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Atmospheric new particle formation (NPF) is a naturally occurring phenomenon, during 
which high concentrations of sub-10 nm particles are created through gas to particle 
conversion. The NPF is observed in multiple environments around the world. Although it has 
observable influence onto annual total and ultrafine particle number concentrations (PNC 
and UFP, respectively), only limited epidemiological studies have investigated whether these 
particles are associated with adverse health effects. One plausible reason for this limitation 
may be related to the absence of NPF identifiers available in UFP and PNC data sets. Until 
recently, the regional NPF events were usually identified manually from particle number size 
distribution contour plots. Identification of NPF across multi-annual and multiple station 
data sets remained a tedious task. In this work, we introduce a regional NPF identifier, 
created using an automated, machine learning based algorithm. The regional NPF event tag 
was created for 65 measurement sites globally, covering the period from 1996 to 2023. The 
discussed data set can be used in future studies related to regional NPF.

Background & Summary
Exposure to increased ultrafine particle number concentration (ultrafine particles, UFP, diameter <0.1 µm) 
poses a significant health risk1–4. Although several studies have reported a positive association between UFP 
exposure and increased adverse health-effects, the inconsistencies in epidemiological studies caused by 
not-harmonized UFP measurements, high spatial and temporal UFP variability, complex physical-chemical 
properties, etc., result in inconsistent findings regarding UFP impacts on health5,6. Moreover, UFP provides - 
through aerosol dynamic processes, a source for bigger particles that contribute to atmospheric light scattering 
and absorption, as well as the formation of cloud condensation nuclei7.

Unlike PM2.5 and PM10 (airborne particulate matter, with aerodynamic diameters ≤ 2.5 and 10 μm), the UFP 
is neither legally regulated nor consistently measured in long-term, official air quality monitoring sites. With 
that being said, particle number size distribution (PNSD) data does exist and was already used by several studies 
to report long-term European trends of UFP and total particle number (PNC) concentrations (e.g.8–11). The 
PNSD data are provided by Research Infrastructures (ACTRIS), international and European networks (GAW, 
EMEP) and regional research networks (German Ultrafine Aerosol Network, GUAN12,; the Spanish Network 
of Environmental Differential Mobility Analysers, REDMAAS13), Data repository for ACTRIS, GAW, EMEP 
and GUAN is hosted by EBAS@NILU, EBAS home – ebas homepage (nilu.no). The main origins of PNC and 
UFP particles in urban environments include but are not limited to road, sea and air traffic (e.g.14–16) emissions, 
long-range transport (e.g. Seto et al.17), emissions from residential heating and cooking (e.g.18,19), and new par-
ticle formation (NPF20). New particle formation and subsequent particle growth, which extend over a period 
of several days and forms a banana-shaped structure in the daily PNSD contour plots represents a regional 
phenomenon, which takes place over a large territory21. Other types of NPF (based on contour-plot shapes) 
were also observed, including bump- or apple-type structures22,23, which indicates a more local and/or disturbed 
nucleation. The NPF events have also been identified in urban environments (e.g.24,25), although such events 
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are easier recognizable in more stable background environments26. In the past, the detection of regional NPF 
events relied on visual inspection of PNSDs (looking for a signature banana shape in a PNSD contour plots) 
and some automatic algorithms (27,28 and references therein). With an increasing availability and accessibility 
of deep learning or other novel machine learning methods in data analysis, such algorithms were also applied 
to classify between NPF event and non-event days28,29. Some studies have also discussed the NPF mechanisms, 
precursors, growth, and formation rates based on multi-year and multi-station data, automatically identifying 
nucleation events30.

