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ABSTRACT
Background: Diabetic sensorimotor polyneuropathy (DSPN) is often asymptomatic and remains undiagnosed. The ability of
clinical and anthropometric variables to identify individuals likely to have DSPN might be limited. Here, we aimed to integrate
protein biomarkers for reliably predicting present DSPN.
Methods:Using the proximity extension assay, we measured 135 neurological and protein biomarkers of inflammation in blood
samples of 423 individuals with recent‐onset diabetes from the German Diabetes Study (GDS). DSPN was diagnosed based on
the Toronto Consensus Criteria. We constructed (i) a protein‐based prediction model using LASSO logistic regression, (ii) an
optimised traditional risk model with age, sex, waist circumference, height and diabetes type and (iii) a model combining both.
All models were bootstrapped to assess the robustness, and optimism‐corrected AUCs (95% CI) were reported.

Abbreviations: ADA, American Diabetes Association; AUC, area under the ROC curve; DSPN, diabetic sensorimotor polyneuropathy; FGF‐19, fibroblast growth factor‐19; GDS, German Diabetes
Study; NCS, nerve conduction study; NDS, Neuropathy Disability Score; NFL, neurofilament light; NPX, normalised protein expression; NSS, Neuropathy Symptom Score; QST, quantitative sensory
testing.
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Results: DSPN was present in 16% of the study population. LASSO logistic regression selected the neurofilament light chain
(NFL) and fibroblast growth factor‐19 (FGF‐19) as the most predictive protein biomarkers for detecting DSPN in individuals
with recent‐onset diabetes. The protein‐based model achieved an AUC of 0.66 (0.59, 0.73), while the traditional risk model had
an AUC of 0.66 (0.61, 0.74). However, combined features boosted the model performance to an AUC of 0.72 (0.67, 0.79).
Conclusion: We developed a prediction model for DSPN in recent‐onset diabetes based on two protein biomarkers and five
standard anthropometric, demographic and clinical variables. The model has a fair discrimination performance and might be
used to inform the referral of patients for further testing.

1 | Introduction

Identifying individuals with subclinical or asymptomatic dia-
betic sensorimotor polyneuropathy (DSPN) remains challenging
despite the availability of various screening and diagnostic tools
[1, 2]. Consequently, these individuals often remain undiag-
nosed until their first clinical signs or symptoms appear [3],
driving a subsequent higher risk for associated burden (i.e.,
pain, foot ulceration, deformity and amputations) [1, 4].

The pathophysiology of DSPN implicates a complex interplay
between metabolic and inflammatory processes triggered or
amplified by multiple demographic, anthropometric, lifestyle
and clinical risk factors (i.e., older age, obesity, higher height,
smoking, alcohol, hypertension, dyslipidemia and diabetes
duration) [2]. This complex pathogenic tableau leads to wide-
spread detrimental modifications of distinct signalling path-
ways, ending with axonal loss and myelin damage [3]. Nerve
conduction studies (NCS) are the gold standard methods to
detect early subclinical morphologic abnormalities in large
nerves [5], but unfortunately, they are not feasible in everyday
clinical practice. Therefore, approaches using simple tools to
identify patients with DSPN are needed.

Some studies have developed prediction models for DSPN using
metabolic, demographic, anthropometric and clinical variables
[6–9]. While these predictors represent crucial risk factors for
DSPN development, they do not guarantee its presence, partic-
ularly in recent‐onset diabetes. None of the available prediction
models integrated predictors reflecting downstream pathogenic
inflammatory pathways or morphologic alterations in periph-
eral nerves, which might be better indicators of present DSPN.

The present study aimed to integrate a large panel of protein
biomarkers reflecting inflammatory and neurological processes
and a small set of traditional risk factors to develop a prediction
model that helps estimate the probability that DSPN is present
in middle‐aged individuals with recent‐onset diabetes.

2 | Methods

2.1 | Study Design and Study Population

The German Diabetes Study (GDS) is an ongoing observational
prospective study that evaluates the natural course of recently
diagnosed diabetes and explores prognostic factors and mecha-
nisms leading to the development of diabetes‐related compli-
cations [10]. The inclusion criterion is a diagnosis of type 1 or

type 2 diabetes according to ADA recommendations [11] within
the last 12 months in individuals aged between 18 and 69 years.
All participants underwent a comprehensive examination con-
sisting of clinical tests, a face‐to‐face interview, standardised
written questionnaires and detailed laboratory measurements at
baseline. The GDS was conducted according to the Declaration
of Helsinki, approved by the ethics committee of Heinrich
Heine University, Düsseldorf, Germany (ref. 4508) and regis-
tered with ClinicalTrials.gov (registration no. NCT01055093).
All participants provided written informed consent.

