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Human neural organoids, generated from pluripotent stem cells in vitro, are useful
tools to study human brain development, evolution and disease. However, it is unclear

which parts of the human brain are covered by existing protocols, and it has been
difficult to quantitatively assess organoid variation and fidelity. Here we integrate
36 single-cell transcriptomic datasets spanning 26 protocols into one integrated
human neural organoid cell atlas totalling more than 1.7 million cells*. Mapping to

developing human brain references

230 shows primary cell types and states that have

been generated in vitro, and estimates transcriptomic similarity between primary
and organoid counterparts across protocols. We provide a programmatic interface
to browse the atlas and query new datasets, and showcase the power of the atlas to
annotate organoid cell types and evaluate new organoid protocols. Finally, we show
that the atlas can be used as a diverse control cohort to annotate and compare
organoid models of neural disease, identifying genes and pathways that may underlie
pathological mechanisms with the neural models. The human neural organoid cell
atlas will be useful to assess organoid fidelity, characterize perturbed and diseased
states and facilitate protocol development.

Human neural organoids, self-organizing three-dimensional human
neural tissues grown in vitro, are becoming powerful tools for stud-
ying the mechanisms of human brain development, evolution and
disease® ., They can be generated using external patterning factors
(for example, morphogens) to guide their development towards
certain brain regions or to drive the emergence of specific cell types
(guided protocols)™#3435 Conversely, unguided protocols rely on
the self-patterning capacity of organoids to generate diverse cell types
and states®*”,

Single-cell RNA sequencing (scRNA-seq) is a powerful technology
to characterize cell type heterogeneity in complex tissues, and has
illuminated aremarkable heterogeneity of diverse progenitor, neuronal
and glial cell types that can develop within neural organoids®**"%, as
well as differentiation trajectories of certain neural lineages. The data
also enable the comparison of human neural organoid cells to those
in the primary human brain, and most analyses have revealed strong
similarity in molecular signatures®'®%*°, Substantial differences have
also been reported, including differential gene expression linked to
media components® and perturbed metabolic signatures associated

with glycolysis*®%*?*38 Nevertheless, analysis of organoid tissues sup-
portsauseful recapitulation of early braindevelopment, and scRNA-seq
methods have been applied to study the molecular basis of neural cell
type fate determination®, evolutionary differences in primates8404
and pathological changes in neural disorders'®***>*3, However, it is
unclear which portions of the developing central nervous system can
be generated with existing protocols and which ones are still lacking.
It has also remained challenging to systematically quantify the tran-
scriptomic fidelity of neural organoid cells compared to their primary
counterparts.

Inthis study, we address these challenges by combining 36 scRNA-seq
datasets covering numerous human neural organoid protocolsintoan
integrated transcriptomic cell atlas. We establish an analytical pipe-
line that allows for the comprehensive and quantitative comparison
of the organoid atlas to reference atlases of the developing human
brain®. We harmonize annotations of cell populations in the primary
and organoid systems, estimate the capacity and precision of differ-
ent neural organoid protocols to generate different brain regions, and
identify primary cell populationsthat are under-represented in neural
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Fig.1|Integrated HNOCA. a, Overview of HNOCA construction pipeline.

b, Metadata of biological samplesincludedin HNOCA. c-f, UMAP of the
integrated HNOCA, coloured by level 2 cell type annotations (c), gene
expression profiles of selected markers (d), sample ages (e) and differentiation
protocoltypes (f). g, Proportions of cells assigned to different cell types in

the HNOCA. Every stacked bar represents one biological sample, grouped by
datasets and ordered by increasing sample ages. Top bars show 36 datasets,
organoid differentiation protocols, protocol types. Bottom bars show the
sample age.h, UMAP of the integrated HNOCA coloured by top-ranked
diffusion component (DC1) on the real-time-informed transition matrix

organoids. We estimate transcriptomic fidelity of neurons in neural
organoids, and identify previously described cell stress***?* as a uni-
versal factor distinguishing metabolic states of in vitro neurons from
primary neurons without strongly affecting coreidentities of neuronal
cell types. We map the data of a neural organoid morphogen screen**
totheintegrated atlas to assess regional specificity and generation of
new states. We also collect 11scRNA-seq datasets modelling 10 different
neural diseases, and map the integrated data to the neural organoid
atlas for cell type annotation and differential expression (DE) analysis.
Finally, we show that the atlas can be expanded by projecting new data
tothe currentatlas. Together, our work provides arichresourceanda
new framework to assess the fidelity of neural organoids, characterize
perturbed and diseased states and streamline protocol development.

Data curation, harmonization and integration

To build a transcriptomic human neural organoid cell atlas (HNOCA),
we collected scRNA-seq data and detailed, harmonized technical and

ExN (LHX9/LHX5")

between cells. The stream arrows visualize theinferred flow of cell states
toward more mature cells. i, Marker gene expression profiles along cortical
pseudotime. j, UMAP of non-telencephalic neurons, coloured and labelled by
clusters. k, Heatmap showing relative expression of selected genes across
different non-telencephalic neuron clusters. Coloured dots show cluster
identities asshowninj. Cb, cerebellum; ChP, choroid plexus; CP, choroid
plexus; Hy, hypothalamus; max., maximum; MB, midbrain; MH, medulla; min.,
minimum; Oligo, oligodendrocyte; OPC, oligodendrocyte progenitor cell; PSC,
pluripotent stem cell; telen., telencephalon; Th, thalamus; vTelen, ventral
telencephalon.

biological metadata from 36 datasets, including 34 published'?® and
two as yet unpublished ones (Supplementary Table 1), accounting for
1.77 million cells after consistent preprocessing and quality control
(Fig.1a). The HNOCA represents cell types and states generated with
26 distinct neural organoid differentiation protocols, including three
unguided and 23 guided ones, at time points ranging from 7 to 450 days
(Fig. 1b). To remove batch effects, we implemented a three-step inte-
gration pipeline. First, we projected the HNOCA to a single-cell atlas
of the developing human brain? using reference similarity spectrum
(RSS)%. Then, we developed snapseed (Methods) to perform prelimi-
nary marker-based hierarchical cell type annotation. Last, we used
scPoli* for label-aware data integration based on the snapseed anno-
tations. Evaluation of different integration approaches using a previ-
ously established benchmarking pipeline*® showed that scPoli had
the best performance for these datasets (Extended Data Fig. 1). We
performed clustering on the basis of the scPoli representation and
annotated clusters on the basis of canonical marker gene expression,
organoid sample age and the auto-generated cell type labels. A uniform
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Fig.2|Projection of HNOCA to primary developing humanbraincell
atlases assists organoid neural cell type annotation and estimation of
primary cell typerepresentation. a, UMAP of ahuman developing brain cell
atlas?, coloured by NTT subtypes (left), region (middle) and annotated cell
classes (right). b, UMAP of HNOCA, coloured by the mapped neuronNTT
subtypes (left) and regional labels of NPCs, intermediate progenitor cells (IP)
and neurons. ¢, Heatmap showing proportions of cells from organoids of
different ages matched to cells from different primary developmental (dev.)
stages.d, Percentages of neural cells representing different regions
(telencephalon, diencephalon, midbrain and hindbrain) in different datasets.
Thexaxesshow datasets, descendingly ordered by the total proportions (bar
height). Datasets based on unguided differentiation protocols are marked by
dotsunderneath. The bars at the bottom of each panel show organoid protocol

manifold approximation and projection (UMAP) embedding high-
lighted three neuronal differentiation trajectories corresponding to
dorsal telencephalic, ventral telencephalic and non-telencephalic
populations as well as trajectories leading from progenitors to glial cell
typessuchasastrocytes and oligodendrocytes precursors (Fig. 1c-eand
Extended DataFig. 2). Cells from both unguided and guided protocols
were distributed across all trajectories (Fig. 1f).

Toelucidate the dynamics and transitions of cell states and types, we
reconstructed areal-age-informed pseudotime of HNOCA cells on the
basis of neural optimal transport* using moscot*® (Fig. 1h). Focusing
onthedorsaltelencephalic neural trajectory, we observed consistent
pseudotemporal expression profiles of marker genes such as SOX2
(neural progenitor cells (NPCs)), BCL11B (deeper layer cortical neurons)
and SATB2 (upper layer cortical neurons) (Fig. 1i). To further resolve
heterogeneity among non-telencephalic neurons, we performed sub-
clustering of this population, which revealed numerous neuronal popu-
lations characterized by distinct marker gene expression (Fig. 1j,k).

HNOCA projection to ahuman developing brain atlas

To assess our cell type annotation, and more precisely annotate the
heterogeneous non-telencephalic neuronal populations, we com-
pared the HNOCA to a recently published single-cell transcriptomic
atlas of the developing human brain? (Fig. 2a). We applied scVI* and
scANVI*°to the primary reference atlas, and used scArches® to project
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types. e, UMAP of the human developing brain cell atlas?’ coloured by cell
population presence within HNOCA datasets (max presence score). Alow score
denotesunder-representation of cell statein HNOCA datasets. f, Distribution
of max presence scores of different cell classes in the human reference atlas?.
Eryt., erythrocyte; Imm.,immune; Vas., vascular; G-blast, glioblast; F-blast,
fibroblast; NC, neural crest; Plac., placodes; RG, radial glia; IPC, intermediate
progenitor cell; N-blast, neuroblast; N, neuron. g, Box plots showing distribution
of max presence scoresindifferent primary reference cell clusters. Bottom
side bars show neuronal versus non-neuronal, cell class, region information of
primary reference. h, UMAP of human developing brain atlas showing primary
neural cell types or states under-represented in HNOCA (inred). Hippo,
hippocampus; HyTh, hypothalamus; d, dorsal; v, ventral; CB, cerebellum.

the HNOCA to the same latent space. The shared latent space allowed
us to reconstruct a bipartite weighted k-nearest-neighbour (WkNN)
graph between cells in the HNOCA and the primary reference atlas,
whichwas used to transfer the ‘CellClass’and ‘Subregion’ labels, as well
asthe neurotransmitter transporter (NTT) information of neuroblasts
and neurons to the HNOCA. The transferred labels are strongly con-
sistent with our assigned labels (Extended Data Fig. 3) and allowed us
to refine the regional annotation of HNOCA non-telencephalic NPCs
and neurons, as well as the NTT annotation of the non-telencephalic
neurons (Fig. 2b), resulting in the final hierarchical HNOCA cell type
annotation (Extended Data Fig. 3).

We also sought to compare organoid cells to stages of human brain
development beyond the first trimester. Focusing on dorsal telen-
cephalon, we compared the transcriptomic profile of HNOCA NPCs
and neurons with cellsin aprimary atlas of human cortex development
spanning thefirst trimester to adolescence®’. We observed a transition
from cell states observed in the first trimester to more mature states
observed in the second-trimester cortex (Fig. 2c), and did not detect
substantial matching to later stages. We extended the comparison to
other brain regions using two primary atlases”? representing the first
and second trimester, respectively. We confirmed increased similar-
ity to second-trimester cell states in older organoids for other brain
regions (Extended Data Fig. 3).

