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Abstract

Ptychography is a computational imaging technique that aims to recon-
struct the object of interest from a set of diffraction patterns. Each
of these is obtained by a localized illumination of the object, which
is shifted after each illumination to cover its whole domain. As in
the resulting measurements the phase information is lost, ptychography
gives rise to solving a phase retrieval problem. In this work, we con-
sider ptychographic measurements corrupted with background noise, a
type of additive noise that is independent of the shift, i.e., it is the
same for all diffraction patterns. Two algorithms are provided, for arbi-
trary objects and for so-called phase objects that do not absorb the
light but only scatter it. For the second type, a uniqueness of recon-
struction is established for almost every object. Our approach is based
on the Wigner Distribution Deconvolution, which lifts the object to a
higher-dimensional matrix space where the recovery can be reformu-
lated as a linear problem. Background noise only affects a few equations
of the linear system that are therefore discarded. The lost information
is then restored using redundancy in the higher-dimensional space.

Keywords: phase retrieval, ptychography, background noise, Wigner
Distribution Deconvolution, uniqueness of reconstruction.
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1 Introduction

Ptychography [1] is an imaging technique that allows recovery of an object from
a collection of diffraction patterns. In a ptychographic experiment, a beam of
light is concentrated on a small part of the object of interest. As light passes
through the object, it encodes information about the object. Then, a detec-
tor placed in the far field captures the intensity of the incoming light wave.
Subsequently, the object is shifted and the experiment with the localized illu-
mination is performed again for the next region. The two adjacent illuminated
areas of the object are required to overlap, effecting that multiple measure-
ments contain information on the same part of the object. That means there is
redundancy in the data, which ensures that the object can be recovered from
the obtained measurements. Finally, the described procedure is repeated until
the whole object is covered.

Ptychography is applied, e.g., in X-ray microscopy [2] as well as in elec-
tron microscopy [3], to obtain high resolution images at nanometer scale of
biological specimen [4] or other nanoscale materials [5].

The illumination is realized as a localized window function g and the object
is described by its object transmission function f . The transmission function
represents two physical properties of the object. Its amplitude quantifies the
percentage of the illumination that is not absorbed by the object. A zero value
means that in the respective part of the object no light passes through, while in
the other extreme case the value is set to one. On the other hand, the phase of
the object transmission function represents the scattering of the illumination
by the object. Often in practice, objects are sufficiently thin and only scatter
light. Consequently, their transmission function has constant one magnitude
and they are called phase objects [6].

Mathematically, the obtained diffraction patterns are given as follows. The
light exiting the object is characterized by the product of the illumination with
the object transmission function. When the exit wave propagates to the far
field, it can be described as the Fourier transform∫

R2

f(y)g(y − s)e−2πiξ·ydy,

with frequency variable ξ, and s denoting the shift. Due to the nature of charge-
coupled device (CCD) cameras used as detectors, the observed images are the
intensities of the incoming waves, which are given by

I(s, ξ) =

∣∣∣∣∫
R2

f(y)g(y − s)e−2πiξ·ydy

∣∣∣∣2 .
The task is then to recover the object transfer function from samples of

I(s, ξ). Reconstruction from intensity measurements means to solve a phase
retrieval problem. In this work, we study a discrete version of the ptychographic
inverse problem. The object function f is approximated by a vector x ∈ Cd.
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The measurement procedure involving the window function g, the translation
in the space variable, and the modulation with the complex exponential are
summarized in their discrete correspondence as masks m(r,ℓ) ∈ Cd, where
r represents the respective shift and ℓ the frequency. Together, the discrete
version of the ptychographic measurements reads as

Yr,ℓ =
∣∣∣〈x,m(r,ℓ)

〉∣∣∣2 .
For computational reconstruction, a phase retrieval problem is often posed

as an optimization problem, which is then solved by an iterative method.
The pool of algorithms includes (stochastic) gradient methods [7–10], alter-
nating projection and reflection methods [11–14], and the alternating direction
method of multipliers [15, 16]. Among practitioners, the most popular algo-
rithm is a version of stochastic gradient descent for ptychography, the so-called
ptychographic iterative engine [17, 18].

Alternatively, the ptychographic inverse problem can also be tackled with a
non-iterative solver based on the Wigner Distribution Deconvolution (WDD)
method proposed in [19, 20]. By this approach, the measurements are trans-
formed into a convolution of object- and illumination-related functions, which
are then decoupled by a deconvolution procedure. The remaining step is to
recover the object from the corresponding function. The WDD method is
described in more detail in Section 2.2.

Contributions in [21–27] use the WDD algorithm to prove uniqueness of
reconstruction for the ptychographic problem. Furthermore, these works have
shown that the WDD algorithm is robust to additive noise. Note that unique-
ness and stability are the major differences between ptychography [28–31] and
a single illumination Fourier phase retrieval problem [32]. The data redun-
dancy generated by the overlapping illuminations allows to solve the phase
retrieval problem uniquely.

In a ptychographic experiment under real-world conditions, different issues
occur, one of which is experimental noise. In an imaging experiment, one type
of noise arises from the counting procedure of the illumination particles arriv-
ing at the detector, causing the measurements to be corrupted by random
Poisson noise [33–35]. Further, CCD cameras face the problem that imperfec-
tions in the experimental setup such as, e.g., contamination, result in additional
charge measured in the pixels of the detector. This type of noise is referred
to as background noise or parasitic scattering [36, 37]. While Poisson noise
can be neglected in an experimental setup using a sufficiently high illumina-
tion particle count, background noise can highly dominate the ptychographic
measurements. For this reason, we focus here on a noise model that assumes
background noise to be the only perturbation source.

Background noise is assumed to be independent of the measurement pro-
cess. That is, for each shift of the object, the recorded diffraction pattern is
composed of the actual captured intensity and a shift-independent background
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noise, ∣∣∣∣∫
R2

f(y)g(y − s)e−2πiξ·ydy

∣∣∣∣2 + b(ξ).

In the discrete version of the problem, the resulting measurements are of the
form

Yr,ℓ =
∣∣∣〈x,m(r,ℓ)

〉∣∣∣2 + bℓ,

with background noise b ∈ Rd.
When approaching the ptychographic phase retrieval problem as an opti-

mization problem, the background can be incorporated into the optimization
procedure as an additional unknown. Suitable iterative methods for tackling
the resulting problem were presented in [36, 38]. Another possibility is to pre-
process the measurements to counteract the effects of the background noise
[39].

In this paper, we make use of the WDD method to develop an algorithm
that removes the background noise to full extent. Our approach uses the shift-
invariance of the noise, which allows to separate the background from most of
the noiseless intensities in the deconvolution step. Consequently, the remaining
corrupted intensities can be discarded to denoise the data completely. We find
that their noise-free equivalent can be recovered from the separated noise-free
information using the redundancy in the ptychographic measurements. After
that, we can continue with the object reconstruction as in the WDD algo-
rithm. Two different recovery procedures are proposed for phase and arbitrary
objects. Our main contribution is a guarantee for uniqueness of reconstruc-
tion from ptychographic measurements with background noise for almost every
phase object.

The paper is structured in the following way. In Section 2 we provide the
necessary notation and basic properties related to the Fourier transform. We
formulate the ptychographic problem mathematically and summarize prelimi-
nary results for the WDD approach. Our contribution is presented in Section 3
and proved in Section 5. In Section 4, we corroborate the theoretical find-
ings with numerical experiments. Finally, the paper is summarized by a short
conclusion.

2 Preliminaries

2.1 Notation and basic properties

In this paper, we work with index sets [d] ..= {0, . . . , d− 1} for d ∈ N and
the entries of vectors x ∈ Cd are enumerated from x0 to xd−1. Note that all
indices are considered modulo d, but we forgo the notation using mod d. The
Euclidean norm of a vector x ∈ Cd is denoted by ∥x∥2, and the Frobenius
norm of a matrix A ∈ Cd1×d2 , d1, d2 ∈ N by ∥A∥F .

The notation a ∈ b + cZ means that a is equal to b up to an additive
constant from cZ ..= {cm : m ∈ Z} with c ∈ R.
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Any z ∈ C is composed as z = |z|eiϕ with |z| ∈ R≥0 and ϕ ∈ (0, 2π]. We
call |z| the magnitude, and ϕ =.. arg(z) the argument of z. For z ∈ C\ {0},
sgn(z) ..= z

|z| denotes the phase of z. For z = 0, it is set sgn(0) ..= 0. For

x ∈ Cd, the operations |x|, arg(x), sgn(x) are applied entrywise.
We denote the discrete Fourier transform of a vector x ∈ Cd, and its inverse,

by

(Fx)j ..=
∑
k∈[d]

e−
2πikj
d xk, and (F−1x)j ..=

1

d

∑
k∈[d]

e
2πikj
d xk, j ∈ [d],

involving the Fourier matrix F ∈ Cd×d with entries (F )k,j = e−
2πikj
d .

The circular shift, modulation and reflection operators on Cd with param-
eter r ∈ Z are defined as

(Srx)j ..= xj+r, (Mrx)j ..= e
2πijr
d xj , (Rdx)j ..= x−j , j ∈ [d],

respectively. We will use the following basic relations between these operators
and the Fourier transform.