This analysis was based on the consecutive sampling of 504
participants with diabetes who entered the GDS cohort between
September 2005 and December 2011, of whom 423 had available
data for protein biomarkers measured with the OLINK
inflammation [12] and the Neuro Exploratory panels [13] and
complete data for age, sex, waist circumference, height and
diabetes type. The study followed the Transparent Reporting of
a multivariable prognostic model for Individual Prognosis or
Diagnosis (TRIPOD) recommendations [14].

2.2 | Outcome Definition

We assessed DSPN with nerve conduction studies (NCSs),
quantitative sensory testing (QST) and neurological examina-
tions using the Neuropathy Disability Score (NDS) and the
Neuropathy Symptom Score (NSS) as previously described [13].
We defined DSPN according to the Toronto Consensus criteria
[5]. Following our previous report, we considered individuals
with subclinical, confirmed asymptomatic and confirmed
symptomatic DSPN as prevalent DSPN cases [13].

2.3 | Proteomic Profiling

Blood samples were collected from overnight fasted partici-
pants, centrifuged, aliquoted and stored at −80°C until further
use. Aliquots were analysed with Olink Target 96 multiplex
assays (OLINK, Uppsala, Sweden) on two commercially avail-
able panels named Inflammation and Neuro Exploratory, each
consisting of 92 protein biomarkers.

The inflammation panel includes pro‐ and anti‐inflammatory
cytokines, chemokines, enzymes, receptors and growth factors
covering biological processes of inflammation, angiogenesis,
fibrosis and endothelial activation. The Neuro Exploratory
panel includes a combination of exploratory and established
markers (e.g., neurofilament light polypeptide [NFL]) focusing
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on neurological processes such as axon development, neuro-
genesis and synapse assembly.

The Olink assays are based on the proximity extension assay
(PEA) technology, where pairs of oligonucleotide‐labelled anti-
bodies bind to each targeted protein. If both antibodies bind in
close proximity, a polymerase chain reaction (PCR) target is
produced and quantified using standard real‐time PCR. PEA
technology allows the relative quantification of analyte con-
centrations, and results are reported as normalised protein
expression (NPX) values (comparable to the log2 scaled values).

Of the 184 proteins included in the two panels, we used 135
biomarkers for the present analysis and excluded 49 biomarkers
with values below the limit of detection (LOD) ≥ 25% of all
samples or inter‐/intra‐assay coefficients of variation
(CV) > 25%. A detailed description of the 135 protein bio-
markers analysed is given in Table S1.

2.4 | Statistical Analysis

We reported percentages (%) for categorical variables and means
with standard deviations for continuous variables in descriptive
statistics. We examined the differences between individuals
with and without DSPN using chi‐squared and t‐tests. We
evaluated the correlations between 135 protein biomarkers with
Pearson correlation coefficients (r).

In the present study, we implemented a prediction approach
previously reported elsewhere [15]. We constructed three pre-
diction models. First, we used logistic regression with the least
absolute shrinkage and selection operator (LASSO) to build the
protein‐based model with the SBC statistic's minimum value
[16]. Second, we constructed an optimised traditional risk model
including age, sex, waist circumference, height and diabetes
type. Older age and higher waist circumference were reported as
independent predictors of peripheral neuropathy in newly
diagnosed patients with type 2 diabetes from the Anglo‐Danish‐
Dutch study of Intensive Treatment of Diabetes in Primary Care
(ADDITION) [17]. We included height because taller people
were found to have a higher risk for DSPN [3]. We included sex
and diabetes type because DSPN presence might differ in men
versus women and type 1 versus type 2 diabetes [18]. Third, we
built a final combined model integrating the variables of the first
and the second models.

We performed internal validation of each of the three models by
bootstrapping [19, 20]. Model performance was evaluated by
assessing discrimination with the area under the receiving
operating characteristic (ROC) curve and their 95% confidence
intervals. We reported naïve AUCs with their 95% confidence
intervals, optimism value and optimism‐corrected AUCs with
their location‐shifted bootstrap confidence intervals [21]. To
determine to what extent the combined model (main model)
adds performance value compared to the protein‐based or the
traditional risk model, we compared its AUC to those of the
protein‐based and traditional risk models with the method of
DeLong et al., which takes into account that the three models
were derived from the same study sample [22]. The maximum of

Youden's index was calculated to determine the optimal
threshold value for maximising sensitivity þ (specificity −1).
Based on this cut‐off point, we calculated the predicted proba-
bility of having DSPN, sensitivity, specificity and positive and
negative predictive values of the three prediction scores.