We evaluated the capacity of each neural organoid protocol to gener-
ate neural cells of different brain regions (Fig. 2d, Extended Data Figs. 3
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Fig.3|Transcriptomic comparison between organoid neurons and their
primary counterpartreveals universal cell stressin organoids. a, Schematic
of DE analysis comparing neural cell typesin different protocolsin HNOCA
totheir primary counterparts?.b, Proportions of expressed genes in different
neural celltypes that show DEin certain fractions of protocols that generate
the corresponding subtypes. Top left, glutamatergic neurons; bottom

right, GABAergic neurons. Colour shows the brain region. c, Numbers of
protocol-common DEGs (DE in at least half of protocols), grouped by the
number of neural cell typesinwhichageneis DE.d, Distribution of expression
log-fold-change (logFC) correlation of ubiquitous DEGs among different neuron
subtype*protocol (thatis, each of the neural cell types generated by each of

the different protocols). e, Numbers of DEGs per category. f, Gene ontology
enrichment analysis of downregulated (upper, blue) and upregulated (lower,
red) ubiquitous DEGs. Sizes of the squares correlate with —log-transformed
adjusted Pvalues. g,h, Distribution of the mitochondrial ATP synthesis-coupled

and 4 and Supplementary Table 2). Datasets of unguided neural orga-
noids contain cells across all brain regions with proportions varying
across datasets, indicating the capacity of unguided protocols to gener-
ate many brain regions but with high variability. By contrast, datasets
derived from guided organoid protocols are strongly enriched for cells
of the targeted brain region, but often show an increased proportion
of cells of the brain regions neighbouring the targeted regions. For
example, several datasets derived from midbrain organoid protocols
alsoshow high proportions of hindbrain neurons, indicating animpre-
cision of morphogen guidance.

To comprehensively evaluate how well organoid protocols repre-
sented by the HNOCA generate primary brain cell types, we estimated
presence scores for every primary cell type in each HNOCA dataset
(Methods). Alarge presence score indicates high frequency and likeli-
hoodthat cells of asimilar type are observed inthe HNOCA dataset. By
normalizing the scores per organoid dataset (Extended Data Fig.5and
Supplementary Table 3), we obtained a metric to describe how well each
primary celltypeis represented in at least one HNOCA dataset (Fig. 2d).
This analysis confirmed the absence of erythrocytes, immune cells
and vascular endothelial cells in the HNOCA, all of which are derived
from non-neuroectodermal germ layers (Fig. 2e). As expected, tel-
encephalic cell types are most strongly represented in HNOCA. By
contrast, cell types of the thalamus, midbrain and cerebellum are least
represented, including thalamicreticular nucleus GABAergic neurons,

electrontransport module scores (g), canonical glycolysis module scores

(h, left) and the Molecular Signatures Database hallmark glycolysis module
scores (h, right), in primary neural cell types (upper, dark) and organoid
counterparts (lower, light). Pvalues, significance of atwo-sided Wilcoxon test.
i, Heatmap shows pairwise correlation (corr.) of the three module scores.
Jj.Hallmark glycolysis score of dorsal telencephalic excitatory neurons (dTelen
VGLUT-N), splitby the three primary developing human brains and 27 organoid
datasets withatleast 20 dTelen VGLUT-N. The lower panel shows selected
features of differentiation protocols that may berelevantto cell stress. The
protocol and publicationindices are shownin Extended DataFig.1. Mat. media,
maturation media. k, Spearman correlations between gene expression profiles
of neural celltypesin HNOCA and those in the human developing brain atlas?,
across the variable transcription factors (TFs). Datasets arein the same order as
inSupplementary Tablel.

dorsal midbrain m1-derived GABAergic neurons and ml/m2-derived
glutamatergic neurons, and cerebellar Purkinje cells (Fig. 2f,g). It is
worth noting that, even though these cell types are less abundant in
HNOCA datasets thanin the primary atlas, certain organoid protocols
cangenerate some of these under-represented cell types (for example,
Purkinje cells in posterior brain organoid protocols).

Transcriptomic fidelity organoid cell types

We next aimed to understand the transcriptomic similarities and dif-
ferences between organoids generated by distinct differentiation
protocols as well as between organoids and primary brain tissue. We
identified differentially expressed genes (DEGs), comparing neural
celltypesinthe HNOCA with their primary counterparts® (Fig. 3aand
Supplementary Table 4). We found that for most neural cell types,
more than one-third (mean 34.4%, standard deviation 12.1%) of DEGs
were shared across at least half of the protocols (protocol-common
DEGs), suggesting that many transcriptomic differences between
organoid and primary cells were independent of organoid protocol
(Fig.3b). We verified our results using an extra primary human cortex
scRNA-seq dataset®® (Extended Data Fig. 6 and Supplementary Table 5).
We next assessed differential transcriptomic programmes that were
shared across regional neural cell types, and identified a total of 920
ubiquitous, protocol-common DEGs (uDEGs) that were differentially
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Fig.4|Projection of neural organoid morphogenscreenscRNA-seqdatato
HNOCA and humandeveloping brain atlas allows cell type annotation and
organoid protocol evaluation. a, Schematic of projecting neural organoid
morphogenscreen** scRNA-seq datato the HNOCA, and ahuman developing
brain reference atlas”. UMAPs show screen condition groups (left, using
morphogens SAG (sonic hedgehog signaling agonist), CHIR, BMP and FGF)
andregional annotation of screen data (right). b, Comparison of regional
annotation of screen data (rows) and scArches-transferred regional labels from
the primary reference. ¢, Proportions of cells assigned to different regions on
thebasis of reference projection. Every stacked bar represents onescreen
condition.d, Clustering of HNOCA datasets with conditionsin the screen data
onthebasis of average presence scores of clustersin the primary reference.

expressed in at least 14 out of the 16 neural cell types (Fig. 3c). These
uDEGs showed consistent fold changes (r> 0.8) across neuron types
and protocols (Fig. 3d), and represent consistent molecular differences
between neuronsinorganoids and thosein primary tissues regardless
of protocol or neuronal cell type. Out of all 920 uDEGs, 363 genes were
consistently upregulated and 673 genes were consistently downregu-
lated, with only 59 genes (6%) inconsistently differentially expressed
across subtypes or protocols (Fig. 3e).

Using gene ontology enrichment analysis®>*>> on the uDEGs, we found
downregulated uDEGs enriched in neurodevelopmental processes
including neuron cell-cell adhesion and synapse organization (Fig. 3f).
Upregulated uDEGs were enriched in many metabolism-associated
terms including mitochondrial ATP synthesis-coupled electron trans-
port (electron transport in short) and canonical glycolysis (Fig. 3f).
An enrichment of energy-associated pathways has previously been
associated with metabolic changes caused by the limitations of cur-
rent culture conditions'®*. Also, the Molecular Signatures Database
gene set hallmark glycolysis®*** has previously been used to define
metabolic states in neural organoids®. Scoring mitochondrial elec-
tron transport, canonical glycolysis and hallmark glycolysis gene sets
across the HNOCA and the primary reference atlas?’, we found thatall
three terms showed significant separation of organoid and primary
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The heatmap shows average presence scores per clusterinthe primary
reference (columns). e, UMAP of primary reference coloured by the dissected
regions (right) and the maximum presence scores across the screen conditions
(left). f, Gain of cell cluster coverage of screen conditions relative to HNOCA
datasets, with negative values trimmed to zero. The grey horizontal line shows
the threshold (0.3) to define gained clustersin screen data. g, UMAP of the
primary reference, with gained clusters highlighted inshades of blue. Dashed
circles highlight two clusters with highest gain of coverage in telencephalon
and midbrain, respectively. h, Coexpression scores of cluster marker genes of
the two clusters highlighted ing, in the primary reference (upper) and screen
dataset (lower). DA, dopaminergic.

cells (Fig. 3g,h). Using the datasets from refs. 3 and 27 as representa-
tive examples, weidentified a similar distribution of glycolysis scores
across all neural cell types with an overall increased score in organoid
cells (Extended DataFig. 7). Focusing on dorsal telencephalic neurons,
we compared the distribution of glycolysis scores across organoid dif-
ferentiation protocols and identified several protocol features that cor-
related with metabolic cell stress. For instance, the usage of maturation
media, slicing or cutting of organoids and, to a lesser extent, shaking
or spinning of organoids led to overall lower glycolysis scores (Fig. 3h).
Mean glycolysis score and transcriptomic similarity of organoid and
primary reference cell types” across differentiation protocols were
negatively correlated®*. The correlation was significantly reduced
when considering only variable transcription factors, indicating that
the metabolic changes in organoids have limited impact on the core
molecular identity of neuronal cell types (Extended Data Fig. 7). This
observation s consistent with previous studies®* of distinct metabolic
states of cellsin neural organoids relative to the primary tissue, which
were shown to not affect neuron fate specification and maturation.
Next, we focused on the expression of 366 variable transcription
factors to calculate the correlation between corresponding neuronal
cell types in the HNOCA datasets and the primary reference atlas?.
We found that both guided and unguided organoid differentiation
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protocols generated neuronal cell types with comparable similarity to
the corresponding primary reference cell types. However, we observed
brain region-dependent differences in transcriptomic similarity. For
example, organoid neurons from the dorsal parts of most brain regions
showed higher similarity to their primary counterparts across organoid
datasets than cell types derived from the ventral parts of most brain
regions (Fig. 3i).

To identify molecular features other than metabolic state that
decreased organoid fidelity, weincorporated dorsal telencephalic gluta-
matergic neurons from four different primary developing human brain
atlases?’** as an integrated primary reference, and identified neuron
subtype and maturation state heterogeneity (Extended Data Fig. 8).
Projection of dorsal telencephalic neurons in the HNOCA to the pri-
mary atlases revealed the corresponding heterogeneity in neural orga-
noids. Considering metabolic state, maturation state and cell subtype
as covariates during DE analysis® significantly reduced the number of
DEGs, supportingtheideathat these are the major factors differentiating
organoid and primary brain cells (Extended Data Fig. 8 and Supplemen-
tary Table 6). We observed enriched biological processes thatincluded
synaptic vesicle cycle and negative regulation of high voltage-gated cal-
cium channelactivity (Extended Data Fig. 8), suggesting that organoids

-1.0-05 0 05 1.0
IogFC(FXS — HNOCA)

HNOCA astrocytes astrocytes
metacells in diseases

publication. Left, distribution in control cells and right, distributionin disease
cells.l,Heatmap showing expression of top DEGs between the AQP4* population
inthe GBM-2019 dataset and their matched HNOCA metacells. Rows show
DEGs with the tenstrongest decreased and increased expressions. Columns
show average expressioninthe AQP4* population of disease-modelling samples
(first panel), the matched HNOCA metacells per sample (second panel), all
predicted control astrocytes and all astrocytesin HNOCA. m, Volcano plot
shows DE analysis between dorsal telencephalic cellsin the FXS-2021 dataset
and their matched HNOCA metacells. DEGs colouredinred (increased in
FXS) and blue (decreased in FXS). Encircled dots show DEGs annotated in
SFARIdatabase. Top bars show the log-transformed odds ratio of SFARI gene
enrichmentintheincreased (red) and decreased (blue) DEGs. GBM,
glioblastoma.

are deficientin these processes. Of note, these differences are observed
across organoid protocols, and highlight areas of consistent transcrip-
tomic divergence between in vitro and primary counterparts.

