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Predictive learning shapes the
representational geometry of the
human brain

Antonino Greco 1,2,3 , Julia Moser 4,5, Hubert Preissl 4,6,7,8,9 &
Markus Siegel 1,2,3,6

Predictive coding theories propose that the brain constantly updates internal
models to minimize prediction errors and optimize sensory processing.
However, the neural mechanisms that link prediction error encoding and
optimization of sensory representations remain unclear. Here, we provide
evidence how predictive learning shapes the representational geometry of the
human brain. We recorded magnetoencephalography (MEG) in humans lis-
tening to acoustic sequences with different levels of regularity. We found that
the brain aligns its representational geometry tomatch the statistical structure
of the sensory inputs, by clustering temporally contiguous and predictable
stimuli. Crucially, the magnitude of this representational shift correlates with
the synergistic encoding of prediction errors in a network of high-level and
sensory areas. Our findings suggest that, in response to the statistical regula-
rities of the environment, large-scale neural interactions engaged in predictive
processingmodulate the representational content of sensory areas to enhance
sensory processing.

Living organismsmust adapt to ever-changing complex environments.
To accomplish this, it is advantageous to anticipate environmental
changes that posit threats or opportunities to survival. For this reason,
the brain is able to detect and extract statistical regularities in sensory
inputs, an ability that has been referred to as statistical learning and
which humans are especially capable of 1–3.

Predictive coding theory provides a framework to explain how
regularities are extracted from sensory inputs and how they are used
to optimally predict future outcomes4–6. This framework generally
assumes that the brain possesses a generative internal model of the
environment (latent variables that cause the sensory observations),
and updates the model by computing the prediction error between its
probabilistic predictions and the sensory data7–11. These predictive

mechanisms are thought to give rise to increased neural activity fol-
lowing an unexpected sensory input12,13 or decreased neural responses
when input is expected14,15.

In the auditory domain, the oddball paradigm has been widely
adopted to probe the ability of the brain to track statistical
regularities16. A rare deviant tone presented within a sequence of
regular tones elicits an event-related response, the so called mismatch
negativity (MMN)17. Under the predictive coding framework, this
response is interpreted as a neural signature of the prediction error
between the expectation of the generative model (regular tone) and
the sensory data (deviant tone)18,19. Furthermore, recent studies on
auditory statistical learning that usedmore complex patterns of sound
sequences showed that cortical responses do not only reflect
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violations of sensory predictions at a local tone level but also on the
global sequence level20–25.

In sum, a large body of evidence has provided insights into
cortical signals compatible with the encoding of prediction errors.
In contrast, little is known about how such signals are used to
update the brains internal generative model. Studies on percep-
tual learning suggest the plasticity of sensory representations,
even in low-level sensory regions, to optimise sensory
processing26–28. Furthermore, studies on statistical learning show
that the similarity of neuronal representations of sensory stimuli,
i.e. of neural activity patterns that are specific for distinct stimuli29,
reflects the learned statistical dependencies between these
stimuli30–32. This suggests that statistical learning may shape the
geometry, i.e. mutual similarities, of neural representations to
match the geometry, i.e. mutual statistical dependencies, of sen-
sory inputs. However, the neural mechanisms underlying this
learning remain unclear. If prediction error signals are used to
update neuronal representations, these two phenomena should be
linked, i.e. the neuronal encoding of prediction errors should be
correlated with the updating of neuronal representations. How-
ever, so far evidence to support this fundamental link between
prediction errors and the updating of neural representations is
missing. Here, we sought to establish this link.

We performed magnetoencephalography (MEG) recordings
in human participants passively listening to acoustic tone triplet
sequences with low or high regularity. Representational similarity
analysis33 revealed that, over the course of the experiment, the
brain aligned its representational geometry to match the statis-
tical structure of the sequences. We defined predictive learning as
the process of minimising prediction errors about future sensory
observations and employed computational modelling to derive
neural signals encoding prediction error trajectories34–36. We
found that the strength of prediction error encoding indeed
predicted the magnitude of the alignment of sensory repre-
sentations. Furthermore, based on Partial Information
Decomposition37, we found that brain regions that showed
representational alignment also engaged in a synergistic encod-
ing of prediction errors. Our findings suggest that in the human
brain, large-scale neural interactions engaged in predictive pro-
cessing modulate the sensory representational geometry in
response to the statistical regularities of the environment.

Results
We recorded MEG in 24 human participants who passively listened to
two sequences of 12 acoustic tones38. Each tone had a duration of
300ms followed by a 33ms silent gap. For the sequence construction,
tones were grouped into triplets (1 s triplet duration) where the tones
in a triplet never spanned more than one octave. Both sequences
consisted of a total of 800 triplets. One sequence, which we are
referring to as the high regularity (HR) condition, consisted of only
four different types of triplets, while in the other sequence, which we
are referring to as the low regularity (LR) condition, the order of tones
inside a triplet was changing throughout the sequence (Fig. 1a). The
different regularities of the two sequences are reflected in their dis-
tinct transition matrices between consecutive tones (Fig. 1a right).

A previous behavioural analysis of the dataset showed that par-
ticipants learned the statistical regularities of the tone sequences38.
After listening to both stimulus sequences, participants rated triplets
from the high regularity sequence as significantly more familiar than
partial or random triplets. Thus, participants showed significant sta-
tistical learning through passive stimulus exposure.