During a regional NPF event, the urban background PNC and UFP number concentration (in a range from 
103 to 104 cm−3) may suddenly increase up to an order of magnitude reaching levels like those observed in traffic 
impacted areas10,31,32. While people living at bigger distance to congested streets may experience a lower expo-
sure to road-traffic emitted particles, regional NPF will undoubtedly lead to an increased exposure to PNC and 
UFP without the need for a traffic source nearby. Regional NPF has been shown to take place simultaneously 
over an area of up to several hundred kilometres. However, to date, only limited number of epidemiological 
studies (e.g.33) and to limited extent has included NPF events into data analysis. It remains uncertain, whether 
exposure to high PNC and UFP concentrations from regional nucleation, poses any health risks. The main 
reason for this may be the lack of a regional NPF identifier in long-term data set of PNC and UFP number 
concentrations. Furthermore, for health-related studies there is a clear need to separate UFP originating from 
combustion sources versus those being formed by regional atmospheric NPF events.

The main goal of this work is to provide the scientific community a regional NPF event identifier that can be 
used in future epidemiological studies to investigate the health-effects of PNC and UFP, based on a long-term 
(over 10 years) and global coverage data. The NPF classification is done by training a machine learning model to 
automatically detect regional NPF events. We focus on regional NPF events, specifically banana-shaped struc-
tures, because they have a broader impact on regional PNC and affect larger areas, thereby influencing popu-
lations far from measurement sites. In contrast, bump-type or apple-type NPFs are more localized and have a 
limited spatial extent. Additionally, accurately identifying non-regional NPFs requires complex labelling and 
additional data, which could introduce significant uncertainties. This way, our work provides, for the first time, 
a means to account for the regional NPF influence on long-term PNC and UFP concentration levels.

Methods
Measurement sites, data availability, and preprocessing. The long-term global PNSD data on request (inquiring 
for specific period and spatial coverage) was received from the Norwegian Institute for Air Research (NILU) 
and EBAS@NILU in hourly resolution text-based NASA-Ames format. The PNSD data can also be freely down-
loaded from the NILU data base (https://ebas.nilu.no/). Downloading same data set would require the following 
steps: a) navigating to https://ebas-data.nilu.no; b) choosing country and station of interest; c) from a compo-
nent field, choosing “particle number size distribution”; d) from a matrix field selecting “all”; e) and clicking list 
datasets. In the new page, one can identify period of interest and download required PNSD data. Finally, PNSD 
data can be obtained from each data originator directly. However, this would require additional effort compared 
to the first and second methods.; b) choosing country and station of interest;

The primary advantages of retrieving global PNSD data from the NILU database are the rigorous quality 
control and assurance measures and the uniform data format. The NILU database ensures that PNSD measure-
ments, performed using mobility particle size spectrometers (MPSS), adhere to the well-defined standard oper-
ating procedures outlined in Wiedensohler et al.34. Each PNSD data file downloaded from the NILU database 
includes detailed header information, which encompasses the inlet type, humidity/temperature control, detec-
tion limits, measurement uncertainties, and various data tags, among other elements. Moreover, the EBAS@
NILU database features a three-level data structure (level-0, level-1, and level-2), allowing end users to select 
the data structure that best suits their needs. In this study, we utilized level-2 data, which represent the final 
PNSD. These data are corrected to standard conditions of temperature (273.15 K) and pressure (1013.25 hPa) 
and are averaged to a time resolution of one hour. If required, users can also obtain level-0 (data set contains the 
metadata, raw data, and system parameters) and level-1 (data set contains processed (multiple charge and losses 
correction) PNSD with the original time resolution) data. The spatial coverage of the data is shown in Fig. 1.