We conducted all statistical analyses with SAS version 9.4 (SAS
Institute, Cary, NC, USA). p values < 0.05 were considered to
indicate statistically significant differences.

3 | Results

3.1 | Study Population

Prevalent DSPN was present in 66 (16%) out of 423 study par-
ticipants (subclinical DSPN, n = 41; confirmed asymptomatic
DSPN, n = 11; and confirmed symptomatic DSPN, n = 14). The
baseline characteristics of individuals with and without DSPN
are shown in Table 1. Briefly and as shown before [13], preva-
lent DSPN cases were more likely to be older, taller and male,
and they were more likely to have higher waist circumferences
and to be diagnosed with type 2 diabetes. However, individuals
with and without DSPN did not differ in their BMI, HbA1c, or
triglyceride levels.

Pairwise Pearson correlations showed weak correlations be-
tween most protein biomarkers (most correlation coefficients
were < 0.25; Figure S1).

3.2 | Prediction of DSPN

LASSO logistic regression selected the neurofilament light chain
(NFL) and the fibroblast growth factor‐19 (FGF‐19) as the most
predictive protein biomarkers for detecting DSPN in individuals
with recent‐onset diabetes. Serum NPX levels of these two
proteins were significantly higher in the 66 prevalent DSPN
cases (NFL, mean � SD = 4.1 � 0.8; FGF‐19, 8.3 � 0.9)
compared to 357 non‐DSPN individuals (NFL, 3.7 � 0.6; FGF‐
19, 7.9 � 0.9) (p = 0.000084 and 0.0045 for serum NFL and
FGF‐19, respectively) (Figure 1). Pearson correlation shows a
weak correlation between serum NFL and FGF‐19 (r = 0.15,
p = 0.0023).

The prediction performances of the three developed models are
reported in Table 2. The protein‐based model resulted in a naive
AUC (95% CI) of 0.67 (0.59, 0.74) and an optimism‐corrected
AUC (95% CI) of 0.66 (0.59, 0.73). The traditional risk model
yielded a naïve AUC of 0.69 (0.62, 0.76) and an optimism‐
corrected AUC of 0.66 (0.61, 0.74). The combined model yiel-
ded a naïve AUC of 0.75 (0.68, 0.82) and an optimism‐corrected
AUC of 0.72 (0.67, 0.79). The comparison of the AUCs of the
combined model versus the protein‐based or the traditional risk
models was statistically significant (p = 0.008). Sensitivity at the
maximum of Youden's index was 0.58, 0.77 and 0.77 for the
protein‐based, the traditional risk and the combined models,
respectively; specificity was 0.69, 0.58, and 0.65 for the protein‐
based, the traditional risk and the combined models, respec-
tively. Positive predictive values ranged from 0.26 to 0.29, while
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TABLE 1 | Baseline characteristics of the study population (n = 423).

Prevalent DSPN
(n = 66, 16%)

No prevalent DSPN
(n = 357, 84%) p‐value

Age, years 49.1 (12.5) 45.6 (14.7) 0.043

Sex (men/women), % 85/15 61/39 0.0002

Waist circumference, cm 103.2 (16.1) 97.1 (16.5) 0.005

Height, cm 176.1 (9.3) 173.3 (9.7) 0.029

BMI, kg/m2 30.2 (6.0) 28.7 (6.2) 0.060

Diabetes type (type 1/type 2), % 20/80 40/60 0.002

HbA1c, mmol/mol 50.2 (14.4) 47.6 (11.8) 0.165

Triglycerides, mmol/L 1.2 (0.8, 1.7) 1.1 (0.7, 1.9) 0.686
Note: Data are presented as mean (SD), median (25th, 75th percentiles) or percentages (%).

FIGURE 1 | Serum NFL and FGF‐19 levels by DSPN status. The line that divides the box into two parts represents the median of the data. The top
and bottom of the box show the upper (Q3) and lower (Q1) quartiles. The extreme line shows Q3 þ 1.5 � IQR to Q1 − 1.5 � IQR. Serum NFL and
FGF‐19 are expressed as NPX values. DSPN, diabetic sensorimotor polyneuropathy; FGF‐19, fibroblast growth factor‐19; NFL, neurofilament light.