Representational geometry aligns with sensory input statistics
To investigate this learning effect at the neural level, we source-
reconstructed neural activity throughout the brain from theMEG data
using the Desikan-Killiany parcellation scheme39 and beamforming40.
As expected, both tone sequences evoked neural responses that
peaked about 60ms after each tone onset in bilateral auditory cortices
(Fig. 1b) and at about 110ms in the left temporal cortex (Supplemen-
tary Fig. S1). Thus, source reconstruction yielded robust cortical
responses. We next applied multivariate decoding and representa-
tional similarity analysis (RSA)33 on the source-level brain activity to
investigate the neural representation of different tones and to test if
this representation changed during learning (Fig. 2). We quantified the
distance between neural population responses to different tones using
the cross-validated Mahalanobis distance (cvMD)41,42 (Fig. 2a). This
yielded representational dissimilarity matrices (RDMs) that quantified
the distance of neural representations for all pairs of tones. Impor-
tantly, we performed this analysis temporally resolved relative to each
tone presentation and separately in five consecutive blocks of trials
throughout each sequence. This allowed us to resolve the temporal
dynamics of neuronal tone representation on a fast timescale in
response to each tone and on a slow timescale throughout learning. As
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Fig. 1 | I Experimental design and auditory cortical responses. Subjects passively
listened to two sequences of 12 acoustic tones. a left: exemplary sections of low and
high regularity sequences arranged by their frequency. Grey lines indicate triplets.
Right: transition matrices of subsequent tones for both sequences. b top: cortical

distribution of evoked activity 50–70ms post onset of each of the three tones in a
triplet. Bottom: source-reconstructed evoked activity in bilateral temporal cortices
(bottom right inset) across triplets in the low and high regularity condition. Shaded
areas indicate the standard error of the mean (SEM).
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a first step, we averaged all RDMs across tone pairs and blocks. We
found that tones were well decodable for both sequences, with peak
decoding performance around 100ms post tone onset (Fig. 2b,
p <0.0001 cluster-corrected; peak Cohen’s d = 1.46).

We next ordered RDM entries such that values near and off the
diagonal represented representational distances of tones within and
between triplets in the HR sequence, respectively. Then, we separately
quantified neural distances of tones within (Fig. 2c left) and between
triplets (Fig. 2c middle) across time and blocks. To quantify the
representational dynamics during learning, we computed the linear
slope of the average representational distance within and between
triplets across sequence blocks (Fig. 2c bottom). We predicted that if
learning matched the representational geometry of neural repre-
sentations to the statistical regularity of sequences, then distances of
tones within triplets should decrease across blocksmore than of tones
between triplets, and this effect should be specific for the high reg-
ularity condition. Indeed, this is what we found.

For the high regularity condition, around 120ms post tone onset,
representational distances within triplets decreased across blocks
(negative slope), and this decrease was significantly stronger for the
high as compared to low regularity condition (Fig. 2c left; p =0.008
cluster-corrected; d =0.79). There was also a trend for representa-
tional distances to decrease between triplets, but there was no sig-
nificant difference in slopes between conditions (Fig. 2c right; p >0.05

cluster-corrected). To directly test our prediction, we then performed
a model-based RSA and fitted a theoretical RDM in which the within-
triplet distances were lower than between-triplet distances (Fig. 2c). As
predicted, around 120ms the model-fit increased across blocks in the
high regularity condition, and this increase was significantly stronger
than in the low regularity condition (p =0.038 cluster-cor-
rected, d =0.84).

Which brain regions showed this updating of sensory repre-
sentations? To address this question, we repeated the analysis in a
searchlight fashion across the cortical surface for the time interval
from 110ms to 120ms post-tone onset (Fig. 2d). We found that the
decrease of representational distances across blocks within and
between triples was strongest in dorsolateral prefrontal and tem-
poral regions (Fig. 2d). Also, the model-based RSA showed that the
increase of the model fit across blocks, i.e. the relative decrease of
representational distances within triplets, in the high regularity
condition peaked in bilateral dorsolateral prefrontal cortices and in
left temporal cortex (Fig. 2d). In sum, these findings showed that the
brain changed its sensory representations to adaptively match the
statistical structure of the sensory inputs. Specifically, in the context
of predictable tone triplets, the brain updated the tones’ repre-
sentations in a way that made them more similar between tones
belonging to the same triplet as compared to tones belonging to
different triplets.
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Fig. 2 | I Representational similarity analysis (RSA) reveals a representational
shift for the high regularity sequence. a Analysis pipeline. Representational dis-
similarity matrices (RDMs) were computed based on the cross-validated Mahala-
nobis Distance (cvMD) between all pairs of tones and ordered according to the
triplet structure in the high regularity sequence. RDMs were computed for 5 con-
secutive blocks of trials. b Time course of the average RDM for tones in both
sequences. Shaded areas indicate SEM, and horizontal lines indicate statistical
significance (p <0.05), which was determined by cluster-based paired two-tailed