Although the retrieved PNSD dataset was in a level-2 structure, indicating a harmonized data format, we 
observed discrepancies in the size ranges used for PNSD measurements across some of the measurement sites. 
The lowest reported diameter was 3 nm, and the highest - 1357 nm. In addition, the measured particle size 
range varied across different measurement sites, including ranges from 8.82 to 333.8 nm, 8.82 to 289 nm, 6.3 to 
389.31 nm, and 3.16 to 1000 nm, among others. Such discrepancies between sites, although have no effect on 
identifying regional NPF events, it make comparison between PNSD derived parameters (e.g., integrated parti-
cle number concentration, particle formation and growth rates, etc.) rather difficult. Besides different size ranges, 
further differences between received data files were observed: (1) not all station data was of level-2 (in some 
instances, other levels were identified in a requested level-2 data file names). In this study, we used the highest 
level data. That is, if level-2 data was not available, level-1.5 data was used with no specific treatment. It must be 
noted that regional NPF identification is possible using either level data (because banana shape structure would 
appear in any level data contour plot); (2) some data files included only one diameter (and not a diameter range). 
Such data was excluded from further analysis; (3) some data files had a different structure; (4) missing data was 
identified differently (e.g. 999.9999, 99.99, 9.9, etc.). Although the standard data format required by the database 
implies unity between different measurement sites, some of the issues listed above greatly increased the effort 
to automatically reprocess the data. All the PNSD measurement sites, used for regional NPF event classification 
are listed in Tables 1–3. The station type classification is partly based on Rose et al.10 and the site description in 
level-2 PNSD files. The NPF event classification covers many environments including rural background, forest, 
urban, suburban, mountain, pristine, and mixed. Temporal coverage of the NPF event identifier is show in Fig. 2.
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Recognition of regional new particle formation events.  Given that daily PNSD measurement data 
can be represented as a contour image, the convolutional neural networks (CNNs) were used for automatic clas-
sification of three different daily events categories: NPF event day, non-NPF event day, and bad data. The CNNs 
are a class of deep neural networks, mostly used with grid-like topology data, such as images. It utilizes the 
convolutional layers to learn spatial hierarchies of features but demand large complexity and rich data to extract 
relevant features35. Shortly, a CNNs works by (a) detecting patterns, (b) combining clues, (c) making decisions, 
and (d) learning from examples. The CNNs scans the image for specific patterns, like edges or textures, after 
which it pieces them together to understand the overall content of the image. By using the gathered information, 
the CNNs algorithm decides what the image represents, choosing from predefined categories. Through training 
with many examples, the CNN improves its ability to correctly classify images by adjusting its internal settings 
based on its successes and mistakes. As shown previously, the application of CNNs in image-like data processing 
is an effective way to identify NPF events from the contour plots28. The CNNs model used in this work is known 
as Microsoft Residual Network (ResNet36). The pretrained and publicly available ResNet model was loaded and 
applied to previously processed data using Google Colaboratory (accessed December 2023), Google Research, 
available from https://colab.research.google.com/) engined by Python 3.xx (www.python.org) Google Compute 
Engine backend (GPU with 12.7 GB of System RAM; 15.0 GB GPU RAM; and 78.2 GB of Disk space). The “fastai” 
and “PyTorch” packages were used for this purpose37,38. The model was trained using the following steps:

	 1.	 The PNSDs from NASA-Ames format files were extracted, and 1-hour time resolution contour plots (1 per 
day) were plotted using R statistical computing software (R Core Team).

	 2.	 Three categories were chosen for PNSD classification, namely – “bad data” (representing non-continuous 
PNSD, missing data, etc.), “non-NPF” (or regular), and “NPF”. Fewer or more classes can be used, however, 
in case of data usage for epidemiological studies, determining missing data (for filling in the gaps), and 
NPF versus non-NPF event days satisfied our aim.

	 3.	 Random cases with PNSDs representing bad, non-NPF, and NPF cases were then labelled by a skilled 
researcher. In total, 1034, 2777, and 1008 contour plots were selected to represent PNSD cases of bad, non-
NPF, and NPF events, respectively. The exemplary PNSD can be seen in Fig. 3. All figures were labelled 
according to the case they represent. This step is vital for the training of the CNNs model. It must be noted 
that in this work we only consider regional NPF and subsequent particle growth, which forms easily recog-
nizable banana shape in PNSD contour plot. This choice was made because a) regional NPF may influence 
PNC on larger spatial scale and thus be more relevant than locally occurring events; and b) it is not trivial 
to identify locally occurring bursts of new particles (only having PNSD information) and separate them 
from e.g. local traffic or other emissions.

