 
developmental stages, clusters, and whether there is any counterpart in 
HNOCA dorsal telencephalic neurons. (f) Distribution of the hallmark 
glycolysis scores in HNOCA and the primary atlas. (g) Volcano plots show the 

F-test-based DE analysis results, with (left) and without (right) the glycolysis 
scores and matched cluster labels as covariates. The identified DEGs are 
colored by red (increased expression in HNOCA) or blue (decreased expression 
in HNOCA). (i) Changes of functional term enrichment by DAVID for DEGs based 
on the analysis with or without covariates. The top panel shows enrichments 
for the up-regulated DEGs (uDEG) in organoids, and the lower panel shows 
enrichments for the down-regulated DEGs (dDEG). Each dot indicates one 
functional term with raw P-value < 0.05 for both DEG sets. Red dots indicate 
functional terms gaining enrichment with DEGs with covariates (with-covariate 
adjusted Pwt < 0.1, and without-covariate adjusted Pwo>Pwt). Blue dots indicate 
functional terms losing enrichment with DEGs without covariates (Pwt>0.1 and 
Pwo < 1 × 10−10). ( j) Heatmap shows normalized coefficient (estimated logFC 
normalized by the overall logFC magnitude) of each DEG per data set. 
Dendrograms show hierarchical clustering of DEGs and data sets. Rows 
represent data sets. Side bars on the left are colored based on the types of 
protocols, individual protocols, and publications corresponding to the data 
sets. Columns represent DEGs.
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Extended Data Fig. 9 | Reference mapping of the neural organoid 
morphogen screen data to HNOCA and the human developing brain atlas. 
(a) UMAP embedding of the human developing brain atlas and neural organoid 
morphogen screen44 data sets based on the joint scANVI latent space colored 
by brain region (left) and data set (right). (b) UMAP embedding of HNOCA and 
the screen data sets based on the joint scPoli latent space colored by annotated 
cell type (left) and data set (right). (c) scPoli UMAP embedding of the HNOCA 
colored by cell type (left) and max presence score across all data sets (right).  

(d) Heatmap showing min-max scaled average presence scores of each condition 
in the screen data set in HNOCA data sets. (e) Heatmap showing min-max scaled 
average presence scores of each condition in the screen data set in each leiden 
cluster in HNOCA, ordered by annotated cell type. (f) UMAP embeddings of 
HNOCA (left) and the human developing brain atlas (right) colored by presence 
scores for each condition group in the screen data set. (g) UMAP embeddings 
of the human developing brain atlas (upper) and screen data set (lower) colored 
by coexpression scores of clusters with gained coverage in the screen data set.



Extended Data Fig. 10 | Disease-modeling neural organoid scRNA-seq  
atlas and data projection based extension of HNOCA. (a-c) UMAP of  
the unintegrated disease-modeling neural organoid atlas, colored by  
(a) publications, (b) disease status, (c) transferred level-2 annotation from 
HNOCA, and (d) transferred regional identities from HNOCA. (e) Dot plot shows 
expression of selected cell type markers in cells with different transferred cell 
class labels (level-1) from HNOCA. (f) Dot plot shows expression of selected 
regional markers in the predicted NPCs and neurons in the disease-modeling 
atlas with different transferred regional identities from HNOCA. In both (e) and 
(f), sizes of dots represent percentages of cells expressing the gene, and colors 

of dots represent the average expression levels. (g-j) UMAP of the glioblastoma 
GBM-2019 data set, colored by (g) samples, (h) predicted cell class labels (level-1) 
from the HNOCA projection, (i) expression of astrocyte markers GFAP and 
AQP4, and ( j) the AQP4+ population selected for DE analysis with HNOCA.  
(k-n) UMAP of the fragile X syndrome FXS-2021 data set, colored by (k) samples, 
(l) predicted cell type annotation (level-2) from the HNOCA projection,  
(m) expression of dorsal telencephalic cell markers FOXG1, EMX1 and NEUROD6, 
(n) the dorsal telencephalic NPC and neuron subset for DE analysis with HNOCA. 
(o) PCA of the scPoli sample embeddings of samples in HNOCA and five additional 
data sets projected to HNOCA.
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