permutation tests. c Top: on- and off-diagonal cvMD and model-based RSA
(Spearman correlation) plotted as a function of time and blocks. Bottom: Regres-
sion slopes of cvMD values and RSA coefficients across blocks. Shaded areas indi-
cate SEM, and horizontal lines indicate statistical significance (p <0.05), which was
determined by cluster-based paired two-tailed permutation tests. d Searchlight
RSA for on- and off-diagonal cvMD values and model-based estimates across the
brain in the 110–120ms timewindow. Significancewasdeterminedby cluster-based
paired two-tailed permutation tests.
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Large-scale encoding of prediction error
After establishing how statistical learning updated sensory repre-
sentations,we next focussed on the neural encoding of errors between
sensory inputs and input predictions6,34. We adopted a computational
modelling approach to examine how the brain encoded the prediction
error. We used an ideal observer model (Fig. 3a), a perceptron neural
network resembling the Rescorla-Wagnermodel for categorical data34,
that predicted the next tone given the previous one. Inspired by
Bayesianmodels of predictive coding, the model employed a dynamic
learning rate that changed as a function of the ideal observer’s
uncertainty43. After fitting the model to each stimulus sequence, the
weight matrix captured the actual transition matrix of each sequence
(Fig. 3b, compare Fig. 1c). Also, thepredictionerror and accuracyof the
fitted models reflected the statistics of the two sequences with lower
prediction error and higher accuracy for the more predictable high
regularity condition (Fig. 3b).

We then extracted the prediction error trajectories of the model
for each condition (Fig. 3b) and tested if prediction errors were
encoded by the neural activity using Gaussian Copula Mutual Infor-
mation (GCMI)44 (Fig. 3a). We found that the prediction errors were
indeed significantly encoded, peaking around 100ms post tone

onset for both high and low regularity sequences (Fig. 3c) (HR:
0–50ms, p < 0.0001 cluster-corrected, d = 0.78; LR: first cluster
0–40ms, p = 0.007 cluster-corrected, d = 0.94, second cluster
50–260ms, p < 0.0001 cluster-corrected, d = 1.72). There was no
significant difference in the prediction error encoding between the
sequences (p > 0.05 cluster-corrected). Again, we repeated the ana-
lysis in a searchlight fashion across the cortical surface to investigate
the cortical distribution. Prediction errors were encoded broadly
across frontoparietal and temporal areas, with the right temporal
cortex showing maximum neural prediction error signals in both
sequences (Fig. 3c bottom).

Error encoding correlates with representational shift
The above results unravel both, a neural signature of how the brain
adapted its sensory representations to the predictability of inputs and
how the brain encoded prediction errors. This allowed us to test our
key hypothesis, i.e. that, during learning, stronger encoding of pre-
diction errors is associated with stronger representational shifts. We
focused our analysis on those two clusters of brain regions that
showed a significantly stronger representational shift for the high as
compared to low regularity sequence: left temporal cortex and

Fig. 3 | I Computational modelling of prediction error trajectories using an
ideal observermodel. a analysis framework for fitting prediction error trajectories
from the model to each parcel of the brain. Left: For each time point relative to a
tone presentation, the brain data is structured as a matrix with parcels and tones.
Right: prediction error trajectory extracted from the ideal observer model. Centre:
illustration of Gaussian CopulaMutual Information (GCMI).b Left: prediction error
trajectories extracted from the model for both sequences. Middle: prediction
accuracies of the model. Right: weight matrices of the ideal observer model after
training on the full sequences. c top: Time-course of prediction error encoding
(GCMI) for both sequences. Shaded areas indicate SEM, and horizontal lines

indicate statistical significance (p <0.05). Significance was determined by cluster-
based paired two-tailed permutation tests. Bottom: cortical distribution of pre-
diction error encoding in 4 time windows. d correlation analysis between the
representational shift and the prediction error encoding for the brain regions
indicated on the top. Dots represent individual participants. Shaded areas indicate
95% confidence intervals. The dotted lines indicate non-significant regression fits.
Solid lines indicate significant regression fits. Significance (p <0.05) was deter-
mined using the Pearson correlation coefficient and Bonferroni correction. Source
data are provided as a Source Data file.
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bilateral frontal cortices. Indeed, we found a significant positive cor-
relation (Fig. 3d) between the magnitude of the prediction error and
the representational shift in the left temporal cortex across subjects
(r =0.47, p =0.021 Bonferroni-corrected). Frontal cortices showed no
significant effect (r =0.22, p =0.287 Bonferroni-corrected). In sum, in
accordancewithour central hypothesis, we found that the stronger the
prediction error signal was encoded in the left temporal cortex, the
stronger the updating of the representational geometry in this brain
region.

The prediction error trajectory from the ideal observer model
followed an exponential decay (Fig. 3b, exponential/linear BIC =
-4685.2/-4105.1). Thus, we investigated whether the representational
dynamics during the high-regular sequence were also better
explained by an exponential model as compared to a linear model.
However, we found no statistically significant evidence supporting
the exponential over the linear model, neither on the whole brain
level (exponential/linear BIC = − 30.86/-29.99, p = 0.165, d = 0.28) nor
in the left temporal (exponential/linear BIC = − 26.40/− 26.57,
p = 0.622, d = 0.09) and frontal clusters (exponential/linear BIC =
− 27.08/− 27.43, p = 0.464, d = 0.14).