	 4.	 The Residual Network with 50 layers (ResNet-50) was used for image classification. It was chosen because 
of its ability to address the challenge of vanishing gradients in deep networks by using residual or skip con-
nections. These connections enable the network to learn residual functions, facilitating effective gradient 
propagation during training. ResNet-50’s 50-layer structure, consisting of convolutional, pooling, and fully 
connected layers, contributes to its ability to achieve state-of-the-art performance on various computer 
vision tasks, making it a valuable tool in the field of deep learning for image analysis. A fine tune parameter 
of 6 was used which indicates that during the fine-tuning process of ResNet-50 for image classification, 
only 6 specific layers (closer to the output) are being adjusted to better fit the new dataset.

Data Records
The global NPF identifier, PNSDs used for model training, the trained CNNs model, and used codes files were depos-
ited in Figshare under a DOI (Digital Object Identifier) of https://doi.org/10.6084/m9.figshare.25375978.v239.  
The data set consists of 1 zipped folder, which contains 6 files. In the zipped folders, named PNSD_NPF, PNSD_
nonNPF, and PNSD_BAD exemplary cases of particle number size distributions, used for model training, are 

Fig. 1  The global coverage of particle number size distribution measurement sites, retrieved from NILU EBAS.
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Nr.
Station 
Code Station Name Lat. Long. Alt. Type

Bad 
(N = 1034)

Non-NPF 
(N = 2777)

NPF 
(N = 1008)

1 KR0100R Anmyeon-do 36.538 126.330 46 RB, Coast + + +

2 DE0061B Annaberg-Buchholz 50.571 12.998 545 U + — —

3 SE0012R Aspvreten 58.800 17.383 20 F + — —

4 ES0019U Barcelona 41.390 2.116 80 U + + +

5 BG0001R BEO Moussala 42.166 23.583 2971 M + + +

6 NO0002R Birkenes II 58.388 8.252 219 F — + —

7 NL0011R Cabauw Zijdeweg 51.970 4.926 1 RB + — —

8 GR0100B Demokritos Athens 37.994 23.815 270 S, Coast + + +

9 DE0070R Deutschneudorf 50.603 13.465 660 U — — +

10 DE0063K Dresden-Nord 51.065 13.741 116 U + + +

11 DE0064B Dresden-Winckelmannstrasse 51.036 13.730 120 U — + +

12 ES0100R El Arenosillo 37.100 −6.733 41 F + + +

13 GR0002R Finokalia 35.337 25.669 250 RB, Coast — + +

14 MT0001R Giordan Lighthouse 36.072 14.218 167 RB + + +

15 ES0020U Granada 37.164 −3.605 680 U + — —

16 IN1016R Gual Pahari 28.427 77.151 320 U + — —

17 GB0036R Harwell 51.573 −1.316 137 U — + +

18 GR0101R Helmos Mountain 37.984 22.196 2340 M + — +

19 DE0043G Hohenpeissenberg 47.801 11.009 975 RB + — +

20 SE0021R Hyltemossa 56.097 13.418 115 F — + +

21 FI0050R Hyytiälä 61.850 24.283 181 F — + +

22 IT0004R Ispra 45.81 8.63 209 UB + +

Table 1.  The measurement sites used for regional NPF event classification. The total number of daily contour 
plots, used for model training is shown in brackets. The country of origin can be read from the first two letters 
of the station code string. For a further description of measurement sites, please refer to Rose et al.10. The station 
surroundings are described by type, with RB = Rural background; U – Urban; F – Forest; M – Mountain; S – 
Suburban; P – Pristine. The “—” and “ + ” symbols indicate whether specific data was included (“—” not; “ + ” yes) 
in the machine learning model training. The word “Coast” is added to the sites, which are near the coastal line.