HNOCA facilitates organoid protocol evaluation

The HNOCA, as well as the analytical pipeline we established, provides
aframework to query new neural organoid scRNA-seq datasets not
included in the HNOCA. To showcase this application, we retrieved
scRNA-seq datafromarecently published multiplexed neural organoid
morphogenscreen** and projected themto the HNOCA and primary ref-
erence? latent spaces (Fig. 4a, Extended Data Fig. 9 and Supplementary
Table 7). We transferred regional labels and found high consistency with
the provided regional annotation, but with higher resolution within
eachofthebroad brain sections of forebrain, midbrain and hindbrain
(Fig.4b). Ourtransferred annotation therefore allowed a more compre-
hensive assessment of the effects of different morphogen conditions
on generating neurons of different brain regions (Fig. 4c¢). We further
calculated presence scores for reference cellsineach screen condition
and compared the data of the different screen conditions with the 36
HNOCA datasets. Using hierarchical clustering on average presence
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Fig. 6 | Extending the HNOCA by means of projection of extradatasets. a,
Schematic of projecting further scRNA-seq data by the community to extend
the HNOCA. b, UMAP shows the dataset composition of the current extended
HNOCA. ¢, UMAP shows the projected cell type annotation of cellsin the five
extended datasets. NE, neuroepithelium; NC-D, neural crest derivatives;

MC, mesenchymal cell; EC, endothelial cell.d, Dot plot shows the expression of

scores revealed distinct presence score profiles for many screen condi-
tions (Fig. 4d), suggesting regional cell type composition distinct from
the HNOCA datasets. Next, we summarized the max presence scores
for the whole morphogen screen data (Fig. 4e), and compared them
to those for the HNOCA data to identify primary reference cell types
withincreased presence inthe screen (Fig. 4f). This analysis highlighted
several reference cell clusters with significant abundance increase
under certain screen conditions (Fig. 4g) such as LHX6/ACKR3/MPPED1
triple-positive GABAergic neurons in the ventral telencephalon and
dopaminergic neuronsin ventral midbrain. In summary, the projection
ofthemorphogenscreen query datato HNOCA and primary reference
allowed arefined annotation of the morphogen screen data, as well
as acomprehensive and quantitative evaluation of the value of new
differentiation protocols to generate neuronal cell types previously
under-represented or lacking in neural organoids.

HNOCA facilitates disease model interpretation

We next tested whether the integrated HNOCA can serve as a control
cohort for assessing organoid models of neural disease. We collected
11 scRNA-seq datasets from 10 neural organoid disease models and
their respective controls (microcephaly*®, amyotrophic lateral scle-
rosis*, Alzheimer’s disease”, autism*?, fragile-X syndrome (FXS)*,
schizophrenia®, neuronal heterotopia®®®, Pitt-Hopkins syndrome®?,
myotonic dystrophy® and glioblastoma®*) (Fig. 5a, Extended DataFig. 10
and Supplementary Table 8). We projected the datato the HNOCA and
the primary reference atlas to transfer annotations (Fig. 5b-f). We
found differencesin cell type and brain regional compositionbetween
disease model organoids and their respective, study-specific control
organoids for most studies (Fig. 5g,h). These differences might repre-
sent disease phenotypes, but could also be the consequence of cell line
variability. Itis therefore important to properly annotate the cell type
andregional composition of disease and control organoids toidentify
disease phenotypes, particularly when analysing disease-associated
transcriptomic alterations in a given cell type.
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selected celltype and regional markers across projected celltypesinthe
extended HNOCA datasets. e, Dot plot shows cell type composition and
average similarity to the matched HNOCA metacells of the extended datasets.
f,Schematic shows the analytical pipelines and varied interfaces to facilitate
analysing scRNA-seq data of neural organoids for the community.

We developed a wkNN-based strategy to generate matched HNOCA
metacells for every cell in each disease model organoid scRNA-seq
dataset (Fig. 5i), and quantified their transcriptomic similarity (Fig. 5j).
The dataset of glioblastoma organoids®* showed substantially lower
similarity to their primary counterpart than the other disease models
(Fig. 5k). To assess these transcriptomic differences, we performed
DE analysis between glioblastoma and matched control metacells.
Focusing on the AQP4' population (Extended Data Fig. 10), we identi-
fied 1,951 DEGs in glioblastoma cells compared to matched HNOCA
metacells (Supplementary Table 9) and found increased expression of
genes such as RBM2S5 (ref. 65) CALDI (ref. 66), HNRNPU®” and SPARC®®
(Fig.5l), allof which have beenreported to be relevant to glioblastoma.

Next, we focused on the organoid model of FXS, in which NPCs
and neurons in the control organoids were of non-telencephalic
identities whereas the disease model organoids mainly contained
telencephalic cells (Fig. Shand Extended Data Fig. 10). The integrated
HNOCA provides the opportunity to perform DE analysis for FXS neo-
cortical neurons with matched HNOCA metacells, which identified 444
DEGs. DEGs higher expressed in FXS cells (122 genes) were enriched
for autism-associated genes annotated in the Simons Foundation
Autism Research Initiative (SFARI) database. One such gene, CHD2,
was reported in the original publication®® as a key regulator of FXS
withincreased protein level, but its expression change on messenger
RNA (mRNA) level change could not be detected in a bulk RNA-seq
experiment. We also detected decreased expression of FMR1, whose
loss-of-function mutation causes FXS®.

Extending the HNOCA through data projection

New scRNA-seq datasets of human neural organoids continue to be
generated, and it willbeimportant to continuously extend and update
the HNOCA with this extra data. We therefore established a computa-
tional toolkit to project new scRNA-seq data to the HNOCA (Fig. 6a).
We demonstrate the use of the toolkit by incorporating scRNA-seq data
from six more studies” 7 into the HNOCA (HNOCA-extended; Fig. 6b



and Supplementary Table 10), using query-to-reference mapping. We
harmonized cell type annotations using wkNN-based label transfer,
and placed the cells in the context of the existing organoid single-cell
transcriptomic landscape as represented by the HNOCA (Fig. 6¢-e).
Mapping further datasets tothe HNOCA using our approach enhances
the atlas by increasing its coverage over existing neural organoid pro-
tocols and neural cell types generated in organoids.

To enable researchers to use the HNOCA in their own analysis, we
provide various options for explorationand interaction with the atlas
(Fig. 6f). The HNOCA can be browsed through an online portal™, ena-
bling visualization of gene expression and discovery of marker genes.
We also provide the HNOCA through an online interface (http://www.
archmap.bio/) for the interactive mapping of new datasets, enabling
label transfer, presence score computation and metabolic scoring of
cell states. Finally, we have developed HNOCA-tools, a Python pack-
age implementing all central analysis approaches presented in this
paper, such as annotation, reference mapping, label transfer and DE
testing methods.

Discussion

Inthisstudy, webuiltalarge-scale integrated cell atlas of human neural
organoids, the HNOCA, by integrating 1.8 million cells spanning 36
scRNA-seq datasets generated by 15 different laboratories worldwide
using 26 different differentiation protocols as well as diverse scRNA-
seq technologies. The resulting atlas revealed the high complexity
of neuronal, glial and non-neural cell types that can develop in neu-
ral organoids grown under existing protocol conditions. Mapping
the HNOCA data to various human developing brain cell reference
atlases?” *° allowed comprehensive evaluation of neural organoid pro-
tocols to generate cell types of different brain regions. We found that
organoidsinthe first 3 months of culture best match to first-trimester
primary data, whereas organoids around 3 months of culture and older
best match second-trimester primary cell states. We did not observe
significant neuronal maturation and diversification signatures match-
ing older developmental stages, suggesting a limitation of neuronal
maturation in current neural organoid protocols.

We performed DE analysis between organoid neuron types and their
primary counterparts to evaluate transcriptomic fidelity, and identi-
fied metabolic changes related to the glycolysis pathway as a main
factor that distinguishes organoid and primary cell states, consistent
with previous reports. Despite the negative effects of metabolic stress
onoveralltranscriptomic fidelity, the molecular identity of regional
celltypesis maintained as evidenced by transcription factor coexpres-
sion patterns that are highly consistent with primary counterparts.

We showcased the mapping of query data, a recently published
single-cell transcriptomic neural organoid morphogenscreen, to the
HNOCA and the primary reference, which enabled a refined cell type
annotation, as well as acompositional comparison with existing neural
organoid datasets. Our powerful framework will facilitate quantitative
and comparative analysis of scRNA-seq data of human neural organoids,
and for the benchmarking of new neural organoid protocols.

Consistent with earlier reports*”’, we find that unguided protocols
generate neural cells with high brain regional variability, which is useful
when studying broader fate determination during neurodevelopment.
Guided protocols resulted in a strong enrichment of the targeted
brain regions. We also note that some guided protocols, particularly
those targeting midbrain, show relatively low specificity and generate
neural cells from the nearby brain regions. This issue may be duetoa
differential response of neural stem cellsin the organoid to the same
morphogen cue, or to the lack of a full understanding of the timing,
concentration and combinations of morphogens required to precisely
define cells of the deeper regions in the central nervous system.

The integrated HNOCA is also an excellent resource for analysis
of disease-modelling neural organoid data. It facilitates cell type

annotation and provides alarge control cohort of single-cell transcrip-
tomes for comparison. For example, we observed discrepancy of cell
type and regional composition between control and disease model
samples in many studies. At the same time, the HNOCA provides the
opportunity to identify disease-specific molecular features against a
multi-line multi-protocol large-scale control cohort.

We demonstrate how the HNOCA can be extended and updated by
projecting extra single-cell transcriptomic data of neural organoids
to the atlas. Further, we have developed a computational toolkit,
HNOCA-tools, which will enable other researchers to recapitulate the
analytic framework applied in our study. Together, weimagine that the
HNOCA will be kept up to date and continue to reflect the landscape
of humanneural cell states generated in organoids in vitro, serving as
alivingresource for the neural organoid community that enables the
assessment of organoid fidelity, the characterization of perturbed and
diseased states and the development of new protocols.
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Methods

Metadata curation and harmonization of human neural
organoid scRNA-seq datasets

Weincluded 33 human neural organoid data fromatotal of 25 publica-
tions**% plus three unpublished datasets in our atlas (Supplementary
Table 1). We curated all neural organoid datasets used in this study
through the sfaira’ framework (GitHub dev branch, 18 April 2023). For
this, we obtained scRNA-seq count matrices and associated metadata
from the location provided in the data availability section for every
included publication or directly from the authors in case of unpub-
lished data. We harmonized metadata according to the sfaira stand-
ards (https://sfaira.readthedocs.io/en/latest/adding_datasets.html)
and manually curated an extra metadata column organoid_age_days,
which described the number of days the organoid had beenin culture
before collection.

We nextremoved any non-applicable subsets of the published data-
sets: diseased samples or samples expressing disease-associated muta-
tions (refs.14-16,18,19,26), fused organoids (ref. 1), primary fetal data
(refs.10,23), hormone-treated samples (ref. 22), data collected before
neuralinduction (refs. 3,20) and share-seq data (ref. 23). We harmonized
all remaining datasets to acommon feature space using any genes of
the biotype ‘protein_coding’ or IncRNA’ from ensembl” release 104
while filling any genes missing in a dataset with zero counts. On aver-
age, 50% of the full gene space (36,842 genes) was reported in each of
the constituent datasets. We then concatenated all remaining datasets
to create a single AnnData®° object.