Synergistic large-scale encoding of prediction error
Finally, we aimed to extend our analysis framework beyond the tra-
ditional view of the brain as a collection of modular regions45,46. Thus,
we asked if prediction error signals resulted from distributed proces-
sing across a network of brain regions rather than independent pro-
cessing within each of these regions. We employed Partial Information
Decomposition37 to decompose the joint mutual information of pairs
of brain regions about error signals 90–120ms post tone onset into
redundant and synergistic components47,48 (Fig. 4a). This allowed us to
investigate if networks of brain regions processed the prediction error
either in a similar, but independent way (redundancy) or in a com-
plementary, distributed fashion (synergy)49.

We found that for both, high and low regularity conditions and
across all pair-wise brain regions, the neural interactions encoding the
prediction error were substantially synergistic, and this synergy was
even significantly higher than the redundancy component (low reg-
ularity: p = 0.035, d = 0.44; high regularity: p =0.038, d =0.43). There
was no significant difference in redundancy (p =0.549) or synergy
(p = 0.502) between low and high regularity conditions. To pinpoint
which cortical interactions involved redundant and synergistic
encoding, we contrasted these information components between the
intervalwith the strongest prediction error encoding (90–120mspost-
tone onset) and the pre-tone baseline (− 50 to 0ms) using network-
based statistics (NBS)50. For both information components and reg-
ularity conditions, we found a large-scale network of interactions,
involving mostly frontal, parietal, and temporal areas (Fig. 4c, views
with connections) (all p <0.05 component-corrected). Also, between-
ness centrality, ameasure of node importance, revealed frontoparietal
and temporal cortices as hubs (Fig. 4c, views with shaded regions, all
p <0.05 cluster-corrected), with no significant difference between
regularity conditions (interactions: all p >0.05 component-corrected;
betweenness centrality: all p > 0.05 cluster-corrected). In sum, we
found that the encoding of prediction errors involved not only
redundant but also synergistic interactions across a frontoparietal and
temporal network.

Synergistic error encoding correlateswith representational shift
Do these synergistic interactions predict the representational shift
during statistical learning? To address this, we repeated the same
correlation analysis on the selected clusters that we performed on the
‘independent’ prediction error encoding and representational shift,
but this time using the betweenness centrality of prediction error
encoding synergy and redundancy (Fig. 4d, e). Indeed, we found that
the centrality of the synergy of the left temporal cortex significantly

correlated with the representational shift across participants (Fig. 4d,
r =0.47, p =0.022 Bonferroni-corrected), while in bilateral frontal
cortices, this was not the case (r =0.03, p =0.902 Bonferroni-cor-
rected). For redundancy (Fig. 4e), neither the left temporal cortex
(r =0.33, p = 0.113 Bonferroni-corrected) nor bilateral frontal cortices
(r =0.17, p =0.434 Bonferroni-corrected) showed a significant corre-
lation. In sum, we found that the temporal cortex synergistically
encoded prediction errors with a large-scale network of brain regions
and that this synergistic encoding predicted the updating of sensory
representations during learning.

Discussion
Our results provide insights into how prediction error signals shape
the representational geometry of the human brain. Specifically, our
findings show a representational shift across time, through which
sensory representations of contiguous and predictable tones became
more similar. This effect is commonly referred to as chunking51. Our
results accord well with a large number of studies that provided
indirect evidence for chunking22,38,52–57 as well as few previous studies
that directly reported neural representations to be chunked according
to the predictive structure of a sensory sequence30,32. Our result
extends these findings based on a temporally resolved RSA33, which
allowed us to track the representational dynamics throughout learn-
ing. In linewith previouswork20,30,32, our results revealed changes in the
representational geometry consistent with chunking in both sensory
and high-level brain regions. This suggests distinct computational
systems across the cortical hierarchy tracking sensory statistics in
parallel, possibly coordinatedbyhippocampal activity32,58. Notably, the
temporally resolved RSA also allowed us to track the representational
dynamics on a fast timescale for each tone presentation. This revealed
an early latency of the chunking effect around 120ms post-tone-onset,
which temporally overlaps with the peak pitch representation. This
suggests that once representational changes are established, they do
not require further top-down modulation59.

Similar to the neural processing sequences shown here, also the
dynamics of deep neural networks display a chunking effect during
training when gradient-based methods guide them in classification
tasks60,61. Initially random in high-dimensional space, the hidden layers’
representations become organised to distinguish class instances
effectively through learning. This process mirrors the brain’s proces-
sing strategy and suggests shared computational principles between
natural and artificial systems62–64. Moreover, both systems might
cluster similar sensory data to optimise energy use, adhering to
environmental and computational limits, thus minimising extraneous
exploration of the sensory state space in favour of more streamlined
information processing65–68.

Our results also shed light on the neural mechanisms underlying
the cortical encoding of prediction errors. We exposed an ideal
observer model34,35,43,69 to the same sequences heard by human parti-
cipants to extract theoretical precision-weighted prediction error tra-
jectories. This computational approach allowed us to study prediction
error encoding beyond the traditional comparison of standard and
deviant stimuli in trial-based oddball paradigms12,13,17,52 in a continuous,
and thus more naturalistic, sequence paradigm70. Prediction error
encoding peaked around 100ms after each tone was delivered. As for
the temporal dynamics of the representational shift, this relatively
early latency in comparison to evidence reported on the mismatch
negativity12,17 could be ascribed to the specific experimental paradigm
involving a continuous stimulus presentation. Also, the latency of the
prediction error encoding temporally overlappedwith pitch encoding.
This accords well with recent evidence for the encoding of pitch and
pitch expectations at similar latencies and different cortical sites in the
human auditory cortex71.