Nr.
Station 
Code Station Name Lat. Long. Alt. Type

Bad 
(N = 1034)

Non-NPF 
(N = 2777)

NPF 
(N = 1008)

1 ES0018G Izana 28.309 −16.499 2373 M + + —

2 CH0001G Jungfraujoch 46.547 7.985 3578 M + + —

3 HU0002R K-puszta 46.966 19.583 125 RB + — —

4 CZ0003R Kosetice (NAOK) 49.573 15.080 535 RB + + +

5 FI0038U Kumpula 60.202 24.961 25 U + — —

6 FR0026R La Réunion −21.079 55.383 2160 M + + +

7 DE0066K Leipzig-Eisenbahnstrasse 51.345 12.406 120 U — — +

8 DE0067K Leipzig-Mitte 51.344 12.377 111 U — — +

9 DE0068B Leipzig-West 51.318 12.297 122 U — + —

10 IE0031R Mace Head 53.325 −9.899 5 RB, Coast — + —

11 ES1778R Montseny 41.767 2.350 700 RB — — —

12 IT0009R Monte Cimone 44.193 10.7014 2165 M + — —

13 BO0001R Mount Chacaltaya −16.200 −68.099 5320 M — — +

14 DE0069B Mülheim-Styrum 51.453 6.865 39 S — + —

15 NP0001G Nepal Climate Observatory 
- Pyramid 27.957 86.814 5079 M + + —

16 DE0007R Neuglobsow 53.166 13.033 62 F + — +

17 SE0023R Norunda Tornet 60.086 17.479 46 F — — +

18 FR0022R Observatoire Perenne de 
l’Environnement 48.562 5.505 392 RB + + +

19 FI0096G Pallas 67.973 24.116 565 P — + +

20 CZ0004B Prague-Suchdol 50.126 14.385 270 U — — —

21 LT0015R Preila 55.376 21.030 5 RB, Coast + — —

22 FR0030R Puy de Dôme 45.772 2.964 1465 M — — +

Table 2.  Continuation of Table 1 - the measurement sites used for regional NPF event classification. For the 
table explanation, please refer to Table 1.
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presented. The CNNs model, trained on provided PNSDs is provided in file NPF_CNN_model. The classifica-
tion of PNSDs, using trained CNNs model (NPF_CNN_model) is given in Kecorius_et_al_NPF_identifier file 
(in a format of Table 4). The Python codes, used in Google Colaboratory age given in file Google_Colab_Code.

The provided data set format of the NPF identifier is shown in Table 4. The data set comprises of four col-
umns, namely Date (year, month and day), Station Code (a unique station identifier, which can be used to 

Nr.
Station 
Code Station Name Lat. Long. Alt. Type

Bad 
(N = 1034)

Non-NPF 
(N = 2777)

NPF 
(N = 1008)

1 DE0003R Schauinsland 47.914 7.908 1205 M — + +

2 US9050R Steamboat Springs 40.445 −106.740 3220 M + — —

3 BE0007R TMNT09 Vielsalm 50.304 6.001 496 F — + —

4 NO0058G Troll −72.016 2.533 1309 M + — —

5 CZ0006B Ústí n.L.-mesto 50.661 14.040 147 U — — +

6 FI0009R Utö 59.779 21.377 7 RB + + +

7 FI0023R Värriö 67.766 29.583 400 RB + — +

8 SE0011R Vavihill 56.016 13.150 175 F + — +

9 FR0027U Villeneuve d’Ascq 50.611 3.140 70 U — + —

10 DE0002R Waldhof 52.802 10.759 74 F — + +

11 NO0042G Zeppelin mountain 78.907 11.886 474 M + + —

12 DE0054R Zugspitze-Schneefernerhaus 47.416 10.979 2671 M — — —

13 NO0001R Birkenes 58.380 8.250 190 F — — —

14 DE0055B Leipzig 51.352 12.434 113 U — — —

15 ES0021U Madrid 40.460 −3.730 669 U — — —

16 NO0059G Trollhaugen −72.010 2.540 1553 M — — —

17 DE0056R Bösel 53.000 7.940 40 U — — —

18 FR0020R SIRTA 48.710 2.160 162 U — — —

19 DE0044R Melpitz 51.530 12.930 86 RB — — —

20 IT0015U Lecce 40.340 18.120 36 U — — —

21 GB0021U London - North Kensington 51.520 −0.210 27 U — — —

Table 3.  Continuation of Tables 1 and 2 - the measurement sites used for regional NPF event classification. For 
the table explanation, please refer to Table 1.