Preprocessing of the HNOCA scRNA-seq data
All processing and analyses were carried out using scanpy® (v.1.9.3)
unlessindicated otherwise. For quality control and filtering of HNOCA,
we removed any cells with fewer than 200 genes expressed. We next
removed outlier cells in terms of two quality control metrics: the
number of expressed genes and percentage mitochondrial counts.
To define outlier cells on the basis of each quality control metric,
z-transformation is first applied to values across all cells. Cells with
any z-transformed metric lessthan-1.96 or greater than1.96 are defined
as outliers. For any dataset collected using the v.3 chemistry by 10X
Genomics, which contains more than 500 cells after the filtering, we
fitted a Gaussian distribution to the histogram denoting the number
of expressed genes per cell. If a bimodal distribution was detected,
we removed any cell with fewer genes expressed than defined by the
valley between the two maxima of the distribution. We then normal-
ized the raw read counts for all Smart-seq2 data by dividing it by the
maximum gene length for each gene obtained from BioMart. We next
multiplied these normalized read counts by the median gene length
across all genes in the datasets and treated those length-normalized
counts equivalently to raw counts from the datasets obtained with
the help of unique molecular identifiers in our downstream analyses.
As anext step we generated a log-normalized expression matrix by
firstdividing the countsfor each cell by the total countsinthat celland
multiplying by a factor of 1,000,000 before taking the natural loga-
rithm of each count + 1. We computed 3,000 highly variable features
inabatch-aware manner using the scanpy highly_variable_genes func-
tion (flavor = ‘seurat_v3’, batch_key = ‘bio_sample’). Here, bio_sample
represents biological samples as provided in the original metadata of
the datasets. On average, 72% of the 3,000 highly variable genes were
reported in each of the constituent HNOCA datasets. We used these
3,000 features to compute a 50-dimensional representation of the
datausing principal componentanalysis (PCA), whichinturnwe used
to compute a k-nearest-neighbour (kNN) graph (n_neighbors =30,
metric = ‘cosine’). Using the neighbour graph we computed a
two-dimensional representation of the data using UMAP®? and a coarse
(resolution 1) and fine (resolution 80) clustering of the unintegrated
data using Leiden® clustering.

Hierarchical auto-annotation with snapseed
Snapseedisascalable auto-annotation strategy, which annotates cells
onthebasis of aprovided hierarchy of cell types and the corresponding
cell type markers. It is based on enrichment of marker gene expres-
sionin cell clusters (high-resolution clustering is preferred), and data
integration is not necessarily required.

In this study, we used snapseed to obtain initial annotations for
label-aware integration. First, we constructed a hierarchy of cell types
including progenitor, neuron and non-neural types, each defined by
aset of marker genes (Supplementary Data 1). Next, we represented
the data by the RSS? to average expression profiles of cell clusters in
the recently published human developing brain cell atlas?. We then
constructed a kNN graph (k=30) in the RSS space and clustered the
dataset using the Leiden algorithm® (resolution 80). For both steps, we
used the graphical processing unit (GPU)-accelerated RAPIDS imple-
mentation that is provided through scanpy®5*.,

For all cell type marker genes on a given level in the hierarchy, we
computed the area under the receiver operating characteristic curve
(AUROC) as well as the detectionrate across clusters. For each cell type,
ascore was computed by multiplying the maximum AUROC with the
maximum detection rate among its marker genes. Each cluster was
then assigned to the cell type with the highest score. This procedure
was performed recursively for all levels of the hierarchy. The same
procedure was carried out using the fine (resolution 80) clustering of
the unintegrated data to obtain cell type labels for the unintegrated
dataset that were used downstream as aground-truth input for bench-
marking integration methods.

This auto-annotation strategy was implemented in the snapseed
Python package and is available on GitHub (https://github.com/dev-
systemslab/snapseed). Snapseed is a light-weight package to enable
scalable marker-based annotation for atlas-level datasets in which
manual annotation is not readily feasible. The package implements
three main functions: annotate() for non-hierarchical annotation of
alist of cell types with defined marker genes, annotate_hierarchy()
for annotating more complex, manually defined cell type hierarchies
and find_markers() for fast discovery of cluster-specific features. All
functions are based on a GPU-accelerated implementation of AUROC
scores using JAX (https://github.com/google/jax).

Label-aware data integration with scPoli

We performed integration of the organoid datasets for HNOCA using
the scPoli* model from the scArches® package. We defined the batch
covariate for integration as a concatenation of the dataset identifier
(annotation column ‘id’), the annotation of biological replicates (anno-
tation column ‘bio_sample’) as well as technical replicates (annotation
column ‘tech_sample’). This resulted in 396 individual batches. The
batch covariateis represented in the model as alearned vector of size
five. We used the top three levels of the RSS-based snapseed cell type
annotation as the cell type label input for the scPoli prototype loss.
We chose the hidden layer size of the one-layer scPoli encoder and
decoder as1,024, and the latentembedding dimension as ten. We used
avalue of 100 for the ‘alpha_epoch_anneal’ parameter. We did not use
the unlabelled prototype pretraining. We trained the model for a total
of seven epochs, five of which were pretraining epochs.

Benchmark of data integration methods

To quantitatively compare the organoid atlasintegration results from
several tools, we used the GPU-accelerated scib-metrics**® Python
package (v.0.3.3) and used the embedding with the highest overall
performance for all downstream analyses. We compared the datainte-
gration performance across the following latent representations of the
data: unintegrated PCA, RSS? integration, scVI*’ (default parameters
except for using two layers, latent space of size 30 and negative binomial
likelihood) integration, scANVI*® (default parameters) integrations
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using snapseed level 1,2 or 3annotation as cell type label input, scPoli*
(parameters shown above) integrations using either snapseedlevel 1,2
or3annotationorallthree annotation levels at once asthe cell type label
input, scPoli* integrations of metacells aggregated with the aggrecell
algorithm (first used as ‘pseudocell®) using either snapseed level 1or 3
annotation as the cell type label input to scPoli. We used the following
scores for determiningintegration quality (each described inref. 46):
Leiden normalized mutual information score, Leiden adjusted rand
index, average silhouette width per cell type label, isolated label score
(average silhouette width-scored) and cell type local inverse Simpson’s
index to quantify conservation of biological variability. To quantify
batch-effect removal, we used average silhouette width per batchlabel,
integration local inverse Simpson’sindex, kNN batch-effect test score
and graph connectivity. Integration approaches were then ranked by
an aggregate total score of individually normalized (into the range of
[0,1]) metrics. Before we carried out the benchmarking, weiteratively
removed any cells from the dataset that had anidentical latent repre-
sentation to another cell in the dataset until no latent representation
contained any more duplicate rows. This procedure removed a total of
3,293 duplicate cells (0.002% of the whole dataset) and was required
for the benchmarking algorithm to complete without errors. We used
the snapseed level 3 annotation computed on the unintegrated PCA
embedding as ground-truth cell type labels in the integration.

Pseudotime inference

Toinfer aglobal ordering of differentiation state, we sought toinfer a
real-time-informed pseudotime on the basis of neural optimal trans-
port*inthe scPolilatent space. We first grouped organoid age in days
into seven bins ((0, 15], (15,301, (30,60], (60, 90], (90, 120], (120, 150],
(150,450]). Next, we used moscot** to solve atemporal neural problem.
Toscore the marginal distributions on the basis of expected prolifera-
tionrates, we obtained proliferation and apoptosis scores for each cell
with the method score_genes_for_marginals(). Marginal weights were
then computed with

exp(4 x (prolif_score - apoptosis_score))

The optimal transport problem was solved using the following
parameters:iterations = 25,000, compute_wasserstein_baseline = False,
batch_size =1,024, patience =100, pretrain = True, train_size =1. To
compute displacement vectors for each cell in age bin i, we used the
subproblem corresponding to the [/, i + 1] transport map, except for
the last age bin, where we used the subproblem [i - 1,i]. Displacement
vectors were obtained by subtracting the original cell distribution from
the transported distribution. Using the velocity kernel from CellRank®®
we computed a transition matrix from displacement vectors and used
itasaninput for computing diffusion maps®. Ranks on negative diffu-
sion component 1 were used as a pseudotemporal ordering.

Preprocessing of the human developing brain cell atlas scRNA-seq
data

The cell ranger-processed scRNA-seq data for the primary atlas®” were
obtained from the link provided onits GitHub page (https://storage.
googleapis.com/linnarsson-lab-human/human_dev_GRCh38-3.0.0.h5ad).
For further quality control, cells with fewer than 300 detected genes
were filtered out. Transcript counts were normalized by the total
number of counts for that cell, multiplied by ascaling factor of 10,000
and subsequently natural-log transformed. The feature set was inter-
sected with all genes detected in the organoid atlas and the 2,000
most highly variable genes were selected with the scanpy function
highly_variable_genes using ‘Donor’ as the batch key. An extracolumn
of ‘neuron_ntt_label’ was created torepresent the automatic classified
neural transmitter transporter subtype labels derived from the ‘Auto-
Annotation’ column of the cell cluster metadata (https://github.com/
linnarsson-lab/developing-human-brain/files/9755350/table_S2.xIsx).

Reference mapping of the organoid atlas to the primary atlas

To compare our organoid atlas with data from the primary developing
humanbrain, we used scArches® to project it to the above mentioned
primary human brain scRNA-seq atlas?. We first pretrained a scVI
model* onthe primary atlas with ‘Donor’ as the batch key. The model
was constructed with following parameters: n_latent = 20, n_layers =2,
n_hidden =256, use_layer_norm = ‘both’, use_batch_norm = ‘none’,
encode_covariates = True, dropout_rate = 0.2 and trained with a
batch size 0f 1,024 for a maximum or 500 epochs with early stop-
ping criterion. Next, the model was fine-tuned with scANVI** using
‘Subregion’ and ‘CellClass’ as cell type labels with a batch size of
1,024 for a maximum of 100 epochs with early stopping criterion
and n_samples_per_label =100. To project the organoids atlas to the
primary atlas, we used the scArches™ implementation provided by
scvi-tools®#, The query model was fine-tuned with a batch size of
1,024 for a maximum of 100 epochs with early stopping criterion
and weight_decay = 0.0.

Bipartite weighted kNN graph reconstruction

With the primary reference? and query (HNOCA) data projected to the
same latent space, an unweighted bipartite KNN graph was constructed
byidentifying 100 nearest neighbours of each query cellin the reference
data with either PyNNDescent or RAPIDS-cuML (https://github.com/
rapidsai/cuml) in Python, depending on availability of GPU accelera-
tion. Similarly, areference kNN graph was also built by identifying 100
nearest neighbours of each reference cellinthereference data. For each
edge in the reference-query bipartite graph, the similarity between
the reference neighbours of the two linked cells, defined as A and B,
respectively, is represented by the Jaccard index:

|ANB|
AU B|’

JA,B)=

The square of Jaccard index was then assigned as the weight of the
edge, to get the bipartite weighted kNN graph between the reference
and query datasets.

wkNN-based primary developing brain atlas label transfer to
HNOCA cells

Given the wkNN estimated between primary reference” and query
(HNOCA), any categorical metadata label of reference can be trans-
ferred to query cells by means of majority voting. In brief, for each
category, its support was calculated for each query cell as the sum of
weights of edges that link to reference cells in this category. The cat-
egory with the largest support was assigned to the query cell.