We found that error signals were encoded in a large-scale network
involving temporal and frontoparietal cortices. Thus, in line with

Article https://doi.org/10.1038/s41467-024-54032-4

Nature Communications |         (2024) 15:9670 5

www.nature.com/naturecommunications


previous evidence, error signals were encoded at both sensory and
high-level processing stages35,72–74. Importantly,we foundnodifference
in prediction error encoding between low and high regularity condi-
tions, suggesting that these brain areas encode the error signal in a
context-independent manner, regardless of the volatility of environ-
mental statistics75,76.

The large-scale network of prediction error encoding led us to
investigate how neural interactions between brain regions77–79 con-
tribute to error encoding. There is increasing evidence suggesting that

cognitive and sensory processing in the brain is carried out in a dis-
tributed fashion rather than being localised78,80–82 or, in other words,
that thewhole is greater than the sumof its parts48. To address this, we
leveraged Partial Information Decomposition (PID)37, which allows us
to decompose the information dynamics between brain regions into
synergistic and redundant interactions49. Here, redundancy implies
that two brain regions encode the prediction error in the same way,
indicating a common encoding mechanism37,49,83. In contrast, synergy
reflects the tendency of the two brain regions to complementarily

Fig. 4 | I Partial Information Decomposition (PID) of the joint mutual infor-
mation between pairs of brain areas encoding prediction errors. a analysis
framework for computing PID from the pairwise joint mutual information (centre),
where the predictors (X 1 and X2) are the brain signal across trials at the time
window where the prediction error was mostly encoded (90–120ms, left), and the
predicted variable is the prediction error trajectory (Y , right). b average redun-
dancy and synergy of prediction error encoding across all pairs of brain areas. Dots
represent participants, and asterisks indicate statistical significance (p <0.05).
Significancewasdeterminedbypaired two-tailed t tests. cRedundancy and synergy
t-statistics against the pre-tone baseline. Top views show significant cortical
interactions. The bottom views show the betweenness centrality of each brain
region. Transparency indicates statistical significance (p <0.05 corrected), which
was determined by component-based paired two-tailed permutation tests using

network-based statistics (NBS).d correlation analysis between the representational
shift and betweenness centrality of the synergy component for the brain regions
indicated on the top. Dots represent individual participants. Shaded areas indicate
95% confidence intervals. The dotted lines indicate non-significant regression fits.
Solid lines indicate significant regression fits. Significance (p <0.05) was deter-
mined using the Pearson correlation coefficient and Bonferroni correction. Source
data are provided as a Source Data file. e correlation analysis between the repre-
sentational shift and betweenness centrality of the redundancy component. Dots
represent individual participants. Shaded areas indicate 95% confidence intervals.
The dotted lines indicate non-significant regression fits. Solid lines indicate sig-
nificant regression fits. Significance (p <0.05) was determined using the Pearson
correlation coefficient and Bonferroni correction. Source data are provided as a
Source Data file.
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encode the error signal, indicating a distributed encoding
mechanism37,48,49. We found that, on average, the neural interactions
encoding prediction errors were synergistic rather than redundant,
suggesting a distributed rather than a shared encoding
mechanism37,48,49. These findings provide evidence for synergistic
interactions underlying the encoding of prediction errors in the
human brain. These results add to a growing body of evidence that
challenges the traditional view of the brain as a collection of modular
areas45,46 and suggests that predictive cortical processing is distributed
rather than localised48,78,80–82. Furthermore, our results suggest that the
dominance of synergistic encoding in the human brain is independent
of contextual regularity. This is consistent with recent evidence from
the marmoset brain suggesting that predictive processing is char-
acterised by synergistic dynamics47.

When we inspected neural interactions both at the network level
and among the cortical hubs accounting for most of the information
dynamics, we found that fronto-parietal and temporal regions were
strongly interrelated by both redundant and synergistic interactions.
Some of the strongest synergistic interactions involved the left and
right auditory cortices, indicating that the two hemispheres can inte-
grate information in a complementary fashion. Such pairwise interac-
tions could be mediated by higher-order interactions involving other
brain regions84,85. Importantly, the cortical distribution of synergistic
encoding strongly overlapped with the results of modular searchlight
analysis, comprising frontoparietal and temporal regions. Further-
more, the same areas that showed the correlation between error
computation and representational shift were also cortical hubs of the
synergistic interactions broadcasting the error signal throughout the
cortex. This further supports the idea that prediction error encoding
results from a network computation rather than local processing45,86,87.

These findings posit possible challenges for the hypothesised
hierarchical nature of predictive processing in some theories of pre-
dictive coding6,21,23,74,88. For example, in the Rao and Ballardmodel6, the
prediction error is computed independently at each hierarchical level.
However, our results show that each brain region encodes only partial
prediction error information with synergistic encoding across a large-
scale network. Rather than isolated processes, this suggests feedback
and recurrent processing of prediction error information within a
network of brain regions47. Thus, our results support theories of pre-
dictive processing that do not necessarily require the hierarchical
processing postulated by traditional predictive coding theories of
perception89,90.