Lemma 1 For all x ∈ Cd and r ∈ [d], we have

(i) F (Srx) =Mr(Fx), and (ii) Fx = RdFx.

For real vectors, Lemma 1 (ii) turns into the following well-known result.

Corollary 2 The Fourier transform of x is conjugate symmetric, i.e., it
satisfies Fx = RdFx, if and only if x ∈ Rd.

For two vectors x, y ∈ Cd, the Hadamard product x ◦ y is defined by the
entrywise products (x ◦ y)j ..= xjyj , j ∈ [d]. The discrete circular convolution
of x and y is defined as

(x ∗ y)j ..=
∑
k∈[d]

xj−k yk, j ∈ [d].

The relation
dF (x ◦ y) = Fx ∗ Fy, x, y ∈ Cd, (1)

is known as the (discrete) convolution theorem. A further well-known relation
we need is Plancherel’s identity

∥Fx∥22 = d∥x∥22, x ∈ Cd. (2)
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2.2 Ptychography and Wigner Distribution
Deconvolution

In ptychography, we consider short-time Fourier transform measurements

Ỹℓ,r = |(F [S−rx ◦ w])ℓ|
2
+Nℓ,r =

∣∣∣∣ ∑
k∈[d]

e−
2πikℓ
d xk−rwk

∣∣∣∣2 +Nℓ,r, (3)

where x ∈ Cd is the object of interest, and N = (Nℓ,r)ℓ∈[d],r∈[d] ∈ Rd×d denotes
noise. Furthermore, w ∈ Cd represents, in terms of physics nomenclature, the
illumination. In the mathematical community, this is more commonly referred
to as window. The window w is assumed to be localized, i.e., supp(w) = [δ] for
δ < d. Throughout the paper, we assume that the window w is known, hence
the problem lies in recovering the object x from the measurements (3). That
means, the ptychographic problem is an inverse problem. More specifically,
it can be understood as a phase retrieval problem with short-time Fourier
transform measurements.

Defining T ..= {β ∈ C : |β| = 1}, we obtain the same measurements

|(F [S−r(αx) ◦ w])ℓ|
2
= |(F [S−rx ◦ w])ℓ|

2

for all α ∈ T, meaning that phaseless measurements only allow unique recovery
up to a global phase. This motivates to define an equivalence relation

x ∼ x̂⇔ x = αx̂ for some α ∈ T,

and to call a solution to a phase retrieval problem unique if it is an element of

{αx : α ∈ T} .

Uniqueness and stability of the ptychographic problem, in a noise-free set-
ting, were investigated, e.g., in [28, 30, 40]. These results are based on the idea
of the Wigner Distribution Deconvolution (WDD) [20, 41], which relates the
ptychographic measurements to the Wigner distribution function of both the
object and the window.

Theorem 3 ([26, Lemma 7]) Let Y ∈ Rd×d be the matrix with entries

Yℓ,r = |(F [S−rx ◦ w])ℓ|
2
, ℓ, r ∈ [d]. (4)

Then, for all j, k ∈ [d],(
F−1Y F

)
j,k

= (F [x ◦ Sjx])k · (F [w ◦ Sjw])k. (5)

To retrieve the Fourier coefficients (F [x ◦ Sjx])k via the relation (5), we
need to assume the following.
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Assumption (A) Let the window w satisfy

(F [w ◦ Sjw])k ̸= 0 for all − γ < j < γ, k ∈ [d],

for some 0 < γ ≤ δ.

With this assumption, the Wigner Distribution Deconvolution approach
allows the following statement on uniqueness of reconstruction from ptycho-
graphic measurements.

Theorem 4 ([28, Theorem 2.2]) Let δ > d
2 . If Assumption (A) holds with γ = δ,

any x ∈ Cd is uniquely determined by measurements (4).

For non-vanishing objects, that is x ∈ Cd with minℓ∈[d] |xℓ| > 0, the
assumption on the window that guarantees uniqueness of reconstruction can
be mitigated as follows.

Theorem 5 ([28, Theorem 2.4]) Let Assumption (A) hold with γ ≥ 2. Then, any
x ∈ Cd satisfying minℓ∈[d] |xℓ| > 0 is uniquely determined by measurements
(4).

With Assumption (A), the result in Theorem 3 can be turned into a
recovery formula.

Corollary 6 If Assumption (A) holds for some 0 < γ ≤ δ, the Fourier coef-
ficients (F [x ◦ Sjx])k for all −γ < j < γ, and all k ∈ [d], can be recovered
by

(F [x ◦ Sjx])k =
(
F−1Y F

)
j,k

/
(F [w ◦ Sjw])k.

Using the Fourier coefficients obtained by Corollary 6, the products
(x ◦ Sjx)ℓ, ℓ ∈ [d], can be reconstructed for all −γ < j < γ. These vectors
correspond to the diagonals of the rank-one matrix xx∗, which is why we will
refer to the vectors x ◦ Sjx as diagonals.

As γ ≤ δ < d, only a part of the matrix xx∗ is recoverable. More precisely,
if Assumption (A) is true for γ ≤ δ, we can reconstruct the matrix

Xℓ1,ℓ2
..=

{
(x ◦ Sℓ2−ℓ1x)ℓ1 = xℓ1xℓ2 , if min {|ℓ1 − ℓ2|, d− |ℓ1 − ℓ2|} < γ,

0, otherwise.

(6)

This matrix is symmetric, that means the lower off-diagonals provide the same
information as the upper off-diagonals. Hence, in the following, we will avoid
discussing the cases −γ < j < 0.

Using the main diagonal of X, i.e., x ◦S0x = |x|2, the magnitudes of x can
be recovered. More stable approaches for magnitude estimation can be found
in [27, 42].



8 Background Denoising for Ptychography via Wigner Distribution Deconvolution

The first off-diagonal of X, i.e., x ◦ S1x, provides the argument differences
arg(xℓ)− arg(xℓ+1) for all ℓ ∈ [d]. As x can be recovered only up to its global
phase, arg(x0) can be chosen arbitrarily. The phases of xℓ, ℓ > 0, are then
found recursively from the argument differences. This approach can be linked
to the greedy angular synchronization method discussed in [21]. Later, [22,
43] suggested to alternatively use an eigenvector-based approach to angular
synchronization. Define the matrix of phase differences

(sgn(X))ℓ1,ℓ2
..=

{
sgn(xℓ1)sgn(xℓ2), Xℓ1,ℓ2 ̸= 0,

0, otherwise,

corresponding to X. Then, the vector of phases of x, i.e., sgn(x), is the top
eigenvector of the matrix sgn(X). Other versions for phase synchronization,
together with reconstruction guarantees, were presented in [23, 44].

The main steps of the reconstruction algorithm for ptychographic data
based on Wigner Distribution Deconvolution are summarized in Algorithm 1.

Algorithm 1: Recovery from ptychographic measurements

Input: Ptychographic measurements Y ∈ Rd×d as in (4) with w ∈ Cd
satisfying supp(w) = [δ] for δ < d and Assumption (A) for 0 < γ ≤ δ.

Step 1: Compute (F [x ◦ Sjx])k for all j ∈ [γ], k ∈ [d], via Corollary 6.

Step 2: Via inverse Fourier transforms, compute (x ◦ Sjx)ℓ for all
j ∈ [γ], ℓ ∈ [d], and build X as in Equation (6).

Step 3: Compute the magnitudes |x̃ℓ| =
√
Xℓ,ℓ, ℓ ∈ [d].

Step 4: Compute the top eigenvector z̃ of sgn(X). Set sgn(x̃) = sgn(z̃).

Output: x̃ = |x̃| · sgn(x̃) ∈ Cd with x̃ ∼ x.

Algorithm 1 was shown to satisfy the following recovery guarantee.

Theorem 7 ([23, Theorem 1]) Let δ > 2 and d ≥ 4δ. Applied to noisy
ptychographic measurements (3), Algorithm 1 creates an estimate x̃ ∈ Cd
satisfying

min
θ∈(0,2π]

∥∥x− eiθx̃
∥∥
2
≤ 24

∥x∥∞
minℓ∈[d] |xℓ|2

· d
3
2

δ
5
2

· ∥N∥F
minj∈[δ],k∈[d] |F [w ◦ Sjw]k|

+

√
∥N∥F

minj∈[δ],k∈[d] |F [w ◦ Sjw]k|
.

Theorem 7 states that exact recovery of the ground-truth object from noise-
free measurements is possible via Algorithm 1, i.e., the output x̃ of Algorithm 1
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indeed satisfies x̃ ∼ x. Moreover, it tells that noise can affect the reconstruction
quality only up to some amount that depends on the level of noise. That
means, it can be reasonable to apply the algorithm to noisy data. However,
exact recovery of the ground-truth is not to be expected.

3 Background noise removal

In the following, we investigate an adaption of the WDD reconstruction
method for a special type of noise, so-called background noise.

We consider ptychographic measurements

Ỹℓ,r = Yℓ,r + bℓ, ℓ, r ∈ [d], (7)

with unknown background noise bℓ ∈ R, ℓ ∈ [d], and noise-free measurements
Yℓ,r, ℓ, r ∈ [d], as in (4). For each shift r ∈ [d] of the object, the background
is assumed to be constant, i.e., this type of noise is only frequency-dependent.