Fig. 2  Data availability plot of the NPF event identifier.
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retrieve its location based on the information in Tables 1–3), TAG (an identifier for NPF = 1, non-NPF = 0, and 
bad data = −1), and Prediction (the ML model probability score in percent). The prediction refers to the model’s 
confidence regarding its prediction. In the context of image classification, the CNNs produce a probability dis-
tribution over all classes after processing an image. Each class is assigned with a probability score between 0 and 
1, representing the model’s confidence that the image belongs to that class. Higher percentages indicate higher 
confidence in the predicted class. It is worth noting that one may consider only predictions where the highest 
probability score exceeds a certain threshold as valid predictions. For example, based on Table 4, on 7 April 2007, 
a NPF event was registered at FI0038U measurement station in Finland with a 91% certainty. In general, the use 
of confidence scores from the prediction shall be based on the specific needs of the study. For example, if one 
desires to maximize the coverage of the dataset, prediction confidence between 75 and 100% may be chosen. 
In this case, the subset data would retain 90% of original data. On the other hand, if accuracy is preferred, we 
suggest using prediction confidence, which is greater than 90% (retaining 80% of original data). This threshold 
is based on empirical evaluation and cross-validation results, which indicate that predictions with confidence 
scores above 90% are associated with higher accuracy and lower uncertainty.

Technical Validation
The CNNs model was trained and was evaluated with the data presented in Data Records section. The results 
are presented by means of a confusion matrix, which provides a detailed summary of the model’s predictions 
compared to the actual labels in the dataset (Fig. 4).

Based on the confusion matrix, two model performance metrics were calculated to judge the model’s accu-
racy – the area under the receiver operating characteristic curve (AUC) and the F1 score. Shortly, the Receiver 
Operating Characteristic (ROC) curve is a graphical representation of a binary identifier’s performance across 
various threshold settings. It plots the true positive rate (sensitivity) against the false positive rate (1-specificity) 
for different threshold values. The AUC quantifies the overall performance of the model across all thresholds. 
The AUC can be calculated based on the True Positive Rate (TPR) and False Positive Rate (FPR) across different 
threshold settings:

=
+

TPR TP
TP FN( )

,
(1)

FPR FP
FP TN( )

,
(2)

=
+

where TP are true positives, FN are false negatives, FP are false positives, and TN are true negatives. The AUC 
calculation was performed by plotting TPR against FPR at various threshold settings and computing the area 
under this curve. AUC ranges from 0 to 1, where 0 indicates deficient performance (the identifier always predicts 
the wrong class) and 1 indicates perfect performance (the identifier always predicts the correct class). AUC pro-
vides a single scalar value representing the model’s ability to discriminate between positive and negative classes. 
The F1 score is a metric that combines both precision and recall into a single value. The F1 score is the harmonic 
mean of precision (the proportion of true positive predictions among all positive predictions made by the model) 
and recall (the proportion of true positive predictions among all actual positive samples). It can be calculated as:

Fig. 3  Exemplary cases for particle number size distribution contour plots, which were used for model training. 
Class “bad data” here refers to cases when PNSDs were non-continuous, missing data was present, etc.
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Precision P TP
TP FP

( )
( )

,
(3)

=
+

=
+

Recall R TP
TP FN

( )
( )

,
(4)

= × ×
+

.F P R
P R

1 2 ( )
( ) (5)

The F1 score reaches its best value at 1 and its worst value at 0. It provides a balance between precision and 
recall. In the context of evaluating CNNs, Eqs. 1–5 are applied by considering the predictions made by the model 
and comparing them against the ground truth labels of the dataset. The TP, TN, FP, and FN are counted based 
on the model’s predictions and the actual labels. For our model, the AUC and F1 score are 0.99 and 0.93, respec-
tively, indicating a satisfactory model performance.

Code availability
The custom Python codes, used to train the CNNs model in Google Colaboratory is freely available at https://
doi.org/10.6084/m9.figshare.25375978.v239. Statistical analysis and plotting were performed using the open-
source programming language and software environment R (R Core Team, 2013; version 4.2.2)40. For spatial data 
representation, a quantum geographic information system (QGIS Development Team, 2022)41 was used.
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