Besides constraining the architectural aspects of predictive pro-
cessing, our results provide critical evidence for the core hypothesis of
the predictive coding framework, i.e. that the brain employs a gen-
erativemodel of the world and uses prediction errors to updatemodel
representations4–6. Our results provide direct evidence linking these
two fundamental information processing primitives, prediction error
encoding and representational change. We found that the brain areas
that manifested a strong representational shift, at the same time, were
synergistic hubs of prediction error encoding, corresponding to sen-
sory areas such as the left auditory cortex. This may reflect a particular
sensitivity of sensory areas to themodulation of their representational
content91,92. At the same time, these areas could be an important target
for top-down signals required for comparing sensory expectations and
observations.

We found no conclusive evidence for non-linear representational
dynamics that were aligned with the non-linear learning dynamics of
our ideal observer model. On the one hand, this may merely reflect a
lack of sensitivity. On the other hand, there could be fundamental
differences between prediction error signalling and the resulting
dynamics of representational updating. Alternatively, the chosen ideal
observer model, which is the simplest model of predictive learning to
accommodate our experimental paradigm, may not capture the indi-
vidual learning dynamics. In any case, our results demonstrate the

correlation between a linear trend of the representational shift and the
strength of prediction error encoding. Future investigations may tar-
get the detailed shape of learning dynamics on the behavioural and
neural levels.

In conclusion, our findings provide evidence that large-scale
neural interactions engaged in predictive processing modulate the
representational content of sensory areas, which may enhance the
efficiency of perceptual processing in response to the statistical reg-
ularities of the environment.

Methods
Participants
Participants were 24 healthy volunteers (12 male) between 20 and 37
years old (mean age 27.54 years, SD = 9.96). All participants provided
informed consent, were right-handed and had normal hearing abilities.
The experiment was realised in accordance with the Helsinki
Declaration and the local ethics committee of the Medical Faculty of
the University of Tübingen approved the study (No. 231/2018BO1).
Data were previously published in Moser et al.38.

Stimuli
Stimuli consisted of 12 pure sinusoidal tones between 261.63 and
932.33Hz (Fig. 1a). The 12 tones coincided with themusical notes C, D,
E, F#, G# and A# from the 4th and 5th octave of a standard piano
(261.63, 293.66, 329.63, 369.99, 415.3, 466.16, 523.25, 587.33, 659.26,
739.99, 830.61, and 932.33Hz). These tones served to create two
sequences with different regularities. Both sequences consisted of
2400 tones (Fig. 1b, lasting 300ms and presented every 333ms)
clustered into triplets (lasting 1 s) composed of three tones that never
spannedmore thanone octave38. Each of the 12 tones appeared exactly
200 times in each of the two sequences. In each sequence, neither the
same tone nor the same triplet of tones could repeat consecutively. In
the high regularity sequence (Fig. 1c), there were only four types of
triplets repeating over the course of the sequence. The order of tones
inside a triplet was counterbalanced across participants, yielding three
different combinations of the high regularity sequence. In the low
regularity sequence (Fig. 1c), each triplet changed constantly
throughout the sequence, albeit maintaining the octave constraint.

Procedure
After completing a short hearing assessment with a screening audio-
meter (Hortmann Neuro-Otometrie Selector 20 K) to confirm normal
hearing, participants were seated in a height-adjustable chair inside a
magnetically shielded room and were told to fixate on a cross during
the course of the experiment. Auditory stimulation was presented
through earplugs at an intensity of 70 dB. Participants were instructed
topassively listen to the soundswith noparticular task to perform.The
order of conditions was not counterbalanced, as the high regularity
sequence always followed the low regularity sequence after a short
break, for all participants38.

MEG data acquisition and pre-processing
MEG data were recorded using a 275-sensor, whole-head CTF MEG
system (VSM Medtech, Port Coquitlam, Canada) installed in a mag-
netically shielded room (Vakuumschmelze, Hanau, Germany). The
sampling rate MEG signal was 585.94Hz. We first applied a fourth-
order Butterworth band-pass filter (0.5–40Hz) on the continuous data
and then segmented the data from 0 to 330ms relative to each sti-
mulus onset correcting for a 32ms sound onset delay relative to the
recorded trigger signal38. Next, we resampled the data to 200Hz and
rejected noisy channels using a semi-automatic procedure, involving
visual inspection and a cutoff threshold of root mean square (RMS) >
0.5 pT. We applied Independent Component Analysis (ICA)93 to
decompose the signal and discard eye movement, and muscular and
cardiac artifacts, using FastICA94 with the number of independent
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components reduced to 50. The estimated independent components
were visually inspected and rejected based on their topological, tem-
poral and spectral characteristics whenever they showed an artifactual
profile95.

Source reconstruction
After pre-processing, MEG sensors were aligned to the brain template
“fsaverage”96, from which we generated a single shell head model to
compute the physical forward model97 using FieldTrip98. Source
coordinates, headmodel and MEG channels were co-registered on the
basis of the nasion, left and right preauricular points. We used sensor-
levelMEGdata, aggregated fromboth conditions, to estimate the filter
weights of a Linearly Constrained Minimum Variance (LCMV)
beamformer40, with the regularisation parameter set to 5%. This spatial
filtering approach reconstructs source activity with unit gain while, at
the same time, maximising the suppression of contributions from
other neural sources40. We fixed the orientation of the dipoles using
singular value decomposition (SVD) to pick the direction that max-
imised the power99. Then, we used the filter weights to project single-
trial MEG sensor data to the source space, correcting for the sign-flip
due to the SVD applied for selecting the optimal orientation that
maximises output power. The source space was finally parcelled into
72 different brain areas using the Desikan-Killany parcellation
scheme39.