Applying WDD to measurements with background noise, Theorem 7 pro-
vides an upper bound on how much the resulting reconstruction can be offset
from the ground-truth object by the noise. However, Algorithm 1 makes no
use of the prior knowledge about the noise structure. The background noise is
the same for all diffraction patterns. Hence, there is a redundancy that can be
incorporated into WDD to improve its performance.

Firstly, we note that only the zeroth Fourier coefficients are affected by the
background noise in the WDD method.

Proposition 8 For all k, j ∈ [d], ptychographic measurements (7) satisfy(
F−1Ỹ F

)
j,k

=
(
F [x ◦ Sjx]

)
k
·
(
F [w ◦ Sjw]

)
k
+ d
(
F−1b

)
j
1k=0.

Proof. Since the background noise is only frequency dependent, the noise-free
and the noisy measurements in (7) are related via

Ỹ = Y +

| |
b · · · b
| |

 ,

with b = (bj)j∈[d]. We apply the same transforms as in Theorem 3 to the

measurements Ỹ and obtain the following relation:

F−1Ỹ F = F−1Y F + F−1
(
b · · · b

)
F

= F−1Y F + F−1
(
db 0 . . . 0

)
= F−1Y F + d

(
F−1b 0 . . . 0

)
.

□
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If Assumption (A) holds for some γ ≤ δ, all Fourier coefficients
(F [x ◦ Sjx])k can be reconstructed exactly for k > 0 and all j ∈ [γ] as in
Corollary 6.

We choose to discard the components (F [x ◦ Sjx])0 , j ∈ [d], which are
corrupted by the background noise. Our strategy is to reconstruct the zeroth
coefficients before proceeding with the rest of the steps in Algorithm 1.

3.1 Reconstruction algorithm

To reconstruct the zero frequencies, we use the higher-order relation between
the diagonals induced by the rank-one structure of xx∗. That is, for all j, ℓ ∈ [d],
the corresponding two diagonals are related by

(x ◦ Sjx) ◦ Sℓ(x ◦ Sjx) = (x ◦ Sℓx) ◦ Sj(x ◦ Sℓx). (8)

This equality was previously made use of to circumvent the cases where
Assumption (A) does not hold, which led to the so-called subspace completion
strategy [45].

The relation (8) can be expressed in terms of frequencies via the Fourier
transform. The convolution theorem (1), together with the properties of shift,
modulation, and reversal operators in Lemma 1, yields

dF [(x ◦ Sjx) ◦ Sℓ(x ◦ Sjx)] = F [x ◦ Sjx] ∗ F [Sℓ(x ◦ Sjx)] = f j ∗MℓRdf j .

Here and in the following, we abbreviate the Fourier coefficients as

f jk
..= (F [x ◦ Sjx])k (9)

for all j, k ∈ [d]. Expanding the convolution gives

d−1∑
k=0

e−
2πiℓ(k−s)

d f jk f
j
k−s =

d−1∑
k=0

e−
2πij(k−s)

d f ℓk f
ℓ
k−s (10)

for all s ∈ [d].
If Assumption (A) is satisfied for some γ ≤ δ and ℓ, j ∈ [γ], the summands

are fully known for all k ∈ [d]\ {0, s}. Hence, we can sort equation (10) into
unknown and known summands, and obtain the system of linear equations

e
2πijs
d f ℓ0 f

ℓ−s + f ℓs f
ℓ
0 − e

2πiℓs
d f j0 f

j−s − f js f
j
0 (11)

=

d−1∑
k=1
k ̸=s

e−
2πiℓ(k−s)

d f jk f
j
k−s − e−

2πij(k−s)
d f ℓk f

ℓ
k−s =

.. cℓ,j,s,

for all s ∈ [d]. Note that the case s = 0 leads only to squared magnitudes |f j0 |2,
which is why it is left out.
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This linear system has four real unknowns and can be solved to obtain the
zero frequencies f j0 = (F [x ◦ Sjx])0 for all j ∈ [γ].

The number of unknowns can be further reduced by considering the case
ℓ = 0. Recall that (x ◦ S0x)k = |xk|2 ∈ R for all k ∈ [d] so that f0s = f0−s,
s ∈ [d], and

f00 =

d−1∑
k=0

(x ◦ S0x)k ≥ 0.

This can be incorporated into (11), giving(
e

2πijs
d + 1

)
f0s f

0
0 − f j0 f

j−s − f js f
j
0 = c0,j,s, s ∈ [d]\{0}.

If zj,s ..=
(
e

2πijs
d + 1

)
f0s is zero, the above equation becomes

f j0 f
j−s + f js f

j
0 = −c0,j,s,

or, equivalently,

Re f j0 [Re f j−s +Re f js ] + Im f j0 [Im f j−s + Im f js ] = −Re c0,j,s,

Re f j0 [Im f js − Im f j−s] + Im f j0 [Re f j−s − Re f js ] = − Im c0,j,s.
(12)

Otherwise, by multiplying it with zj,s, we get

f00 |zj,s|2 − f j0 f
j−szj,s − f js f

j
0zj,s = c0,j,szj,s.

As f00 |zj,s|2 ∈ R, the imaginary part of the equation reads as

Re f j0 [Im(f j−szj,s)− Im(f js zj,s)] + Im f j0 [Re(f js zj,s)− Re(f j−szj,s)]

= Im(c0,j,szj,s).
(13)

Hence, finding four real unknowns from (11) can be reduced to a linear system
for just two real unknowns formed by (12) or (13) for s ∈ [d]\{0}.

The last step is to reconstruct f00 from (11) using the case s = 0. We get

|f00 |2 − |f j0 |2 = c0,j,0,

which, with f00 ≥ 0, yields

f00 =
√

|f00 |2 = c0,j,0 + |f j0 |2, for any j ∈ [γ]\{0}.
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For a better stability, we average over j,

f00 =

(
1

γ − 1

γ−1∑
j=1

[
c0,j,0 + |f j0 |2

])1/2

. (14)

The steps above provide a recovery strategy for the lost frequencies,
summarized in Algorithm 2. The theoretical analysis of this procedure is a
complicated task which remains to be tackled in future work.

Algorithm 2: Recovery from ptychographic measurements with
background noise

Input: Ptychographic measurements Ỹ ∈ Rd×d as in (7) with w ∈ Cd
satisfying supp(w) = [δ] for δ < d and Assumption (A) for 0 < γ ≤ δ.

Step 1: Compute f jk for all j ∈ [γ], k ∈ [d]\ {0}, via Proposition 8.

Step 2: Reconstruct f j0 for all j ∈ [γ]\{0} via the linear system (13).

Step 3: Reconstruct f00 via (14).

Step 4: Build X as in (6) by applying the inverse Fourier transform
to the Fourier coefficients obtained in Step 1 - 3.

Step 5: Compute the magnitudes |x̃ℓ| =
√
Xℓ,ℓ, ℓ ∈ [d].

Step 6: Compute the top eigenvector z̃ of sgn(X). Set sgn(x̃) = sgn(z̃).

Output: x̃ = |x̃| · sgn(x̃) ∈ Cd.

3.2 Reconstruction strategy and guarantees for phase
objects

In the following, we consider phase objects, which allow us to decouple the
magnitude and the phase recovery for the lost coefficients f j0 , j ∈ [d]. This
class of objects is represented by the set

Td ..=
{
v ∈ Cd : |vj | = 1, j ∈ [d]

}
.

Turning back to the recovery of f j0 , the inclusion x ∈ Td provides a
straightforward procedure for magnitude recovery.

Proposition 9 Let x ∈ Td. For every j ∈ [d], the diagonals x ◦ Sjx belong to

Td, and their Fourier transforms satisfy
∥∥f j∥∥2

2
= d2. Consequently, |f j0 | can

be recovered by

|f j0 |2 = d2 −
d−1∑
k=1

|f jk |2.
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Proof. For x ∈ Td, we have∣∣(x ◦ Sjx)ℓ
∣∣ = |xℓ||xℓ+j | = 1,

for all ℓ, j ∈ [d]. Plancherel’s identity (2) provides

d−1∑
k=0

|f jk |2 =
∥∥f j∥∥2

2
= ∥F [x ◦ Sjx]∥22 = d ∥x ◦ Sjx∥22 = d ·

d−1∑
ℓ=0

|xℓxℓ+j |2 = d2.

□

Next, the phase of f j0 has to be recovered. If, by Proposition 9, the resulting

|f j0 | = 0, the lost coefficient f j0 is zero. For all other cases, we need to find the

argument of f j0 , shortly denoted by

φj ..= arg(f j0 ). (15)

By Proposition 9, the diagonals satisfy x◦Sjx ∈ Td for all j ∈ [d]. Rewriting
this in terms of its Fourier coefficients gives

1 =
∣∣(x ◦ Sjx)ℓ

∣∣2 =
∣∣(F−1F [x ◦ Sjx]

)
ℓ

∣∣2 =
1

d2

∣∣∣∣|f j0 | · eiφj + d−1∑
k=1

e
2πiℓk
d f jk

∣∣∣∣2.
Hence, the missing argument φj can be found by solving the following linear
system.