TABLE 2 | Discrimination performances of prediction models.

Protein‐based modela Traditional risk modelb Combined modelc

Discrimination performance parameters

Naive AUC (95% CI) 0.67 (0.59, 0.74) 0.69 (0.62, 0.76) 0.75 (0.68, 0.82)

Maximum Youden Index 0.26 0.35 0.42

Sensitivity 0.58 0.77 0.77

Specificity 0.69 0.58 0.65

Positive predictive value 0.26 0.25 0.29

Negative predictive value 0.90 0.93 0.94

Internal validation

Optimism 0.008 0.03 0.03

Optimism‐corrected AUC (95% CI) 0.66 (0.59, 0.73) 0.66 (0.61, 0.74) 0.72 (0.67, 0.79)
Note: p‐value for the comparison of the optimism‐corrected AUCs of the combined model versus the protein‐based or the traditional risk models is 0.008.
Abbreviations: AUC, area under the ROC curve; CI, confidence interval.
aThe protein‐based model comprises serum NFL and serum FGF‐19.
bThe traditional risk model comprises age, sex, waist circumference, height and diabetes type.
cThe combined model comprises serum NFL, serum FGF‐19, age, sex, waist circumference, height and diabetes type.
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negative predictive values were much higher across the three
models (0.90 for the protein‐based model, 0.93 for the traditional
risk model and 0.94 for the combined model).

The confusion matrix (Table 3) showed that the protein‐based
model scored 65% of our study population as not having
DSPN, with 67% of participants with and without DSPN being
correctly diagnosed (true positive þ true negative). Moreover,
the traditional risk model scored 52% of our study population as
not having DSPN, with 61% of participants with and without
DSPN being correctly diagnosed. Finally, our main predictive
model (combined model) scored 58% of our study population as
not having DSPN, with 67% of participants with and without
DSPN being correctly diagnosed (true positive = 12%, true
negative = 55%).

4 | Discussion

A prediction model integrating serum NFL and FGF‐19 and age,
sex, waist circumference, height and diabetes type performs well
in predicting prevalent DSPN in recent‐onset diabetes.

NFL is the most abundant cytoskeleton filament protein in
myelinated axons, providing structural support for the axon
[23]. Neuronal degeneration releases NFL into the cerebro-
spinal fluid and blood, and substantial evidence from epide-
miological studies has reported increased NFL levels in various
neurodegenerative diseases, including traumatic brain injury,
multiple sclerosis, frontotemporal dementia and Alzheimer's
disease [24]. Axonal damage of peripheral nerves also releases
NFL from peripheral nerves into the blood, with a growing
body of evidence linking higher serum NFL levels to peripheral
neuropathies from different aetiologies [25]. We recently
showed that higher serum NFL levels were associated with
higher prevalence of DSPN and nerve dysfunction in in-
dividuals with diabetes free of other neurodegenerative dis-
eases [13]. It is worth noting that the present study is a
secondary analysis of data used in our aforementioned primary
study but aims to address a different research question through

different statistical approaches. While our primary study aimed
to identify individual neurological proteins involved in the
disease process leading to DSPN using aetiological models
(multivariable regression models) [13], the present study aimed
to build a prediction model that estimates the probability of
having DSPN based on a small set of variables selected based
on their ability to improve prediction and model performance.
Differences between aetiological and prediction models are
explained elsewhere [26]. It is indeed important to note that
compared to the primary study, the present study extended
data on protein biomarkers by adding 92 biomarkers of
inflammation.

FGF‐19 is a hormone secreted by the small intestine and is a
member of a subfamily of FGFs that includes FGF‐21 and FGF‐
23. Animal models reported insulin‐like actions for FGF‐19 in
the liver (i.e., inducing protein and glycogen synthesis and
suppressing gluconeogenesis) [27]. Indeed, animal studies have
reported an upregulation in the expression of FGF‐19 and other
growth factors in the dorsal root ganglia of rat sciatic nerve after
sciatic nerve injury, and this upregulation promotes axon
regrowth and nerve repair [28]. In humans, a previous epide-
miological study showed that higher serum FGF‐19 was asso-
ciated with an increased risk of incident DSPN in older
individuals [29].

In the present study, higher serum FGF‐19 and NFL in in-
dividuals with DSPN versus those without DSPN suggest some
evidence for an ongoing repair process in peripheral nerves after
nerve injury.