To get the final regional labels for the non-telencephalic NPCs and
neurons, as well asthe NTT labels for non-telencephalic neurons, con-
straints were added to the transfer procedure. For regional labels, only
the non-telencephalic regions, namely diencephalon, hypothalamus,
thalamus, midbrain, midbrain dorsal, midbrain ventral, hindbrain,
cerebellum, pons and medulla, were considered valid categories to
be transferred. The label-transfer procedure was only applied to the
non-telencephalic NPCs and neurons in HNOCA. Before any major-
ity voting was done, the support scores of each valid category across
all non-telencephalic NPCs and neurons in HNOCA were smoothed
with arandom-walk-with-restart procedure (restart probability alpha,
85%). Next, a hierarchical label transfer, which takes into account the
structure hierarchy, was applied. First, the considered regions were
grouped into diencephalon, midbrain and hindbrain, with a support
score of each structure as its score summed up with scores of its sub-
structures. Majority voting was applied to assign each cell to one of the
three structures. Next, a second majority voting was applied to only
consider the substructures under the assigned structure (for example,
hypothalamus and thalamus for diencephalon).
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For NTT labels, we first identified valid region-NTT label pairs in
the reference on the basis of the provided NTT labels in the reference
neuroblast and neuron clusters and their most commonregions. Here,
the most commonregions were re-estimated in a hierarchical manner
to the finest resolution mentioned above. Next, when transferring
NTT labels, for each non-telencephalic neuron with the regional label
transferred, only NTT labels that were considered valid for the region
were considered during majority voting.

Stage-matching analysis

To match telencephalic NPCs and neurons in HNOCA to develop-
mental stages, we used the recently published human neocortical
development atlas®® as the reference. The processed single nucleus
RNA-seqdatawere obtained fromits data portal (https://cell.ucsf.edu/
snMultiome/). Given the ‘class’, ‘subclass’ and ‘type’ labels in the pro-
vided metadata as annotations, and ‘individual’ as the batch label,
scPoli was applied for label-aware data integration. Next, data rep-
resenting different developmental stages were split. For each stage,
Louvain clustering based on the scPoli latent representation (resolu-
tion, 5) was applied. Clusters of all stages were pooled, and highly
variable genes were identified on the basis of coefficient of variations
as described in this page: https://pklab.med.harvard.edu/scw2014/
subpop_tutorial.html. Finally, every one of HNOCA telencephalic
NPCs and neurons were correlated to each cluster across the identi-
fied highly variable genes. The stage label of the best-correlated cluster
was assigned to the query HNOCA cell.

To extend the analysis to other neuronal cell types, the second-
trimester multiple-region human brain atlas® was alsointroduced. The
processed count matrices and metadata were obtained from the NeMO
data portal (https://data.nemoarchive.org/biccn/grant/u0l_devhu/
kriegstein/transcriptome/scell/10x_v2/human/processed/counts/).
Giventhe ‘cell_type’label of the provided metadata as the annotation
and ‘individual’ as the batch label, scPoli was run for label-aware data
integration. Louvain clustering was applied to the scPoli latent rep-
resentation to identify clusters (resolution, 20). Similarly, Louvain
clustering witharesolution of 20 was also applied to the first-trimester
multiple-region human brain atlas” on the basis of the scANVI latent
representation we generated earlier. Average expression profiles
were calculated for all the clusters, and highly variable genes were
identified using the same procedure as above for clusters of the two
primary atlases combined. Next, every NPC and neuron in HNOCA
was correlated to the average expression profiles of those clusters.
The best-correlated first- and second-trimester clusters, as well as
the correlations, were identified. The differences between the two
correlations were used as the metrics to indicate the stage-matching
preferences of NPCs and neurons in HNOCA.

Presence scores and max presence scores of cellsin the primary
developing brain atlas

Given areference dataset and a query dataset, the presence score
is ascore assigned to each cell in the reference, which describes the
frequency or likelihood of the cell type or state of that reference cell
appearingin the query data. In this study, we calculated the presence
scores of primary atlas cells in each HNOCA dataset to quantify how
frequently we saw a cell type or state represented by each primary cell
in each of the HNOCA datasets.

Specifically, foreach HNOCA dataset, we first subset the wkNN graph
to only HNOCA cells in that dataset. Next, the raw weighted degree
was calculated for each cellin the primary atlas, as the sum of weights
of the remaining edges linked to the cell. A random-walk-with-restart
procedure was then applied to smooth the raw scores across the kNN
graph of the primary atlas. In brief, we first represented the primary
atlaskNNgraph asits adjacency matrix (4), followed by row normaliza-
tion to convert it into a transition probability matrix (P). With the raw
scores represented asavectors,, ineachiteration ¢, we generateds, as

se=asy+ (1-a)P's,_;

This procedure was performed100 times to get the smooth presence
scores that were subsequently log transformed. Scores lower than the
5th percentile or higher than the 95th percentile were trimmed. The
trimmed scores were normalized into the range of [0,1] as the final
presence scores in the HNOCA dataset.

Given the final presence scores in each of the HNOCA datasets, the
max presence scores in the whole HNOCA data were then easily cal-
culated as the maximum of all the presence scores for each cell in the
primary atlas. A large (close to one) max presence score indicates a
high frequency of appearance for the cell type or state in at least one
HNOCA dataset whereas a small (close to zero) max presence score
suggests under-representation in all the HNOCA datasets.

Cell type composition comparison among morphogen usage
using scCODA

To test the cell type compositional changes on admission of certain
morphogens from different organoid differentiation protocols, we
used the pertpy®’ implementation of the scCODA algorithm®. scCODA
is aBayesianmodel for detecting compositional changes in scRNA-seq
data. For this, we have extracted the information about the added mor-
phogens from each differentiation protocol and grouped them into
15 broad molecule groups on the basis of their role in neural differen-
tiation (Supplementary Table 1). These molecule groups were used
as a covariate in the model. The region labels transferred from the
primary atlas were used as labels in the analysis (cell_type_identifier).
For cell types without regional identity, the cell type labels presented
inFig. 1c were used. Pluripotent stem cells and neuroepithelium cells
wereremoved from the analysis because they are mainly presentin the
early organoid stages. We used bio_sample as the sample_identifier.
Weran scCODA sequentially with default parameters, using No-U-turn
sampling (run_nuts function) and selecting each cell type once as a
reference. We used a majority vote-based system to find the cell types
that were credibly changing in more than half of the iterations.

Cell type composition comparison among morphogen usage
using regularized linear regression

To complement the composition analysis conducted with scCODA, we
devised an alternative approach to test for differential composition
using regularized linear regression. We fit a generalized linear model
with the region composition matrix as the response Yand molecule
usage asindependent variables X:

Y-XB

The modelwas fit with lasso regularization (alpha =1) using Gaussian
noise and anidentity link function. The regularization parameter lambda
was automatically determined through cross-validation asimplemented
inthe function cv.glmnet() from the glmnet®R package. Allnon-zero coef-
ficients S were considered as indications of enrichment and depletion.

DE analysis between HNOCA neural cell types and their primary
counterparts and functional enrichment analysis

Tostudy the transcriptomic differences between organoid and primary
cells, we subset HNOCA using the final level 1annotation to cells labelled
‘Neuron’. We furthermore subset the human developing brain atlas to
cellsthathadbeenassigned avalid labelin the neuron_ntt_label annota-
tion column. We added an extra two datasets of fetal cortical cells from
ref. 39 and ref. 28. For the data from ref. 39, we subset the data to cells
labelled ‘fetal’ and estimated transcripts per million reads for each gene
in each cell using RSEM® given the STAR®* mapping results. We then
computed a PCA, akNN graph, UMAP and Leiden clustering (resolu-
tion 0.2) using scanpy. We then selected the cluster with the highest
STMN2 and NEURODG6 expression as the cortical neuron cluster and
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used only those cells. For the data from ref. 28 we subset the datasets
to cells annotated as ‘Neuronal’ in Supplementary Table 5 (‘Cortex
annotations’) of their publication and computed a PCA, neighbourhood
graph and UMAP to visualize the dataset. We found that only samples
fromtheindividuals CS14_3,CS20, CS22 and CS20 contained detectable
expression of STMN2 and NEUROD6 so we subset the dataset further
to only cells from those individuals.

To compute DE between HNOCA cells and their primary counterparts,
we first aggregated cells of the same regional neural cell type into pseu-
dobulk samples by summing the counts for every sample (annotation
columns, ‘batch’ for HNOCA; ‘SamplelD’ for the human developing
brain atlas; ‘sample’ for ref. 39 and ‘individual’ for ref. 28) using the
Python implementation of decoupler® (v.1.4.0) while discarding any
samples with fewer thanten cells or1,000 total counts. We then subset-
ted the feature spaceto theintersection of features of all datasets and
removed any cells with fewer than 200 genes expressed. We further
removed any genes expressed inless than1% of neuronsinHNOCA and
any genes located onthe X and Y chromosomes. Out of the remaining
11,636 genes, on average, 99% were reported in each of the constituent
HNOCA datasets. For each regional neural cell type, we removed any
sample from the pseudobulk datathat was associated with an organoid
differentiation assay with fewer than two total samples or fewer than
100 total cells. We next used edgeR*® to iteratively compute DE genes
between each organoid differentiation protocol and primary cells of the
matching regional neural cell types for every regional neural cell type
while correcting for organoid age in days, number of cells per pseudob-
ulk sample, medianand standard deviation of the number of detected
genes per pseudobulk sample. We used the data fromref. 27 (the human
developingbrain atlas mentioned above), ref. 28 and ref. 39 as primary
datafor the DE comparisoninthe cell type ‘Dorsal Telencephalic Neuron
NT-VGLUT’, whereas for all other cell types we used the human develop-
ingbrainatlas asthe fetal dataset. We used the edgeR genewise negative
binomial generalized linear model with quasi-likelihood F-tests. We
deemed a gene significantly DE if its false-discovery rate (Benjamini—
Hochberg) corrected Pvalue was smaller than 0.05and it had an abso-
lute log,-fold change above 0.5. We used the GSEApy”” Python package
to carry out functional enrichment analysis in our DE results using the
‘GO_Biological_Process_2021’ gene set.

Toevaluate the effect of different primary datasets on the DE results,
we computed the DE between Dorsal Telencephalic Neuron NT-VGLUT
from the HNOCA subset generated with the protocol fromref. 6 and the
matching cell type from the Braun et al.” primary dataset as well as the
datafromref. 28. To prevent technology effects to affect this analysis,
we only used cells generated with the 10X Genomics 3’ v.2 protocol
in this comparison. We generate pseudobulk samples as described
above and corrected organoid age in days and number of cells per pseu-
dobulk sample in the DE comparison. We used the same edgeR-based
procedure and cut-offs as described above. We used the scipy fcluster
method to cluster genes on the basis of their log-fold changes in the
two primary datasets. We grouped clusters to represent consistently
upregulated, consistently downregulated and three different inconsist-
ently regulated groups of genes. We computed functional enrichment
of each gene group as described above.

To evaluate the effect of different organoid datasets on the protocol-
based DE analysis, we computed DE between Dorsal Telencephalic
Neuron NT-VGLUT of every organoid publication (further split by pro-
tocol, where more than one protocol was usedinapublication) and the
matching cell typeinthe dataset fromref. 27. We computed pseudobulk
samples and carried out the DE analysis using the same procedure and
cut-offsasin the protocol-based DE analysis.