Theorem 10 Let x ∈ Td. For all j ∈ [d] with |f j0 | > 0, the argument φj ∈
(0, 2π] as defined in (15) solves the system

Aj
(
cos(φj)
sin(φj)

)
=

d2

2|f j0 |


1− 1

d2

(
|aj0|2 + |f j0 |2

)
...

1− 1
d2

(
|ajd−1|2 + |f j0 |2

)
 , (16)

where

Aj ..=

 Re(aj0) Im(aj0)
...

...

Re(ajd−1) Im(ajd−1)

 and aj ..= dF−1


0

f j1
...

f jd−1

 . (17)

The proof of Theorem 10 can be found in Section 5.1. Essentially, it is not
required to solve the, possibly large, linear system (16). The (k+1)th equation
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of system (16) is equivalent to

Re
(
ajke

−iφj
)
=
d2 − |ajk|2 − |f j0 |2

2|f j0 |
,

where

Re
(
ajke

−iφj
)
= |ajk| cos

(
arg(ajk)− φj

)
.

Hence, we find that

φj ∈
d−1⋂
k=0

{
arg(ajk)± arccos

(
d2 − |ajk|2 − |f j0 |2

2|ajk||f
j
0 |

)}
. (18)

If rank(Aj) = 2, the intersection of the sets in (18) has only one element.
Computing these values for at least two distinct k ∈ [d], we can determine the
true value of the argument φj of f

j
0 .

Systems (16) provide only the recovery procedure for each φj which is not
necessarily unique. On the other hand, all φj are linked to the same object x.
Hence, by looking at multiple systems (16) at the same time, we are able to
determine whether unique recovery of x is possible or not. It turns out that
only two families of objects cannot be recovered uniquely in the presence of
background noise.

Theorem 11 (Negative results)

(i) For all m ∈ [d], the objects x ∼ xm ..=
(
e

2πikm
d

)
k∈[d]

with appropriately

chosen bm ∈ Rd produce the same measurements (7).
(ii) Suppose d is even and consider xq for q = 1, 2, defined by

xqk
..= e−

2πikm
d ·

{
1, k even,

−(−1)qe(−1)q 1
2 iρ, k odd,

m ∈ [d], ρ ∈ (−π, π).

If x ∼ x1, there exist backgrounds bq, q = 1, 2, such that (x1, b1) and
(x2, b2) result in the same measurements (7).

Theorem 11 is proven in Section 5.2.
The first example corresponds to the case where the zeroth Fourier coef-

ficients of all diagonals are the only nontrivial entries. Therefore, we have no
means to reconstruct the phases of the lost coefficients. This happens only for
modulations of a constantly one vector.

The second case can be interpreted similarly to the conjugate reflection
ambiguity well-known for Fourier phase retrieval [32]. In fact, we have

x1−k = (−1)kx2k, k ∈ [d].
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However, this type of ambiguity only applies to objects described by (ii) and
not for all x ∈ Td.

For all other x ∈ Td we can guarantee the following.

Theorem 12 Let Assumption (A) hold with γ ≥ 3. Assume that x ∈ Td neither
admits (i) nor (ii) in Theorem 11. Then, x can be uniquely recovered from the
measurements (7).

The proof of Theorem 12 can be found in Section 5.4. Comparing
Theorem 12 to Theorem 5, we observe that for measurements with background
noise more diagonals are required to be taken into account to guarantee unique
recovery. More precisely, the Fourier coefficients of the second off-diagonal
(j = 2) have to be additionally considered to compensate for the coefficients
lost due to the background noise. We also note that the zeroth diagonal only
provides information about the magnitudes which are a priori known for phase
objects. In contrary to the noise-free setting where unique reconstruction is
guaranteed for every non-vanishing object, background noise causes two classes
of phase objects that are non-vanishing and cannot be reconstructed uniquely.
This holds true even if further diagonals are included.

As it was mentioned before, the proof relies upon the underlying rank of the
linear systems (16). We collect all possible scenarios in Table 1 and summarize
a respective recovery strategy in Algorithm 3.

rank(A1) rank(A2) d Result Corresponding Lemma

2 unique recovery Lemma 15 with j = 1

0 negative example (i) Lemma 13 with j = 1

1 1 not possible Lemma 17

1 0 odd not possible Lemma 18

1 0 even negative example (ii) Lemma 18

1 2 odd unique recovery Lemma 15 with j = 2

1 2 even unique recovery Lemma 20

Table 1 The solvability of (16) in Theorem 10 depends on the rank of the matrix Aj .
The listed cases have to be discussed in the proof of Theorem 12.

4 Numerical experiments

We perform numerical experiments to test the performance of the suggested
algorithms. While the theory we provide is restricted to a one-dimensional set-
ting, we perform the experiments with 2D images. All algorithms can easily be
extended to a two-dimensional version by replacing the corresponding opera-
tors with their 2D analogy [24]. However, it remains an open question whether
a uniqueness guarantee similar to Theorem 12 holds true. Our numerical
experiments provide a first glimpse on this question.
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Algorithm 3: Recovery of a phase object from ptychographic
measurements with background noise

Input: Ptychographic measurements Ỹ ∈ Rd×d as in (7).

Step 1: Compute f1k for all k ∈ [d]\ {0} via Proposition 8.
Recover |f10 | via Proposition 9 and set up A1.

if rank(A1) = 0 then
Stop. Ground-truth x is of type (i).

else if rank(A1) = 1 then
Compute f2k for all k ∈ [d]\ {0} via Proposition 8.
Recover |f20 | via Proposition 9 and set up A2.
if d is odd then

Solve (16) to recover f2. Go to Step 2 with γ = 3.
else

Compute the two solutions f1,q, q = 1, 2, using (18).
if rank(A2) = 0 then

Stop. Ground-truth x is of type (ii).
else

Solve (16) to recover f2. Select f1,q, q = 1, 2, which admits
equality in (31). Go to Step 2 with γ = 3.

else
Solve (16). Go to Step 2 with γ = 2.

Step 2: Build X as in (6) with γ = 2 or γ = 3 by applying the inverse
Fourier transform to the Fourier coefficients obtained in Step 1.

Step 3: Compute the top eigenvector z̃ of sgn(X). Set sgn(x̃) = sgn(z̃).

Output: x̃ = sgn(x̃) ∈ Cd with x̃ ∼ x.

In all trials, the algorithms are tested on synthetic data as depicted in
Figure 1. The ground-truth object is a 128 × 128 image with the argument
and magnitude being the cameraman picture. For the phase object, we replace
the magnitude with a matrix of ones. The localized window has a 16 × 16
nonzero block, represented by a Gaussian bell with a random offset. The offset
is required as Assumption (A) fails to hold for symmetric windows [45].

As background, we use the Shepp-Logan phantom in Figure 2 (a). Figure 2
(b) illustrates a diffraction pattern with background noise. Different levels
of noise are simulated by adding different multiples of the phantom to the

(a) Magnitude and argument (b) Argument (c) Magnitude and argument

Fig. 1 (a) Ground-truth object, (b) ground-truth phase object and (c) window.
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(a) (b)

Fig. 2 (a) Background and (b) exemplary diffraction pattern perturbed by background
noise in logarithmic scale.

same diffraction patterns. To quantify the noise level, we use the ratio ∥Y −
Ỹ ∥F

/
∥Y ∥F , where Y is as defined in (4) and Ỹ as in (7).

As quality metrics, relative reconstruction error and relative measurement
error

min
θ∈(0,2π]

∥∥x− eiθx̃
∥∥
2

/
∥x∥2, and ∥Y − Y rec∥F

/
∥Y ∥F ,

are used, where x is the ground-truth, x̃ is the reconstructed object and
Y recℓ,r = |(F [S−rx̃ ◦ w])ℓ|

2
, for all ℓ, r ∈ [d], are the simulated corresponding

measurements.
In the following, we compare the object reconstruction obtained by the

‘vanilla’ WDD algorithm (Algorithm 1) with the reconstruction results of our
algorithms, described in Algorithm 2 for general objects and in Algorithm 3
for phase objects.

In 2D, we interpret the parameter γ in Assumption (A) for any γ < δ such
that we consider all diagonals corresponding to tuples j = (j1, j2) in

Dγ ..= {(j1, j2) ∈ Z2 : 0 ≤ j1 < γ, −γ < j2 < γ, −γ < j1 + j2 < γ}.