We previously reported that six protein biomarkers of inflam-
mation (i.e., chemokines and soluble receptors) had a fair per-
formance in predicting incident DSPN in older individuals when
added to clinical parameters (AUC of 0.783) [29]. However, this
study selected protein biomarkers based on single associations of
each protein with DSPN after adjustment for confounders and
multiple testing. In contrast, our study used automatic variable
selection where all protein biomarkers were assessed simulta-
neously, considering multicollinearity. Indeed, compared to

TABLE 3 | Confusion matrix summarising the predicted probabilities of the three predictive scores according to the presence or absence of DSPN.

Prevalent DSPN
TotalYes No

Protein‐based modela

High likelihood of DSPN TP (38, 9%) FP (111, 26%) 149 (35%)

Low likelihood of DSPN FN (28, 7%) TN (246, 58%) 274 (65%)

Traditional risk modelb

High likelihood of DSPN TP (51, 12%) FP (150, 35%) 201 (48%)

Low likelihood of DSPN FN (15, 4%) TN (207, 49%) 222 (52%)

Combined modelc

High likelihood of DSPN TP (51, 12%) FP (126, 29%) 177 (42%)

Low likelihood of DSPN FN (15, 4%) TN (231, 55%) 246 (58%)
Abbreviations: DSPN, diabetic sensorimotor polyneuropathy; FN, false negative; FP, false positive, TN, true negative; TP, true positive.
aThe protein‐based model comprises serum NFL and serum FGF‐19.
bThe traditional risk model comprises age, sex, waist circumference, height and diabetes type.
cThe combined model comprises serum NFL, serum FGF‐19, age, sex, waist circumference, height and diabetes type.
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other studies [6–9, 30], our study incorporated a relatively minor
number of anthropometric, demographic and clinical variables,
which are easy to collect in a routine clinical setting [1, 31]. Our
study constructed a prediction model for DSPN in individuals
with type 1 and type 2 diabetes,while other studieswere restricted
to individuals with type 2 diabetes [6–9]. Though DSPN affects
6%–20% of adults with type 1 diabetes at the onset of the disease
[18, 32], current guidelines recommend starting DSPN screening
for these individuals 5 years after disease onset [1], a lag
that might hamper DSPN management and treatment [33]
in those developing the disease earlier. Based on the above, it is of
added value that we tested the performance of our predictive
model in type 1 and type 2 diabetes.However, because of the small
number of cases, subgroup analysis by diabetes type was not
feasible.

We used logistic regression to construct our prediction model,
while two other studies used non‐linear machine‐learning
classifiers with random forest found as the best algorithm [7, 8].
Nevertheless, some evidence in the literature shows that con-
ventional logistic regression performs similarly to optim-
ised non‐linear machine‐learning algorithms in clinical
settings [34].

The very high negative predictive value (0.94) makes using our
combined model gives insight to the healthcare provider with
respect to the non‐need to pursue other more advanced testing
to diagnose DSPN in individuals classified as having a low
likelihood. However, due to the relatively low positive predictive
value (0.29), our combined model might not be very informative
in evaluating the chances of having DSPN among those classi-
fied as having a high likelihood.

The present study's strengths include using gold‐standard
outcome measures and the PEA technology to measure serum
protein biomarkers. Another strength is evaluating the predic-
tive performance of several nerve‐specific protein biomarkers
covering neurological processes such as axon development,
neurogenesis and synapse assembly, and biomarkers of systemic
inflammation covering biological processes of inflammation,
angiogenesis, fibrosis and endothelial activation. The main
limitation of the present study is the lack of external validation
due to the lack of studies with similar data. Our study aimed to
build a model that estimates the probability of present DSPN.
Thus, estimating the probability that DSPN will occur in the
future in DSPN‐free individuals is beyond the scope of our
study. We constructed our predictive model in middle‐aged in-
dividuals with short diabetes duration; hence, to what extent
our model applies to younger individuals or people with longer
diabetes duration is unknown.

5 | Conclusion

We developed a prediction model for prevalent DSPN based
on serum NFL, a protein biomarker of nerve injury, serum
FGF‐19, a growth factor hormone, and age, sex, waist
circumference, height and diabetes type. Our model's high
negative predictive and true negative values suggest that it can

help healthcare providers prevent performing further non‐
beneficial testing of DSPN with costly and time‐consuming
tools.
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