Transcriptomic similarity between HNOCA neural cell types and
their primary counterparts in the human developing brain atlas

To estimate the transcriptomic similarity between neuronsin HNOCA
and the human developing brain atlas?, we first summarized the

average expression of each neural cell typeinthe primary reference, as
wellasineachdataset of HNOCA. For each HNOCA dataset, only neural
celltypes with atleast 20 cells were considered. Highly variable genes
were identified across the neural cell types in the primary reference
using a Chi-squared test-based variance ratio test on the generalized
linear model with Gammadistribution (identity link), given coefficient
ofvariance of transcript counts across neural cell types as the response
andthereciprocal of average transcript count across neural cell types
astheindependent variable. Genes with Benjamini-Hochberg adjusted
Pvalueslessthan 0.01were considered as highly variable genes. Similar-
ity between one neural cell typeinthe primary atlas and its counterpart
ineach HNOCA dataset was then calculated as the Spearman correlation
coefficient across the identified highly variable genes.

To estimate the similarity of the core transcriptomicidentity, which
is defined by the coexpression of transcription factors, the highly vari-
able genes were subset to only transcription factorsfor calculating
Spearman correlations. The list of transcription factors was retrieved
from the AnimalTFDB v.4.0 database®.

To identify metabolically stressed cells in the datasets, we used the
scanpy score_genes function with default parameters to score the
‘canonical glycolysis’ gene set obtained from the enrichR GO _Biologi-
cal_Process 2021 database across all neuronal cells from HNOCA and
refs.27,28,39.

To estimate the significance of the difference between the correla-
tion of glycolysis scores and whole transcriptomic similarities, and
the correlation of glycolysis scores and core transcriptomic identity
similarities, we generated 100 subsets of highly variable genes, each
with the same size as the highly variable transcription factor. Tran-
scriptomic similarities were calculated on the basis of those subsets,
and then correlated with the glycolysis scores.

Heterogeneity of the telencephalic trajectories

To characterize heterogeneity of telencephalic NPCs and neurons in
HNOCA, we first transferred the cell type labels (as indicated as the
‘type’label in the given metadata) from the human neocortical devel-
opment atlas to the HNOCA telencephalic NPCs, intermediate pro-
genitor cells and neurons, on the basis of transcriptomic correlation.
In brief, each primary atlas cluster we obtained as mentioned above
was assigned to a cell type as the most abundant cell type among cells
inthe cluster. The label of the best-correlated primary cluster was then
transferred to every query cell. Given the transferred label, together
withthelevel 2 cell type annotation shownin Fig.1c, as the annotation
label, scPoli was applied to the telencephalic subset of HNOCA for
dataintegration.

Tobenchmark how well differentintegration strategies recover the
neuronsubcelltype heterogeneity, we generated four different cluster-
inglabels: (1) Louvain clustering (resolution, 2) with the original scPoli
latent representation; (2) Louvain clustering (resolution, 2) with the
updated scPoli representation; (3) Louvain clustering (resolution, 2)
with PCA of HNOCA telencephalic subset (based on scaled expres-
sion of 3,000 highly variable genes of the telencephalic subset with
flavor =‘seurat’) and (4) Louvain clustering (resolution, 1) for each
sample separately (each with 3,000 highly variable genes identified
with flavor = ‘seurat’, followed by data scale and PCA). Next, for each
sample with at least 500 dorsal telencephalic neurons, the adjusted
mutual information scores were calculated between each of those
four clustering labels with the transferred cell type label mentioned
above as the gold standard, across the dorsal telencephalic neurons
asannotated as the level 2 annotation.

To create acomprehensive primary atlas of dorsal telencephalic neu-
rons for DE analysis between neural organoids and primary tissues, we
subset dorsal telencephalic neurons or neocortical neurons from four
different primary atlases?>°. For ref. 28, cellsin five author-defined clus-
ters (60,57,79,45, 65) with high expression of MAP2, DCX and NEUROD6
were selected. Forref. 29, cells with the following ‘clusterv2 - final’ labels



were selected: ‘Neuron_28’, ‘Neuron_34’, ‘GW19_2 29NeuronNeuron’,
‘Neuron_30’, ‘Neuron_66Neuron’, ‘GWI18 2 42NeuronNeuron’, ‘Neu-
ron_33’, ‘Neuron_39Neuron’, ‘Neuron_35’, ‘Neuron_63Neuron’, ‘Neu-
ron_9’, ‘Neuron_11’, ‘Neuron_20’, ‘Neuron_22’, ‘Neuron_5Neuron’,
‘Neuron_21’, ‘Neuron_18’, ‘Neuron_101Neuron’, ‘Neuron_17’, ‘Neu-
ron_19’, ‘Neuron_16’, ‘Neuron_50Neuron’, ‘Neuron_12’, ‘Neuron_13,
‘Neuron_68Neuron’, ‘Neuron_100Neuron’, ‘Neuron_25’, ‘Neu-
ron_27’,‘Neuron_53Neuron’, ‘Neuron_23’, ‘Neuron_26’, ‘Neuron_24’,
‘Neuron_102Neuron’, ‘Neuron_72Neuron’, ‘Neuron_15’, ‘Neuron_29’
and ‘Neuron_35Neuron’ on the basis of their high expression of NEU-
RODG6 and FOXGI.Forref.27, cells dissected from dorsal telencephalon
that were annotated as neurons with and only with the VGLUT NTT
label were selected. For ref. 30, cells annotated as excitatory neurons
were selected. The curated clusters of the Wang et al. primary atlas,
asdescribed earlier, were also subset to those with excitatory neuron
labels. The selected dorsal telencephalic neuron subsets of the atlases
were merged into the joint neocortical neuron atlas.

Next, cellsinthejoint neocortical neuronatlas were correlated with
the average expression profile of each excitatory neuron cluster of the
Wang et al. atlas®. The cluster label of the best-correlated cluster was
assigned to each cellinthe joined neocortical neuron atlas, so that cell
cluster labels were harmonized for all cells in the atlas. Label-aware
dataintegration was then performed using scPoli*’. On the basis of
the scPoli latent representation, Louvain clustering was performed
onthejoint neocortical neuron atlas (resolution, 1). This cluster label
was transferred to the dorsal telencephalic neurons in HNOCA with
max-correlation manner across highly variable genes defined on aver-
age transcriptomic profiles of clustersin the joint neocortical neuron
atlas.

Reference mapping of the neural organoid morphogenscreen
scRNA-seq data to the human developing brain atlasand HNOCA
We used scArches to map scRNA-seq data from the neural organoid mor-
phogenscreentoboththe scANVImodel of thehuman developing brain
atlas® and the scPoli model of the HNOCA. In both cases, the ‘dataset’
field of the screen datawas used as the batch covariate, whichindicates
belonging to one of the three categories: ‘organoid screen’, ‘secondary
organoid screen’ or ‘fetal striatum 21pcw’. For mappingto the primary
reference, we used the scvi-tools implementation of scArches without
the use of cell type annotations and trained the model for 500 epochs
withweight_decay of 0 and otherwise default parameters. For mapping
to HNOCA we used scArches through scPoliand trained the model for
500 epochs without unlabelled prototype training.

Retrieval and harmonization of disease-modelling human
neural organoid scRNA-seq datasets

We included 11 scRNA-seq datasets of neural organoids, which were
designed to model 10 different neural diseases including microceph-
aly*®, amyotrophic lateral sclerosis*?, Alzheimer’s disease”, autism*,
FXS%, schizophrenia®, neuronal heterotopia®®®, Pitt—-Hopkins syn-
drome®?, myotonic dystrophy®*and glioblastoma®. Count matrices and
metadatawere directly downloaded for the ten datasets with processed
data provided in the Gene Expression Omnibus or ArrayExpress. For
the dataset with only FASTQ files available®, we downloaded the FASTQ
files and used Cell Ranger (v.4.0) to map reads to the human refer-
ence genome and transcriptome retrieved from Cell Ranger website
(GRCh38v.3.0.0) for gene expression quantification. All datasets were
concatenated together withanndatain Python (join = ‘inner’). For each
dataset, samples were grouped into either ‘disease’ or ‘control’ as their
disease status, with ‘disease’ representing datafrom patient cell lines,
mutant cell lines with disease-related alleles, cells carrying target-
ing guide RNAs (gRNAs) in CRISPR-based screen and tumour-derived
organoids. and ‘control’ representing data from healthy cell lines,
mutation-corrected cell lines and cells carrying only non-targeting
gRNAs in a CRISPR-based screen.

Projection and label transfer-based annotation of the disease-
modelling dataset

To compare the disease-modelling atlas with the integrated HNOCA, we
used scArches® to project it to the HNOCA as well as the first-trimester
primary human brain scRNA-seq atlas?. For projecting to the primary
atlas, the same implementation as mentioned above to map HNOCA
to the atlas was used. For projecting to HNOCA, the query model
was based on the scPoli model pretrained with the HNOCA data, and
fineturned with abatch size 0f16,384 for amaximum of 30 epochs with
20 pretraining epochs. A nearest neighbour graph was created for the
disease-modelling atlas on the basis of the projected latent representa-
tion to HNOCA with scanpy (default parameters), with which a UMAP
embedding was created with scanpy (default parameters).

Next, for both HNOCA and the disease-modelling atlas, cells were
represented by the concatenated representation of HNOCA-scPoli
and primary-scANVImodels. A bipartite wkNN graph was then recon-
structed as mentioned above, by identifying 50 nearest neighbours
in HNOCA for each disease-modelling atlas cell. On the basis of the
bipartite wkNN, the majority voting-based label transfer was applied to
transfer the four levels of hierarchical cell type annotation and regional
identity to the disease-modelling atlas.

Reconstruction of matched HNOCA metacells
Foreachcellinthe disease-modelling atlas,amatched HNOCA metacell
was reconstructed on the basis of the above mentioned bipartite wkNN.
Inbrief, foraquery celliand agenejmeasured in HNOCA, its matched
metacell expression of j, denoted as ¢}, is calculated as:

, 2 ken, Wik

=
Zng,— Wik

Here, N, represents all HNOCA nearest neighbours of the query cell
¢, wy represents the edge weight between query cell i and reference
cell k, and e,; represents expression level of genejin reference cell k.

Given the matched HNOCA metacell transcriptomic profile, the
similarity between a query cell and its matched cell statein HNOCA is
then calculated as the Spearman correlation between the query cell
transcriptomic profile and its matched HNOCA metacell transcrip-
tomic profile.

Re-analysis of GBM-2019 and FXS-2021 datasets

Toanalyse the glioblastoma organoid dataset (GBM-2019), cells from
the publication were subset from the integrated disease-modelling
atlas. Using scanpy, highly variable genes were identified with default
parameters. The log-normalized expression values of the highly
variable genes were then scaled across cells, the truncated PCA was
performed with the top 20 principal components used for the fol-
lowing analysis. Next, harmonypy, the Python implementation of
harmony®®, was applied to integrate cells from different samples.
Onthe basis of the harmony-integrated embeddings, the neighbour
graph was reconstructed. UMAP embeddings and Louvain clusters
(resolution, 0.5) were created on the basis of the nearest neighbour
graph. Among the 12 identified clusters, cluster-7 and cluster-0, the
two clusters with the highest AQP4 expression, were selected for the
following DE analysis.