The case when all diagonals

{(j1, j2) ∈ Z2 : 0 ≤ j1 < δ, −δ < j2 < δ}

vanilla WDD
vanilla WDD after

preprocessing
proposed method

all

proposed method
γ = 3

N
o
is
e
le
v
e
l:

3
.4
9 magnitude argument

(3.68 / 10.67)

magnitude argument

(2.89 / 3.65)

magnitude argument

(8.42 · 10−5 / 1.51 · 10−5)

magnitude argument

(2.59 · 10−3 / 5.35 · 10−4)

N
o
is
e
le
v
e
l:

0
.3
5

(0.66 / 0.94) (1.42 / 1.04) (1.2 · 10−4 / 2.77 · 10−5) (2.8 · 10−3 / 5.02 · 10−4)

Fig. 3 Comparison of the performance of the vanilla WDD algorithm (Algorithm 1) without
and with preprocessing, and Algorithm 2 for different noise levels and different amounts of
diagonals incorporated into the experiment (all or γ = 3). Below the reconstruction results,
find the respective (relative reconstruction error/measurement error).
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vanilla WDD
vanilla WDD after

preprocessing
proposed method

all

proposed method
γ = 3

N
o
is
e
le
v
e
l:

3
.4
5

(1.12 / 1.27) (0.89 / 0.65) (5.64 · 10−3 / 2.53 · 10−3) (4.23 · 10−12 / 9.01 · 10−13)

N
o
is
e
le
v
e
l:

0
.4

(0.48 / 1.15) (1.23 / 1.14) (5.64 · 10−3 / 2.53 · 10−3) (2.82 · 10−13 / 6.22 · 10−14)

Fig. 4 Comparison of the performance of the vanilla WDD algorithm (Algorithm 1) without
and with preprocessing, and Algorithm 3 for different noise levels and different amounts of
diagonals incorporated into the experiment (all or γ = 3). Below the reconstruction results,
find the respective (relative reconstruction error / measurement error).

are used is referred to as “all”.
All experiments were performed in Python on a MacBook Pro equipped

with a 2GHz Intel Core i5 and 16 GB of memory.
First, we test Algorithm 2 on the object in Figure 1 (a). We compare the

reconstructions obtained by our approach with the results of Algorithm 1.
Apart from these two methods, we implemented the preprocessing approach
by [39]. The results can be found in Figure 3.

As expected, vanilla WDD suffers from the noise. While preprocessing
improves the reconstruction, it requires tuning the parameters for optimal per-
formance depending on the noise level. In contrast, the method proposed by us

d δ

run time (in seconds) relative reconstruction error relative measurement error

WDD
(all)

WDD
(γ = 3)

ADP
WDD
(all)

WDD
(γ = 3)

ADP
WDD
(all)

WDD
(γ = 3)

ADP

64

8 17 7 59
1.6 ·
10−4

3.2 ·
10−3 0.29

5.1 ·
10−5

9.4 ·
10−4 0.09

16 62 10 64
7.4 ·
10−5

2.1 ·
10−3 0.30

1.6 ·
10−5

4.9 ·
10−4 0.15

96

8 47 41 812
2.5 ·
10−4

1.7 ·
10−3 0.38

5.1 ·
10−5

5.5 ·
10−4 0.08

16 143 41 789
5.5 ·
10−5

1.6 ·
10−3 0.31

1.2 ·
10−5

4.0 ·
10−4 0.16

Table 2 Comparison of Algorithm 2 (WDD) with 10 iterations of the ADP algorithm [36]
for ptychographic measurements with background noise causing a noise level of size
approximately 3.5.



Background Denoising for Ptychography via Wigner Distribution Deconvolution 19

d δ
run time (in seconds) relative reconstruction error relative measurement error

WDD ADP WDD ADP WDD ADP

64
8 5 61 2.7 · 10−14 0.95 1.0 · 10−14 0.29

16 8 58 5.7 · 10−14 0.80 2.8 · 10−14 0.45

96
8 33 705 1.9 · 10−13 0.99 3.4 · 10−14 0.27

16 37 778 1.1 · 10−13 0.93 3.8 · 10−14 0.44

Table 3 Comparison of Algorithm 3 (WDD with γ = 3) with 10 iterations of the ADP
algorithm [36] for ptychographic measurements of a phase object with background noise
causing a noise level of size approximately 3.5.

filters the background noise and provides a good reconstruction independently
of the noise level both when using all diagonals or only those in D3.

Now, we apply Algorithm 3 to reconstruct the phase object in Figure 1 (b)
from its ptychographic measurements with background noise. Again, the recon-
struction results are compared with Algorithm 1 with and without additional
preprocessing [39]. As these methods are not expected to produce a phase
object, the reconstructions are projected on Td×d. Figure 4 shows that, again,
our proposed algorithm filters the background noise well. Interestingly, the D3

version of Algorithm 3 shows better reconstruction errors while using less diag-
onals. This could be a result of a numerical error accumulation from a larger
number of diagonals or a suboptimal outcome of the phase synchronization
step.

Additionally, we compare the performance of our algorithms and the
ADMM denoising algorithm for phase retrieval (ADP) proposed in [36]. In
Table 2 and Table 3, we list the runtime, the relative reconstruction and
measurement errors of the respective methods. For general objects, an addi-
tional comparison of Algorithm 2 both for all diagonals and for those in D3 is
included. We observe that WDD reconstructs the ground-truth object up to
a numerical error. ADP, on the other hand, requires more iterations and time
to match the same precision.

5 Proofs

5.1 Proof of Theorem 10

For x ∈ Td, by Proposition 9 we have∣∣(F−1 (F [x ◦ Sjx])
)
ℓ

∣∣ = ∣∣(x ◦ Sjx)ℓ
∣∣ = 1, (19)

for all ℓ, j ∈ [d]. We expand the inverse Fourier transform as

(
F−1 (F [x ◦ Sjx])

)
ℓ
=

1

d

d−1∑
k=0

e
2πiℓk
d (F [x ◦ Sjx])k =

1

d

∣∣∣f j0 ∣∣∣ eiφj + 1

d
ajℓ , (20)
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where the definitions (15) and (17) were used.
To obtain φj , we combine (19) and (20), and study the quadratic equation

d2 =
∣∣∣|f j0 | · eiφj + ajℓ

∣∣∣2 , ℓ ∈ [d].

Expanding the squares gives∣∣∣|f j0 | · eiφj + ajℓ

∣∣∣2 = |f j0 |2 + 2|f j0 |Re
(
ajℓe

−iφj
)
+ |ajℓ |2

= |f j0 |2 + 2|f j0 |
(
Re(ajℓ) cos(φj) + Im(ajℓ) sin(φj)

)
+ |ajℓ |2,

and we rewrite the condition to be satisfied by φj as

Re(ajℓ) cos(φj) + Im(ajℓ) sin(φj) =
1

2|f j0 |

(
d2 − |ajℓ |2 − |f j0 |2

)
for all ℓ ∈ [d]. That means, we need to solve (16) to recover φj . □

5.2 Proof of Theorem 11

Firstly, we show that, for all m ∈ [d], the objects x ∼
(
e

2πiℓm
d

)
ℓ∈[d]

with

appropriately chosen background bm ∈ Rd produce the same measurements.

Let xm ..=
(
e

2πiℓm
d

)
ℓ∈[d]

for m ∈ [d]. Let Ỹ m ∈ Rd×d be the respective

measurements (7) for all xm, m ∈ [d], with some background noise bm ∈ Rd.
For all objects xm, all diagonals are constant, more precisely

(xm ◦ Sjxm)ℓ = e−
2πijm
d (21)

for all ℓ ∈ [d]. Hence, for all m, j ∈ [d], the respective Fourier coefficients
f j,mk are zero for all k ∈ [d]\ {0}. Consequently, for all m, j ∈ [d], and all

k ∈ [d]\ {0}, Proposition 8 provides (F−1Ỹ 0F )j,k = (F−1Ỹ mF )j,k. For k = 0,

Proposition 8 tells that (F−1Ỹ 0F )j,0 = (F−1Ỹ mF )j,0 for all j ∈ [d] if and
only if (

f j,00 − f j,m0

)
(F [w ◦ Sjw])0 = d(F−1(bm − b0))j ,

which is equivalent to

(F−1(bm − b0))j =
(
1− e−

2πijm
d

)
(F [w ◦ Sjw])0,

as from (21) we obtain f j,m0 = de−
2πijm
d .

Via this relation, we can define backgrounds bm which cause the same
measurements for objects xm. For example, we can set (F−1b0)j = 0 for all
j ∈ [d]\ {0}, and choose (F−1b0)0 ∈ R suitably.
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As F−1b0 is chosen conjugate symmetric, its Fourier transform b0 is real-
valued according to Corollary 2. Moreover, F−1bm is conjugate symmetric

since (F−1bm)0 = (F−1b0)0 ∈ R as e−
2πijm
d = 1 for j = 0, and

(F−1bm)−j =
(
1− e

2πijm
d

)
(F [w ◦ S−jw])0

=
(
1− e−

2πijm
d

)
(F [w ◦ Sjw])0 = (F−1bm)j ,

for all j ∈ [d]\ {0}, where we use the symmetry of

(F [w ◦ S−jw])0 =

d−1∑
ℓ=0

wℓwℓ−j =
d−1∑
ℓ=0

wℓ+jwℓ = (F [w ◦ Sjw])0. (22)

Hence, also bm ∈ Rd for all m ∈ [d].
It remains to choose (F−1b0)0 ∈ R large enough such that the backgrounds

bm satisfy bmℓ ≥ −|F [S−rxm ◦w]ℓ|2, to ensure Ỹ mℓ,r ≥ 0 for all m, ℓ, r ∈ [d]. The
inverse Fourier transform gives

(F−1b0)0 = (F−1bm)0 ≥ −|F [S−rx
m ◦ w]ℓ|2 −

d−1∑
j=1

e
2πijℓ
d (F−1bm)j .

Taking the maximum on the right-hand side over ℓ,m ∈ [d] provides a suitable
choice of (F−1b0)0.

We conclude that, with such background noise, objects xm produce the
same measurements (7) and, thus, cannot be recovered uniquely.