Representational Similarity Analysis
We first analysed source-reconstructed MEG using a Representational
Similarity Analysis (RSA) approach.We split the trials (each tone) into 5
non-overlapping blocks over the course of each sequence and com-
puted the representational dissimilaritymatrices (RDMs) at each block
separately (Fig. 2a). We used the cross-validatedMahalanobis distance
(cvMD)41,42 as a dissimilarity metric with a 10-fold cross-validation
scheme, due to its renowned statistical properties especially suited for
RSA with neuroimaging data41,100. We applied the Ledoit-Wolf
method101 to compute the asymptotically optimal shrinkage para-
meter to regularise the covariance matrix from the training set. We
ordered the RDMs entries in both sequences to have the diagonal
representing the distance between tones belonging to each triplet in
the high regularity sequence (Fig. 2a). The rows of the RDMs corre-
sponded to the first, second and third tone in each triplet, ordered
from thefirst to the fourth triplet (e.g., the fourth rowwas thefirst tone
of the second triplet, which couldhave been either toneD4,G#4 orC5).
RDMs were computed either in a time-resolved fashion102, using all
brain parcels as features for each time point, or in a searchlight
manner103, using as a feature each brain parcel alongside its 5 spatial
nearest neighbours for a certain time window (averaging across the
time dimension). Then, we averaged the values on the diagonal to
investigate how, through learning, the tones within a triplet distanced
between each other, as well as off the diagonal, to study the same
effect between tones that did not belong to the same triplet. To
summarise this pattern, we adopted a model-based RSA104 by design-
ing an RDM which had zeros on the on-diagonal entries and ones on
the off-diagonals. We fitted this model-based RDM to each brain-
derived RDM using Spearman correlation. Finally, we computed the
slope of the on-diagonal, off-diagonal and model-based estimates
across the blocks using the ordinary least square estimator with a
counting vector increasing from 1 to 5 as a regressor.

Ideal observer model
Wefittedprediction error trajectories extracted froman ideal observer
model to the source-reconstructed MEG data. The employed ideal
observer model can be conceived as a perceptron neural network
(Fig. 3a), receiving as input one tone at a time and attempting to pre-
dict the next one.We represented the stimuli categorically as a one-hot
encoded vector of the same length as the number of different tones

used in the acoustic sequences xt 2 R1 ×n, where n is equal to 12 and t
indexes the tones in a sequence. Therefore, the input layer had the
same dimensionality as the output layer. The trainable model para-
meters were encoded in a weightmatrixWt 2 Rn ×n, which connected
the input and output layers. The weight matrix was initialised as a
uniform prior over the categorical distribution of the tones, with all
values having n�1 as entries. Given each tone, the model predicted the
next one according to the following equation:

zt = xt �Wt ð1Þ

ŷit = e
zit
Xn

i= 1
ez

i
t

� ��1 ð2Þ

where ŷt represents the prediction of the model for the next tone. We
defined the loss function L as the maximum likelihood or cross-
entropy function:

L xt + 1, ŷt
� �

=
Xn
i= 1

xi
t + 1 log ŷit

� �
ð3Þ

Themodelwas trainedbypassing all the tones fromone sequence
at a time, and after each observation, we computed the partial deri-
vative of the loss function with respect to Wt :

∂L
∂Wt

= xTt � ŷt � xt + 1

� � ð4Þ

This gradient, combined with a dynamic learning rate parameter,
gave rise to our measure of prediction error:

ω=
Xn
i= 1

ŷit log ŷit
� �

ð5Þ

PEt =ω
∂L
∂Wt

ð6Þ

Here, the learning rate ω is not fixed as in classical reinforcement
learningmodels34 but depends on the uncertainty of themodel since it
is the Shannon entropy of the predictive distribution. This precision-
weighted prediction error can account for learning phenomena better
than classical models with fixed learning rate43,105. Finally, we updated
the parameters Wt using the gradient descent algorithm:

Wt + 1 =Wt � PEt ð7Þ

This model can also be viewed as a categorical and dynamic ver-
sion of the Rescorla-Wagner model34. We extracted the trajectory of
the prediction errors separately for each sequence and fitted it to each
parcel of the brain, for each participant. To fit the prediction error
trajectories, we adopted the Gaussian Copula Mutual Information
(GCMI) method (Fig. 3a), a robust multivariate statistical framework
that combines the statistical theory of copulas with the analytical
solution for the Shannon entropy computation ofGaussian variables44.
We first transformed each variable (brain data and prediction error
trajectories) into a Gaussian variable using the inverse normal trans-
formation. For each variable under consideration, the transformed
value was obtained as the inverse standard normal cumulative dis-
tribution function (CDF) evaluated at the empirical CDF value of that
variable44. After this procedure, the mutual information is computed
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parametrically for Gaussian variables as follows:

MI X ;Yð Þ= 1
2 ln 2

ln
ΣX

�� �� ΣY

�� ��
ΣXY

�� ��
" #

ð8Þ

where ΣX and ΣY are the covariance matrices of X and Y , respectively
and ΣXY is the covariance matrix for the joint variable (X , Y ). In our
study, we considered Y always as the (univariate) prediction error
trajectory and X as the multivariate brain data. The inverse normal
transformation for the brain data was applied to each feature uni-
variately. GCMI values were computed either in a time-resolved
fashion102, using all brain parcels as variables for each timepoint, or in a
searchlight manner103, using as X each brain parcel alongside its
5 spatial nearest neighbours for a certain time window (averaging
across the timedimension). Finally, we baseline-corrected these values
by subtracting the GCMI values computed before the onset of the
stimulus xt in the timewindow from − 50ms to 0ms, to avoid possible
confounds givenby the autocorrelation function of the twosequences.

Partial Information Decomposition
Weanalysed theMEGdata using an information-theoretic approach, to
investigate how brain areas interact when jointly encoding the pre-
diction error signal. We employed Partial Information Decomposition
(PID)37 to decompose the joint mutual information (JMI), which is the
information that two variables X 1 and X2 give about a third target
variable Y , in terms of different kinds of informational atoms:

JMI X 1,X2; Y
� �

=R +UX 1
+UX2

+ S ð9Þ

information provided by one variable but not the other (denoted as
unique information UX 1

or UX2
), information provided by both vari-

ables separately (redundant information R), or jointly by their combi-
nation (synergistic information, S). In this study, we considered Y
always as the prediction error trajectory and X 1 and X2 as pairs of brain
parcels for each time point in a certain time window. Thus, following
the intuition of the PID framework37, we computed the redundancy
measure as the minimum intersection in the information (Imin) pro-
vided by both X 1 and X2 about Y as follows:

R = Imin X 1,X2;Y
� �

=
X
yϵY

minxi

X2

i= 1
p xi, y
� �

log
p xi, y
� �

p xi

� �
p yð Þ

 ! !
ð10Þ

Finally, all the remaining terms can be computed using linear
algebra as follows:

U1 =MI X 1;Y
� �� Imin X 1,X2;Y

� � ð11Þ

U2 =MI X2; Y
� �� Imin X 1,X2;Y

� � ð12Þ

S= JMI X 1,X2; Y
� � � U1 � U2 � Imin X 1,X2;Y

� � ð13Þ

All these quantities were computed by first normalising the vari-
ables using the sameprocedure as above for the GCMI (i.e., the inverse
normal transformation). This allowed us to compute a closed form of
the quantities following a parametric Gaussian model44,106. We com-
puted PID components for all combinations of two brain parcels and
extracted only the redundancy and synergy terms, separately for each
sequence. This procedure yielded two adjacency matrices of 72 × 72
representing the pairwise neural interactions encoding the prediction
error, one for the redundant and the other for the synergistic inter-
actions. Again, we baseline-corrected these values by subtracting the
redundancy and synergy computed in the baseline. Then, we averaged
thematrices as ameasure of the global efficiency of the redundant and
synergistic network, thus yielding one value per participant and

sequence. Finally, we also computed the betweenness centrality
measure as a measure of node importance by marginalising the
redundancy and synergy values across the interaction dimension.

Statistical analysis
All statistical analyses were carried out at the group level (random
effects) using mass univariate cluster-based paired two-tailed permu-
tation tests based on t-statistics107 with a significance thresholdα set to
0.05, 10 000 iterations,maxsumas cluster statistic and the topological
neighbourhood structure defined by the proximity of the brain par-
cels. For the grand average redundancy and synergy, we carried out
paired two-tailed t tests, while for the statistical comparison of adja-
cency matrices, we used network-based statistics (NBS)50 with a sig-
nificance threshold α set to 0.05, 10 000 iterations, and the size of the
connected component as component statistic. For the correlation
analyses, we computed the right-tail Pearson’s correlation coefficient
for each selected brain cluster between the representational shift
effect and the encoding prediction error effect (GCMI, redundancy
and synergy centrality) across participants and correcting the multi-
plicity by using the Bonferroni correction. The brain clusters were
selected using the first step of the cluster-based permutation test used
above, i.e. by selecting the contiguous brain parcels that surpassed the
alpha threshold set above (0.05). For the model fitting of the repre-
sentational dynamics, we used an exponential model of the form
y=ae�bx + c, with a, b and c as free parameters. The linear model had
the intercept and slope as free parameters. Both models were fitted
using the non-linear least square method with no bounds on the
parameter space and resampling 100 times the starting points. We
computed the Bayesian Information Criterion (BIC) for model com-
parison at the subject level and tested the winningmodel with a paired
two-tailed t test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided in this paper. RawMEG data to reproduce all
the results in our study are openly available at Zenodo via the following
link: https://doi.org/10.5281/zenodo.3961467. Source data are pro-
vided with this paper.

Code availability
Data analysis was carried out in MATLAB version 2022a. We used the
open-source library Fieldtrip (version 20220827) available at https://
github.com/fieldtrip/fieldtrip forMEG analysis.We also used the GCMI
library (version 1.0) for information-theoretic analyses openly available
at https://github.com/robince/gcmi.
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