Toanalyse the FXS dataset (FXS-2021), cells from the publication were
subset from the integrated disease-modelling atlas. The same proce-
dure of highly variable gene identification, datascalingand PCA as the
GBM-2019 dataset was applied. Next, the nearest neighbour graph was
created directly on the basis of the top 20 principal components. UMAP
embeddings and Louvain clusters (resolution, 1) were then created on
the basis of the reconstructed nearest neighbour graph. Among the 30
clusters, cluster-17 and cluster-23, which express EMX1 and FOXGI and
were largely predicted to be dorsal telencephalic NPCs and neurons
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according to the transferred labels from HNOCA, were selected for
the following DE analysis.

F-test-based DE analysis for paired transcriptome

To compare expression levels of two groups of paired cells, the expres-
sion difference per gene of each cell pair is first calculated on the basis
ofthelog-normalized expression values. Next, for each geneto test for
DE, its variance over the calculated expression difference per cell pair
(0% is compared with the sum of squared of expression differences
(d;for gene i) normalized by the number of cell pairs:

St d,
sg= %

Here, an F-testis applied for the comparison, with f= ¢%/s%,,d.f.,.=n-1
andd.f,=n.

Construction of the HNOCA Community Edition by query-to-
reference mapping

To construct the HNOCA-CE, we first collected raw count matrices
and associated metadata of five more neural organoid studies. For
two publications™”, we obtained them from the sources listed in the
‘Data availability’ section of the paper. For the remaining three publi-
cations’>™, count matrices and associated metadata were provided
directly by the authors. We subset each dataset to the healthy control
cells and removed any cells with fewer than 200 genes expressed. We
subset the gene space of every dataset to the 3,000 HVGs of HNOCA
whilefilling the expression of missing genes in the community datasets
with zeros. Onaverage, 23% of genes with zero expression were added
per dataset. We instantiated amapping object from the HNOCA-tools
package (at commit fe38¢52) using the saved scPoli* model weights
from the HNOCA integration. Using the map_query method of the
mapper instance, we projected the community datasets to HNOCA. We
used the following training hyperparameters: retrain = ‘partial’, batch_
size = 256, unlabeled_prototype_training = False, n_epochs = 10, pre-
training_epochs =9, early_stopping_kwargs = early_stopping_kwargs,
eta=10, alpha_epoch_anneal =10. We computed the wkNN graph using
the compute_wknn method of the mapper instance with k=100. We
transferred the final level_2 cell type labels from HNOCA to the com-
munity datasets using this neighbour graph. To obtain the combined
representation of HNOCA-CE, we projected HNOCA together with the
added community datasets through the trained model and computed
aneighbour graphand UMAP from the resulting latent representation.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All curated individual HNOCA datasets are available for easy access
throughthesfairaPython tool’®. Theintegrated HNOCA datais available
atZenodo (https://doi.org/10.5281/zenodo0.11203684)'°° and the Cellx-
Gene Discover Census (https://cellxgene.cziscience.com/collections/
de379e5f-52d0-498¢-9801-0f850823¢c847). The extended HNOCA Com-
munity Edition Atlas is also available through the CellxGene Discover
Census (same URL as above). Both versions of HNOCA are available
for reference mapping through the ArchMap web interface (https://
www.archmap.bio/). The HNOCA-tools package provides a Python
interface for annotation, reference mapping and central downstream
analysis steps and is available at https://github.com/devsystemslab/
HNOCA-tools. More information on the available tools and adocumen-
tation of HNOCA-toolsis available at https://devsystemslab.github.io/
HNOCA-tools.Jupyter notebooks and scripts to reproduce the analysis
are available at https://github.com/theislab/neural_organoid_atlas.
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Extended DataFig.2|Characterization of HNOCA. (a) Expression of selected
marker genes used in the semi-automatic annotation of cell types for Fig. 1.

(b) Mean cell type proportion over all datasets per organoid age bin.

(c) Distribution of sample real-time age in days over deciles of computed
pseudotime. (d) Expression of top markers in different non-telencephalic

neural celltypes. Markers are defined as genes with AUC > 0.7, in-out detection
rate difference>20%, in-out detection rate ratio>2 and fold change>1.2. When
more than 5 markers are found, only the top-5 (with the highest in-out detection
rateratio) are shown.
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Extended DataFig. 3 | Mapping-assisted annotation refinement of HNOCA.
(a-b) UMAP of HNOCA colored by the mapped (a) cell classes and (b) brain
regions, both from the human developing brain cell atlas as the primary
reference. (c) Comparison of the HNOCA cell type annotation with the primary
reference mapping-based transferred cell class and brainregion labels.
Darkness of cellsindicates proportions of each HNOCA cell type being
assigned to differentcell classand brainregion categories. Brainregion labels
areonly shown for the HNOCA neural cell types. (d) Comparison of the simple
majority-voting-based regional label transfer and the hierarchical regional
label transfer with random-walk-with-restart-based smoothening. Only cells
annotated asNPCs, IPsand neurons are included. () UMAP of non-telencephalic
neurons, colored by clusters (upper), mapped brain regions (middle) and mapped
neurotransmitter transporter (NTT) subtypes (bottom). (f) Comparison

of non-telencephalic neural cell types, defined as the concatenation of the
mapped brainregionand NTT subtype, with the clusters. The middle heatmap
shows contributions of different clusters to different neural cell types. The
sidebar ontheleft shows the neural cell types; dots under the heatmap show
clusters. The heatmaps on the bottom and on the right show the average

expression of three neurotransmitter transporters SLC17A6, SLC18A3 and
SLC32Alinclusters (bottom) and neural cell types (right). (g) Overview of the
HNOCA celltype composition for the first two levels of the cell annotation
(left-level-1, middle - level-2), and the refined regional annotation assisted

by mapping of non-telencephalic NPC and neurons to the primary reference
(right). (h) neural cell type compositions of different data sets (rows). Darkness
ofthe heatmap shows the proportions of different neural cell types per HNOCA
dataset.Sidebarsontheleft show organoid protocol types of different data
sets.Sidebars on the bottom show neural cell types. Bars on the right show
total neuron numbers across datasets. (i) Distribution of transcriptomic
similarity differences of NPCs and neuronsin HNOCA with the primary
neuronal populationsinthefirst trimester (represented by Braun et al.”’) and
thesecond trimester (represented by Bhaduri et al.?®). Cells are firstly grouped
by regionalidentities, followed by organoid ages (in months). Colors of boxes
indicate organoid ages. (j) Heatmap shows the enrichment of adult regional
identities (columns) for HNOCA NPCs and neurons with different estimated
regionalidentities (rows).



a b

Ventral midbrain -

(7]

no @ Dorsal telencephalon | W | s 4.0 Morphogen

morphogen +morphogens Ventral telencephalon - Q W BMP activator
fﬁ\ Hypothalamus - | | & 20 M BMP inhibitor

Thalamus b

Dorsal midbrain <

| < o0

Q

Q

3

2000 ..
vector

Cerebellum- [l | |

° Pons -
2 Medulla - | |
B Glioblast - | |
c Choroid plexus
o
2 Mesenchyme
S| e ° ° ° Astrocyte - |
S| e . . ° NC-D-
= ° ° ° . T _ 4 Microglia -
€3 oPC-
) 53 f12 R e
a L ON®S o =
2 59 g 3oLEs5%s
g >0 wwyPses B8
= To identify 25, € €€ €
§ . enrichment/ ssK aa Yo X%
= ° ° ° ° depletion gﬁ 0 = % & 2 8
] ° e @ SZ
o w
=
Morphogen

Extended DataFig. 4 |Relationship between morphogen usage and cell
type as well asregional composition. (a) Schematic of estimating cell type
enrichment with different morphogen usages. (b) This heat map indicatesin
how many of the 17 iterations scCODA was executed (using each of the 17
regional cellidentity as areference once) the respective morphogen was found
tolead to compositional changes withrespecttothereferenceregional cell
identity. Amorphogen effect was called significantin this consensus approach
ifithad asignificant effect on cell type composition withrespect tomore than

B MEK/ERK inhibitor

®
B

| | 1 M Notch inhibitor
RA
T
545 1 H HEHH ROCK inhibitor
2 1. :: H . IIRT M SHH agonist
@ 10fi 1 1 1 oYy M TGF-B activator
g it ] H g ! M TGF-B inhibitor
s 051! 1 | \ W WNT activator
=B | I il WNT inhibitor
® v ) . il n 1 .
N 00 ] T T
T |
. 305
T“‘ = Q
22 « BEBE ® © € £ E 0 © % 2 © O O
s 96852 2 s 8§ 5 53 8 2 E 3 a
oy 8588 s 8§82 382 8¢ °©°
F4 §°8 = = £ £ © s 5 2 7
= 8 £ £ EEQ o T
s e g F S5 &8 % 8 <
s &g s £ © 5 2
L 27 5 & s =
o 2 o

halfofthereference cell types. (c) Effect of different morphogens on regional
organoid compositionin HNOCA. Positive values correspond to a higher
abundance of cells from theindicated regional cell identity in cases where
therespective morphogen was used in the differentiation protocol. Top:
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Extended DataFig.5|Presencescores per HNOCA dataset. (a) Average
normalized presence scores of different HNOCA datasets (rows) in different cell

clustersinthe primary reference of the human developing brain atlas? (columns).

Sidebars on theleft show organoid differentiation protocol types of HNOCA
datasets. Sidebars underneathshow cell class and the commonest region
information of the cell clustersin the primary reference (HyTh - hypothalamus,

Depleted
(in all datasets)
MB - midbrain). (b) UMAP of the primary reference, colored by the max
presencescores across different HNOCA data subsets, split by organoid
protocol types. A high max presence score suggests enrichmentofthe
corresponding primary cell statein atleast one HNOCA data setamong the
datasetsbased onthespecific type of organoid protocols, withalow score
meaningunder-representation of the cell state inall datasetsinthe subset.
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Extended DataFig. 6 | Robustness of organoid-primary DEGs against
primary reference, and across organoid dataset. (a) Number of DEGs
between organoid Dorsal Telencephalic Neurons NT-VGLUT generated using
the Velasco etal.® protocol (10x3’v2 chemistry only) and primary fetal cortical

neurons from Braun et al.” (10x3’ v2 chemistry only) or Eze et al.®® respectively.

Ofthe 3829 shared DEGs, 3423 genes had an aligned direction of fold-change
while 406 genes had an opposite direction of fold-change. (b) Heatmap of
log2-transformed fold changes (log,FC) across all 9054 DEGs between Dorsal
Telencephalic Neurons NT-VGLUT from Velasco et al. and either primary fetal
cortical neurons from Braunetal. (10x3’v2 chemistry only) or Eze etal. The
dendrogramshows the hierarchical clustering of DEGs based on their log,FC
against the two primary data. (c) Number of DEGs between organoid Dorsal
Telencephalic Neurons NT-VGLUT generated using the Lancaster et al.>®
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protocol (10x3’v2 chemistry only) and primary fetal cortical neurons from
Braun etal.” (10x3’v2 chemistry only) or Eze et al.?® respectively. Of the 2815
shared DEGs, 2375 genes had analigned direction of fold-change while 440 genes
had anoppositedirection of fold-change. (d) Heatmap of log2-transformed
fold changes (log,FC) across all 9106 DEGs between dorsal telencephalic
neurons from Lancaster et al. and either primary fetal cortical neurons from
Braunetal. (10x3’v2 chemistry only) or Eze et al. Thedendrogram shows the
hierarchical clustering of DEGs based on their log,FC against the two primary
data. (e) Heatmap showing the mean log-fold change per gene across organoid
publications for Dorsal Telencephalic Neurons NT-VGLUT compared to the
expressionin the matching cell type from the Braun etal.” primary atlas. Shown
areallgenesthatare significantly differentially expressed compared to primary
cellsinthe datafromatleastone publication.
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Extended DataFig.7 | Transcriptomicfidelity of neurons and cell stress.