Secondly, we show that for objects xq, q = 1, 2, defined by entries

xqℓ = e−
2πiℓm
d ·

{
1, ℓ even,

−(−1)qe(−1)q 1
2 iρ, ℓ odd,

, ℓ ∈ [d], (23)

there exist backgrounds bq, q = 1, 2, such that (x1, b1) and (x2, b2) result in
the same measurements (7), i.e., there exist b1, b2 ∈ Rd with

Ỹ 1
ℓ,r

..=
∣∣(F [S−rx

1 ◦ w
])
ℓ

∣∣2 + b1ℓ =
∣∣(F [S−rx

2 ◦ w
])
ℓ

∣∣2 + b2ℓ =
.. Ỹ 2

ℓ,r,

for all ℓ, r ∈ [d].
Fix m ∈ Z, ρ ∈ (−π, π), and consider objects xq, q = 1, 2, defined as in

(23). The diagonals corresponding to the objects xq, q = 1, 2, are given by

(xq ◦ Sjxq)ℓ =
{
1, j even,

−(−1)qe
2πijm
d −(−1)q(−1)ℓ 1

2 iρ, j odd,
ℓ ∈ [d].
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For j even, the Fourier coefficients are

f j,qk =

{
d, k = 0,

0, k ∈ [d]\{0}, (24)

and for j odd, they are

f j,qk = −(−1)qe
2πijm
d

 d
2−1∑
ℓ=0

e
− 2πik ℓ

2
d
2 e−(−1)q 1

2 iρ +

d
2−1∑
ℓ=0

e
− 2πik ℓ−1

2
d
2 e(−1)q 1

2 iρ


=


−(−1)qe

2πijm
d · d2 cos

(
ρ
2

)
, k = 0,

e
2πijm
d · d2 i sin

(
ρ
2

)
, k = d

2 ,

0, k ∈ [d]\{0, d2}.

Hence, for all j ∈ [d] and all k ∈ [d]\{0}, we know f j,1k = f j,2k , so that

Proposition 8 guarantees (F−1Ỹ 1F )j,k = (F−1Ỹ 2F )j,k. For k = 0, again, it

holds (F−1Ỹ 1F )j,0 = (F−1Ỹ 2F )j,0 for all j ∈ [d] if and only if(
f j,10 − f j,20

)
(F [w ◦ Sjw])0 = d(F−1(b2 − b1))j .

Analogously to the above, we can conclude that there exists background noise
with which objects x1 and x2 produce the same measurements (7), i.e., unique
recovery of objects x1 or x2 is also not possible. □

5.3 Analysis of linear systems (16)

In this section, the foundation of the proof of Theorem 12 is established by
studying the linear systems (16). For any j ∈ [d], the three possible cases
rank(Aj) = 0, rank(Aj) = 1, and rank(Aj) = 2 are investigated.

In the following, we write F−1f j instead of x◦Sjx as there is not necessarily
a unique x corresponding to F−1f j .

We start with the case rank(Aj) = 0.

Lemma 13 Let j ∈ [d]. The following claims are equivalent:
(i) The matrix Aj has rank(Aj) = 0.
(ii) (F−1f j)k = eiφj for all k ∈ [d], where φj is as in (15).

(iii) The zeroth Fourier coefficient admits |f j0 | = d.
Furthermore, if rank(Aj) = 0 and j is coprime with d, the ground-truth object

is x ∼
(
e

2πikm
d

)
k∈[d]

, for some m ∈ [d].
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Proof. (i) ⇒ (ii), (iii) : Let rank(Aj) = 0. Definition (17) gives ajℓ = 0 for all
ℓ ∈ [d]. We then obtain

d(F−1f j)ℓ =

d−1∑
k=0

e
2πik·ℓ
d f jk = ajℓ + f j0 = f j0 = |f j0 |eiφj ,

for all ℓ ∈ [d], i.e., F−1f j has constant value f j0/d. By Proposition 9, F−1f j ∈
Td and, thus, F−1f j = eiφj and |f j0 | = d.

(ii) ⇒ (iii) : If (F−1f j)ℓ = eiφj ∈ T for all ℓ ∈ [d], we get

f jk = (F (F−1f j))k =

d−1∑
ℓ=0

e
−2πik·ℓ

d eiφj =

{
deiφj , k = 0,

0, k ∈ [d]\{0},

and, hence, |f j0 | = d|eiφj | = d.

(iii) ⇒ (i) : If |f j0 | = d, by Proposition 9, the definition in (17), and
Plancherel’s identity (2) we have

∥∥aj∥∥2
2
= 1

d

∥∥Faj∥∥2
2
= d
∥∥∥(0, f j1 , . . . , f jd−1)

∥∥∥2
2
= d
∥∥f j∥∥2

2
− d|f j0 |2 = d3 − d3 = 0.

That means, ajk = 0 for all k ∈ [d], and rank(Aj) = 0.
In addition to rank(Aj) = 0, let us assume that j is coprime with d.

Consider any x ∈ Td with x ◦ Sjx = F−1f j . From the equivalence of (i) and
(ii) proven above, we find that xkxk+j = (F−1f j)k = eiφj for all k ∈ [d], i.e.,

arg(xk)− arg(xk+j) = φj + 2πm (25)

for some m ∈ Z. With this, we obtain

arg(xℓj) ∈ arg(x0)− ℓφj + 2πZ

for any ℓ ∈ Z. Since j and d are coprime, ℓ = d is the smallest integer satisfying
ℓj = 0mod d. We conclude that

arg(x0) = arg(xdj) ∈ arg(x0)− dφj + 2πZ,

hence, φj ∈ 2π
d Z. Combining this with (25), we find that the corresponding

objects are of the type x ∼
(
e

2πikm
d

)
k∈[d]

, for some m ∈ Z. □

Next, we study the system (16) in case rank(Aj) = 1.
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Lemma 14 Let j ∈ [d] and rank(Aj) = 1. There exist two solutions φj1 ̸= φj2
to (16) given by

φjq
..= arg(aj0) + (−1)q arccos

(
d2 − |aj0|2 − |f j0 |2

2|aj0||f j0 |

)
, q = 1, 2.

Furthermore, there exists a disjoint partition Sj ,Scj of [d] such that 0 ∈ Sj,
Scj ̸= ∅, and we can write the corresponding diagonals F−1f j,q as

(F−1f j,q)k =

{
eiψ

j
q , k ∈ Sj ,

ei(ψ
j
q+(−1)qρj), k ∈ Scj ,

q = 1, 2,

with ρj ∈ (−π, π)\{0}, ψj1 ̸= ψj2, and

ψj2 ∈ ψj1 − ρj + π + 2πZ. (26)

Proof. Lemma 14 can be interpreted geometrically as a problem of intersecting
circles. For a visualization of the proof idea, see Figure 5.

In the following, let j ∈ [d] be fixed. Throughout the proof, we drop the
index j to simplify the notation.

Since rank(A) = 1, all equations in (16) are the same up to a multiplicative
constant ck ∈ R, i.e.,

ak = ck · a0, (27)

for all k ∈ [d]\{0}. If, for some k ∈ [d]\{0}, we have |ak| = 0, the corresponding
equation

Re(ak) cos(φ) + Im(ak) sin(φ) =
1

2|f0|
(
d2 − |ak|2 − |f0|2

)
in (16) reduces to d = |f0|. By Lemma 13, this is equivalent to rank(A) = 0,
which contradicts rank(A) = 1. Hence, |ak| > 0 and ck ̸= 0 for all k ∈ [d]\{0}.

We can rewrite the equations of (16) as

d2 = |ak|2 + |f0|2 + 2|f0|Re
(
ake

−iφ) .
Since (16) is only considered for |f0| > 0, it is further transformed into

cos(arg(ak)− φ) =
d2 − |ak|2 − |f0|2

2|ak||f0|
,

which may have two solutions

φq = arg(ak) + (−1)q arccos

(
d2 − |ak|2 − |f0|2

2|ak||f0|

)
, q = 1, 2.
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0

{z ∈ C : |z| = |f0|}

{z ∈ C : |z| = d}

{z ∈ C : |z − a0| = d}

f10

f20

f10 + a0 = deiψ1

f20 + a0 = deiψ2

f10 + ca0 = dei(ψ1−ρ)

f20 + ca0 = dei(ψ2+ρ)

|f0|ei arg(a0)

Fig. 5 Geometric visualization of Lemma 14. By Proposition 9, |fq
0 | is known. This

guarantees that the possible Fourier coefficients fq
0 lie on the blue circle. By definition,

fq
0 + aℓ = d(F−1fq)ℓ and |(F−1fq)ℓ| = 1. Hence, fq

0 + aℓ has to lie on the green circle.
Consequently, the possible solutions fq

0 lie on the orange circle, or, more precisely, on its
intersections with the blue circle. It can be shown that neither the blue and the green circle
coincide nor the orange circle is tangent to the blue circle, so that there are precisely two
intersection points, corresponding to two solutions. The lightgray dotted lines are parallels
in the direction of a0 containing the solutions fq

0 . Their two intersection with the green cir-
cle show that there are two distinct values the entries of the diagonal can take.

As the system (16) has at least one solution corresponding to the ground-truth
object x, the right-hand side is the same for all k ∈ [d]. Setting k = 0 gives
the desired formula for φq, q = 1, 2.

Note that φ1 = φ2 if and only if, for all k ∈ [d],

d2 − |ak|2 − |f0|2
2|ak||f0|

= δ,

for δ ∈ {−1, 1}. Bringing the denominator to the other side and summing the
equations for all k yields

d3 −
d−1∑
k=0

|ak|2 − d|f0|2 = 2δ|f0|
d−1∑
k=0

|ak|. (28)

Plancherel’s identity (2) combined with (17) and Proposition 9 gives

∥a∥22 = 1
d∥Fa∥

2
2 = d∥(0, f1, . . . , fd−1)∥22 = d∥f∥22 − d|f0|2 = d3 − d|f0|2.
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Substituting this into (28) results in

2|f0|
d−1∑
k=0

|ak| = 0.

Recall that the case |f0| = 0 is excluded as it does not require solving the
linear system (16). Moreover, we showed above that all ak ̸= 0. Hence, in the
case rank(A) = 1, there always exist two values φ1 ̸= φ2 solving (16). In the
following, the corresponding two vectors of Fourier coefficients are denoted by
f1 and f2, respectively.

These solutions can be described in more detail. Let us set ψq so that(
F−1fq

)
0
= eiψq .

By the definitions (9), (17), and (27), we obtain

fq0 + cka0 = fq0 + ak =

d−1∑
ℓ=0

e
2πikℓ
d fqℓ = d(F−1fq)k.

By Proposition 9, the diagonals satisfy F−1fq ∈ Td. Thus, we have that 1
d (f

q
0+

cka0) ∈ T.
The system (16) has at least one solution corresponding to the ground-truth

object x. Consequently, the right-hand side of (16) belongs to

im(A) ..= {v ∈ Rd : Au = v for some u ∈ R2}.

For every v ∈ im(A) we have

vk = Re(ak)u1 + Im(ak)u2 = ck Re(a0)u1 + ck Im(a0)u2 = ckv0,

and, thus, the right-hand side of (16) also admits

1− 1

d2
(
|ak|2 + |f0|2

)
= ck

[
1− 1

d2
(
|a0|2 + |f0|2

)]
. (29)

Inserting (27) into (29), we obtain

d2 − c2k|a0|2 − |f0|2 = ck ·
(
d2 − |a0|2 − |f0|2

)
.

This quadratic equation with respect to ck has two roots, 1 and c ..= (|f0|2 −
d2)/|a0|2 < 0, noticeably, independent of k. Let us define S and Sc as

S ..= {k ∈ [d] : ck = 1} and Sc ..= {k ∈ [d] : ck = c}.
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By construction, 0 ∈ S, S∩Sc = ∅, and S∪Sc = [d]. If Sc is empty, the entries
of (F−1fq) are all equal to 1

d (f
q
0 + a0), which, by Lemma 13, contradicts the

rank(A) = 1 assumption. Thus, we conclude that Sc ̸= ∅.
Then, for both, q = 1 and q = 2, the values of F−1fq are given by

(F−1fq)k = 1
d (f

q
0 + a0) = eiψq , k ∈ S,

and
(F−1fq)k = 1

d (f
q
0 + ca0) =.. ei(ψq+ρq), k ∈ Sc,

for some ρq ∈ (−π, π]\{0}.
The next step is to show that ρ2 = −ρ1. We have

ei(ψq+ρq) = 1
d (f

q
0 + ca0 + a0 − a0) = eiψq + (c− 1) · 1

d
a0, q = 1, 2.

Combining the two relations for q = 1 and q = 2 yields

eiψ1
(
1− eiρ1

)
= eiψ2

(
1− eiρ2

)
. (30)

Since |eiψ1 | = |eiψ2 | = 1, we get

|1− eiρ1 |2 = |1− eiρ2 |2,

or, equivalently,
cos ρ1 = cos ρ2.

As we choose ρ1, ρ2 ∈ (−π, π]\ {0}, either ρ2 = ρ1 or ρ2 = −ρ1 holds. If
ρ2 = ρ1, then (30) yields ψ1 = ψ2 and f10 = f20 , which in turn, implies φ1 = φ2

and contradicts φ1 ̸= φ2. We conclude that ρ2 = −ρ1.
In particular, for ρ1 = π, the only ρ2 ∈ (−π, π]\{0} satisfying cos(ρ2) =

cos(ρ1) = −1 is ρ2 = π = ρ1, contradicting ρ2 ̸= ρ1. Therefore, we have
ρ1 ∈ (−π, π)\{0}.

Finally, via (30), we obtain

eiψ1 = eiψ2 · e
−iρ1 − 1

eiρ1 − 1
= eiψ2 · (−e−iρ1) = eiψ2 · e−iρ1 · eiπ,

so that
ψ1 = ψ2 − ρ1 + π + 2πm

for some m ∈ Z. Setting ρ = ρ2 = −ρ1, we obtain the statement of the lemma.
□

The remaining case to consider is rank(Aj) = 2. In this case, system (16)
is uniquely solvable. Hence, the lost zero frequency f j0 = (F [x ◦ Sjx])0 can
be recovered uniquely. Then, x can be recovered uniquely if, additionally, j is
coprime with the object’s dimension d.
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Lemma 15 Let j ∈ [d].
(i) If rank(Aj) = 2, φj is uniquely recoverable from (16), i.e., F−1f j is

uniquely recoverable from measurements (7).
(ii) If j is coprime with d, x can be uniquely recovered from the diagonal

F−1f j = x ◦ Sjx.

Proof. If rank(Aj) = 2, system (16) has one solution, i.e., we can recover φj ,
and, hence, (F [x ◦ Sjx])0 uniquely. From F [x ◦ Sjx], we obtain back x ◦ Sjx.

If j and d are coprime, j is a generator of the additive group of integers
modulo d, denoted by Zd. That means, for every k ∈ [d], there exists r ∈ Z
with rjmod d = k. Hence, for any k ∈ [d], there exists r ∈ Z with

x0xk =

r∏
t=1

x(t−1)jxtj

/ r−1∏
t=1

|xtj |2.

Consequently, for all k ∈ [d], the product x0xk can be built from the entries
of x ◦ Sjx together with the magnitudes of x, which are a priori known for a
phase object. The phase of x0 ∈ T can be chosen arbitrarily as the solution to
a phase retrieval problem is unique only up to a global phase. Based on this
choice, the phases of xk ∈ T for all k > 0 are found using the relations x0xk.

□

Remark 16 If j is not coprime with d, j does not generate Zd. That means,
C0 ..= {jℓmod d, ℓ ∈ [d]} ≠ Zd, and there exists at least one n ∈ Zd such that
C ..= {(jℓ + n)mod d, ℓ ∈ [d]} satisfies C0 ∩ C = ∅. Hence, for every object
x ∈ Cd we can construct x̃ as

x̃k =

{
αxk, k ∈ C,
xk, k /∈ C,

with α ∈ T \ {1}, such that x̃ ̸∼ x but x ◦ Sjx = x̃ ◦ Sj x̃.

5.4 Proof of Theorem 12

In this section, we prove Theorem 12. Using the results of Section 5.3, we
investigate in closer detail under which conditions system (16) is uniquely
solvable. We will find that it is sufficient to use the information given by
j = 1 and j = 2 to fully characterize the uniqueness of reconstruction for
measurements with background noise. The proof is split into the analysis of
the disjoint cases listed in Table 1.

The case j = 0 is of no relevance as

(F [x ◦ S0x])0 =

d−1∑
k=0

e−
2πik·0
d · |xk|2 = d
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is known for a phase object, and does not provide further information on the
phases of the object.

We start with investigating j = 1. As 1 is coprime with any d ∈ N,
Lemma 15 guarantees unique recovery in case rank(A1) = 2.

Let rank(A1) = 0. With 1 being coprime with any d ∈ N, Lemma 13
provides that the only object satisfying this condition is the negative example
(i) in Theorem 11. In Section 5.2 we showed that for this class of objects unique
recovery is not possible.

If rank(A1) = 1, Lemma 14 tells that considering only the diagonal corre-
sponding to shift j = 1 is not sufficient. Thus, we need to include information
for further diagonals.

We continue with j = 2 and use that the first and the second off-diagonal
are related via

(F−1f2)k = (x ◦ S2x)k = xk · 1 · xk+2 = xk |xk+1|2 xk+2

= (x ◦ S1x)k (x ◦ S1x)k+1 = (F−1f1)k (F−1f1)k+1.
(31)

Again, the three possible cases rank(A2) = 0, rank(A2) = 1, and rank(A2) = 2
are considered.

Firstly, we find that rank(A2) = 1 is not feasible if rank(A1) = 1.

Lemma 17 The case rank(A1) = 1 and rank(A2) = 1 is not possible.

Proof. We show the statement by contradiction. Assume that rank(A1) =
rank(A2) = 1. As rank(A1) = 1, Lemma 14 for j = 1 states that there are the
two distinct solutions

(F−1f1,q)k =

{
eiψq , k ∈ S,
ei(ψq+(−1)qρ), k ∈ Sc, q = 1, 2,

with S,Sc as described in the proof of Lemma 14.
Here, we drop the index j for ψjq and ρ

j to shorten the notation as we only

require these values for j = 1. However, we keep the index in f j,q to distinguish
f1,q and f2,q.