(a) Hallmark glycolysis scores of different neural cell types in primary

(left, Braun etal.”’) and aselected organoid data set (right, Kanton et al.?).

(b) Spearman correlation between average gene expression profiles of neural cell
typesin HNOCA and those in the primary reference of human developing brain
atlas?, across either all the variable genes (left, S,) or variable transcriptional
factors (TFs) (right, S;). The average gene expression profile per neural cell type
was calculated with all cells (S,) or cells with low glycolysis scores (glycolysis
score<0.6,S,). (c) Correlation between different average metabolicscores
(up-hallmarkglycolysis score, middle - canonical glycolysis score, low - electron
transportscore) and transcriptomic similarities (Spearman correlation) to
primary counterparts. Eachdotrepresents one neural celltype generated by
oneprotocol. The correlationis calculated based on either all variable genes
(left, Sy or variable TFs (right, S,). (d) The correlation between hallmark and

0 0204 0608 1 0 02 0406 08 1
Similarity to primary S1
(Al highly variable genes, S1)

canonical glycolysis scores and transcriptomic similarities to primary is
significantly weaker when only TFs are takeninto consideration, while electron
transportscores show no correlation with transcriptomic similarities. The
boxes show the distributions of correlation when arandom subset of variable
genes, withthesame number as the variable TFs, are used. The red dots show
thecorrelationusing variable TFs. (e) Core transcriptomic fidelity of organoid
neurons (S,, shownin Fig. 3) which only considers TFs, is higher than the global
transcriptomic fidelity (S,) which considers all the highly variable genes. Core
transcriptomic fidelity and global transcriptomic fidelity are highly correlated
(left, x-axis - S,, y-axis- S,, each dot represents one neural celltypeinone
HNOCA dataset), while core transcriptomic fidelity is significantly higher
(right, x-axis: S, y-axis:S,-S,, dots are colored by density estimated with
Gaussian kernel). P-value shows the Wilcoxon test significance.
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Extended DataFig. 8| Heterogeneity of telencephalic NPCs and neurons
anditsincorporation to differential expression analysis between dorsal
telencephalicneuronsin HNOCA and primary developing human brains.
(a) Overview of mapping the telencephalic NPCs and neurons in HNOCA to the
human neocortical developmental atlas® for cell type annotations. (b) UMAP
of cells from the HNOCA telencephalic trajectories, colored by the transferred
celltypes from the human neocortical developmental atlas (upper) and the
HNOCA annotation. (c) UMAP of HNOCA telencephalic cells colored by
expression levels of selected cell type markers. (d) Distributions of adjusted
mutualinformation across dorsal telencephalic neuronsin different HNOCA
samples, betweenthe transferred cell typelabels and cluster labels generated
with four different representations: 1) the original scPoli (scPoli-1), 2) the
re-computed telencephalon-only scPolibased on giventhe transferred labels;
3)unintegrated PCA of the merged data; 4) PCA and clustering sample-wise.
(e) Thejoint atlas of human neocortical development, colored by datasets,
developmental stages, clusters, and whether thereis any counterpartin
HNOCA dorsal telencephalic neurons. (f) Distribution of the hallmark
glycolysisscoresin HNOCA and the primary atlas. (g) Volcano plots show the

DEGs (with covariates)

F-test-based DE analysis results, with (left) and without (right) the glycolysis
scores and matched cluster labels as covariates. The identified DEGs are
colored by red (increased expressionin HNOCA) or blue (decreased expression
inHNOCA). (i) Changes of functional term enrichment by DAVID for DEGs based
onthe analysis with or without covariates. The top panel shows enrichments
for the up-regulated DEGs (UDEG) in organoids, and the lower panel shows
enrichments for the down-regulated DEGs (dDEG). Each dot indicates one
functional termwith raw P-value < 0.05 for both DEG sets. Red dots indicate
functional terms gaining enrichment with DEGs with covariates (with-covariate
adjusted P, < 0.1, and without-covariate adjusted P,,,>P,,,). Blue dots indicate
functional terms losing enrichment with DEGs without covariates (P,.>0.1and
P,, <1x107°). (j) Heatmap shows normalized coefficient (estimated logFC
normalized by the overalllogFC magnitude) of each DEG per dataset.
Dendrograms show hierarchical clustering of DEGs and data sets. Rows
represent datasets.Side barsontheleftare colored based onthe types of
protocols, individual protocols, and publications corresponding to the data
sets. Columnsrepresent DEGs.
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(d) Heatmap showing min-max scaled average presence scores of each condition
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by coexpressionscores of clusters with gained coveragein the screen dataset.



Publication
W NH-2022 Il PTHS-2022
W GBM-2019 ALS-2021
M FXs-2021 [ AD-2023
M NH-2019 MC-2020
W ASD-2023 b
Il DM1-2022 Status
W 522022 ; Control
’t @ Disease
\
e _— f
Microglia{ - D B B s o o . . .
Cl- o o 0 « - - - @ ‘ o - Medulla
MC{ ¢ o O © o 0o s + O =+ o o Q Pons
NC Derivati\g; e O O o . o . e o o O s o Cerebellum
. O O o o . ° 5 « O o = .
opPcd{ - O O o 0o o O , p . Ventral midbrain
Astrocyte { - QO o o O 8 o o . Dorsal midbrain
Glioblast{ - O o O o o LR Thalamus
Neuron{ « & o QO o « =+ o s o
P{ - o o e . .0 e 5 Hypothalamus
N i ’;‘,PC . § 8 O o 0o o o O e o . Ventral telencephalon
leuroepithelium{ o © © © o o O s o e o
PSCl 0 6 6 o o 0 o - 6 + o o0 o Dorsal telencephalon
P N N NS
& FEEEL RS
& FIFEFFFTCF &S S
Avg. Expression Percent Expressed
0 1 2 3 4 5 6 -0 025@50@75 00
h .
g Sample [GBM-2019] \ Projected ceLcIass
) © 8036, 2wk PSC oPC
® 8036_8wk NE CP
© 8036_Tumor NPC = "
® 8165C_2wk LY ~ M Microglia
© 8165C_24wk Neuron NC-D
8165C_Tumor Glioblast g mc
8165PV_2wk M Astrocyte
8165PV_24wk . @ Used for DE
8165PV_Tumor | GFAP ' AQP4 ] Others
© 8167_2wk
® 8167 24wk . . ’
® 8167_Tumor QI F N
w e & -

Extended DataFig.10|Disease-modeling neural organoid scRNA-seq
atlas and data projection based extension of HNOCA. (a-c) UMAP of

the unintegrated disease-modeling neural organoid atlas, colored by

(a) publications, (b) disease status, (c) transferred level-2 annotation from
HNOCA, and (d) transferred regional identities from HNOCA. (e) Dot plot shows
expression of selected cell type markersin cells with different transferred cell
classlabels (level-1) from HNOCA. (f) Dot plot shows expression of selected
regional markersinthe predicted NPCs and neuronsin the disease-modeling
atlas with different transferred regional identities from HNOCA. Inboth (e) and
(f), sizes of dots represent percentages of cells expressing the gene, and colors

Annotation (Level-2) Region
NE Glioblast @ Dorsal telencephalon
dTel NPC M Astrocyte @ Ventral telencephalon
Hypothalamus
W dTel 1P Worc Thalamus
M dTel neuron CP Dorsal midbrain
vTel NPC M Microglia ® Ventral midbrain
[ vTel neuron NC-D : gerebellum
ons
non-TelNPC M EC @ Medulla
I non-Tel neuron M MC
o Sample embedding
o @ O o o o o 0 © O e
° ® 0 - 0 o + o O o
° @ © ° 0 o o O o =
. o o » o o o . ° °
< @ © 0 @ 0 O o o
@ @ o @ @ 0 O o ¢
° O ©@ 0 0 O 0 + o =
° © + « o« + 0 + o e
[ ] 0 + o o . .«
5 N DO 6 9 0 &P HNOCA
2] O Y A R
¥ &+Qi§ \)5\‘ \)5“ S Q\Oﬂ‘\b.‘. Extended datasets

@ Wangetal. @ Bertuccietal.

@ Caporale etal. Dony et al.

@ Lopez-Tobon et al.
Giandomenico et al.

Percent Expressed
-0 @20 @40 @60 @80

k 1

Projected annotation
Sample [FXS-2021]

=

® CTRL3 dTel NPC vTel NPC
BFXS3 2 W dTel P [ vTel neuron
. g¥§|[; M dTel neuron - non-Tel NPC
Xt [ non-Tel neuron
® FXS2
FOXG1 EMX1 NEUROD6 4

Max 2 A LY

. E_l 253 N .

) - @ Used for DE
0 Others

of dotsrepresent the average expression levels. (g-j) UMAP of the glioblastoma
GBM-2019 dataset, colored by (g) samples, (h) predicted cell class labels (level-1)
fromthe HNOCA projection, (i) expression of astrocyte markers GFAP and
AQP4, and (j) the AQP4+ population selected for DE analysis with HNOCA.

(k-n) UMAP of the fragile X syndrome FXS-2021 data set, colored by (k) samples,
() predicted cell type annotation (level-2) from the HNOCA projection,

(m) expression of dorsal telencephalic cell markers FOXG1, EMX1and NEUROD6,
(n) the dorsal telencephalic NPC and neuron subset for DE analysis with HNOCA.
(0) PCA of the scPoli sample embeddings of samplesin HNOCA and five additional
datasets projected to HNOCA.



Zhisong He

nature portfolio e

Corresponding author(s): Barbara Treutlein

Last updated by author(s): Aug 23, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

5
Q
9
[
=
o)
§o;
o)
=
o
=
D
§o;
o)
=
>
Q@
wv
c
=
3
[e)
<

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection The data collection procedure is described in the Methods section of the manuscript.

Data analysis The data analysis is described in the Methods section of the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All curated individual HNOCA data sets are available for easy access via the sfaira python tool80. The integrated HNOCA data is available on Zenodo (https://
doi.org/10.5281/zenodo.11203684) and the CellxGene Discover Census (https://cellxgene.cziscience.com/collections/de379e5f-52d0-498¢c-9801-0f850823c847).
The extended HNOCA Community Edition Atlas is also available via the CellxGene Discover Census (same URL as above). Both versions of HNOCA are available for
reference mapping via the ArchMap web interface (https://www.archmap.bio/).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We collected all the representative scRNA-seq data sets of different neural organoid protocols that are accessible for HNOCA. Similarly, we
collected all the representative scRNA-seq data sets of neural organoid disease models that are accessible for the disease atlas.

Data exclusions Quality control was applied to exclude cells with low quality. Detailed methods are described in the Methods section
Replication The two unpublished scRNA-seq data sets both include measurements of multiple individuals

Randomization Experiments were not randomized

Blinding There is no blinding design of the study

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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