By (31), there are three possible values which the entries of the second
diagonal can take,

(F−1f2,q)k = (F−1f1,q)k(F
−1f1,q)k+1

=


ei2ψq , k ∈ S, k + 1 ∈ S,
ei(2ψq+(−1)qρ), k ∈ S, k + 1 ∈ Sc

or k ∈ Sc, k + 1 ∈ S,
ei(2ψq+(−1)q2ρ), k ∈ Sc, k + 1 ∈ Sc,

(32)
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for both q = 1 and q = 2. However, since rank(A2) = 1, by Lemma 14, the
second diagonal can only accept two different values. The index sets S,Sc ̸= ∅,
hence there is at least one k ∈ [d] with(

F−1f1,q
)
k
= eiψq and

(
F−1f1,q

)
k+1

= ei(ψq+(−1)qρ).

Thus, we can conclude for the second diagonal that

(F−1f2,q)k = eiψq · ei(ψq+(−1)qρ) = ei(2ψq+(−1)qρ)

for at least one k ∈ [d]. Consequently,

(F−1f2,q)k ∈
{
ei(2ψq+(−1)qℓρ), ei(2ψq+(−1)q(ℓ+1)ρ)

}
, q = 1, 2,

where in both cases ℓ is either zero or one, depending on the set S.
From Lemma 14 for j = 1, we obtain

ψ1 = ψ2 + ρ+ π + 2πm1, (33)

and, for j = 2,
2ψ1 − ℓρ = 2ψ2 + ℓρ+ ρ+ π + 2πm2 (34)

for some m1,m2 ∈ Z.
Bringing ψ1 − ψ2 to the left–hand side and the rest to the right-hand side

in both (33) and (34) yields

ρ+ π + 2πm1 =
1

2
((2ℓ+ 1)ρ+ π + 2πm2) ,

so that
(2ℓ− 1)ρ = π + 2π(2m1 −m2).

For both, ℓ = 0 and ℓ = 1, we find that ρ ∈ {−π, π}, which is not attainable
according to Lemma 14. Hence, rank(A1) = rank(A2) = 1 is not feasible.

□

Next, we investigate the case rank(A1) = 1 and rank(A2) = 0 and find the
second negative example (ii) in Theorem 11. From Section 5.2 it is known that
such objects cannot be recovered uniquely.

Lemma 18 Let xq ∈ Cd be defined by entries

xqk
..= e−

2πikm
d ·

{
1, k even,

−(−1)qe(−1)q 1
2 iρ, k odd,

for all k ∈ [d]. If rank(A1) = 1 and rank(A2) = 0, then d is even and x ∼ xq

with q = 1 or q = 2 for some m ∈ Z and ρ ∈ (−π, π)\{0}.
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Proof. According to Lemma 13, rank(A2) = 0 is equivalent to F−1f2 constant.
We assume rank(A1) = 1. As in Lemma 14, set (F−1f1,q)0 ..= eiψq for

some ψq ∈ [0, 2π), q = 1, 2, and the other value that appears for at least one
(F−1f1,q)k we set as ei(ψq+(−1)qρ) for ρ ∈ (−π, π)\{0}, for both q = 1, 2.

The first and the second off-diagonal are related via (31). Hence, based
on the knowledge of the first diagonals F−1f1,q and the fact that F−1f2 is
constant, the second diagonal must be (F−1f2)k = ei(2ψq+(−1)qρ) for all k ∈ [d],
for either q = 1 or q = 2. For this to hold true, the entries of F−1f1,q have to
satisfy

(
F−1f1,q

)
k
=

{
eiψq , k even,

ei(ψq+(−1)qρ), k odd.
(35)

If d is odd, this means xd−1x0 = eiψq , so

xd−1x1 = xd−1x0x0x1 = ei2ψq .

This requires ρ ∈ 2πZ. Then, the first diagonal is
(
F−1f1,q

)
k
= eiψq for all

k ∈ [d], contradicting rank(A1) = 1. Hence, rank(A1) = 1 and rank(A2) = 0
can only appear if the object dimension d is even.

Let d be even. By

d−1∏
k=0

xkxk+1 =

d−1∏
k=0

|xk|2 = 1,

we obtain (
eiψ1

) d
2

(
ei(ψ1−ρ)

) d
2

= 1,

i.e.,

dψ1 −
d

2
ρ = 2πm (36)

for some m ∈ Z. Equation (26) in Lemma 14 further provides that the respec-
tive ψ2 corresponding to f1,2 satisfies ψ2 = ψ1 − ρ − π + 2πm̃ for some
m̃ ∈ Z.

The first diagonal is sufficient to reconstruct x as explained in Lemma 15.
From (35), we derive the two possible solutions

xqk = e−ik(ψq+(−1)qρ) ·
{
e(−1)qi k2 ρ, k even,

e(−1)qi k+1
2 ρ, k odd,

q = 1, 2.

Together with (26) and (36), we obtain that x can be equal to xq for q = 1 or
q = 2 with

xqk = e−
2πikm
d ·

{
1, k even,

−(−1)qe(−1)q 1
2 iρ, k odd,

q = 1, 2,
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for all k ∈ [d], for some m ∈ Z and ρ ∈ (−π, π)\{0}. □

Remark 19 In Theorem 11 (ii), we do not exclude ρ = 0. Note that for ρ = 0,
the objects of type (ii) equal the objects of type (i). In Lemma 18, however,
ρ = 0 is excluded as it is not attainable in case rank(A1) = 1.

The remaining case to investigate is rank(A2) = 2. If rank(A2) = 2 and d
is odd, d is coprime with 2 and the ground-truth solution x can be uniquely
recovered as shown in Lemma 15 for j = 2. It is left to study the case when d
is even.

Lemma 20 If rank(A1) = 1, rank(A2) = 2, and d is even, the ground-truth
solution x can be uniquely recovered.

Proof. If rank(A2) = 2, the system (16) for j = 2 has one solution. That
means, we can recover f20 uniquely and compute the second diagonal F−1f2.

Since d is even, d and j = 2 are not coprime and there are multiple x
corresponding to the second diagonal F−1f2, see Remark 16. However, we can
make use of f2 to select the ground-truth solution out of the two possible
solutions f1,1 ̸= f1,2 obtained in Lemma 14 for the shift j = 1. We show that
this is possible by contradiction.

Assume that f1,1 and f1,2 yield, via (31), the same diagonal F−1f2. The
entries of F−1f2 can be deduced from f1,1 and f1,2 and can take the three
possible values as in (32) for both q = 1 and q = 2.

It is not possible that F−1f2 is constant. Otherwise, rank(A2) = 0
according to Lemma 13. Thus, for at least one k ∈ [d],

(F−1f2)k ∈
{
ei2ψq , ei(2ψq+(−1)q2ρ)

}
for both q = 1, 2, and, as we assumed that F−1f2 is obtained from both f1,1

and f1,2, either

(i) ei2ψ1 = ei2ψ2 or (ii) ei(2ψ1−2ρ) = ei(2ψ2+2ρ)

must be satisfied. Suppose (i) holds true. Then

2ψ1 = 2ψ2 + 2πm

for some m ∈ Z, i.e.,
ψ1 = ψ2 + πm.

For m even this means ψ1 = ψ2 since ψ1, ψ2 ∈ (0, 2π], which is impossible by
Lemma 14. If m is odd, we have

ψ1 = ψ2 + π + 2πm̃
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with m̃ ∈ Z. Together with (26), we obtain ρ ∈ 2πZ, which is again not possible
by Lemma 14.

Next, suppose property (ii) is true and

2ψ1 − 2ρ = 2ψ2 + 2ρ+ 2πm1

for some m1 ∈ Z. Combining this with (26), we further find that ρ ∈ πZ. Once
again, this is not attainable according to Lemma 14.

We conclude that both (i) and (ii) are not possible and we got a contra-
diction. Hence, only one out of f1,1 or f1,2 is compatible with the uniquely
recovered f2. □

In summary, we found that involving j = 2 helps to distinguish the two
possible diagonals caused by rank(A1) = 1 into the ground-truth diagonal
and the false diagonal. Knowing the first diagonal determines x uniquely, see
Lemma 15 (ii).

We conclude that only from j = 1 and j = 2 it can be decided whether
x can be recovered uniquely, up to the global phase, and which objects can
never be uniquely recovered from data with background noise. Theorem 12
summarizes these results.

6 Conclusion and discussion

In this paper, we considered ptychographic measurements corrupted with
background noise. Along the lines of the Wigner Distribution Deconvolution
approach for ptychography, we designed two denoising algorithms, one for arbi-
trary objects and another version for phase objects. For the latter algorithm,
a uniqueness guarantee was established for almost every object.

Following up on this approach, it would be interesting to investigate
whether discarding more frequencies can be offset by the redundancy and how
this affects the uniqueness of reconstruction.

Another promising direction is to use the established analysis for subspace
completion technique [45]. It requires solving a system alike to (11) with only
one unknown coefficient, which is more difficult than the phase objects, but
easier than two unknowns in the case of arbitrary objects. This can be seen
as an intermediate step for establishing the uniqueness of reconstruction for
general objects in the presence of background noise.
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